Very Short Answer Questions (PYQ)

[1 Mark]
Q.1. If $\left[\begin{array}{ccc}9 & -1 & 4 \\ -2 & 1 & 3\end{array}\right]=A+\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 4 & 9\end{array}\right]$, then find the matrix \mathbf{A}.

Ans.
Given $\left[\begin{array}{ccc}9 & -1 & 4 \\ -2 & 1 & 3\end{array}\right]=A+\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 4 & 9\end{array}\right]$
$\Rightarrow \quad A=\left[\begin{array}{ccc}9 & -1 & 4 \\ -2 & 1 & 3\end{array}\right]-\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 4 & 9\end{array}\right]=\left[\begin{array}{ccc}8 & -3 & 5 \\ -2 & -3 & -6\end{array}\right]$
Q.2. If matrix $A=[1,2,3]$, then write $A A^{\prime}$, where A^{\prime} is the transpose of matrix A. Ans.

Given $\quad A=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$

$$
A^{\prime}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

$$
A A^{\prime}=(1 \times 1+2 \times 2+3 \times 3)=(14)
$$

Q.3. If $\left[\begin{array}{cc}x+3 y & y \\ 7-x & 4\end{array}\right]=\left[\begin{array}{cc}4 & -1 \\ 0 & 4\end{array}\right]$, then find the value of \boldsymbol{x} and \boldsymbol{y}.

Ans.

$$
\left[\begin{array}{cc}
x+3 y & y \\
7-x & 4
\end{array}\right]=\left[\begin{array}{cc}
4 & -1 \\
0 & 4
\end{array}\right]
$$

Equating the corresponding elements, we get

$$
\begin{aligned}
& x+3 y=4, y=-1,7-x=0 \\
\Rightarrow \quad & x=7, y=-1
\end{aligned}
$$

Q.4. Find the value of \boldsymbol{x}, if $\left[\begin{array}{cc}3 x+y & -y \\ 2 y-x & 3\end{array}\right]=\left[\begin{array}{cc}1 & 2 \\ -5 & 3\end{array}\right]$

Ans.

Given

$$
\left[\begin{array}{cc}
3 x+y & -y \\
2 y-x & 3
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-5 & 3
\end{array}\right]
$$

Equating the corresponding elements, we get

$$
\begin{array}{ll}
\Rightarrow & 3 x+y=1,-y=2,2 y-x=-5 \\
\Rightarrow & y=-2
\end{array}
$$

Putting it in $3 x+y=1$ or $2 y-x=-5$

$$
\begin{array}{lrll}
\text { we get } & 3 x-2=1 & \text { or } & -4-x=-5 \\
\Rightarrow & x=1 & \text { or } & -x=-1 \quad \Rightarrow \quad x=1
\end{array}
$$

Hence, $x=1$ and $y=-2$
Q.5. If $\left[\begin{array}{cc}y+2 x & 5 \\ -x & 3\end{array}\right]=\left[\begin{array}{cc}7 & 5 \\ -2 & 3\end{array}\right]$, then find the value of \boldsymbol{y}.

Ans. Equating the corresponding elements, we get

$$
\begin{array}{lll}
& y+2 x=7 \quad \text { and } \quad-x=-2 \\
\Rightarrow & x=2 \quad \text { and } \quad y+2 \times 2=7 \\
\Rightarrow & y=7-4=3
\end{array}
$$

Q.6. If $\quad\left[\begin{array}{lll}0 & 7 & -2\end{array}\right] \quad\left[\begin{array}{lll}1 & 5 & 2\end{array}\right]$, then find $a_{22}+b_{21}$.

Ans. $a_{22}=4, b_{21}=-3$
$\therefore \quad a_{22}+b_{21}=4-3=1$
Q.7. If $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$, then for what value of $\boldsymbol{\alpha}, \boldsymbol{A}$ is an identity matrix?

Ans.

If A is identity matrix, then $A=I_{2}$

$$
\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

On equating, we get
$\Rightarrow \quad \cos \alpha=1, \quad \sin \alpha=0 \quad \Rightarrow \alpha=0$
Q.8. If $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}3 & 1 \\ 2 & 5\end{array}\right]=\left[\begin{array}{ll}7 & 11 \\ k & 23\end{array}\right]$, then find the value of \boldsymbol{k}.

Ans.
Given: $\quad\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}3 & 1 \\ 2 & 5\end{array}\right]=\left[\begin{array}{ll}7 & 11 \\ k & 23\end{array}\right]$
$\Rightarrow \quad\left[\begin{array}{ll}(1)(3)+(2)(2) & (1)(1)+(2)(5) \\ (3)(3)+(4)(2) & (3)(1)+(4)(5)\end{array}\right]=\left[\begin{array}{ll}7 & 11 \\ k & 23\end{array}\right]$
$\Rightarrow \quad\left[\begin{array}{cc}7 & 11 \\ 17 & 23\end{array}\right]=\left[\begin{array}{ll}7 & 11 \\ k & 23\end{array}\right]$
Equating the corresponding elements, we get

$$
k=17
$$

Q.9. Write a square matrix of order 2, which is both symmetric and skew symmetric.
Ans. Square matrix of order 2, which is both symmetric and skew symmetric is

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Q.10. From the following matrix equation, find the value of x :

$$
\left[\begin{array}{cc}
x+y & 4 \\
-5 & 3 y
\end{array}\right]=\left[\begin{array}{cc}
3 & 4 \\
-5 & 6
\end{array}\right]
$$

Ans.

Given matrix equation

$$
\left[\begin{array}{cc}
x+y & 4 \\
-5 & 3 y
\end{array}\right]=\left[\begin{array}{cc}
3 & 4 \\
-5 & 6
\end{array}\right]
$$

Equating the corresponding elements, we get,

$$
\begin{aligned}
& x+y=3 \text { and } 3 y=6 \\
& \text { i.e., } \quad y=2 \text { and } x=1 \\
& \therefore \quad x=1, y=2 .
\end{aligned}
$$

Q.11. From the following matrix equation, find the value of x :

Ans.
$\left[\begin{array}{ll}1 & 3 \\ 4 & 5\end{array}\right]\left[\begin{array}{l}x \\ 2\end{array}\right]=\left[\begin{array}{l}5 \\ 6\end{array}\right]$
Q.12. If $\left[\begin{array}{cc}7 y & 5 \\ 2 x-3 y & -3\end{array}\right]=\left[\begin{array}{cc}-21 & 5 \\ 11 & -3\end{array}\right]$, then find the value of \boldsymbol{x}.

Ans. Using equality of two matrices

$$
\begin{array}{ll}
& 7 y=-21 \quad \Rightarrow \quad y=-3 \\
& 2 x-3 y=11 \quad \Rightarrow \quad 2 x+9=11 \\
\Rightarrow & x=1 \\
\therefore \quad & x=1, y=-3
\end{array}
$$

Q.13. Write the order of the product matrix.
$\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]$

Ans. Order is 3×3 because it is product of two matrices having order 3×1 and 1×3.
Q.14. For a 2×2 matrix, $A=\left[a_{i j}\right]$, whose elements are given by $a_{i j}=\frac{i}{j}$, write the value of a_{12}.

Ans.

$$
\begin{array}{ll}
\because & a_{\mathrm{ij}}=\frac{i}{j} \\
\Rightarrow & a_{12}=\frac{1}{2} \quad[\text { Here } i=1 \text { and } j=2]
\end{array}
$$

Q.15. Simplify:

$\cos \theta\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]+\sin \theta\left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$
Q.16. If $A^{T}=\left[\begin{array}{cc}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right]$, then find $\boldsymbol{A}^{T}-\boldsymbol{B}^{\boldsymbol{T}}$.

Ans.
Given: $B=\left[\begin{array}{ccc}-1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right]$
$\therefore \quad B^{T}=\left[\begin{array}{cc}-1 & 1 \\ 2 & 2 \\ 1 & 3\end{array}\right]$
Now $A^{T}-B^{T}=\left[\begin{array}{rr}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]-\left[\begin{array}{rr}-1 & 1 \\ 2 & 2 \\ 1 & 3\end{array}\right]=\left[\begin{array}{rr}4 & 3 \\ -3 & 0 \\ -1 & -2\end{array}\right]$
Q.17. Find the value of $x+y$ from the following equation:
$2\left[\begin{array}{ll}1 & 3 \\ 0 & x\end{array}\right]+\left[\begin{array}{ll}y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$

Ans.

Given:

$$
\begin{aligned}
& \Rightarrow \quad\left[\begin{array}{cc}
2 & 6 \\
0 & 2 x
\end{array}\right]+\left[\begin{array}{ll}
y & 0 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
5 & 6 \\
1 & 8
\end{array}\right] \\
& \Rightarrow \quad\left[\begin{array}{cc}
2+y & 6 \\
1 & 2 x+2
\end{array}\right]=\left[\begin{array}{ll}
5 & 6 \\
1 & 8
\end{array}\right]
\end{aligned}
$$

Equating the corresponding elements, we get

$$
\begin{array}{lll}
& 2+y=5 \quad \text { and } & 2 x+2=8 \\
\Rightarrow & y=3 \quad \text { and } & x=3 \\
\therefore & x+y=3+3=6 .
\end{array}
$$

Q.18. For what value of \boldsymbol{x}, is the matrix $\quad A=\left[\begin{array}{rrr}0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0\end{array}\right]$ a skew-symmetric matrix?

Ans. A will be skew symmetric matrix if $A=-A^{\prime}$

$$
\Rightarrow\left[\begin{array}{rrr}
0 & 1 & -2 \\
-1 & 0 & 3 \\
x & -3 & 0
\end{array}\right]=-\left[\begin{array}{rrr}
0 & -1 & x \\
1 & 0 & -3 \\
-2 & 3 & 0
\end{array}\right]=\left[\begin{array}{rrr}
0 & 1 & -x \\
-1 & 0 & 3 \\
2 & -3 & 0
\end{array}\right]
$$

Equating the corresponding elements, we get $x=2$
Q.19. If \boldsymbol{A} is a 3×3 matrix, whose elements are given by $a_{\mathrm{ij}}=\frac{1}{3}|-3 i+j|$, then write the value of a_{23}
Ans. $a_{23}=\frac{1}{3}|-3 \times 2+3|=\frac{1}{3}|-6+3|=\frac{1}{3} \times 3=1$
Q.20. If A is a square matrix and $|A|=2$, then write the value of $\left|A A^{\prime}\right|$, where A^{\prime} is the transpose of matrix A.

Ans. $\left|A A^{\prime}\right|=|A| \cdot\left|A^{\prime}\right|=|A| \cdot|A|=|A|^{2}=2^{2}=4$.
[Note: $|A B|=|A| .|B|$ and $|A|=\mid A^{\top}$, where A and B are square matrices.]
Q.21. If A is a 3×3 invertible matrix, then what will be the value of k if $\operatorname{det}\left(A^{-1}\right)=$ $(\operatorname{det} A) k$.

Ans.
Given, $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det} A) k$

$$
\begin{aligned}
& \Rightarrow \quad\left|A^{-1}\right|=|A| k \quad \Rightarrow \quad \frac{1}{|A|}=|A|^{k} \\
& \Rightarrow \quad|A|^{-1}=|A| k \quad \Rightarrow \quad k=-1
\end{aligned}
$$

Q.22. If $4 \sin ^{-1} x+\cos ^{-1} x=\pi$, then find the value of x.

Ans.

Given $4 \sin ^{-1} x+\cos ^{-1} x=\pi$

$$
\begin{aligned}
& \Rightarrow \quad 4 \sin ^{-1} x+\frac{\pi}{2}-\sin ^{-1} x=\pi \\
& \Rightarrow \quad 3 \sin ^{-1} x=\pi-\frac{\pi}{2} \quad \Rightarrow \quad 3 \sin ^{-1} x=\frac{\pi}{2} \\
& \Rightarrow \quad \sin ^{-1} x=\frac{\pi}{6} \quad \Rightarrow \quad x=\sin \frac{\pi}{6}=\frac{1}{2}
\end{aligned}
$$

Very Short Answer Questions (OIQ)

[1 Mark]

Q.1. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then write A^{n}.

Given $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right] \quad \therefore \quad A^{n}=\left[\begin{array}{cc}\cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta\end{array}\right]$
$\begin{aligned} & \text { Q.2. If } \\ & \text { of } k\end{aligned}\left[\begin{array}{cc}\cos \frac{2 \pi}{7} & -\sin \frac{2 \pi}{7} \\ \sin \frac{2 \pi}{7} & \cos \frac{2 \pi}{7}\end{array}\right]^{k}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then find the least positive integral value of k.

Ans.
Least positive integral value of k is 7 . Since we have

$$
\left[\begin{array}{cc}
\cos \frac{2 \pi}{7} & -\sin \frac{2 \pi}{7} \\
\sin \frac{2 \pi}{7} & \cos \frac{2 \pi}{7}
\end{array}\right]^{7}=\left[\begin{array}{cc}
\cos 2 \pi & -\sin 2 \pi \\
\sin 2 \pi & \cos 2 \pi
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Short Answer Questions-I (PYQ)

[2 Mark]

Q.1. $\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]\left[\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right]=\left[\begin{array}{cc}-4 & 6 \\ -9 & x\end{array}\right]$, then write the value of x.

Ans.
Given $\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right] \cdot\left[\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right]=\left[\begin{array}{ll}-4 & 6 \\ -9 & x\end{array}\right]$
$\Rightarrow \quad\left[\begin{array}{ll}2 \times 1+3 \times(-2) & 2 \times(-3)+3 \times 4 \\ 5 \times 1+7 \times(-2) & 5 \times(-3)+7 \times 4\end{array}\right]=\left[\begin{array}{cc}-4 & 6 \\ -9 & x\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{cc}-4 & 6 \\ -9 & 13\end{array}\right]=\left[\begin{array}{ll}-4 & 6 \\ -9 & x\end{array}\right]$
Equating the corresponding elements, we get

$$
x=13
$$

Q.2. Find the value of $x+y$ from the following equation:
$2\left[\begin{array}{cc}x & 5 \\ 7 & y-3\end{array}\right]+\left[\begin{array}{cc}3 & -4 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}7 & 6 \\ 15 & 14\end{array}\right]$
Ans.
Given, $2\left[\begin{array}{cc}x & 5 \\ 7 & y-3\end{array}\right]+\left[\begin{array}{cc}3 & -4 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}7 & 6 \\ 15 & 14\end{array}\right]$
$\Rightarrow \quad\left[\begin{array}{cc}2 x & 10 \\ 14 & 2 y-6\end{array}\right]+\left[\begin{array}{cc}3 & -4 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}7 & 6 \\ 15 & 14\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{cc}2 x+3 & 6 \\ 15 & 2 y-4\end{array}\right]=\left[\begin{array}{cc}7 & 6 \\ 15 & 14\end{array}\right]$
Equating the corresponding elements, we get

$$
\begin{aligned}
& 2 x+3=7 \text { and } 2 y-4=14 \quad \Rightarrow \quad x=\frac{7-3}{2} \text { and } y=\frac{14+4}{2} \\
& \Rightarrow \quad x=2 \text { and } y=9 \\
& \therefore \quad x+y=2+9=11
\end{aligned}
$$

Q.3. If matrix $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ and $\boldsymbol{A}^{2}=\boldsymbol{k} \boldsymbol{A}$, then write the value of \boldsymbol{k}.

Ans.

Given: $A^{2}=k A$

$$
\begin{aligned}
& \Rightarrow \quad\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]=k\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right]=k\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \\
& \Rightarrow \quad 2\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]=k\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \quad \Rightarrow \quad k=2 \\
& \text { Q.4. If } \\
& \Rightarrow\left[\begin{array}{lc}
3 & 4 \\
2 & x
\end{array}\right]\left[\begin{array}{l}
x \\
1
\end{array}\right]=\left[\begin{array}{l}
19 \\
15
\end{array}\right] \text {, then find the value of } \boldsymbol{x} .
\end{aligned}
$$

Ans.
Given,

$$
\begin{aligned}
& \Rightarrow \quad\left[\begin{array}{ll}
3 & 4 \\
2 & x
\end{array}\right]\left[\begin{array}{l}
x \\
1
\end{array}\right]=\left[\begin{array}{l}
19 \\
15
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{c}
3(x)+4(1) \\
(2)(x)+(x)(1)
\end{array}\right]=\left[\begin{array}{l}
19 \\
15
\end{array}\right] \\
& \Rightarrow \quad\left[\begin{array}{c}
3 x+4 \\
3 x
\end{array}\right]=\left[\begin{array}{l}
19 \\
15
\end{array}\right]
\end{aligned}
$$

Equating the corresponding elements, we get

$$
\begin{array}{lll}
& 3 x+4=19 & \text { and } \\
\Rightarrow & 3 x=19-4, & 3 x=15 \\
\Rightarrow & 3 x=15, & x=5 \\
\therefore & x=5 &
\end{array}
$$

Q.5. If matrix $A=\left[\begin{array}{ll}3 & -3 \\ -3 & 3\end{array}\right]$ and $\boldsymbol{A}^{2}=\lambda \boldsymbol{A}$, then write the value of λ.

Ans.

Here, $A=\left[\begin{array}{rr}3 & -3 \\ -3 & 3\end{array}\right]$
Given, $A^{2}=\lambda A$

$$
\begin{aligned}
& \Rightarrow \quad\left[\begin{array}{rr}
3 & -3 \\
-3 & 3
\end{array}\right]\left[\begin{array}{rr}
3 & -3 \\
-3 & 3
\end{array}\right]=\lambda\left[\begin{array}{rr}
3 & -3 \\
-3 & 3
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{rr}
18 & -18 \\
-18 & 18
\end{array}\right]=\lambda\left[\begin{array}{rr}
3 & -3 \\
-3 & 3
\end{array}\right] \\
& \Rightarrow \quad 6\left[\begin{array}{rr}
3 & -3 \\
-3 & 3
\end{array}\right]=\lambda\left[\begin{array}{rr}
3 & -3 \\
-3 & 3
\end{array}\right] \quad \Rightarrow \quad \lambda=6
\end{aligned}
$$

Q.6. If A is a square matrix such that $A^{2}=I$, then find the simplified value of $(A-I)^{3}+(A+)^{3}-7 A$.

Ans.
We have $A^{2}=I$
Now, $\quad(A-I)^{3}+(A+I)^{3}-7 A=A^{3}-3 A^{2} I+3 A I^{2}-P^{3}+A^{3}+3 A^{2} I+3 A I^{2}+I^{3}-7 A$

$$
\begin{array}{ll}
=2 A^{3}+6 A I^{2}-7 A & \\
=2 A^{3}+6 A I-7 A & {\left[\because I^{2}=I\right]} \\
=2 A^{2} \cdot A+6 A-7 A & {[\because A I=A]} \\
=2 I A+6 A-7 A & {\left[\because A^{2}=I\right]} \\
=2 A+6 A-7 A=A & {[\because I A=A]}
\end{array}
$$

Q.7. Matrix $A=\left[\begin{array}{ccc}0 & 2 b & -2 \\ 3 & 1 & 3 \\ 3 a & 3 & -1\end{array}\right]$
is given to be symmetric, find values of a and b.
Ans.

We have $A=\left[\begin{array}{ccc}0 & 2 b & -2 \\ 3 & 1 & 3 \\ 3 a & 3 & -1\end{array}\right]$
$\because \quad A$ is symmetric matrix

$$
\begin{array}{cc}
\Rightarrow & A^{T}=A \\
\Rightarrow \quad\left[\begin{array}{rrr}
0 & 3 & 3 a \\
2 b & 1 & 3 \\
-2 & 3 & -1
\end{array}\right]=\left[\begin{array}{rrr}
0 & 2 b & -2 \\
3 & 1 & 3 \\
3 a & 3 & -1
\end{array}\right]
\end{array}
$$

Equating both sides, we get

$$
2 b=3 \quad \text { and } \quad 3 a=-2 \quad \Rightarrow \quad b=\frac{3}{2} \text { and } a=-\frac{2}{3} .
$$

Q.8. If $A=\left[\begin{array}{rrr}1 & -2 & 3 \\ -4 & 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 3 \\ 4 & 5 \\ 2 & 1\end{array}\right]$ and $\mathbf{B A}=(\mathbf{b i j})$, find $\mathbf{b} 21+\mathbf{b} 32$.

Ans.

We have, $A=\left[\begin{array}{rrr}1 & -2 & 3 \\ -4 & 2 & 5\end{array}\right]$ and $\left[\begin{array}{ll}2 & 3 \\ 4 & 5 \\ 2 & 1\end{array}\right]$

$$
\begin{aligned}
\therefore & \mathrm{BA}=\left[\begin{array}{ll}
2 & 3 \\
4 & 5 \\
2 & 1
\end{array}\right]_{3 \times 2}\left[\begin{array}{rrr}
1 & -2 & 3 \\
-4 & 2 & 5
\end{array}\right]_{2 \times 3} \\
& {\left[b_{\mathrm{ij}}\right]=\left[\begin{array}{ccc}
2-12 & -4+6 & 6+15 \\
4-20 & -8+10 & 12+25 \\
2-4 & -4+2 & 6+5
\end{array}\right]_{3 \times 3} }
\end{aligned}
$$

Now, $\quad b_{21}=-16 ; b_{32}=-2$
$\therefore \quad b_{21}+b_{32}=-16-2=-18$
Short Answer Questions-I (OIQ)

[2 Mark]

Solve for $x,\left[\begin{array}{ll}1 & x\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]=[0]$.
Q.1.
Ans.
Given: $\left[\begin{array}{ll}1 & x\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]=[0]$
$\Rightarrow \quad\left[\begin{array}{ll}1 & x\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]=[0] \quad \Rightarrow \quad[2+x-1+2 x]\left[\begin{array}{l}1 \\ 3\end{array}\right]=[0]$
$\Rightarrow \quad[2+x-3+6 x]=[0]$
$\Rightarrow \quad-1+7 x=0$
$\Rightarrow \quad x=\frac{1}{7}$
Q.2.

If $\left[\begin{array}{lll}2 & 1 & 3\end{array}\right]\left[\begin{array}{rrr}-1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]=A$, then find the value of A.
Ans.
Given, $A=\left[\begin{array}{lll}2 & 1 & 3\end{array}\right]\left[\begin{array}{rrr}-1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$
$=\left[\begin{array}{lll}-2-1+0 & 0+1+3 & -2+0+3\end{array}\right]\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]=\left[\begin{array}{lll}-3 & 4 & 1\end{array}\right]\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$
$A=[-3+0-1]=[-4]$
Q.3. Find the value of \boldsymbol{x} and \boldsymbol{y} if
$\left[\begin{array}{cc}x+10 & y^{2}+2 y \\ 0 & -4\end{array}\right]=\left[\begin{array}{cc}3 x+4 & 3 \\ 0 & y^{2}-5 y\end{array}\right]$
Ans.

$$
\begin{align*}
& x+10=3 x+4 \quad \text { and } \quad y^{2}+2 y=3 \\
& \Rightarrow \quad 3 x-x=10-4 \quad \Rightarrow \quad y^{2}+2 y-3=0 \\
& \Rightarrow \quad 2 x=6 \quad \Rightarrow \quad y^{2}+3 y-y-3=0 \\
& \Rightarrow x=3 \quad \Rightarrow \quad y(y+3)-1(y+3)=0 \\
& \Rightarrow \quad(y+3)(y-1)=0 \\
& \Rightarrow \quad y=1,-3 \tag{i}
\end{align*}
$$

Also, $y^{2}-5 y=-4$

$$
\begin{array}{lll}
\Rightarrow & y^{2}-5 y+4=0 & \Rightarrow \\
\Rightarrow & y(y-4)-1(y-4)=0 & \Rightarrow \\
y^{2}-4 y-y+4=0 \tag{ii}\\
\Rightarrow & y=4,1 & (y-4)(y-1)=0
\end{array}
$$

From (i) and (ii) $y=1$
i.e., $x=3$ and $y=1$
Q.4. $\left[\begin{array}{cc}a+b & 2 \\ 5 & \mathrm{ab}\end{array}\right]=\left[\begin{array}{ll}6 & 2 \\ 5 & 8\end{array}\right]$ Ans.

$$
\left[\begin{array}{cc}
a+b & 2 \\
5 & \mathrm{ab}
\end{array}\right]=\left[\begin{array}{ll}
6 & 2 \\
5 & 8
\end{array}\right]
$$

According to definition of equality of matrix

$$
\begin{aligned}
& \Rightarrow \quad a+b=6 \quad \text { and } \quad a b=8 \quad \Rightarrow \quad b=\frac{8}{a} \\
& \Rightarrow \quad a+\frac{8}{a}=6 \quad a^{2}+8=6 a \quad \\
& \Rightarrow \quad a^{2}-4 a-2 a+8=0 \\
& \Rightarrow \quad a(a-4)-2(a-4)=0 \quad \\
& \Rightarrow \quad a=2,4 \\
& \Rightarrow \quad(a-2)(a-4)=0 \\
& \Rightarrow \quad a^{2}-6 a+8=0 \\
& \text { i.e., if } a=2 \text { then } b=4 \quad \text { and } \quad \text { if } a=4 \text { then } b=2
\end{aligned}
$$

Long Answer Questions-I (PYQ)

[4 Mark]
Q.1. Find the value of x, if $\left[\begin{array}{lll}1 & x & 1\end{array}\right]\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ x\end{array}\right]=0$.

Ans.
Given, $\left[\begin{array}{lll}1 & x & 1\end{array} / 1 \times 3\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2\end{array}\right]_{3 \times 3}\left[\begin{array}{l}1 \\ 2 \\ x\end{array}\right]_{3 \times 1}=0\right.$

$$
\Rightarrow \quad\left[\begin{array}{lll}
1+2 x+15 & 3+5 x+3 & 2+x+2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
x
\end{array}\right]=0
$$

$$
\Rightarrow \quad\left[\begin{array}{lll}
16+2 x & 6+5 x & 4+x
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
x
\end{array}\right]=0
$$

$$
\Rightarrow \quad[(16+2 x) \cdot 1+(6+5 x) \cdot 2+(4+x) \cdot x]=0
$$

$$
\Rightarrow \quad(16+2 x)+(12+10 x)+(4 x+x 2)=0
$$

$$
\Rightarrow \quad x^{2}+16 x+28=0 \quad \Rightarrow \quad(x+14)(x+2)=0
$$

$$
\Rightarrow \quad x+14=0 \quad \text { or } \quad x+2=0
$$

Hence, $x=-14 \quad$ or $\quad x=-2$
Q.2. For the following matrices A and B, verify that $(A B)^{\prime}=B^{\prime} A^{\prime}$.
$A=\left[\begin{array}{c}1 \\ -4 \\ 3\end{array}\right], B=(-1,2,1)$
Ans.

Given: $A=\left[\begin{array}{r}1 \\ -4 \\ 3\end{array}\right], \quad B=(-1,2,1)$

$$
\begin{aligned}
& \mathrm{AB}=\left[\begin{array}{r}
1 \\
-4 \\
3
\end{array}\right]\left[\begin{array}{lll}
-1 & 2 & 1
\end{array}\right]=\left[\begin{array}{rrr}
-1 & 2 & 1 \\
4 & -8 & -4 \\
-3 & 6 & 3
\end{array}\right] \\
& (\mathrm{AB})^{\prime}=\left[\begin{array}{lll}
-1 & 2 & 1 \\
4 & -8 & -4 \\
-3 & 6 & 3
\end{array}\right]^{\prime}=\left[\begin{array}{ccc}
-1 & 4 & -3 \\
2 & -8 & 6 \\
1 & -4 & 3
\end{array}\right] \\
& B^{\prime} A^{\prime}=\left(\begin{array}{lll}
-1 & 2 & 1
\end{array}\right)^{[}\left[\begin{array}{r}
1 \\
-4 \\
3
\end{array}\right]^{\prime}=\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & -4 & 3
\end{array}\right]=\left[\begin{array}{rrr}
-1 & 4 & -3 \\
2 & -8 & 6 \\
1 & -4 & 3
\end{array}\right] \\
& \therefore \quad(A B)^{\prime}=B^{\prime} A^{\prime} .
\end{aligned}
$$

Q.3. If $A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right]$ and $B=\left[\begin{array}{rr}a & 1 \\ b & -1\end{array}\right]$ and $(A+B)^{2}=\boldsymbol{A}^{2}+\boldsymbol{B}^{2}$, then find the values of a and b.

Ans.
Here, $A=\left[\begin{array}{rr}1 & -1 \\ 2 & -1\end{array}\right]$ and $B=\left[\begin{array}{rr}a & 1 \\ b & -1\end{array}\right]$
$\therefore \quad A+B=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right]+\left[\begin{array}{cc}a & 1 \\ b & -1\end{array}\right]=\left[\begin{array}{cc}1+a & 0 \\ 2+b & -2\end{array}\right]$
$\Rightarrow \quad(A+B)^{2}=\left[\begin{array}{cc}1+a & 0 \\ 2+b & -2\end{array}\right] \cdot\left[\begin{array}{cc}1+a & 0 \\ 2+b & -2\end{array}\right]=\left[\begin{array}{cc}1+a^{2}+2 a & 0 \\ 2+2 a+b+a b-4-2 b & -2\end{array}\right]$
$=\left[\begin{array}{cc}a^{2}+2 a+1 & 0 \\ 2 a-b+\mathrm{ab}-2 & 4\end{array}\right]$
Again $A^{2}+B^{2}=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right] \cdot\left[\begin{array}{rr}1 & -1 \\ 2 & -1\end{array}\right]+\left[\begin{array}{rr}a & 1 \\ b & -1\end{array}\right] \cdot\left[\begin{array}{rr}a & 1 \\ b & -1\end{array}\right]$

$$
=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]+\left[\begin{array}{cc}
a^{2}+b & a-1 \\
\mathrm{ab}-b & b+1
\end{array}\right]=\left[\begin{array}{cc}
a^{2}+b-1 & a-1 \\
\mathrm{ab-b} & b
\end{array}\right]
$$

Given, $(A+B)^{2}=A^{2}+B^{2}$

Given, $(A+B)^{2}=A^{2}+B^{2}$

$$
\left[\begin{array}{cc}
a^{2}+2 a+1 & 0 \\
2 a-b+a b-2 & 4
\end{array}\right]=\left[\begin{array}{cc}
a^{2}+b-1 & a-1 \\
a b-b & b
\end{array}\right]
$$

Equating the corresponding elements, we get

$$
\begin{array}{lll}
a^{2}+2 a+1=a^{2}+b-1 & \Rightarrow & 2 a-b=-2 \\
a-1=0 & \Rightarrow & a=1 \\
2 a-b+a b-2=a b-b & \Rightarrow & 2 a-2=0 \\
b=4 &
\end{array}
$$

$$
a=1, b=4 \text { satisfy all four equations }(i),(i i),(\text { iii }) \text { and (iv) }
$$

Hence, $a=1, b=4$.
$A=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}5 & 2 \\ 7 & 4\end{array}\right]$ and $C=\left[\begin{array}{ll}2 & 5 \\ 3 & 8\end{array}\right]$. Find a matrix \boldsymbol{D} such
Q.4. Let
that $C \boldsymbol{D}-\boldsymbol{A B}=\mathbf{O}$.

Ans.

Since A, B, C are all square matrices of order 2 , and $C D-A B$ is well defined, D must be a square matrix of order 2.

Let $D=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then $C D-A B=0$ gives

$$
\left[\begin{array}{ll}
2 & 5 \\
3 & 8
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{cc}
2 & -1 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
5 & 2 \\
7 & 4
\end{array}\right]=O
$$

or $\quad\left[\begin{array}{ll}2 a+5 c & 2 b+5 d \\ 3 a+8 c & 3 b+8 d\end{array}\right]-\left[\begin{array}{cc}3 & 0 \\ 43 & 22\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
or $\quad\left[\begin{array}{cc}2 a+5 c-3 & 2 b+5 d \\ 3 a+8 c-43 & 3 b+8 d-22\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

By equating the corresponding elements of matrices, we get

$$
\begin{align*}
2 a+5 c-3 & =0 \tag{i}\\
3 a+8 c-43 & =0 \tag{ii}\\
2 b+5 d & =0 \tag{iii}
\end{align*}
$$

and

$$
\begin{equation*}
3 b+8 d-22=0 \tag{iv}
\end{equation*}
$$

Solving (i) and (ii), we get $a=-191, c=77$. Solving (iii) and (iv), we get $b=-110, d=44$.

Therefore

$$
D=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
-191 & -110 \\
77 & 44
\end{array}\right]
$$

Q.5. Express the following matrix as the sum of a symmetric and skew symmetric matrix, and verify your result.
$\left[\begin{array}{ccc}3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2\end{array}\right]$

Ans.

Let $A=\left[\begin{array}{ccc}3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2\end{array}\right]$
A can be expressed as

$$
A=\frac{1}{2}\left(A+A^{\prime}\right)+\frac{1}{2}\left(A-A^{\prime}\right), \quad \ldots \text { (i) } \quad\left[\because \frac{1}{2}\left(A+A^{\prime}\right)+\frac{1}{2}\left(A-A^{\prime}\right)=\frac{2 A}{2}=A\right]
$$

where, $A+A^{\prime}$ and $A-A^{\prime}$ are symmetric and skew symmetric matrices respectively.
Now, $\quad A+A^{\prime}=\left[\begin{array}{rrr}3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2\end{array}\right]+\left[\begin{array}{rrr}3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2\end{array}\right]$

$$
\begin{aligned}
&=\left[\begin{array}{rrr}
3 & -2 & -4 \\
3 & -2 & -5 \\
-1 & 1 & 2
\end{array}\right]+\left[\begin{array}{rrr}
3 & 3 & -1 \\
-2 & -2 & 1 \\
-4 & -5 & 2
\end{array}\right]=\left[\begin{array}{rrr}
6 & 1 & -5 \\
1 & -4 & -4 \\
-5 & -4 & 4
\end{array}\right] \\
& A-A^{\prime}=\left[\begin{array}{rrr}
3 & -2 & -4 \\
3 & -2 & -5 \\
-1 & 1 & 2
\end{array}\right]-\left[\begin{array}{rrr}
3 & 3 & -1 \\
-2 & -2 & 1 \\
-4 & -5 & 2
\end{array}\right]=\left[\begin{array}{rrr}
0 & -5 & -3 \\
5 & 0 & -6 \\
3 & 6 & 0
\end{array}\right]
\end{aligned}
$$

Putting these values in (i) we get

$$
\begin{aligned}
& A=\frac{1}{2}\left[\begin{array}{rrr}
6 & 1 & -5 \\
1 & -4 & -4 \\
-5 & -4 & 4
\end{array}\right]+\frac{1}{2}\left[\begin{array}{rrr}
0 & -5 & -3 \\
5 & 0 & -6 \\
3 & 6 & 0
\end{array}\right] \\
& A=\left[\begin{array}{crc}
3 & 1 / 2 & -5 / 2 \\
1 / 2 & -2 & -2 \\
-5 / 2 & -2 & 2
\end{array}\right]+\left[\begin{array}{ccc}
0 & -5 / 2 & -3 / 2 \\
5 / 2 & 0 & -3 \\
3 / 2 & 3 & 0
\end{array}\right]
\end{aligned}
$$

Verification:

$$
\begin{array}{r}
\Rightarrow \quad\left[\begin{array}{ccc}
3 & 1 / 2 & -5 / 2 \\
1 / 2 & -2 & -2 \\
-5 / 2 & -2 & 2
\end{array}\right]+\left[\begin{array}{ccc}
0 & -5 / 2 & -3 / 2 \\
5 / 2 & 0 & -3 \\
3 / 2 & 3 & 0
\end{array}\right] \\
\\
=\left[\begin{array}{ccc}
3+0 & \frac{1}{2}-\frac{5}{2} & -\frac{5}{2}-\frac{3}{2} \\
\frac{1}{2}+\frac{5}{2} & -2+0 & -2-3 \\
-\frac{5}{2}+\frac{3}{2} & -2+3 & 2+0
\end{array}\right]=\left[\begin{array}{ccc}
3 & -2 & -4 \\
3 & -2 & -5 \\
-1 & 1 & 2
\end{array}\right]=A
\end{array}
$$

Q.6. Show that $A=\left[\begin{array}{cc}2 & -3 \\ 3 & 4\end{array}\right]$ satisfies the equation $\boldsymbol{x}^{2}-\mathbf{6 x} \boldsymbol{+ 1 7}=\mathbf{0}$. Hence, find A^{-1}

Ans.
We have, $A=\left[\begin{array}{cc}2 & -3 \\ 3 & 4\end{array}\right]$

$$
\begin{array}{cc}
\therefore & A^{2}=A \cdot A=\left[\begin{array}{cc}
2 & -3 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
2 & -3 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
4-9 & -6-12 \\
6+12 & -9+16
\end{array}\right]=\left[\begin{array}{cc}
-5 & -18 \\
18 & 7
\end{array}\right] \\
& 6 A=6\left[\begin{array}{cc}
2 & -3 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
12 & -18 \\
18 & 24
\end{array}\right] \text { and } 17 I=17\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
17 & 0 \\
0 & 17
\end{array}\right] \\
\therefore & A^{2}-6 A+17 I_{2}=\left[\begin{array}{cc}
-5 & -18 \\
18 & 7
\end{array}\right]-\left[\begin{array}{cc}
12 & -18 \\
18 & 24
\end{array}\right]+\left[\begin{array}{cc}
17 & 0 \\
0 & 17
\end{array}\right] \\
=\left[\begin{array}{cc}
-5-12+17 & -18+18+0 \\
18-18+0 & 7-24+17
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=0
\end{array}
$$

Hence, matrix A satisfies the equation, $x^{2}-6 x+17=0$
Now, $A^{2}-6 A+17 I_{2}=0 \quad \Rightarrow \quad A^{2}-6 A=-17 I_{2}$
Multiplying both sides by A^{-1}, we have

$$
\begin{aligned}
& A-6 I_{2}=-17 A^{-1} \\
& \therefore \quad A^{-1}=\frac{1}{17}\left(6 I_{2}-A\right)=\frac{1}{17}\left\{\left[\begin{array}{ll}
6 & 0 \\
0 & 6
\end{array}\right]-\left[\begin{array}{cc}
2 & -3 \\
3 & 4
\end{array}\right]\right\}=\frac{1}{17}\left[\begin{array}{cc}
4 & 3 \\
-3 & 2
\end{array}\right] . \\
& \qquad A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right] \text { and } I \text { is the identity matrix of order } 2 \text {, then show that } \boldsymbol{A}^{2}= \\
& \text { Q.7. If } \\
& \text { 4A - 3I. Hence find } \boldsymbol{A}^{-1} \text {. }
\end{aligned}
$$

Ans.

Here, $A=\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right]$
$\therefore \quad A^{2}=A \cdot A=\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right] \cdot\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}4+1 & -2-2 \\ -2-2 & 1+4\end{array}\right]=\left[\begin{array}{rr}5 & -4 \\ -4 & 5\end{array}\right]$
Also, $\quad 4 A-3 I=4\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right]-3\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{rr}8 & -4 \\ -4 & 8\end{array}\right]-\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]=\left[\begin{array}{rr}5 & -4 \\ -4 & 5\end{array}\right]$
From (i) and (ii), we get $A^{2}=4 A-3 I$
Now, we have $A^{2}=4 A-3 I$
Pre-multiplying both sides by A^{-1}

$$
\begin{array}{ll}
& A^{-1} \cdot A^{2}=A^{-1} \cdot(4 A-3 I) \\
\Rightarrow & \left(A^{-1} \cdot A\right) \cdot A=4 A^{-1} \cdot A-3 A^{-1} \cdot I \\
\Rightarrow & I A=4 I-3 A^{-1} \\
\Rightarrow & A=4 I-3 A^{-1} \\
\Rightarrow & 3 A^{-1}=4 I-A \\
\Rightarrow & A^{-1}=\frac{1}{3}\left(4\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]\right)=\frac{1}{3}\left(\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]-\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]\right) \quad \Rightarrow \\
\frac{1}{3}\left[\begin{array}{rr}
2 & +1 \\
+1 & 2
\end{array}\right]=\left[\begin{array}{ll}
2 / 3 & 1 / 3 \\
1 / 3 & 2 / 3
\end{array}\right]
\end{array}
$$

$$
\begin{aligned}
& \qquad A=\left[\begin{array}{lll}
3 & 2 & 5 \\
4 & 1 & 3 \\
0 & 6 & 7
\end{array}\right] \text {, express } \mathbf{A} \text { as a sı } \\
& \text { Q.8. Let } \\
& \text { symmetric and other is skew symmetric. }
\end{aligned}
$$

Ans.

$$
A=\frac{1}{2}\left(A+A^{\prime}\right)+\frac{1}{2}\left(A-A^{\prime}\right), \quad \ldots(i) \quad\left[\begin{array}{c}
\because \frac{1}{2}\left(A+A^{\prime}\right)+\frac{1}{2}\left(A-A^{\prime}\right)=\frac{1}{2}\left(A+A^{\prime}+A-A^{\prime}\right) \\
=\frac{1}{2} \times 2 A=A
\end{array}\right]
$$

Where $A+A^{\prime}$ and $A-A^{\prime}$ are symmetric and skew symmetric matrices respectively.

$$
\text { Now, } \begin{gathered}
A+A^{\prime}=\left[\begin{array}{lll}
3 & 2 & 5 \\
4 & 1 & 3 \\
0 & 6 & 7
\end{array}\right]+\left[\begin{array}{lll}
3 & 2 & 5 \\
4 & 1 & 3 \\
0 & 6 & 7
\end{array}\right]^{\prime} \\
=\left[\begin{array}{lll}
3 & 2 & 5 \\
4 & 1 & 3 \\
0 & 6 & 7
\end{array}\right]+\left[\begin{array}{lll}
3 & 4 & 0 \\
2 & 1 & 6 \\
5 & 3 & 7
\end{array}\right]=\left[\begin{array}{lll}
6 & 6 & 5 \\
6 & 2 & 9 \\
5 & 9 & 14
\end{array}\right] \\
A-A^{\prime}=\left[\begin{array}{lll}
3 & 2 & 5 \\
4 & 1 & 3 \\
0 & 6 & 7
\end{array}\right]-\left[\begin{array}{lll}
3 & 2 & 5 \\
4 & 1 & 3 \\
0 & 6 & 7
\end{array}\right] \\
=\left[\begin{array}{lll}
3 & 2 & 5 \\
4 & 1 & 3 \\
0 & 6 & 7
\end{array}\right]-\left[\begin{array}{lll}
3 & 4 & 0 \\
2 & 1 & 6 \\
5 & 3 & 7
\end{array}\right]=\left[\begin{array}{ccc}
0 & -2 & 5 \\
2 & 0 & -3 \\
-5 & 3 & 0
\end{array}\right]
\end{gathered}
$$

Putting the values of $\left(A+A^{\prime}\right)$ and $\left(A-A^{\prime}\right)$ in (i), we get

$$
\begin{aligned}
& A=\frac{1}{2}\left[\begin{array}{lll}
6 & 6 & 5 \\
6 & 2 & 9 \\
5 & 9 & 14
\end{array}\right]+\frac{1}{2}\left[\begin{array}{rrr}
0 & -2 & 5 \\
2 & 0 & -3 \\
-5 & 3 & 0
\end{array}\right] \\
& A=\left[\begin{array}{ccc}
3 & 3 & 5 / 2 \\
3 & 1 & 9 / 2 \\
5 / 2 & 9 / 2 & 7
\end{array}\right]+\left[\begin{array}{ccc}
0 & -1 & 5 / 2 \\
1 & 0 & -3 / 2 \\
-5 / 2 & 3 / 2 & 0
\end{array}\right]
\end{aligned}
$$

Long Answer Questions-I (OIQ)

[4 Mark]

Q.1. If $A=\left[\begin{array}{cc}3 & -4 \\ 7 & 8\end{array}\right]$, show that $\boldsymbol{A}-\boldsymbol{A}^{T}$ is a skew symmetric matrix where \boldsymbol{A}^{T} is the transpose of matrix A.

Ans.

Given: $A=\left[\begin{array}{cc}3 & -4 \\ 7 & 8\end{array}\right] \quad \therefore \quad A^{T}=\left[\begin{array}{cc}3 & 7 \\ -4 & 8\end{array}\right]$
$A-A^{T}=\left[\begin{array}{rr}3 & -4 \\ 7 & 8\end{array}\right]-\left[\begin{array}{rr}3 & 7 \\ -4 & 8\end{array}\right]=\left[\begin{array}{cc}0 & -11 \\ 11 & 0\end{array}\right]$
Also, $\quad\left(A-A^{T}\right)^{T}=\left[\begin{array}{cc}0 & -11 \\ 11 & 0\end{array}\right]^{T}=\left[\begin{array}{cc}0 & 11 \\ -11 & 0\end{array}\right]=-\left[\begin{array}{cc}0 & -11 \\ 11 & 0\end{array}\right]=-\left(A-A^{T}\right)$
$\Rightarrow \quad\left(A-A^{T}\right)^{T}$ is a skew symmetric matrix.
Q.2. Show that the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ satisfies the equation $\boldsymbol{A}^{2}-\mathbf{4 A}+I=\boldsymbol{O}$, where I is 2×2 identity matrix and O is 2×2 zero matrix. Using this equation, find \boldsymbol{A}^{-1}.

Ans.
We have, $A^{2}=A \cdot A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}4+3 & 6+6 \\ 2+2 & 3+4\end{array}\right]=\left[\begin{array}{cc}7 & 12 \\ 4 & 7\end{array}\right]$

$$
4 A=4\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
8 & 12 \\
4 & 8
\end{array}\right]
$$

Hence, $A^{2}-4 A+I=\left[\begin{array}{cc}7 & 12 \\ 4 & 7\end{array}\right]-\left[\begin{array}{cc}8 & 12 \\ 4 & 8\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=O$
Now, $\quad A^{2}-4 A+I=O$

Therefore,

$$
A \cdot A-4 A=-I
$$

or

$$
A \cdot A\left(A^{-1}\right)-4 A A^{-1}=-I A^{-1}
$$

$$
\text { (Post multiplying by } A^{-1} \text { because }|A| \neq 0 \text {) }
$$

or

$$
A\left(A A^{-1}\right)-4 I=-A^{-1}
$$

or

$$
A-4 I=-A^{-1}
$$

$$
\left[A \cdot A^{-1}=I \text { and } I A=A I=A\right]
$$

or $\quad A^{-1}=4 I-A=\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]-\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]$
Hence, $\quad A^{-1}=\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]$
Q.3. Solve the following:

Q. Prove that the sum of two skew-symmetric matrices is a skew-symmetric matrix.

Ans. Let A and B be two skew-symmetric matrices.
Then, $A^{\prime}=-A$ and $B^{\prime}=-B$.
$\therefore \quad(A+B)^{\prime}=\left(A^{\prime}+B^{\prime}\right)=(-A)+(-B)=-(A+B)$
Hence, $(A+B)$ is again a skew-symmetric.
Q. Express the following matrix as the sum of a symmetric and a skew-symmetric matrix.
$\left[\begin{array}{ccc}1 & 3 & 5 \\ -6 & 8 & 3 \\ -4 & 6 & 5\end{array}\right]$
Ans.
Let $A=\left[\begin{array}{ccc}1 & 3 & 5 \\ -6 & 8 & 3 \\ -4 & 6 & 5\end{array}\right]$
and $\quad A^{\prime}=\left[\begin{array}{ccc}1 & -6 & -4 \\ 3 & 8 & 6 \\ 5 & 3 & 5\end{array}\right]$
Let $P=\frac{A+A^{\prime}}{2}=\frac{1}{2}\left[\begin{array}{ccc}2 & -3 & 1 \\ -3 & 16 & 9 \\ 1 & 9 & 10\end{array}\right] \quad$ and $\quad P^{\prime}=\frac{1}{2}\left[\begin{array}{ccc}2 & -3 & 1 \\ -3 & 16 & 9 \\ 1 & 9 & 10\end{array}\right]=P$,
Hence, $\frac{A+A^{\prime}}{2}$ is a symmetric matrix.
Now, $Q=\frac{A-A^{\prime}}{2}=\frac{1}{2}\left[\begin{array}{ccc}0 & 9 & 9 \\ -9 & 0 & -3 \\ -9 & 3 & 0\end{array}\right]$
Also, $Q^{\prime}=\frac{1}{2}\left[\begin{array}{rrr}0 & -9 & -9 \\ 9 & 0 & 3 \\ 9 & -3 & 0\end{array}\right]=-\frac{1}{2}\left[\begin{array}{rrr}0 & 9 & 9 \\ -9 & 0 & -3 \\ -9 & 3 & 0\end{array}\right]=-Q$,
Hence, $\frac{A-A^{\prime}}{2}$ is a skew-symmetric matrix.

$$
\begin{aligned}
\therefore \quad P+Q & =\frac{1}{2}\left[\begin{array}{rrr}
2 & -3 & 1 \\
-3 & 16 & 9 \\
1 & 9 & 10
\end{array}\right]+\frac{1}{2}\left[\begin{array}{rrr}
0 & 9 & 9 \\
-9 & 0 & -3 \\
-9 & 3 & 0
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{rrr}
2 & 6 & 10 \\
-12 & 16 & 6 \\
-8 & 12 & 10
\end{array}\right]=\left[\begin{array}{ccc}
1 & 3 & 5 \\
-6 & 8 & 3 \\
-4 & 6 & 5
\end{array}\right]=A
\end{aligned}
$$

Hence, $A=\left(\frac{A+A^{\prime}}{2}\right)+\left(\frac{A-A^{\prime}}{2}\right)$

$$
=\text { Symmetric matrix }+ \text { Skew-symmetric matrix. }
$$

Q.4. Let $A=\left[\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right]$ Then show that $\boldsymbol{A}^{2}-\mathbf{4 A}+\mathbf{7 1}=\mathbf{0}$. Using this result calculate \boldsymbol{A}^{5}.

Ans.

Here, $A=\left[\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right]$

$$
A^{2}=A \times A=\left[\begin{array}{cc}
2 & 3 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & 3 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
1 & 12 \\
-4 & 1
\end{array}\right]
$$

Now, $A^{2}-4 A+7 I=\left[\begin{array}{rr}1 & 12 \\ -4 & 1\end{array}\right]-4\left[\begin{array}{rr}2 & 3 \\ -1 & 2\end{array}\right]+7\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{cc}1 & 12 \\ -4 & 1\end{array}\right]-\left[\begin{array}{cc}8 & 12 \\ -4 & 8\end{array}\right]+\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=\mathrm{O}$ (zero matrix)
$\Rightarrow \quad A^{2}-4 A+7 I=0 \quad \Rightarrow \quad A^{2}=4 A-7 I$
$\Rightarrow \quad A . A^{2}=4 A . A-7 A . I \quad[$ Pre multiplying by A]
$\Rightarrow \quad A^{3}=4 A^{2}-7 A \quad[A I=A]$
$\Rightarrow \quad A^{3}=4(4 A-7 I)-7 A \quad\left[\right.$ Putting the value of A^{2}]
$\Rightarrow \quad A^{3}=16 A-28 I-7 A$
$\Rightarrow \quad A^{3}=9 A-28 I$
$\Rightarrow \quad A \cdot A^{3}=9 A \cdot A-28 A . I \quad[$ Pre multiplying by A]
$\Rightarrow \quad A^{4}=9 A^{2}-28 A$
$\Rightarrow \quad A^{4}=9(4 A-7 I)-28 A \quad\left[\right.$ Putting the value of $\left.A^{2}\right]$
$\Rightarrow \quad A^{4}=8 A-63 I$
$\Rightarrow \quad A \cdot A^{4}=8 A^{2}-63 A \quad$ [Pre multiplying by A]
$\Rightarrow \quad A^{5}=8(4 A-7 I)-63 A=-31 A-56 I$
$=-31\left[\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right]-56\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-118 & -93 \\ 31 & -118\end{array}\right]$
Q.5. $\begin{array}{cc}\text { If } A^{1}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right] \text {, then prove that } A^{n}=\left[\begin{array}{cc}\cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta\end{array}\right], n \in N \text {. }\end{array}$

Ans.

We shall prove the result by using the principle of mathematical induction
When $n=1$, we have

$$
A^{1}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

Thus, the result is true for $n=1$.

Let the result be true for $n=m$.
Then $A^{m}=\left[\begin{array}{cc}\cos m \theta & \sin m \theta \\ -\sin m \theta & \cos m \theta\end{array}\right]$

$$
\begin{aligned}
\therefore \quad A^{m+1} & =A \cdot A^{m}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos m \theta & \sin m \theta \\
-\sin m \theta & \cos m \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \theta \cos m \theta-\sin \theta \cdot \sin m \theta & \cos \theta \sin m \theta+\sin \theta \cos m \theta \\
-\sin \theta \cos m \theta-\cos \theta \cdot \sin m \theta & -\sin \theta \sin m \theta+\cos \theta \cos m \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos (\theta+m \theta) & \sin (\theta+m \theta) \\
-\sin (\theta+m \theta) & \cos (\theta+m \theta)
\end{array}\right]=\left[\begin{array}{cc}
\cos (m+1) \theta & \sin (m+1) \theta \\
-\sin (m+1) \theta & \cos (m+1) \theta
\end{array}\right]
\end{aligned}
$$

Thus, the result is true for $n=(m+1)$, whenever it is true for $n=m$.
Hence, $A^{n}=\left[\begin{array}{cc}\cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta\end{array}\right]$ for all $n \in N$.
Q.6. Prove that every square matrix can be uniquely expressed as the sum of a symmetric matrix and skew-symmetric matrix.

Ans.

Let A be any square matrix. Then,

$$
A=\frac{1}{2}\left(A+A^{T}\right)+\frac{1}{2}\left(A-A^{T}\right)=P+Q, \quad(\text { say })
$$

where, $P=\frac{1}{2}\left(A+A^{T}\right), Q=\frac{1}{2}\left(A-A^{T}\right)$.
Now, $\quad P^{T}=\left(\frac{1}{2}\left(A+A^{T}\right)\right)^{T} \quad\left[\because \quad(\mathrm{KT})^{T}=K \cdot A^{T}\right]$

$$
\begin{array}{lll}
\Rightarrow & P^{T}=\frac{1}{2}\left[A^{T}+\left(A^{T}\right)^{T}\right] & {\left[\because(A+B)^{T}=A^{T}+B^{T}\right]} \\
\Rightarrow & P^{T}=\frac{1}{2}\left(A^{T}+A\right) & {[\because} \\
\Rightarrow & P^{T}=\frac{1}{2}\left(A+A^{T}\right)=P &
\end{array}
$$

$\therefore \quad P$ is symmetric matrix.
Also, $\quad Q^{T}=\frac{1}{2}\left(A-A^{T}\right)^{T}=\frac{1}{2}\left[A^{T}-\left(A^{T}\right)^{T}\right]=\frac{1}{2}\left[A^{T}-A\right]$
$\Rightarrow \quad Q^{T}=-\frac{1}{2}\left[A-A^{T}\right]=-Q$
$\therefore \quad Q$ is skew-symmetric matrix.
Thus, $A=P+Q$ where P is a symmetric matrix and Q is a skew-symmetric matrix.
Hence, A is expressible as the sum of a symmetric and a skew-symmetric matrix.

Uniqueness: If possible, let $A=R+S$, where R is symmetric and S is skew-symmetric, then,

$$
\begin{aligned}
& A^{T} & =(R+S)^{T}=R^{T}+S^{T} \\
\Rightarrow \quad & A^{T} & =R-S \quad\left[\because R^{T}=R \text { and } S^{T}=-S\right]
\end{aligned}
$$

Now, $\quad A=R+S$ and $A^{T}=R-S$

$$
\Rightarrow \quad R=\frac{1}{2}\left[A+A^{T}\right]=P, S=\frac{1}{2}\left(A-A^{T}\right)=Q
$$

Hence, A is uniquely expressible as the sum of a symmetric and a skew-symmetric matrix.

