Very Short Answer Questions (PYQ

[1 Mark]

Q.1. For what value of \boldsymbol{x}, the following matrix is singular?
$\left[\begin{array}{cc}5-x & x+1 \\ 2 & 4\end{array}\right]$

Ans.
Let $\left|\begin{array}{cc}5-x & x+1 \\ 2 & 4\end{array}\right|=0$
For A to be singular, $|A|=0$

$$
\begin{aligned}
& \Rightarrow \quad\left|\begin{array}{cc}
5-x & x+1 \\
2 & 4
\end{array}\right|=0 \\
& \Rightarrow \quad 4(5-x)-2(x+1)=0 \quad \Rightarrow \quad 20-4 x-2 x-2=0 \\
& \Rightarrow \quad 18=6 x \quad \Rightarrow \quad x=3 .
\end{aligned}
$$

Q.2. Let A be a square matric of order 3×3. Write the value of $|2 A|$, where $|A|=4$. Ans.
$\because \quad|2 A|=2^{n}|A|$, where n is order of matrix A.
Here $\quad|A|=4$ and $n=3$

$$
|2 A|=2^{3} \times 4=32
$$

Q.3. If $\left|\begin{array}{ll}x+1 & x-1 \\ x-3 & x+2\end{array}\right|=\left|\begin{array}{ll}4 & -1 \\ 1 & 3\end{array}\right|$, then write the value of \boldsymbol{x}.

Ans.

$$
\begin{aligned}
& \text { Given }\left|\begin{array}{lr}
x+1 & x-1 \\
x-3 & x+2
\end{array}\right|=\left[\begin{array}{rr}
4 & -1 \\
1 & 3
\end{array}\right] \\
& \Rightarrow \quad(x+1)(x+2)-(x-1)(x-3)=12+1 \\
& \Rightarrow \quad x^{2}+2 x+x+2-x^{2}+3 x+x-3=13 \\
& \Rightarrow \quad 7 x-1=13 \\
& \Rightarrow \quad 7 x=14 \\
& \Rightarrow \quad x=2
\end{aligned}
$$

Q.4. Evaluate: $\left|\begin{array}{cc}a+ & c+ \\ -c+ & a-\end{array}\right|$

Ans.

$$
\begin{aligned}
(a+i b)(a-i b)-(c+i d)(-c+i d) & =\left[a^{2}-i^{2} b^{2}\right]-\left[i^{2} d^{2}-c^{2}\right] \\
& =\left(a^{2}+b^{2}\right)-\left(-d^{2}-c^{2}\right) \quad\left[\because i^{2}=-1\right] \\
& =a^{2}+b^{2}+d^{2}+c^{2} \\
& =a^{2}+b^{2}+c^{2}+d^{2}
\end{aligned}
$$

Q.5. Find the cofactor of a_{12} in the following:

$\left|\begin{array}{ccc}1 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$

Ans.

$$
\begin{aligned}
& a_{12}=(-1)^{1+2} \cdot M_{12} \\
&=-\left|\begin{array}{cc}
6 & 4 \\
1 & -7
\end{array}\right| \\
&=-(-42-4)=46
\end{aligned}
$$

Q.6. If $\left|\begin{array}{ll}x+2 & 3 \\ x+5 & 4\end{array}\right|=3$, , then find the value of \boldsymbol{x}.

Ans.

$$
\begin{aligned}
& \text { Here, } \quad\left|\begin{array}{ll}
x+2 & 3 \\
x+5 & 4
\end{array}\right|=3 \\
& \Rightarrow
\end{aligned} \quad 4 x+8-3 x-15=30 \quad x \quad x=10
$$

Q.7. Write the value of the following determinant:
$\left|\begin{array}{ccc}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6 x & 9 x & 12 x\end{array}\right|$

Ans.

$$
\begin{array}{rlr}
\left|\begin{array}{ccc}
2 & 3 & 4 \\
5 & 6 & 8 \\
6 x & 9 x & 12 x
\end{array}\right| & =3 x\left|\begin{array}{lll}
2 & 3 & 4 \\
5 & 6 & 8 \\
2 & 3 & 4
\end{array}\right| \\
& =3 x \times 0=0 & {\left[\because R_{1}=R_{3}\right]}
\end{array}
$$

Q.8. Write the value of the following determinant:
$\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|$
Ans.
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get

$$
=\left|\begin{array}{ccc}
0 & b-c & c-a \\
0 & c-a & a-b \\
0 & a-b & b-c
\end{array}\right|=0 \quad\left[\because \text { All elements of } C_{1} \text { are zero }\right]
$$

Q.9. Find the value of x from the following:

$$
\left|\begin{array}{cc}
x & 4 \\
2 & 2 x
\end{array}\right|=0
$$

Ans.

Here $\quad\left|\begin{array}{cc}x & 4 \\ 2 & 2 x\end{array}\right|=0$
$\Rightarrow \quad 2 x^{2}-8=0 \quad \Rightarrow \quad x^{2}=4$
$\Rightarrow \quad x= \pm 2$
Q.10. What is the value of the determinant $\left|\begin{array}{lll}0 & 2 & 0 \\ 2 & 3 & 4 \\ 4 & 5 & 6\end{array}\right|$?

Ans.
Let $\Delta=\left|\begin{array}{lll}0 & 2 & 0 \\ 2 & 3 & 4 \\ 4 & 5 & 6\end{array}\right|=0(18-20)-2(12-16)+0(10-12)=8$
Q.11. Show that the points $(1,0),(6,0),(0,0)$ are collinear.

Ans.
Since $\left|\begin{array}{lll}1 & 0 & 1 \\ 6 & 0 & 1 \\ 0 & 0 & 1\end{array}\right|=0$
Hence $(1,0),(6,0)$ and $(0,0)$ are collinear.
Q.12. What positive value of x makes the following pair of determinants equal?
$\left|\begin{array}{cc}2 x & 3 \\ 5 & x\end{array}\right|,\left|\begin{array}{cc}16 & 3 \\ 5 & 2\end{array}\right|$

Ans.

$$
\begin{aligned}
& \because \quad\left|\begin{array}{cc}
2 x & 3 \\
5 & x
\end{array}\right|=\left|\begin{array}{cc}
16 & 3 \\
5 & 2
\end{array}\right| \\
& \Rightarrow \quad 2 x^{2}-15=32-15 \quad \Rightarrow \quad 2 x^{2}=32 \\
& \Rightarrow \quad x^{2}=16 \quad \Rightarrow \quad x= \pm 4 \\
& \Rightarrow \quad x=4 \quad \text { (+ve value). }
\end{aligned}
$$

Q.13. Find the minor of the element of second row and third column (a23) in the following determinant:

$$
\left|\begin{array}{ccc}
2 & -3 & 5 \\
6 & 0 & 4 \\
1 & 5 & -7
\end{array}\right|
$$

Ans.

We have,

$$
\left|\begin{array}{ccc}
2 & -3 & 5 \\
6 & 0 & 4 \\
1 & 5 & -7
\end{array}\right|
$$

Minor of an element $\quad a_{23}=M_{23}=\left|\begin{array}{cc}2 & -3 \\ 1 & 5\end{array}\right|=10+3=13$
Q.14. Evaluate: $\left|\begin{array}{ll}\cos 15^{\circ} & \sin 15^{\circ} \\ \sin 75^{\circ} & \cos 75^{\circ}\end{array}\right|$

Ans. Expanding the determinant, we get

$$
\cos 15^{\circ} \cdot \cos 75^{\circ}-\sin 15^{\circ} \cdot \sin 75^{\circ}=\cos \left(15^{\circ}+75^{\circ}\right)=\cos 90^{\circ}=0
$$

[Note: $\cos (A+B)=\cos A . \cos B-\sin A . \sin B]$
Q.15. If $\Delta=\left|\begin{array}{lll}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{array}\right|$, then write the minor of the element \boldsymbol{a}_{23}.

Minor of $a_{23}=M_{23}=\left|\begin{array}{ll}5 & 3 \\ 1 & 2\end{array}\right|=10-3=7$.
Ans.
Q.16. Write the value of the following determinant:
$\left|\begin{array}{ccc}102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|$

Ans.
Let $\Delta=\left|\begin{array}{ccc}102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}-6 R_{3}$, we get

$$
\Delta=\left|\begin{array}{ccc}
0 & 0 & 0 \\
1 & 3 & 4 \\
17 & 3 & 6
\end{array}\right|=0 \quad\left[\because R_{1} \text { is zero }\right]
$$

Q.17. If $\boldsymbol{A}_{\boldsymbol{i j}}$ is the cofactor of the element $\boldsymbol{a}_{\boldsymbol{i j}}$ of the determinant $\left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$, then write the value of a_{32}. A_{32}.

Ans.

$$
\begin{aligned}
a_{32} \cdot A_{32}= & 5 \times(-1)^{3+2}\left|\begin{array}{ll}
2 & 5 \\
6 & 4
\end{array}\right| \\
& =-5(8-30)=-5 \times-22=110
\end{aligned}
$$

Q.18. If A is a square matrix and $|A|=2$, then write the value of $\left|A A^{\prime}\right|$, where $\left|A^{\prime}\right|$ is the transpose of matrix A.

Ans. $\left|A A^{\prime}\right|=|A| \cdot\left|A^{\prime}\right|=|A| \cdot|A|=|A| 2=22=4$
[Note: $|A| .|B|$ and $|A|=\|A T\|$, where A and B are square matrices.]

Very Short Answer Questions (OIQ)

[1 Mark]

Q.1. Write the value of $\left|\begin{array}{cc}\sin 20^{\circ} & -\cos 20^{\circ} \\ \sin 70^{\circ} & \cos 70^{\circ}\end{array}\right|$.

$$
\left|\begin{array}{cc}
\sin 20^{\circ} & -\cos 20^{\circ} \\
\sin 70^{\circ} & \cos 70^{\circ}
\end{array}\right|=\sin 20^{\circ} \cdot \cos 70^{\circ}+\cos 20^{\circ} \cdot \sin 70^{\circ}
$$

Ans. $=\sin \left(20^{\circ}+70^{\circ}\right)=\sin 90^{\circ}=1$.
Q.2. If \boldsymbol{A} is square matrix of order 3 such that $|\boldsymbol{A}|=\lambda$, then write the value of $|-A|$.

Ans. : $\quad|A|=\lambda$ and order of $A=3$
$\therefore \quad|-A|=(-1)^{3} .|A|=-1 \times \lambda=-\lambda$
Q.3. Find the value of $\left|\begin{array}{ccc}\sin A & -\sin B \\ \cos A & \cos B\end{array}\right|$ where $\boldsymbol{A}=53^{\circ}, \boldsymbol{B}=\mathbf{3 7 ^ { \circ }}$.

Ans.

Let $\Delta=\left|\begin{array}{cc}\sin A & -\sin B \\ \cos A & \cos B\end{array}\right|$

$$
\Delta=\sin A \cos B+\sin B \cos A \quad \Rightarrow \quad \Delta=\sin (A+B)
$$

$$
\Delta=\sin (53+37)=\sin 90^{\circ}=1
$$

Short Answer Questions-I (PYQ)

[2 Mark]

Q.1. If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$, then find the value of \boldsymbol{k} if $|\mathbf{2 A}|=\boldsymbol{k}|\boldsymbol{A}|$.

Ans.

$$
\because \quad A=\left[\begin{array}{ll}
1 & 2 \\
4 & 2
\end{array}\right] \quad \Rightarrow \quad 2 A=\left[\begin{array}{ll}
2 & 4 \\
8 & 4
\end{array}\right]
$$

Given, $\quad|2 A|=k|A|$

$$
\begin{aligned}
& \Rightarrow \quad\left|\begin{array}{ll}
2 & 4 \\
8 & 4
\end{array}\right|=k\left|\begin{array}{ll}
1 & 2 \\
4 & 2
\end{array}\right| \\
& \Rightarrow \quad 8-32=k\{2-8\} \quad \Rightarrow \quad-24=-6 k \quad \Rightarrow \quad k=4
\end{aligned}
$$

Q.2. What is the value of the following determinant?

Ans.
$\Delta=\left|\begin{array}{lll}4 & a & b+c \\ 4 & b & c+a \\ 4 & c & a+b\end{array}\right|$
Q.3. If $\left|\begin{array}{ll}x & x \\ 1 & x\end{array}\right|=\left|\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right|$, then write the positive value of \boldsymbol{x}.

Ans.

$$
\begin{aligned}
& \text { We have }\left|\begin{array}{ll}
x & x \\
1 & x
\end{array}\right|=\left|\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right| \\
& \Rightarrow \quad x^{2}-x=6-4 \\
& \Rightarrow \quad x^{2}-2 x+x-2=0 \quad \Rightarrow \quad x^{2}-x-2=0 \\
& \Rightarrow \quad(x-2)+1(x-2)=0 \\
& \Rightarrow \quad(x-2)(x+1)=0 \quad \Rightarrow \quad x=2 \quad \text { or } \quad x=-1 \quad \text { (Not accepted) } \\
& \Rightarrow \quad x=2
\end{aligned}
$$

$$
\Delta=\left|\begin{array}{ccc}
x+y & y+z & z+x \\
z & x & y \\
-3 & -3 & -3
\end{array}\right| .
$$

Q.4. Write the value of

Ans.
Here, $\Delta=\left|\begin{array}{ccc}x+y & y+z & z+x \\ z & x & y \\ -3 & -3 & -3\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}+R_{2}$, we get

$$
=\left|\begin{array}{ccc}
x+y+z & x+y+z & x+y+z \\
z & x & y \\
-3 & -3 & -3
\end{array}\right|
$$

Taking $(x+y+z)$ common from R_{1}, we get

$$
=(x+y+z)\left|\begin{array}{llc}
1 & 1 & 1 \\
z & x & y \\
-3 & -3 & -3
\end{array}\right|
$$

Applying $R_{3} \rightarrow R_{3}+3 R_{1}$, we get

$$
\begin{aligned}
& =(x+y+z)\left|\begin{array}{lll}
1 & 1 & 1 \\
z & x & y \\
0 & 0 & 0
\end{array}\right| \\
& =0
\end{aligned}
$$

$$
\left[\because R_{3} \text { is zero }\right]
$$

Short Answer Questions-I (OIQ)

[2 Mark]

Q.1. Evaluate the determinant:

$$
\left|\begin{array}{cc}
x^{2}-x+1 & x-1 \\
x+1 & x+1
\end{array}\right|
$$

Ans.

Let $\Delta=\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$

$$
\begin{aligned}
& \left.=(x+1)\left|\begin{array}{cc}
x^{2}-x+1 & x-1 \\
1 & 1
\end{array}\right| \quad \quad \text { [Taking out }(x+1) \text { common from } R_{2}\right] \\
& =(x+1)\left\{x^{2}-x+1-x+1\right\}=(x+1)\left(x^{2}-2 x+2\right) \\
& =x^{3}-2 x^{2}+2 x+x^{2}-2 x+2=x^{3}-x^{2}+2
\end{aligned}
$$

Q.2.

Evaluate: $\left|\begin{array}{ccc}a & b & c \\ a+2 x & b+2 y & c+2 z \\ x & y & z\end{array}\right|$
Ans.

$$
\left|\begin{array}{ccc}
a & b & c \\
a+2 x & b+2 y & c+2 z \\
x & y & z
\end{array}\right|=\left|\begin{array}{ccc}
a & b & c \\
a & b & c \\
x & y & z
\end{array}\right|+\left|\begin{array}{ccc}
a & b & c \\
2 x & 2 y & 2 z \\
x & y & z
\end{array}\right|
$$

$$
=0+2\left|\begin{array}{lll}
a & b & c \\
x & y & z \\
x & y & z
\end{array}\right| \quad[\because \text { Two rows are same, so determinant is }
$$

zero]

$$
=0+2 \times 0=0
$$

Q.3. \quad Evaluate: $\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|$

Ans.

Let $\Delta=\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}+C_{3}$, we get

$$
\begin{aligned}
& =\left|\begin{array}{lll}
1 & a+b+c & b+c \\
1 & a+b+c & c+a \\
1 & a+b+c & a+b
\end{array}\right| \\
& =(a+b+c)\left|\begin{array}{lll}
1 & 1 & b+c \\
1 & 1 & c+a \\
1 & 1 & a+b
\end{array}\right| \\
& =(a+b+c) \cdot 0 \\
& =0
\end{aligned}
$$

$[\because$ Two columns are same, so determinant is zero $]$

Q.4. What is the value of the determinant given below?

$\left|\begin{array}{lll}6 & a & b+c \\ 6 & b & c+a \\ 6 & c & a+b\end{array}\right|$
Ans.
Let $\Delta=\left|\begin{array}{lll}6 & a & b+c \\ 6 & b & c+a \\ 6 & c & a+b\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}+C_{3}$, we get

$$
\begin{aligned}
& =\left|\begin{array}{lll}
6 & a+b+c & b+c \\
6 & a+b+c & c+a \\
6 & a+b+c & a+b
\end{array}\right| \\
& =(a+b+c)\left|\begin{array}{lll}
6 & 1 & b+c \\
6 & 1 & c+a \\
6 & 1 & a+b
\end{array}\right|=6(a+b+c)\left|\begin{array}{ccc}
1 & 1 & b+c \\
1 & 1 & c+a \\
1 & 1 & (a+b)
\end{array}\right|
\end{aligned}
$$

$$
=6(a+b+c) \cdot 0=0
$$

$[\because$ Two columns are same, so determinant is zero $]$
Q.5. Show that points $A(a, b+c), B(b, c+a)$ and $C(c, a+b)$ are collinear.

Ans.

Obviously, if the area of DABC formed by points A, B and C is zero then $\mathrm{A}, \mathrm{B}, \mathrm{C}$ will be collinear.

$$
\begin{aligned}
& \text { Now, Area of } \begin{array}{l}
\Delta \mathrm{ABC}=\frac{1}{2}\left|\begin{array}{lll}
a & b+c & 1 \\
b & c+a & 1 \\
c & a+b & 1
\end{array}\right| \\
\\
=\frac{1}{2}\left|\begin{array}{lll}
a+b+c & b+c & 1 \\
a+b+c & c+a & 1 \\
a+b+c & a+b & 1
\end{array}\right| \\
\\
=\frac{a+b+c}{2}\left|\begin{array}{lll}
1 & b+c & 1 \\
1 & c+a & 1 \\
1 & a+b & 1
\end{array}\right|=\frac{a+b+c}{2} \times 0=0 \\
\text { [Applying } \left.C_{1} \rightarrow C_{1}+C_{2}\right] \\
\text { Q.6. } \quad\left[\because C_{1}=C_{3}\right]
\end{array} \\
& \text { Evaluate: }\left|\begin{array}{ccc}
0 & \sin \alpha & -\cos \alpha \\
-\sin \alpha & 0 & \sin \beta \\
\cos \alpha & -\sin \beta & 0
\end{array}\right|
\end{aligned}
$$

Ans.

$$
\begin{aligned}
& \left|\begin{array}{ccc}
0 & \sin \alpha & -\cos \alpha \\
-\sin \alpha & 0 & \sin \beta \\
\cos \alpha & -\sin \beta & 0
\end{array}\right| \\
& =0-\sin \alpha\{0-\sin \beta \cdot \cos \alpha\}-\cos \alpha\{\sin \alpha \sin \beta-0\} \\
& =\sin \alpha \cdot \cos \alpha \sin \beta-\sin \alpha \cdot \sin \beta \cdot \cos \alpha \\
& =0
\end{aligned}
$$

Q.7. Find the area of the triangle with vertices at the points $(2,7),(1,1),(10,8)$.

Ans.
We know that area of a triangle with vertices at $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ is absolute value of

$$
\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

$$
\begin{aligned}
\therefore \text { Required area }= & \left.\frac{1}{2}\left|\begin{array}{ccc}
2 & 7 & 1 \\
1 & 1 & 1 \\
10 & 8 & 1
\end{array}\right|=\frac{1}{2} / 2(1-8)-7(1-10)+1(8-10)\right] \\
& \left.=\frac{1}{2} / 2 \times(-7)-7 \times(-9)+(-2)\right] \\
& =\frac{1}{2}[-14+63-2]=\frac{47}{2} \text { sq unit. }
\end{aligned}
$$

Q.8. Find the value of k, if area of a triangle is 4 sq unit when its vertices are ($k, 0$), $(4,0)$ and $(0,2)$.
Ans.
We know that area of triangle $=\frac{1}{2}\left|\begin{array}{lll}k & 0 & 1 \\ 4 & 0 & 1 \\ 0 & 2 & 1\end{array}\right|$

$$
\begin{aligned}
& \Rightarrow \quad=\frac{1}{2}\left|\begin{array}{lll}
k & 0 & 1 \\
4 & 0 & 1 \\
0 & 2 & 1
\end{array}\right|= \pm 4 \quad \text { [Given] } \\
& \Rightarrow \quad=\frac{1}{2}[k(0-2)-0+1(8-0)]= \pm 4 \quad \Rightarrow \quad \frac{1}{2}[-2 k+8]= \pm 4 \\
& \Rightarrow \quad[-k+4]= \pm 4 \quad \Rightarrow \quad-k+4=4 \quad \text { or } \quad-k+4=-4 \\
& \text { i.e., } \quad k=0 \quad \text { or } \quad k=8
\end{aligned}
$$

Q.9. Find equation of line joining $(1,2)$ and $(3,6)$ using determinants.

Ans.

Let $P(x, y)$ be the general point on the line joining $A(1,2)$ and $B(3,6)$.
From figure it is obvious that the area of $\triangle A P B$ is zero.

$$
\begin{aligned}
& \text { r } \\
& \Rightarrow \quad \frac{1}{2}\left|\begin{array}{lll}
x & y & 1 \\
1 & 2 & 1 \\
3 & 6 & 1
\end{array}\right|=0 \\
& \Rightarrow \quad x(2-6)-y(1-3)+1(6-6)=0 \quad
\end{aligned} \quad \Rightarrow \quad\left|\begin{array}{lll}
x & y & 1 \\
1 & 2 & 1 \\
3 & 6 & 1
\end{array}\right|=0
$$

It is required equation of line.

Q.10. Without expanding evaluate the determinant:

$$
\left|\begin{array}{lll}
\left(a^{x}+a^{-x}\right)^{2} & \left(a^{x}-a^{-x}\right)^{2} & 1 \\
\left(a^{y}+a^{-y}\right)^{2} & \left(a^{y}-a^{-y}\right)^{2} & 1 \\
\left(a^{z}+a^{-z}\right)^{2} & \left(a^{z}+a^{-z}\right)^{2} & 1
\end{array}\right| \text {, where } a>0 \text { and } x, y, z \in R .
$$

Ans.

Let Δ be the given determinant. Applying $C_{1} \rightarrow C_{1}-C_{2}$, we get

$$
\Delta=\left|\begin{array}{ccc}
4 & \left(a^{x}-a^{-x}\right)^{2} & 1 \\
4 & \left(a^{y}-a^{y}\right)^{2} & 1 \\
4 & \left(a^{z}-a^{-z}\right)^{2} & 1
\end{array}\right| \quad \quad\left[\text { Using }(a+b)^{2}-(a-b)^{2}=4 a b\right]
$$

Taking out 4 from C_{1}, we get

$$
\Delta=4\left|\begin{array}{ccc}
1 & \left(a^{x}-a^{x}\right)^{2} & 1 \\
1 & \left(a^{y}-a^{y}\right)^{2} & 1 \\
1 & \left(a^{z}-a^{-z}\right)^{2} & 1
\end{array}\right| \quad \Rightarrow \quad \Delta=4 \times 0=0 . \quad\left[\because C_{1} \text { and } C_{2} \text { are identical }\right]
$$

Long Answer Questions (PYQ)

[4 Mark / 6 Mark]

Q.1. Using properties of determinants, prove that

$$
\left|\begin{array}{ccc}
2 y & y-z-x & 2 y \\
2 z & 2 z & z-x- \\
x-y-z & 2 x & 2 x
\end{array}\right| y=(x+y+z)^{3} .
$$

Ans.
LHS $\quad \Delta=\left|\begin{array}{ccc}2 y & y-z-x & 2 y \\ 2 z & 2 z & z-x-y \\ x-y-z & 2 x & 2 x\end{array}\right|$
Applying $R_{2} \leftrightarrow R_{3}$, then $R_{1} \leftrightarrow R_{2}$, we have

$$
\Delta=\left|\begin{array}{ccc}
x-y-z & 2 x & 2 x \\
2 y & y-z-x & 2 y \\
2 z & 2 z & z-x-y
\end{array}\right|
$$

Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$, we have

$$
\Delta=\left|\begin{array}{ccc}
x+y+z & y+z+x & z+x+y \\
2 y & y-z-x & 2 y \\
2 z & 2 z & z-x-y
\end{array}\right|
$$

Taking out $(x+y+z)$ from first row, we have

$$
\Delta=(x+y+z)\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 y & y-z-x & 2 y \\
2 z & 2 z & z-x-y
\end{array}\right|
$$

Applying $C_{1} \rightarrow C_{1}-C_{3}$ and $C_{2} \rightarrow C_{2}-C_{3}$, we have

$$
\Delta=(x+y+z)\left|\begin{array}{ccc}
0 & 0 & 1 \\
0 & (y+z+x) & 2 y \\
(x+y+z) & z+x+y & z-x-y
\end{array}\right|
$$

Expanding along first row, we have

$$
\Delta=(x+y+z)(x+y+z)^{2}=(x+y+z)^{3}=\text { RHS }
$$

Prove that: $\left|\begin{array}{ccc}\alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2} \\ \beta+\gamma & \gamma+\alpha & \alpha+\beta\end{array}\right|=(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)(\alpha+\beta+\gamma)$
Ans.

$$
\begin{aligned}
& \text { LHS } \Delta=\left|\begin{array}{ccc}
\alpha & \beta & \gamma \\
\alpha^{2} & \beta^{2} & \gamma^{2} \\
\beta+\gamma & \gamma+\alpha & \alpha+\beta
\end{array}\right| \\
& \left.\Delta=\left|\begin{array}{ccc}
\alpha & \beta & \gamma \\
\alpha^{2} & \beta^{2} & \gamma^{2} \\
\alpha+\beta+\gamma & \alpha+\beta+\gamma & \alpha+\beta+\gamma
\end{array}\right| \quad \text { [Applying } R_{3} \rightarrow R_{1}+R_{3}\right] \\
& =(\alpha+\beta+\gamma)\left|\begin{array}{ccc}
\alpha & \beta & \gamma \\
\alpha^{2} & \beta^{2} & \gamma^{2} \\
1 & 1 & 1
\end{array}\right| \\
& =(\alpha+\beta+\gamma)\left|\begin{array}{ccc}
\alpha & \beta-\alpha & \gamma-\alpha \\
\alpha^{2} & \beta^{2}-\alpha^{2} & \gamma^{2}-\alpha^{2} \\
1 & 0 & 0
\end{array}\right| \quad \text { [Applying } C_{1} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-C_{1} \text {] } \\
& =(\alpha+\beta+\gamma)(\beta-\alpha)(\gamma-\alpha)\left|\begin{array}{ccc}
\alpha & 1 & 1 \\
\alpha^{2} & \beta+\alpha & \gamma+\alpha \\
1 & 0 & 0
\end{array}\right|
\end{aligned}
$$

Taking out $(\beta-\alpha)$ and $(\gamma-\alpha)$ from C_{2} and C_{3} respectively

$$
\begin{aligned}
& \left.\quad=(\alpha+\beta+\gamma)(\beta-\alpha)(\gamma-\alpha) 1 .\left|\begin{array}{cc}
1 & 1 \\
\beta+\alpha & \gamma+\alpha
\end{array}\right| \quad \text { [Expanding along } R_{3}\right] \\
& \\
& =(\alpha+\beta+\mathrm{Y})(\beta-\alpha)(\mathrm{Y}-\alpha)(\mathrm{Y}+\mathrm{\alpha}-\beta-\alpha) \\
& \\
& =(\alpha+\beta+\mathrm{Y})(\beta-\alpha)(\mathrm{Y}-\alpha)(\mathrm{\gamma}-\beta)=(\alpha-\beta)(\beta-\mathrm{Y})(\mathrm{Y}-\alpha)(\alpha+\beta+\mathrm{Y})=\text { RHS } \\
& \text { Q.3. Show that: }\left|\begin{array}{lll}
x+1 & x+2 & x+a \\
x+2 & x+3 & x+b \\
x+3 & x+4 & x+c
\end{array}\right|=0, \\
& \quad \text { where } \mathbf{a}, \boldsymbol{b}, \boldsymbol{c} \text { are in AP. }
\end{aligned}
$$

Ans.

$$
\begin{aligned}
& \Delta=\left|\begin{array}{lll}
x+1 & x+2 & x+a \\
x+2 & x+3 & x+b \\
x+3 & x+4 & x+c
\end{array}\right| \\
& \because \quad a, b, c \text { are in AP } \\
& \therefore \quad 2 b=a+c
\end{aligned}
$$

Applying $R_{1} \rightarrow R_{1}+R_{3}-2 R_{2}$, we have

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
0 & 0 & 0 \\
x+2 & x+3 & x+b \\
x+3 & x+4 & x+c
\end{array}\right| \\
\therefore \quad \Delta & =0
\end{aligned} \quad\left[\because R_{1}=0\right]\left[\begin{array}{ll}
\end{array}\right.
$$

Q.4.

Prove that: $\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=2(a+b+c)^{3}$.

OR
Prove that: $\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|=2(x+y+z)^{3}$.
Ans.

LHS $\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get

$$
=\left|\begin{array}{ccc}
2(a+b+c) & a & b \\
2(a+b+c) & b+c+2 a & b \\
2(a+b+c) & a & c+a+2 b
\end{array}\right|
$$

Taking $2(a+b+c)$ common from C_{1}, we get

$$
=2(a+b+c)\left|\begin{array}{ccc}
1 & a & b \\
1 & b+c+2 a & b \\
1 & a & c+a+2 b
\end{array}\right|
$$

Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get

$$
=2(a+b+c)\left|\begin{array}{ccc}
1 & a & b \\
0 & a+b+c & 0 \\
0 & 0 & a+b+c
\end{array}\right|
$$

Taking $(a+b+c)$ common from R_{2} and R_{3}, we get

$$
=2(a+b+c)^{3}\left|\begin{array}{ccc}
1 & a & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|
$$

Expanding along C_{1}, we get

$$
=2(a+b+c)^{3}[1-0]=2(a+b+c)^{3}=\mathrm{RHS}
$$

OR

For solution replace $a \rightarrow x, b \rightarrow y$ and $c \rightarrow z$ in above solution.

Q.5. Using Properties of determinants, prove the following:

$\left|\begin{array}{ccc}a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b\end{array}\right|=a^{3}+b^{3}+c^{3}-3 \mathrm{abc}$

Ans.

$$
\begin{aligned}
& \text { Let }=\left|\begin{array}{ccc}
a & b & c \\
a-b & b-c & c-a \\
b+c & c+a & a+b
\end{array}\right| \\
& =\left|\begin{array}{ccc}
a+b+c & b & c \\
0 & b-c & c-a \\
2(a+b+c) & c+a & a+b
\end{array}\right| \\
& =(a+b+c)\left|\begin{array}{ccc}
1 & b & c \\
0 & b-c & c-a \\
2 & c+a & a+b
\end{array}\right| \\
& =(a+b+c)\left|\begin{array}{ccc}
1 & b & c \\
0 & b-c & c-a \\
0 & c+a-2 b & a+b-2 c
\end{array}\right| \quad\left[\text { Applying } R_{3} \rightarrow R_{3}-2 R_{1}\right]
\end{aligned}
$$

Expanding along C_{1}, we get

$$
\begin{aligned}
& =(a+b+c) \cdot 1 \cdot\{(b-c)(a+b-2 c)-(c-a)(c+a-2 b)\} \\
& =(a+b+c)\left(a b+b^{2}-2 b c-a c-b c+2 c^{2}-c^{2}-a c+2 b c+a c+a^{2}-2 a b\right) \\
& =(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=a^{3}+b^{3}+c^{3}-3 a b c
\end{aligned}
$$

Q.6. Using properties of determinant, solve for x :

$$
\left|\begin{array}{ccc}
a+x & a-x & a-x \\
a-x & a+x & a-x \\
a-x & a-x & a+x
\end{array}\right|=0
$$

Ans.

Let $\Delta=\left|\begin{array}{ccc}a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x\end{array}\right|$

$$
\begin{array}{ll}
\Delta=\left|\begin{array}{lll}
3 a-x & a-x & a-x \\
3 a-x & a+x & a-x \\
3 a-x & a-x & a+x
\end{array}\right| & \text { [Applying } C_{1} \rightarrow C_{1}+C_{2}+C_{3} \text {] } \\
\Delta=(3 a-x)\left|\begin{array}{ccc}
1 & a-x & a-x \\
1 & a+x & a-x \\
1 & a-x & a+x
\end{array}\right| \\
=(3 a-x)\left|\begin{array}{ccc}
1 & a-x & a-x \\
0 & 2 x & 0 \\
0 & 0 & 2 x
\end{array}\right| & \text { [Applying } R_{2} \rightarrow R_{2}-R_{1} \text { and } R_{3} \rightarrow R_{3}-R_{1} \text {] }
\end{array}
$$

Expanding along C_{1}, we get

$$
=(3 a-x)\left(4 x^{2}-0\right)=4 x^{2}(3 a-x)
$$

Now, given that $\Delta=0$
Therefore, $4 x^{2}(3 a-x)=0 \quad \Rightarrow \quad x=0$, or $x=3 a$.

Hence, required values of x are $x=0,3 a$.

Q.7. Using property of determinant, prove the following:

$\left|\begin{array}{ccc}a & a+b & a+2 b \\ a+2 b & a & a+b \\ a+b & a+2 b & a\end{array}\right|=9 b^{2}(a+b)$
Ans.

$$
\begin{aligned}
& \text { LHS }=\left|\begin{array}{ccc}
a & a+b & a+2 b \\
a+2 b & a & a+b \\
a+b & a+2 b & a
\end{array}\right| \\
& =\left|\begin{array}{ccc}
3(a+b) & 3(a+b) & 3(a+b) \\
a+2 b & a & a+b \\
a+b & a+2 b & a
\end{array}\right| \quad\left[\text { Applying } R_{1}=R_{1}+R_{2}+R_{3}\right] \\
& =3(a+b)\left|\begin{array}{ccc}
1 & 1 & 1 \\
a+2 b & a & a+b \\
a+b & a+2 b & a
\end{array}\right| \quad \text { [Taking } 3(a+b) \text { common from } R_{1} \text {] } \\
& =3(a+b)\left|\begin{array}{ccc}
0 & 0 & 1 \\
b & -b & a+b \\
b & 2 b & a
\end{array}\right| \quad\left[\text { Applying } C_{1} \rightarrow C_{1}-C_{3}, C_{2} \rightarrow C_{2}-C_{3}\right]
\end{aligned}
$$

Expanding along R_{1} we get

$$
=3(a+b)\left\{1\left(2 b^{2}+b^{2}\right)\right\}=9 b^{2}(a+b)=\text { RHS }
$$

Q.8. By using properties of determinant, prove the following:

$$
\left|\begin{array}{ccc}
x+\lambda & 2 x & 2 x \\
2 x & x+\lambda & 2 x \\
2 x & 2 x & x+\lambda
\end{array}\right|=(5 x+\lambda)(\lambda-x)^{2}
$$

Ans.

$$
\left.\begin{array}{rl}
\text { LHS } & =\left|\begin{array}{ccc}
x+\lambda & 2 x & 2 x \\
2 x & x+\lambda & 2 x \\
2 x & 2 x & x+\lambda
\end{array}\right| \\
& =\left|\begin{array}{ccc}
5 x+\lambda & 2 x & 2 x \\
5 x+\lambda & x+\lambda & 2 x \\
5 x+\lambda & 2 x & x+\lambda
\end{array}\right| \\
& =(5 x+\lambda)\left|\begin{array}{ccc}
1 & 2 x & 2 x \\
1 & x+\lambda & 2 x \\
1 & 2 x & x+\lambda
\end{array}\right| \\
& \left.\quad \text { [Applying } C_{1} \rightarrow C_{1}+C_{2}+C_{3}\right] \\
& =(5 x+\lambda)\left|\begin{array}{ccc}
1 & 2 x & 2 x \\
0 & \lambda-x & 0 \\
0 & 0 & \lambda-x
\end{array}\right|
\end{array} \quad \text { [Taking out }(5 x+\lambda) \text { common from } C_{1}\right]
$$

Expanding along C_{1}, we get

$$
=(5 x+\lambda)(\lambda-x) 2=\text { RHS } .
$$

Q.9. Using properties of determinant, prove that:

$$
\left|\begin{array}{ccc}
a+x & y & z \\
x & a+y & z \\
x & y & a+z
\end{array}\right|=a^{2}(a+x+y+z)
$$

Ans.

$$
\begin{array}{rlr}
\text { LHS } & =\left|\begin{array}{ccc}
a+x & y & z \\
x & a+y & z \\
x & y & a+z
\end{array}\right| \\
& =\left|\begin{array}{ccc}
a+x+y+z & y & z \\
a+x+y+z & a+y & z \\
a+x+y+z & y & a+z
\end{array}\right| & \left.\quad \text { [Applying } C_{1} \rightarrow C_{1}+C_{2}+C_{3}\right] \\
& =(a+x+y+z)\left|\begin{array}{ccc}
1 & y & z \\
1 & a+y & z \\
1 & y & a+z
\end{array}\right| & \text { [Taking out }(a+x+y+z) \text { common from } C_{1} \text {] } \\
& =(a+x+y+z)\left|\begin{array}{ccc}
0 & -a & 0 \\
1 & a+y & z \\
1 & y & a+z
\end{array}\right| &
\end{array}
$$

Expanding along R_{1}, we get

$$
\begin{aligned}
& =(a+x+y+z)\{0+a(a+z-z)\} \\
& =a^{2}(a+x+y+z)=\text { RHS }
\end{aligned}
$$

Q.10. Using properties of determinant, prove the following:

$$
\left|\begin{array}{ccc}
x+y & x & x \\
5 x+4 y & 4 x & 2 x \\
10 x+8 y & 8 x & 3 x
\end{array}\right|=x^{3}
$$

Ans.

$$
\begin{array}{rlr}
\text { LHS } & =\left|\begin{array}{ccc}
x+y & x & x \\
5 x+4 y & 4 x & 2 x \\
10 x+8 y & 8 x & 3 x
\end{array}\right| \\
& =x^{2}\left|\begin{array}{ccc}
x+y & 1 & 1 \\
5 x+4 y & 4 & 2 \\
10 x+8 y & 8 & 3
\end{array}\right| & \left.\quad \text { [Taking out } x \text { from } C_{2} \text { and } C_{3}\right] \\
& =x^{2}\left|\begin{array}{ccc}
x+y & 1 & 1 \\
3 x+2 y & 2 & 0 \\
7
\end{array}\right| & {\left[\text { Applying } R_{2} \rightarrow R_{2}-2 R_{1} \text { and } R_{3} \rightarrow R_{3}-3 R_{1}\right]}
\end{array}
$$

Expanding along C_{3}, we get

$$
\begin{aligned}
& x^{2}[1\{(3 x+2 y) 5-2(7 x+5 y)\}-0+0] \\
& =x^{2}(15 x+10 y-14 x-10 y) \\
& =x^{2}(x)=x^{3}=\text { RHS }
\end{aligned}
$$

Q.11. Using properties of determinants, prove the following:
$\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 1+3 p+2 q=1 \\ 3 & 6+3 p & 1+6 p+3 q\end{array}\right|$

Ans.

Let $\quad|A|=\left|\begin{array}{lll}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 1+3 p+2 q \\ 3 & 6+3 p & 1+6 p+3 q\end{array}\right|$
Using the transformation $R_{2} \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}-3 R_{1}$

$$
|A|=\left|\begin{array}{ccl}
1 & 1+p & 1+p+q \\
0 & 1 & -1+p \\
0 & 3 & -2+3 p
\end{array}\right|
$$

Using $R_{3} \rightarrow R_{3}-3 R_{2}$
$\Rightarrow \quad|A|=\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 0 & 1 & -1+p \\ 0 & 0 & 1\end{array}\right|$
Expanding along column C_{1}, we get

$$
|A|=1
$$

Q.13. Prove the following using properties of determinant:

$$
\left|\begin{array}{lll}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|=2\left(3 a b c-a^{3}-b^{3}-c^{3}\right)
$$

Ans.

LHS

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right| \\
& =\left|\begin{array}{ccc}
2(a+b+c) & 2(a+b+c) & 2(a+b+c) \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right| \quad \text { [Applying } R_{1} \rightarrow R_{1}+R_{2}+R_{3} \text {] }
\end{aligned}
$$

$$
=2(a+b+c)\left|\begin{array}{ccc}
1 & 1 & 1 \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right| \quad\left[\text { Taking } 2(a+b+c) \text { common from } R_{1}\right]
$$

$$
=2(a+b+c)\left|\begin{array}{ccc}
1 & 0 & 0 \\
c+a & b-c & b-a \\
a+b & c-a & c-b
\end{array}\right| \quad\left[\text { Applying } C_{2} \rightarrow C_{2}-C_{1} ; C_{3} \rightarrow C_{3}-C_{1}\right]
$$

$$
=2(a+b+c)\left[1\left(b c-b^{2}-c^{2}+b c-b c+a c+a b-a^{2}\right)\right] \quad\left[\text { Expanding along } R_{1}\right]
$$

$$
=2(a+b+c)\left(b c+a c+a b-a^{2}-b^{2}-c^{2}\right)
$$

$$
=-2(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=-2\left(a^{3}+b^{3}+c^{3}-3 a b c\right)
$$

$$
=2\left(3 a b c-a^{3}-b^{3}-c^{3}\right)=\text { RHS }
$$

Q.15. Using properties of determinants, prove the following:

$$
\left|\begin{array}{ccc}
x+4 & 2 x & 2 x \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right|=(5 x+4)(4-x)^{2}
$$

OR

$$
\left|\begin{array}{ccc}
x+\lambda & 2 x & 2 x \\
2 x & x+\lambda & 2 x \\
2 x & 2 x & x+\lambda
\end{array}\right|=(5 x+\lambda)(\lambda-x)^{2}
$$

Ans.

$$
\begin{aligned}
\text { LHS } & =\left|\begin{array}{ccc}
x+4 & 2 x & 2 x \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right| \\
& \left.=\left|\begin{array}{ccc}
5 x+4 & 5 x+4 & 5 x+4 \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right| \quad \quad \text { [Applying } R_{1} \rightarrow R_{1}+R_{2}+R_{3}\right] \\
& \left.=(5 x+4)\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right| \quad \text { [Taking }(5 x+4) \text { common from } R_{1}\right] \\
& \left.=(5 x+4)\left|\begin{array}{ccc}
1 & 0 & 0 \\
2 x & 4-x & 0 \\
2 x & 0 & 4-x
\end{array}\right| \quad \text { [Applying } C_{2} \rightarrow C_{2}-C_{1} ; C_{3} \rightarrow C_{3}-C_{1}\right] \\
& =(5 x+4)\left[\begin{array}{ll}
1\{(4-x) 2-0\}+0+0] \\
& =(5 x+4)(4-x)^{2}=R H S
\end{array} \quad \text { [Expanding along } R_{1}\right]
\end{aligned}
$$

OR
Solve as above by putting λ instead of 4 .
Q.20. Using properties of determinant, solve the following for x :

$$
\left|\begin{array}{ccc}
x-2 & 2 x-3 & 3 x-4 \\
x-4 & 2 x-9 & 3 x-16 \\
x-8 & 2 x-27 & 3 x-64
\end{array}\right|=0
$$

Ans.

$$
\begin{aligned}
& \text { Given: }\left|\begin{array}{ccc}
x-2 & 2 x-3 & 3 x-4 \\
x-4 & 2 x-9 & 3 x-16 \\
x-8 & 2 x-27 & 3 x-64
\end{array}\right|=0 \\
& \Rightarrow \quad\left|\begin{array}{ccc}
x-2 & 1 & 2 \\
x-4 & -1 & -4 \\
x-8 & -11 & -40
\end{array}\right|=0 \quad\left[\text { Applying } C_{2} \rightarrow C_{2}-2 C_{1} \text { and } C_{3} \rightarrow C_{3}-3 C_{1}\right] \\
& \Rightarrow \quad\left|\begin{array}{ccc}
x-2 & 1 & 2 \\
-2 & -2 & -6 \\
-6 & -12 & -42
\end{array}\right|=0 \quad\left[\text { Applying } R_{2} \rightarrow R_{2}-R_{1} \text { and } R_{3} \rightarrow R_{3}-R_{1}\right. \text {] } \\
& \Rightarrow \quad(x-2)(84-72)-1(84-36)+2(24-12)=0 \quad \text { [Expanding along } R_{1} \text {] } \\
& \Rightarrow \quad 12 x-24-48+24=0 \quad \Rightarrow \quad 12 x=48 \quad \Rightarrow \quad x=4
\end{aligned}
$$

Q.21. Prove, using properties of determinant:

$$
\left|\begin{array}{ccc}
y+k & y & y \\
y & y+k & y \\
y & y & y+k
\end{array}\right|=k^{2}(3 y+k)
$$

Ans.

$$
\begin{aligned}
& \text { LHS }=\left|\begin{array}{ccc}
y+k & y & y \\
y & y+k & y \\
y & y & y+k
\end{array}\right| \\
& =\left|\begin{array}{ccc}
3 y+k & y & y \\
3 y+k & y+k & y \\
3 y+k & y & y+k
\end{array}\right| \quad \text { [Applying } C_{1} \rightarrow C_{1}+C_{2}+C_{3} \text {] } \\
& =(3 y+k)\left|\begin{array}{ccc}
1 & y & y \\
1 & y+k & y \\
1 & y & y+k
\end{array}\right| \quad\left[\text { Taking }(3 y+k) \text { common from } C_{1}\right. \text {] } \\
& =(3 y+k)\left|\begin{array}{lll}
1 & y & y \\
0 & k & 0 \\
0 & 0 & k
\end{array}\right| \quad\left[\text { Applying } R_{2} \rightarrow R_{2}-R_{1} \text { and } R_{3} \rightarrow R_{3}-R_{1}\right]
\end{aligned}
$$

Expanding along C_{1} we get

$$
=(3 y+k)\left\{1\left(k^{2}-0\right)-0+0\right\}=(3 y+k) \cdot k^{2}=k^{2}(3 y+k)
$$

Q.22. Using properties of determinants, prove that

$$
\left|\begin{array}{ccc}
b+c & q+r & y+z \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right|=2\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|
$$

OR

$$
\left|\begin{array}{ccc}
b+c & c+a & a+b \\
q+r & r+p & p+q \\
y+z & z+x & x+y
\end{array}\right|=2\left|\begin{array}{ccc}
a & b & c \\
p & q & r \\
x & y & z
\end{array}\right|
$$

Q.23. Using properties of determinants, show that $\triangle A B C$ is an isosceles if:

$\left|\begin{array}{ccc}1 & 1 & 1 \\ 1+\cos A & 1+\cos B & 1+\cos C \\ \cos ^{2} A+\cos A & \cos ^{2} B+\cos B & \cos ^{2} C+\cos C\end{array}\right|=0$

Ans.
We have

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
1+\cos A & 1+\cos B & 1+\cos C \\
\cos ^{2} A+\cos A & \cos ^{2} B+\cos B & \cos ^{2} C+\cos C
\end{array}\right|=0
$$

Applying $C_{1} \rightarrow C_{1}-C_{3}$ and $C_{2} \rightarrow C_{2}-C_{3}$

$$
\begin{aligned}
& \Rightarrow \quad\left|\begin{array}{ccc}
0 & 0 & 1 \\
\cos A-\cos C & \cos B-\cos C & 1+\cos C \\
\cos ^{2} A+\cos A-\cos ^{2} C-\cos C & \cos ^{2} B+\cos B-\cos ^{2} C-\cos C & \cos ^{2} C+\cos C
\end{array}\right|=0 \\
& \Rightarrow\left|\begin{array}{ccc}
0 & 0 & 1 \\
0 & \cos B-\cos C & 1+\cos C \\
\cos A-\cos C & (\cos B-\cos C)(\cos B+\cos C+1) & \cos ^{2} C+\cos C
\end{array}\right|
\end{aligned}
$$

Taking common $(\cos A-\cos C)$ from C_{1} and $(\cos B-\cos C)$ from C_{2}, we get

$$
\Rightarrow \quad(\cos A-\cos C)(\cos B-\cos C)\left|\begin{array}{ccc}
0 & 0 & 1 \\
1 & 1 & 1+\cos C \\
\cos A+\cos C+1 & \cos B+\cos C+1 & \cos ^{2} C+\cos C
\end{array}\right|=0
$$

Applying $C_{1} \rightarrow C_{1}-C_{2}$, we get
$\Rightarrow \quad(\cos A-\cos C)(\cos B-\cos C)\left|\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 1+\cos C \\ \cos A-\cos B & \cos B+\cos C+1 & \cos ^{2} C+\cos C\end{array}\right|$
Expanding along R_{1}, we get

$$
\begin{aligned}
& \Rightarrow \quad(\cos A-\cos C)(\cos B-\cos C)(\cos B-\cos A)=0 \\
& \Rightarrow \quad \cos A-\cos C=0 \quad \text { i.e., } \cos A=\cos C \\
& \text { or, } \quad \cos \mathrm{B}-\cos \mathrm{C}=0 \quad \text { i.e., } \cos B=\cos C \\
& \text { or, } \quad \cos \mathrm{B}-\cos \mathrm{A}=0 \quad \text { i.e., } \cos B=\cos A \\
& A=C \text { or } B=C \text { or } B=A
\end{aligned}
$$

Hence, $\triangle A B C$ is an isosceles triangle.
Q.30. Using properties of determinants, prove the following:
$\left|\begin{array}{lll}1 & a & a^{2} \\ a^{2} & 1 & a \\ a & a^{2} & 1\end{array}\right|=\left(1-a^{3}\right)^{2}$
Ans.

LHS $\Delta=\left|\begin{array}{lll}1 & a & a^{2} \\ a^{2} & 1 & a \\ a & a^{2} & 1\end{array}\right|$

$$
\Delta=\left|\begin{array}{cll}
1+a^{2}+a & a+1+a^{2} & a^{2}+a+1 \\
a^{2} & 1 & a \\
a & a^{2} & 1
\end{array}\right| \quad \text { [Applying } R_{1} \rightarrow R_{1}+R_{2}+R_{3} \text {] }
$$

$$
\Delta=\left(1+a+a^{2}\right)\left|\begin{array}{ccc}
1 & 1 & 1 \\
a^{2} & 1 & a \\
a & a^{2} & 1
\end{array}\right| \quad \text { [Taking out }\left(1+x+x^{2}\right) \text { from first row] }
$$

$$
\Delta=\left(1+a+a^{2}\right)\left|\begin{array}{ccc}
0 & 1 & 1 \\
a^{2}-1 & 1 & a \\
a-a^{2} & a^{2} & 1
\end{array}\right| \quad\left[\text { Applying } C_{1} \rightarrow C_{1}-C_{2}\right]
$$

$$
\Delta=\left(1+a+a^{2}\right)\left|\begin{array}{ccc}
0 & 0 & 1 \\
a^{2}-1 & 1-a & a \\
a-a^{2} & a^{2}-1 & 1
\end{array}\right| \quad\left[\text { Applying } C_{2} \rightarrow C_{2}-C_{3}\right]
$$

Expanding along R_{1} we have

$$
\begin{aligned}
& =\left(1+a+a^{2}\right)\left[\left(a^{2}-1\right)^{2}-a(1-a)^{2}\right] \\
& =\left(1+a+a^{2}\right)\left[(a+1)^{2}(a-1)^{2}-a(a-1)^{2}\right] \\
& =\left(1+a+a^{2}\right)(a-1)^{2}\left[a^{2}+1+a\right]=\left(1+a+a^{2}\right)(a-1)^{2}\left[a^{2}+1+a\right] \\
& =(a-1)^{2}\left(1+a+a^{2}\right)^{2}=(1-a)^{2}\left(1+a+a^{2}\right)^{2} \\
& =\left[(1-a)\left(1+a+a^{2}\right)\right]^{2}=\left(1-a^{3}\right)^{2}=\text { RHS }
\end{aligned}
$$

$$
\left|\begin{array}{lll}a & b & d \\ b & c & a \\ c & a & b\end{array}\right|=0 \text {, }
$$

$\begin{aligned} & \text { Q.32. If } \boldsymbol{a} \neq \boldsymbol{b} \neq \boldsymbol{c} \text { and } \\ & \text { prove that } \boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}=0\end{aligned}$ prove that $a+b+c=0$.
Ans.

We have $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=0$
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get

$$
\left|\begin{array}{lll}
(a+b+c) & b & c \\
(a+b+c) & c & a \\
(a+b+c) & a & b
\end{array}\right|=0
$$

Taking $(a+b+c)$ common from C_{1}, we get

$$
(a+b+c)\left|\begin{array}{lll}
1 & b & c \\
1 & c & a \\
1 & a & b
\end{array}\right|=0
$$

Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we get

$$
(a+b+c)\left|\begin{array}{ccc}
1 & b & c \\
0 & c-b & a-c \\
0 & a-b & b-c
\end{array}\right|=0
$$

Expanding along C_{1}, we get

$$
\begin{array}{ll}
& (a+b+c)[1\{(c-b)(b-c)-(a-c)(a-b)\}-0+0]=0 \\
\Rightarrow & (a+b+c)[(c-b)(b-c)-(a-c)(a-b)]=0 \\
\Rightarrow & (a+b+c)[(b-c)(b-c)+(a-c)(a-b)]=0 \\
\Rightarrow & (a+b+c)\left[(b-c)^{2}+(a-c)(a-b)\right]=0 \\
\Rightarrow & (a+b+c)\left[\left(b^{2}+c^{2}-2 b c+a^{2}-a b-a c+b c\right]=0\right. \\
\Rightarrow & (a+b+c)\left[a^{2}+b^{2}+c^{2}-b c-a b-a c\right]=0 \\
\Rightarrow & (a+b+c) \frac{1}{2}\left[2 a^{2}+2 b^{2}+2 c^{2}-2 b c-2 a b-2 \mathrm{ac}\right]=0 \\
\Rightarrow & (a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]=0 \\
\Rightarrow & (a+b+c)=0\left[\because a \neq b \neq c \Rightarrow(a-b)^{2}+(b-c)^{2}+(c-a)^{2} \neq 0\right]
\end{array}
$$

Long Answer Questions (OIQ)

[4 Mark / 6 Mark]

Q.1. Without expanding, show that:

$\Delta=\left|\begin{array}{ccc}\operatorname{cosec}^{2} \theta & \cot ^{2} \theta & 1 \\ \cot ^{2} \theta & \operatorname{cosec}^{2} \theta & -1 \\ 42 & 40 & 2\end{array}\right|$
Ans.
Given, $\Delta=\left|\begin{array}{ccc}\operatorname{cosec}^{2} \theta & \cot ^{2} \theta & 1 \\ \cot ^{2} \theta & \operatorname{cosec}^{2} \theta & -1 \\ 42 & 40 & 2\end{array}\right|$

$$
\begin{aligned}
& \left.=\left|\begin{array}{ccc}
\operatorname{cosec}^{2} \theta-\cot ^{2} \theta-1 & \cot ^{2} \theta & 1 \\
\cot ^{2} \theta-\operatorname{cosec}^{2} \theta+1 & \operatorname{cosec}^{2} \theta & -1 \\
0 & 40 & 2
\end{array}\right| \quad \text { [Applying } C_{1} \rightarrow C_{1}-C_{2}-C_{3}\right] \\
& =\left|\begin{array}{ccc}
1-1 & \cot ^{2} \theta & 1 \\
-1+1 & \operatorname{cosec}^{2} \theta & -1 \\
0 & 40 & 2
\end{array}\right| \quad\left[\because \operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1\right] \\
& =\left|\begin{array}{ccc}
0 & \cot ^{2} \theta & 1 \\
0 & \operatorname{cosec}^{2} \theta & -1 \\
0 & 40 & 2
\end{array}\right|=0 \quad\left[\because \text { All elements of } C_{1} \text { are } 0\right]
\end{aligned}
$$

Q.2. If a, b, c are real numbers, then prove that
$\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=-(a+b+c)\left(a+b \omega+c \omega^{2}\right)\left(a+b \omega^{2}+c \omega\right)$
where ω is a complex number and cube root of unity.
Ans.

Let $\Delta=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$

$$
\left.=\left|\begin{array}{lll}
a+b+c & b & c \\
b+c+a & c & a \\
c+a+b & a & b
\end{array}\right| \quad \quad \text { Applying } C_{1} \rightarrow C_{1}+C_{2}+C_{3}\right]
$$

$$
=(a+b+c)\left|\begin{array}{ccc}
1 & b & c \\
1 & c & a \\
1 & a & b
\end{array}\right| \quad\left[\text { Taking out }(a+b+c) \text { from } C_{1}\right]
$$

$$
=(a+b+c)\left|\begin{array}{ccc}
1 & b & c \\
0 & c-b & a-c \\
0 & a-b & b-c
\end{array}\right| \quad\left[\text { Applying } R_{2} \rightarrow R_{2}-R_{1} \text { and } R_{3} \rightarrow R_{3}-R_{1}\right]
$$

$$
=(a+b+c)\left|\begin{array}{ll}
c-b & a-c \\
a-b & b-c
\end{array}\right| \quad \quad\left[\text { Expanding along } C_{1}\right]
$$

$$
\begin{aligned}
& =(a+b+c)\left\{-(b-c)^{2}-(a-c)(a-b)\right\} \\
\text { LHS } & =-(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)
\end{aligned}
$$

Also, RHS $=-(a+b+c)\left(a+b \omega+c \omega^{2}\right)\left(a+b \omega^{2}+c \omega\right)$

$$
\begin{aligned}
& =-(a+b+c)\left(a^{2}+a b \omega^{2}+a c \omega+a b \omega+b^{2} \omega^{3}+b c \omega^{2}+a c \omega^{2}+b c \omega^{4}+c^{2} \omega^{3}\right) \\
& =-(a+b+c)\left[\left(a^{2}+b^{2}+c^{2}+a b\left(\omega^{2}+\omega\right)+b c\left(\omega^{2}+\omega^{4}\right)+c a\left(\omega+\omega^{2}\right)\right]\left[\because \omega^{3}=1\right]\right. \\
& =-(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=\operatorname{LHS}\left[\because \omega^{2}+\omega+1=0 \text { and } \omega^{4}=\omega^{3} . \omega=\omega\right]
\end{aligned}
$$

Q.3. Find the equation of the line joining $A(1,3)$ and $B(0,0)$ using determinants and find k if $D(k, 0)$ is a point such that the area of $\triangle A B D$ is 3 sq units.
Ans.

Let $P(x, y)$ be any point on the line $A B$. Then,
$\operatorname{ar}(\triangle A B P)=0$
$\Rightarrow \quad \frac{1}{2}\left|\begin{array}{lll}1 & 3 & 1 \\ 0 & 0 & 1 \\ x & y & 1\end{array}\right|=0 \quad \Rightarrow \quad \frac{1}{2}\{1(0-y)-3(0-x)+1(0-0)\}=0$
$\Rightarrow \quad 3 x-y=0$, which is the required equation of line $A B$.

Now, area $(\triangle A B D)=3$ sq units

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{2}\left|\begin{array}{lll}
1 & 3 & 1 \\
0 & 0 & 1 \\
k & 0 & 1
\end{array}\right|= \pm 3 \Rightarrow\left|\begin{array}{lll}
1 & 3 & 1 \\
0 & 0 & 1 \\
k & 0 & 1
\end{array}\right|= \pm 6 \\
& \Rightarrow \quad 1(0-0)-3(0-k)+1(0-0)= \pm 6 \Rightarrow 3 k= \pm 6 \Rightarrow k= \pm 2
\end{aligned}
$$

Q.4. In a triangle $A B C$, if

$\left|\begin{array}{ccc}1 & 1 & 1 \\ 1+\sin A & 1+\sin B & 1+\sin C \\ \sin A+\sin ^{2} A & \sin B+\sin ^{2} B & \sin C+\sin ^{2} C\end{array}\right|=0$,

then prove that $\triangle A B C$ is an isosceles triangle.

Ans.
Let $\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1+\sin A & 1+\sin B & 1+\sin C \\ \sin A+\sin ^{2} A & \sin B+\sin ^{2} B & \sin C+\sin ^{2} C\end{array}\right|$

$$
=\left|\begin{array}{ccc}
1 & 0 & 0 \\
1+\sin A & \sin B-\sin A & \sin C-\sin A \\
\sin A+\sin ^{2} A & \sin ^{2} B-\sin ^{2} A+\sin B-\sin A & \sin ^{2} C-\sin ^{2} A+\sin C-\sin A
\end{array}\right|
$$

[Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$]

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
1 & 0 & 0 \\
1+\sin A & \sin B-\sin A & \sin C-\sin A \\
\sin A+\sin ^{2} A & (\sin B-\sin A)(\sin B+\sin A+1) & (\sin C-\sin A)(\sin C+\sin A+1)
\end{array}\right| \\
& =(\sin B-\sin A)(\sin C-\sin A)\left|\begin{array}{ccc}
1 & 0 & 0 \\
1+\sin A & 1 & 1 \\
\sin A+\sin ^{2} A & \sin B+\sin A+1 & \sin C+\sin A+1
\end{array}\right|
\end{aligned}
$$

Expanding along R_{1}, we get

$$
\left.\begin{array}{l}
(\sin B-\sin A)(\sin C-\sin A)[\sin C+\sin A+1-\sin B-\sin A-1] \\
\\
\because \quad(\sin B-\sin A)(\sin C-\sin A)(\sin C-\sin B) \\
\Rightarrow \quad \\
\Rightarrow \quad(\sin B-\sin A)(\sin C-\sin B)(\sin C-\sin A)=0 \\
\Rightarrow
\end{array} \quad \sin B-\sin A=0 \text { or } \sin C-\sin B=0 \text { or } \sin C-\sin A=0\right] \text { or } C \quad B=A \text { or } C=B \text { or } C=A .
$$

Q.5.

Let $f(t)=\left|\begin{array}{ccc}\cos t & t & 1 \\ 2 \sin t & t & 2 t \\ \sin t & t & t\end{array}\right|$, then find $\lim _{t \rightarrow 0} \frac{f(t)}{t^{2}}$.
Ans.
Given, $f(t)=\left|\begin{array}{ccc}\cos t & t & 1 \\ 2 \sin t & t & 2 t \\ \sin t & t & t\end{array}\right|=\left|\begin{array}{ccc}\cos t & t & 1 \\ 0 & -t & 0 \\ \sin t & t & t\end{array}\right|$
[Applying $R_{2} \rightarrow R_{2}-2 R_{3}$]

$$
=t\left|\begin{array}{ccc}
\cos t & 1 & 1 \\
0 & -1 & 0 \\
\sin t & 1 & t
\end{array}\right|
$$

Expanding along R_{2}, we get

$$
\begin{aligned}
& t[(-1)(t \cos t-\sin t)]=-t^{2} \cos t+t \sin t \\
& \therefore \quad \lim _{t \rightarrow 0} \frac{f(t)}{t^{2}}=\lim _{t \rightarrow 0} \frac{t^{2} \cos t+t \sin t}{t^{2}} \\
& =\lim _{t \rightarrow 0}\left(\frac{t^{2} \cos t}{t^{2}}+\frac{t \sin t}{t^{2}}\right) \\
& \quad=\lim _{t \rightarrow 0}\left(-\cos t+\frac{\sin t}{t}\right)=-1+\lim _{t \rightarrow 0} \frac{\sin t}{t}=-1+1=0
\end{aligned}
$$

