Very Short Answer Questions (PYQ)

[1 Mark]

Q.1. For what value of ' k ' is the function

$$
f(x)=\left\{\begin{array}{cl}
\frac{\sin 5 x}{3 x}+\cos x, & \text { if } x \neq 0 \\
k, & \text { if } x=0
\end{array}\right.
$$ continuous at $x=0$?

Ans.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{h \rightarrow 0} f(0+h) \\
& =\lim _{h \rightarrow 0} f(h) \quad=\lim _{h \rightarrow 0}\left(\frac{\sin 5 h}{3 h}+\cos h\right) \\
& \left.=\lim _{h \rightarrow 0} \frac{\sin 5 h}{5 h} \times \frac{5}{3}+\lim _{h \rightarrow 0} \cos h \quad \quad \because h \rightarrow 0 \Rightarrow 5 h \rightarrow 0\right] \\
& =1 \times \frac{5}{3}+1
\end{aligned}
$$

$\lim _{x \rightarrow 0^{+}} f(x)=\frac{8}{3}$
Also, $f(0)=k$
Since, $f(x)$ is continuous at $x=0$

$$
\Rightarrow \quad \lim _{x \rightarrow 0^{+}} f(x)=f(0) \quad \Rightarrow \quad \frac{8}{3}=k
$$

Q.2. Determine the value of the constant ' k ' so that the function $f(x)=\left\{\begin{array}{cl}\overline{|x|}, & \text { if } x<0 \\ 3, & \text { if } x \geq 0\end{array}\right.$ is continuous at $\boldsymbol{x}=0$.

Ans.

$$
\begin{aligned}
& \because \quad f(x) \text { is continuous at } x=0 \\
& \Rightarrow \quad \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} f(x)=f(0) \\
& \text { Now, } \quad \lim _{x \rightarrow 0} f(x)=\lim _{h \rightarrow 0} f(0-h) \\
& =\lim _{h \rightarrow 0} f(-h)=\lim _{h \rightarrow 0} \frac{k(-h)}{|-h|} \\
& =\lim _{h \rightarrow 0} \bar{h}=-k
\end{aligned}
$$

Also, $f(0)=3$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x)=f(0) \\
& -k=3 \quad \Rightarrow \quad k=-3
\end{aligned}
$$

Very Short Answer Questions (OIQ)

[1 Mark]

Q.1. Is every differentiable function continuous? Is every continuous function differentiable?

Ans.

Yes, every differentiable function is continuous.
No, some continuous functions may not be differentiable.
Q.2. Find the derivative of $\frac{e^{x}}{\sin x}$.

Ans.
Let $y=\frac{e^{x}}{\sin x}$

$$
\begin{aligned}
\therefore \quad \frac{\mathrm{dy}}{\mathrm{dx}} & =\frac{\sin x \cdot e^{x}-e^{x} \cos x}{\sin ^{2} x} \quad \text { [Using quotient rule] } \\
& =\frac{e^{x}(\sin x-\cos x)}{\sin ^{2} x}
\end{aligned}
$$

Find $\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{x=\frac{\pi}{2}}$, where $y=e^{\sin x}$.
Ans.
We have, $\quad y=e^{\sin x} \quad \Rightarrow \quad \frac{d y}{d x}=e^{\sin x} \cdot \cos x$

$$
\left.\therefore \quad \frac{\mathrm{dy}}{\mathrm{dx}}\right|_{x-\frac{1}{2}}=e^{1} \cdot 0=0
$$

Q.4. If $f(1)=4, f^{\prime}(1)=2$, find the value of derivative of $\log f\left(e^{x}\right)$ with respect to x at the point $x=0$.

Ans.
Let $y=\log f\left(e^{x}\right)$

$$
\begin{aligned}
\therefore \quad & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{f\left(e^{x}\right)} \times f^{\prime}\left(e^{x}\right) \cdot e^{x}=\frac{e^{x} \cdot f^{\prime}\left(e^{x}\right)}{f\left(e^{x}\right)} \\
& \left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{x-0}=\frac{e^{0} \cdot f^{\prime}\left(e^{0}\right)}{f \cdot\left(e^{0}\right)}=\frac{1 \cdot f^{\prime}(1)}{f(1)}=\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

Q.5. Find the derivative of $\log _{10} x$ with respect to x.

Ans.
Let $y=\log _{10} x$

$$
y=\log _{10} e \cdot \log _{e} x
$$

$$
\therefore \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\log _{10} e \frac{1}{x}=\frac{\log _{10} e}{x} \quad\left[\because \quad \frac{d}{\mathrm{dx}} \log _{e} x=\frac{1}{x}\right]
$$

Short Answer Questions (PYQ)

[2 Mark]

Q.1. Find $\frac{\mathrm{dy}}{\mathrm{dx}}$ at $t=\frac{2 \pi}{3}$ when $x=10(t-\sin t)$ and $y=12(1-\cos t)$. Ans.

Given

$$
\begin{aligned}
& \quad x=10(t-\sin t) \text { and } y=12(1-\cos t) \\
& \because \quad x=10(t-\sin t)
\end{aligned}
$$

Differentiating w.r.t. t we get

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=10(1-\cos t)
$$

Again $y=12(1-\cos t)$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dt}}=12(0+\sin t)=12 \sin t$
Now, $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{12 \sin t}{10(1-\cos t)}$

$$
\begin{aligned}
\left.\because \quad \frac{\mathrm{dy}}{\mathrm{dx}}\right]_{t-\frac{2 x}{3}} & =\frac{12 \sin \frac{2 \pi}{3}}{10\left(1-\cos \frac{2 \pi}{3}\right)} \\
& =\frac{6}{5} \times \frac{\sin \left(\pi-\frac{\pi}{3}\right)}{\left(1-\cos \left(\pi-\frac{\pi}{3}\right)\right)}=\frac{6}{5} \times \frac{\sin \frac{\pi}{3}}{1+\cos \frac{\pi}{3}} \\
& =\frac{6}{5} \times \frac{\frac{\sqrt{3}}{2}}{1+\frac{1}{2}}=\frac{6 \sqrt{3}}{5 \times 3}=\frac{2 \sqrt{3}}{5}
\end{aligned}
$$

Q.2. Find $\frac{\mathrm{dy}}{\mathrm{dx}}$ at $x=1, y=\frac{\pi}{4}$ if $\sin ^{2} y+\cos \mathrm{xy}=K$.

Ans.

$$
\sin ^{2} y+\cos x y=K
$$

Differentiating w.r.t. x, we get

$$
\begin{aligned}
& 2 \sin y \cdot \cos y \frac{\mathrm{dy}}{\mathrm{dx}}+(-\sin \mathrm{xy})\left(x \cdot \frac{\mathrm{dy}}{\mathrm{dx}}+y\right)=0 \\
& \sin 2 y \cdot \frac{\mathrm{dy}}{\mathrm{dx}}-x \sin \mathrm{xy} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}-y \sin \mathrm{xy}=0 \\
& \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{y \sin \mathrm{xy}}{(\sin 2 y-x \sin \mathrm{xy})} \\
& \left.\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}\right]_{x=1, y=\frac{\pi}{4}}=\frac{\frac{\pi}{4} \cdot \sin \frac{\pi}{4}}{\sin \frac{\pi}{2}-\sin \frac{\pi}{4}}=\frac{\frac{\pi}{4} \cdot \frac{1}{\sqrt{2}}}{1-\frac{1}{\sqrt{2}}}=\frac{\pi}{4(\sqrt{2}-1)}
\end{aligned}
$$

Short Answer Questions (OIQ)

[2 Mark]

Q.1. Write the derivative of $f(x)=\left|x^{3}\right|$ at $x=0$.

Ans.

We have,

$$
\begin{aligned}
& f(x)=\left|x^{3}\right|=\left\{\begin{array}{cc}
x^{3} & , x \geq 0 \\
-x^{3} & , x<0
\end{array}\right. \\
& f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}
\end{aligned}
$$

Now, $\quad f^{\prime}\left(0^{-}\right)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0} \lim _{x \rightarrow 0} \frac{-x^{3}-0}{x}=-\lim _{x \rightarrow 0} x^{2}=0$
and

$$
f^{\prime}\left(0^{+}\right)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} \lim _{x \rightarrow 0^{+}} \frac{+x^{3}-0}{x}=\lim _{x \rightarrow 0^{+}} x^{2}=0
$$

Thus, $\quad f^{\prime}(0)=f^{\prime}(0-)=f^{\prime}\left(0^{+}\right)=0$
Q.2. Find $\frac{d y}{d x}$ if $y+\sin y=\cos x$.

Ans.
Given, $y+\sin y=\cos x$
Differentiating w.r.t. x, we get

$$
\begin{aligned}
& \frac{\mathrm{dy}}{\mathrm{dx}}+\cos y \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=-\sin x \\
\Rightarrow \quad & \frac{\mathrm{dy}}{\mathrm{dx}}(1+\cos y)=-\sin x \\
\Rightarrow \quad & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sin x}{1+\cos y} \quad[\because y \neq(2 n+1) \pi]
\end{aligned}
$$

Q.3. Differentiate: ${ }^{2} \sqrt{\cot \left(x^{2}\right)}$ w.r.t. \boldsymbol{x}

Ans.
Let $y=2 \sqrt{\cot \left(x^{2}\right)}$
Differentiating w.r.t. x both sides, we get

$$
\begin{aligned}
\frac{\mathrm{dy}}{\mathrm{dx}} & =2 \times \frac{1}{2 \sqrt{\cot \left(x^{2}\right)}} \times-\operatorname{cosec}^{2}\left(x^{2}\right) \times 2 x \\
& =\frac{-2 x \operatorname{cosec}^{2}\left(x^{2}\right)}{\sqrt{\cot \left(x^{2}\right)}}
\end{aligned}
$$

Q.4. Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, if $y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$.

Ans.

Let $x=\tan \theta$
$\Rightarrow \quad \theta=\tan ^{-1} x$.
Now, $\quad y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
$\Rightarrow \quad y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
$\Rightarrow \quad y=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)$
$\Rightarrow \quad y=\sin ^{-1}(\sin 2 \theta) \quad\left[\because \sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right]$
$\Rightarrow \quad y=2 \theta \quad\left[\because \sin ^{-1}(\sin 2 \theta)=2 \theta\right]$
$\Rightarrow \quad y=2 \tan ^{-1} x \quad\left[\because \theta=\tan ^{-1} x\right]$
Differentiating both sides w.r.t. x, we get

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=2 \cdot \frac{1}{1+x^{2}} \quad=\frac{2}{1+x^{2}}
$$

Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, if $y=\frac{\cos x}{\log x}, x>0$.

Ans.
Given, $y=\frac{\cos x}{\log x}$
Differentiating w.r.t. x, we get

$$
\begin{aligned}
\frac{\mathrm{dy}}{\mathrm{dx}} & =\frac{\log x \times(-\sin x)-\cos x \times \frac{1}{x}}{(\log x)^{2}} \\
& =\frac{-\sin x \log x-\frac{\cos x}{x}}{(\log x)^{2}}=\frac{-x \sin x \cdot \log x-\cos x}{x(\log x)^{2}}
\end{aligned}
$$

Q.6. Differentiate w.r.t. $x: e^{x}+e^{x^{2}}+\ldots \ldots \ldots+e^{x^{5}}$

Ans.

Let $y=e^{x}+e^{x^{2}}+e^{x^{3}}+e^{x^{4}}+e^{x^{5}}$

Differentiating w.r.t. x, we get

$$
\begin{aligned}
\frac{\mathrm{dy}}{\mathrm{dx}} & =e^{x}+e^{x^{2}} \cdot 2 x+e^{x^{3}} \cdot 3 x^{2}+e^{x^{4}} \cdot 4 x^{3}+e^{x^{5}} \cdot 5 x^{4} \\
& =e^{x}+2 \mathrm{xe}^{x^{2}}+3 x^{2} e^{x^{3}}+4 x^{3} e^{x^{4}}+5 x^{4} e^{x^{5}}
\end{aligned}
$$

Q.7. If $y=x^{\sin x}, x>0$, then find $\frac{\mathrm{dy}}{\mathrm{dx}}$.

Ans.
Given $y=x^{\sin x}$
Taking \log of both sides, we get

$$
\begin{array}{ll}
& \log y=\log x \sin x \\
\Rightarrow \quad & \log y=\sin x \cdot \log x \\
\Rightarrow \quad & \frac{1}{y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=\sin x \cdot \frac{1}{x}+\log x \cdot \cos x \\
\Rightarrow \quad & \frac{\mathrm{dy}}{\mathrm{dx}}=y\left\{\frac{\sin x}{x}+\cos x \log x\right\}=x^{\sin x}\left\{\frac{\sin x}{x}+\cos x \log x\right\}
\end{array}
$$

Q.8. Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, if $x=2 \mathrm{at}^{2}, y=a t^{4}$.

Ans.
$\because \quad x=2 \mathrm{at}^{2} \quad \Rightarrow \quad \frac{\mathrm{dx}}{\mathrm{dt}}=4$ at
Again, $y=a t^{4}$

$$
\frac{d y}{d t}=4 \mathrm{at}^{3}
$$

Now, $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$

$$
=\frac{4 \mathrm{at}^{3}}{4 \mathrm{at}}=t^{2}
$$

Q.9.

If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots .+C_{n} x^{n}$, then prove that
[HOTS]
(i) $C_{1}+2 C_{2}+\ldots .+n C_{n}=n \cdot 2^{n-1}$
(ii) $C_{1}-2 C_{2}+3 C_{3}-\ldots .+(-1)^{n} n C_{n}=0$

Ans.
We have, $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots .+C_{n} x^{n}$
Differentiating both sides with respect to x, we have

$$
n(1+x)^{n-1}=C_{1}+2 C_{2} x+3 C_{3} x^{2}+\ldots .+n C_{n} x^{n-1}
$$

Putting $x=1$ and $x=-1$ successively, we have

$$
C_{1}+2 C_{2}+3 C_{3}+\ldots .+n C_{n}=n \cdot 2^{n-1}
$$

and

$$
C_{1}-2 C_{2}+3 C_{3}-\ldots .+(-1)^{n} n C_{n}=0
$$

Long Answer Questions-I-A(PYQ)

[4 Marks]

$$
f(x)=\left\{\begin{array}{cl}
\frac{1-\sin ^{3} x}{3 \cos ^{2} x} & , \text { if } x<\frac{\pi}{2} \\
p & , \text { if } x=\frac{\pi}{2} \\
\frac{q(1-\sin x)}{(\pi-2 x)^{2}} & , \text { if } x>\frac{\pi}{2}
\end{array}\right.
$$

Q.1.

is continuous at $x=\frac{\pi}{2}$.
Ans.
We have

$$
f(x)=\left\{\begin{array}{cl}
\frac{1-\sin ^{3} x}{3 \cos ^{2} x} & , \text { if } x<\frac{\pi}{2} \\
p & , \text { if } x=\frac{\pi}{2} \\
\frac{q(1-\sin x)}{(\pi-2 x)^{2}} & , \text { if } x>\frac{\pi}{2}
\end{array} \quad \text { is continuous at } x=\frac{\pi}{2}\right.
$$

Now, $\lim _{h \rightarrow \frac{x^{+}}{2}} f(x)=\lim _{h \rightarrow 0} f\left(\frac{\pi}{2}+h\right) \quad\left[\right.$ Let $\left.x=\frac{\pi}{2}+h, x \rightarrow \frac{\pi^{+}}{2} \Rightarrow h \rightarrow 0\right]$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{q\left\{1-\sin \left(\frac{\pi}{2}+h\right)\right\}}{\left\{\pi-2\left(\frac{\pi}{2}+h\right)\right\}^{2}}=\lim _{h \rightarrow 0} \frac{q\{1-\cos h\}}{\{\pi-\pi-2 h\}^{2}}=\lim _{h \rightarrow 0} \frac{q(1-\cos h)}{4 h^{2}} \\
& =\lim _{h \rightarrow 0} \frac{q \cdot 2 \sin ^{2} \frac{h}{2}}{4 h^{2}}=\lim _{h \rightarrow 0} \frac{q \cdot \sin ^{2} \frac{h}{2}}{2 h^{2}} \\
& =q \cdot \lim _{h \rightarrow 0}\left(\frac{\sin \frac{h}{2}}{\frac{h}{2}}\right)^{2} \times \frac{1}{8}=\frac{q}{8}
\end{aligned}
$$

Again $\lim _{h \rightarrow \frac{\dot{x}}{2}} f(x)=\lim _{h \rightarrow 0} f\left(\frac{\pi}{2}-h\right) \quad\left[\right.$ Let $\left.x=\frac{\pi}{2}-h, x \rightarrow \frac{\pi^{-}}{2} \Rightarrow h \rightarrow 0\right]$

$$
\left.\begin{array}{l}
=\lim _{h \rightarrow 0} \frac{1-\sin ^{3}\left(\frac{\pi}{2}-h\right)}{3 \cos ^{2}\left(\frac{\pi}{2}-h\right)}=\lim _{h \rightarrow 0} \frac{1-\cos ^{3} h}{3 \sin ^{2} h} \\
=\lim _{h \rightarrow 0} \frac{(1-\cos h)\left(1+\cos h+\cos ^{2} h\right)}{3 \sin ^{2} h} \\
=\lim _{h \rightarrow 0} \frac{2 \sin ^{2} \frac{h}{2} \cdot(1+1+1)}{3 \sin ^{2} h} \\
=\lim _{h \rightarrow 0} \frac{2 \sin ^{2} \frac{h}{2} \cdot 3}{3 \sin ^{2} h}=\lim _{h \rightarrow 0} \frac{2 \cdot \sin ^{2} \frac{h}{2}}{\sin ^{2} h} \\
=\lim _{h \rightarrow 0} \frac{2 \cdot \frac{\sin ^{2} \frac{h}{2}}{\frac{h^{2}}{2}}}{\frac{\sin ^{2} h}{h^{2}}} \\
=\lim _{h \rightarrow 0} \frac{2 \cdot \frac{h^{2}}{4} \times 4}{\frac{\sin ^{2} \frac{h}{2}}{\sin ^{2} h}} h^{2}
\end{array} \frac{1}{2} \frac{\left(\frac{\lim _{2}^{2}}{2} \frac{\sin \frac{h}{2}}{\frac{h}{2}}\right)^{2}}{\left(\frac{\lim }{h \rightarrow 0} \frac{\sin h}{h}\right)^{2}}=\frac{1}{2}\right)
$$

Also $f\left(\frac{\pi}{2}\right)=p$
$\because \quad f(x)$ is continuous at $x=\frac{\pi}{2}$
$\therefore \quad \lim _{h \rightarrow \frac{z^{+}}{2}} f(x)=\lim _{h \rightarrow \frac{\tau^{2}}{2}} f(x)=f\left(\frac{\pi}{2}\right)$
$\Rightarrow \quad \frac{q}{8}=\frac{1}{2}=p$
$\Rightarrow \quad p=\frac{1}{2}$ and $q=4$
Q.2. Show that the function $f(x)=2 x-|x|$ is continuous but not differentiable at $x=$ 0.

Ans.

Here $f(x)=2 x-|x|$
For continuity at $x=0$

$$
\begin{align*}
\lim _{h \rightarrow 0^{+}} & f(x)=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} f(h) \\
& =\lim _{h \rightarrow 0}\{2 h-|h|\}=\lim _{h \rightarrow 0}(2 h-h) \\
& =\lim _{h \rightarrow 0} h \\
& =0 \tag{i}
\end{align*}
$$

$\lim _{h \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} f(-h)$

$$
\begin{align*}
& =\lim _{h \rightarrow 0}\{2(-h)-|-h|\}=\lim _{h \rightarrow 0}\{-2 h-h\} \\
& =\lim _{h \rightarrow 0}(-3 h) \\
& =0 \tag{ii}
\end{align*}
$$

Also, $f(0)=2 \times 0-|0|=0$
(i), (ii) and (iii) $\Rightarrow \quad \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=f(0)$

Hence, $f(x)$ is continuous at $x=0$
For differentiability at $x=0$

$$
\begin{align*}
\text { LHD } & =\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=\lim _{h \rightarrow 0} \frac{f(-h)-f(0)}{-h} \\
& =\lim _{h \rightarrow 0} \frac{(2(-h)-|-h|)-\{2 \times 0-|0|\}}{-h}=\lim _{h \rightarrow 0} \frac{-2 h-h-0}{-h} \\
& =\lim _{h \rightarrow 0} \frac{-3 h}{-h}=\lim _{h \rightarrow 0} 3 \\
\text { LHD } & =3 \tag{iv}
\end{align*}
$$

Again RHD $=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{2 h-|h|-2 \times 0-|0|}{h}=\lim _{h \rightarrow 0} \frac{2 h-h}{h}=\lim _{h \rightarrow 0} \frac{h}{h} \\
& =\lim _{h \rightarrow 0} 1
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{RHD}=1 \tag{v}
\end{equation*}
$$

From (iv) and (v)
LHD \neq RHD
i.e., function $f(x)=2 x-|x|$ is not differentiable at $x=0$

Hence, $f(x)$ is continuous but not differentiable at $x=0$.

Q.3. Find the value of \boldsymbol{k}, for which

$f(x)=\left\{\begin{array}{cc}\frac{\sqrt{1+\mathrm{kx}}-\sqrt{1-\mathrm{kx}}}{x}, & \text { if }-1 \leq x<0 \\ \frac{2 x+1}{x-1,} & \text { if } 0 \leq x<1\end{array}\right.$
is continuous at $x=0$.
Ans.
$\because f(x)$ is continuous at $x=0$

$$
\begin{align*}
& \Rightarrow \quad(\text { LHL of } f(x) \text { at } x=0)=(\text { RHL of } f(x) \text { at } x=0)=f(0) \\
& \Rightarrow \quad \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0) \tag{i}
\end{align*}
$$

$$
\begin{align*}
& \left.\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0} f(0-h) \quad \quad \quad \text { Let } x=0-h, x \rightarrow 0^{-} \Rightarrow h \rightarrow 0\right] \\
& \quad=\lim _{x \rightarrow 0} f(-h)=\lim _{h \rightarrow 0} \frac{\sqrt{1+k(-h)}-\sqrt{1-k(-h)}}{-h} \\
& \quad=\lim _{h \rightarrow 0} \frac{\sqrt{1-\mathrm{kh}}-\sqrt{1+\mathrm{kh}}}{-h} \times \frac{\sqrt{1-\mathrm{kh}}+\sqrt{1+\mathrm{kh}}}{\sqrt{1-\mathrm{kh}}+\sqrt{1+\mathrm{kh}}} \\
& \quad=\lim _{h \rightarrow 0} \frac{(1-\mathrm{kh})-(1+\mathrm{kh})}{-h\{\sqrt{1-\mathrm{kh}}+\sqrt{1+\mathrm{kh}\}}}=\lim _{h \rightarrow 0} \frac{2 k}{\{\sqrt{1-\mathrm{kh}}+\sqrt{1+\mathrm{kh}}\}}=\frac{2 k}{2} \\
& \Rightarrow \quad \lim _{x \rightarrow 0^{-}} f(x)=k \tag{ii}
\end{align*}
$$

$$
\begin{align*}
& \text { Again } \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} f(0+h) \quad\left[\text { Let } x=0+h, x \rightarrow 0^{+} \Rightarrow h \rightarrow 0\right] \\
& \quad=\lim _{h \rightarrow 0} f(h)=\lim _{h \rightarrow 0} \frac{2 h+1}{h-1}=\frac{1}{-1} \\
& \Rightarrow \quad \lim _{x \rightarrow 0^{+}} f(x)=-1 \tag{iii}
\end{align*}
$$

Also $f(0)=\frac{2 \times 0+1}{0-1}=-1$
$\because \quad f(x)$ is continuous at $x=0$
$\therefore \quad$ (i), (ii), (iii) and (iv) $\quad \Rightarrow \quad k=-1$.

Q.4. Find the value of ' a ' for which the function f defined as

$f(x)=\left\{\begin{array}{cl}a \sin \frac{\pi}{2}(x+1), & x \leq 0 \\ \frac{\tan x-\sin x}{x^{3}}, & x>0\end{array}\right.$
is continuous at $x=0$.

Ans.
$\because \quad f(x)$ is continuous at $x=0$.
$\Rightarrow \quad($ LHL of $f(x)$ at $x=0)=($ RHL of $f(x)$ at $x=0)=f(0)$
$\Rightarrow \quad \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)$
Now, $\quad \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0} a \sin \frac{\pi}{2}(x+1)$

$$
\left[\because f(x)=a \sin \frac{\pi}{2}(x+1), \text { if } x \leq 0\right]
$$

$$
\begin{equation*}
=\lim _{x \rightarrow 0} a \sin \left(\frac{\pi}{2}+\frac{\pi}{2} x\right)=\lim _{x \rightarrow 0} a \cos \frac{\pi}{2} x=a \cdot \cos 0=a \tag{ii}
\end{equation*}
$$

Again, $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}} \quad\left[\because f(x)=\frac{\tan x-\sin x}{x^{3}}\right.$ if $\left.x 0\right]$

$$
=\lim _{x \rightarrow 0} \frac{\frac{\sin x}{\cos x}-\sin x}{x^{3}}=\lim _{x \rightarrow 0} \frac{\sin x-\sin x \cdot \cos x}{\cos x \cdot x^{3}}=\lim _{x \rightarrow 0} \frac{\sin x(1-\cos x)}{\cos x \cdot x^{3}}
$$

$$
=\lim _{x \rightarrow 0} \frac{1}{\cos x} \cdot \lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{2 \sin ^{2} \frac{x}{2}}{\frac{x^{2}}{4} \times 4} \quad\left[\because 1-\cos x=2 \sin ^{2} \frac{x}{2}\right]
$$

$$
\begin{equation*}
=\frac{1}{1} \cdot 1 \cdot \frac{1}{2} \lim _{x \rightarrow 0}\left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^{2}=\frac{1}{2} \cdot\left(\lim _{\frac{x}{2} \rightarrow 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)=\frac{1}{2} \times 1=\frac{1}{2} \tag{iii}
\end{equation*}
$$

Also, $\quad f(0)=a \sin \frac{\pi}{2}(0+1)=a \sin \frac{\pi}{2}=a$
$\because \quad f$ is continuous at $x=0$
$\therefore \quad$ (i), (ii), (iii) and (iv) $\quad \Rightarrow \quad a=\frac{1}{2}$

Q.5.

If $f(x)=\left\{\begin{array}{cc}\frac{\sin (a+1) x+2 \sin x}{x} & , x<0 \\ 2 & , x=0 \\ \frac{\sqrt{1+\mathrm{b} x}-1}{x} & , x>0\end{array}\right.$
is continuous at $x=0$, then find the values of a and b.
Ans.

We have

$$
f(x)=\left\{\begin{array}{cc}
\frac{\sin (a+1) x+2 \sin x}{x} & , x<0 \\
\frac{2}{\sqrt{1+b x}-1} & , x=0 \\
\frac{y>0}{x} & x>0
\end{array} \quad \text { is continuous at } x=0\right.
$$

Since, $f(x)$ is continuous at $x=0$

$$
\begin{equation*}
\Rightarrow \quad \lim _{x \rightarrow 0^{+}} f(x) \quad=\lim _{x \rightarrow 0} f(x)=f(0) \tag{i}
\end{equation*}
$$

Now, $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h) \quad\left[\right.$ Let $x=0+h, h$ is +ve small quantity $\left.x \rightarrow 0^{+} \Rightarrow h \rightarrow 0\right]$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} f(h) \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{1+\mathrm{bh}}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{1+\mathrm{bh}}-1}{h} \times \frac{\sqrt{1+\mathrm{bh}}+1}{\sqrt{1+\mathrm{bh}}+1} \\
& =\lim _{h \rightarrow 0} \frac{1+\mathrm{bh}-1}{h(\sqrt{1+\mathrm{bh}}+1)} \\
& =\lim _{h \rightarrow 0} \frac{\mathrm{bh}}{h(\sqrt{1+\mathrm{bh}}+1)}=\lim _{h \rightarrow 0} \frac{b}{\sqrt{1+\mathrm{bh}}+1}=\frac{b}{2}
\end{aligned}
$$

Again $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h) \quad\left[\right.$ Let $x=0-h, h$ is +ve small quantity $\left.x \rightarrow 0^{-} \Rightarrow h \rightarrow 0\right]$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} f(-h) \\
& =\lim _{h \rightarrow 0} \frac{\sin (a+1)(-h)+2 \sin (-h)}{-h} \\
& =\lim _{h \rightarrow 0}\left[\frac{\sin (a+1) h-2 \sin h}{-h}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{\sin (a+1) h}{h}+\frac{2 \sin h}{h}\right] \\
& =\lim _{h \rightarrow 0} \frac{\sin (a+1) h}{h}+2 \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (a+1) h}{(a+1) h} \times(a+1)+2 \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =1 \times(a+1)+2 \\
& =a+3
\end{aligned}
$$

Also

$$
f(0)=2
$$

Now from (i) $\quad \frac{b}{2}=a+3=2$

$$
\Rightarrow \quad b=4, a=-1
$$

$$
f(x)=\left\{\begin{array}{cl}
3 a x+b, & \text { if } x>1 \\
11, & \text { if } x=1 \\
5 \mathrm{ax}-2 b, & \text { if } x<1
\end{array}\right.
$$

Q.6. Find the value of a and b if the function

 continuous at $x=1$.Ans.
Given function $f(x)=\left\{\begin{array}{cl}3 a x+b, & \text { if } x>1 \\ 11, & \text { if } x=1 \\ 5 a x-2 b, & \text { if } x<1\end{array}\right.$
For continuity at $x=1$, we have

$$
f(1)=11
$$

$\mathrm{LHL}=\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 5 \mathrm{ax}-2 b=5 a-2 b$
$\mathrm{RHL}=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 3 \mathrm{ax}+b=3 a+b$
For $f(x)$ to be continuous at $x=1, \quad$ LHL $=$ RHL $=f(1)$
i.e., $\quad 5 a-2 b=3 a+b=11$

On solving, $5 a-2 b=11$ and $3 a+b=11$
We get $a=3, b=2$.
Q.7. For what value of k is the following function continuous at $\boldsymbol{x}=\mathbf{2}$?
$f(x)=\left\{\begin{array}{cc}2 x+1, & x<2 \\ k, & x=2 \\ 3 x-1, & x>2\end{array}\right.$

Ans.

$$
\begin{array}{ll}
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2} 2 x+1=2 \times 2+1=5 & {[\because f(x)=2 x+1, \text { if } x<2]} \\
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2} 3 x-1=3 \times 2-1=5 & {[\because f(x)=3 x-1, \text { if } x>2]}
\end{array}
$$

Since, $f(x)$ is continuous at $x=2$.

$$
\begin{array}{ll}
\therefore & \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2) \\
\Rightarrow & 5=5=k \quad \Rightarrow \quad k=5
\end{array}
$$

Q.8. Discuss the continuity of the following function at $x=0$:
$f(x)=\left\{\begin{array}{cc}\frac{x^{4}+2 x^{3}+x^{2}}{\tan ^{1} x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$
Ans.

$$
\begin{array}{rlr}
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h) & {\left[\text { Let } x=0-h, \Rightarrow x \rightarrow 0^{-} \Rightarrow h \rightarrow 0\right]} \\
& =\lim _{h \rightarrow 0} f(-h) & \\
=\lim _{h \rightarrow 0} \frac{(-h)^{4}+2(-h)^{3}+(-h)^{2}}{\tan ^{-1}(-h)} & {[\because-h \neq 0]} \\
=\lim _{h \rightarrow 0} \frac{h^{4}-2 h^{3}+h^{2}}{-\tan ^{-1} h} & {\left[\because \tan ^{-1}(-x)=-\tan ^{-1} x\right]} \\
=\lim _{h \rightarrow 0} \frac{h\left(h^{3}-2 h^{2}+h\right)}{-\tan ^{-1}(h)}=\lim _{h \rightarrow 0} \frac{h^{3}-2 h^{2}+h}{-\frac{\tan ^{-1} h}{h}} & \\
=\frac{\lim _{h \rightarrow 0}\left(h^{3}-2 h^{2}+h\right)}{\lim _{h \rightarrow 0} \frac{-\tan ^{-1} h}{h}=\frac{0}{-1}=0 \quad} \quad\left[\because \lim _{h \rightarrow 0} \frac{\tan ^{-1} h}{h}=1\right]
\end{array}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h) \\
& =\lim _{h \rightarrow 0} f(h) \\
& =\lim _{h \rightarrow 0} \frac{h^{4}+2 h^{3}+h^{2}}{\tan ^{-1} h}=\lim _{h \rightarrow 0} \frac{h\left(h^{3}+2 h^{2}+h\right)}{\tan ^{-1} h} \\
& =\lim _{h \rightarrow 0} \frac{h^{3}+2 h^{2}+h}{\frac{\tan ^{-1} h}{h}} \\
& =\frac{\lim _{h \rightarrow 0}\left(h^{3}+2 h^{2}+h\right)}{\lim _{h \rightarrow 0} \frac{\tan ^{-1} h}{h}}=\frac{0}{1}=0 \\
& f(0)=0 \\
& \text { i.e., } \quad\left[\because \lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}=1\right] \\
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0} f(x)=f(0)=0
\end{aligned}
$$

Hence, $f(x)$ is continuous at $x=0$.
Q.9. Show that the function ' f ' defined by

$$
f(x)=\left\{\begin{array}{cc}
3 x-2, & 0<x \leq 1 \\
2 x^{2}-x, & 1<x \leq 2 \\
5 x-4, & x>2
\end{array}\right.
$$ continuous at $x=2$, but not differentiable.

Ans.

For continuity:

$$
\begin{aligned}
& \lim _{x \rightarrow 2} f(x)=\lim _{h \rightarrow 0} f(2-h) \quad\left[\text { Let } x=2-h, \Rightarrow x \rightarrow 2^{-} \Rightarrow h \rightarrow 0\right] \\
& =\lim _{h \rightarrow 0} 2(2-h)^{2}-(2-h)=\lim _{h \rightarrow 0} 2\left\{4+h^{2}-4 h\right\}-(2-h) \\
& =\lim _{h \rightarrow 0}\left(8+2 h^{2}-8 h-2+h\right)=6 \\
& \lim _{x \rightarrow 2^{+}} f(x)=\lim _{h \rightarrow 0} f(2+h) \quad \quad\left[\text { Let } x=2+h, \Rightarrow x \rightarrow 2^{+} \Rightarrow h \rightarrow 0\right] \\
& =\lim _{h \rightarrow 0} 5(2+h)-4=6 \\
& \quad f(2)=2(2)^{2}-2=6 \\
& \text { ie., } \quad \lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2) \\
& \Rightarrow \quad f(x) \text { is continuous at } x=2
\end{aligned}
$$

For Differentiability:

$$
\begin{aligned}
& \text { LHD } \quad \begin{aligned}
&(\text { at } x=2)=\lim _{h \rightarrow 0} \frac{f(2-h)-f(2)}{-h} \\
&=\lim _{h: 0} \frac{2(2-h)^{2}-(2-h)-\left\{2.2^{2}-2\right\}}{h}=\lim _{h \rightarrow 0} \frac{8+2 h^{2}-8 h-2+h-6}{-h} \\
&=\lim _{h \rightarrow 0} \frac{2 h^{2}-7 h}{-h}=\lim _{h \rightarrow 0} \frac{2 h-7}{-1}=7 \\
& \text { RHD }(\text { at } x=2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
&=\lim _{h: 0} \frac{5(2+h)-4-\left\{2.2^{2}-2\right\}}{h} \\
&=\lim _{h \rightarrow 0} \frac{10+5 h-4-6}{h}=\lim _{h: 0} 5=5 \\
& \quad \text { LHD } \neq \text { RHD }(\text { at } x=2)
\end{aligned}
\end{aligned}
$$

Hence, $f(x)$ is not differentiable at $x=2$.
Q.10. Find the relationship between ' a ' and ' b ' so that the function f defined by:
$f(x)=\left\{\begin{array}{ll}\mathrm{ax}+1, & \text { if } x \leq 3 \\ \mathrm{bx}+3, & \text { if } x>3\end{array}\right.$ is continuous at $\mathrm{x}=3$.

Ans.

Since, $f(x)$ is continuous at $x=3$.

$$
\begin{equation*}
\Rightarrow \quad \lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=f(3) \tag{i}
\end{equation*}
$$

Now, $\lim _{x \rightarrow 3} f(x)=\lim _{h \rightarrow 0} f(3-h) \quad\left[\right.$ Let $x=3-h, x \rightarrow 3^{-} \Rightarrow h \rightarrow 0$]

$$
\begin{align*}
& =\lim _{h \rightarrow 0} a(3-h)+1 \quad[\because f(x)=a x+1 \forall x \leq 3] \\
& =\lim _{h \rightarrow 0} 3 a-\mathrm{ah}+1=3 a+1 \tag{ii}
\end{align*}
$$

$$
\begin{array}{ll}
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{h \rightarrow 0} f(3+h) & {\left[\text { Let } x=3+h, x \rightarrow 3^{+} \Rightarrow h \rightarrow 0\right]} \\
\quad=\lim _{h \rightarrow 0} b(3+h)+3=3 b+3 & {[\because f(x)=b x+3 \forall x>3]} \tag{iii}
\end{array}
$$

From equations (i), (ii) and (iii)
$3 a+1=3 b+3$

$$
3 a-3 b=2 \quad \text { or } \quad a-b=\frac{2}{3} \text { which is the required relation. }
$$

Q.11. Find the value of \boldsymbol{k} so that the function \boldsymbol{f}, defined by $f(x)=\left\{\begin{array}{cl}\mathrm{kx}+1, & \text { if } x \leq \pi \\ \cos x, & \text { if } x>\pi\end{array}\right.$ is continuous at $\boldsymbol{x}=\pi$.

Ans.

$$
\left.\left.\begin{array}{rl}
\lim _{x \rightarrow \pi} & f(x)=\lim _{h \rightarrow 0} f(\pi-h) \\
& =\lim _{h \rightarrow 0} k(\pi-h)+1
\end{array} \quad[\because f(x)=k x+1 \text { for } x \leq \pi]\right] \text { Let } x=\pi-h, x \rightarrow \pi^{-} \Rightarrow h \rightarrow 0\right]
$$

$\left[\right.$ Let $\left.x=\pi+h, x \rightarrow \Pi^{+} \Rightarrow h \rightarrow 0\right]$

$$
\begin{aligned}
& \lim _{h \rightarrow x^{+}} f(x)=\lim _{h \rightarrow 0} f(\pi+h) \quad[\because f(x)=\cos x \text { for } x>\pi] \\
& =\lim _{h \rightarrow 0} \cos (\pi+h) \\
& =\lim _{h \rightarrow 0}-\cos h=-1
\end{aligned}
$$

Also $f(\pi)=k \pi+1$

Since, $f(x)$ is continuous at $x=\pi$.

$$
\begin{aligned}
& \Rightarrow \quad \lim _{x \rightarrow \pi} f(x)=\lim _{x \rightarrow x^{+}} f(x)=f(\pi) \Rightarrow k \pi+1=-1=k \pi+1 \\
& \Rightarrow \quad k \pi=-2 \quad \Rightarrow \quad k=-\frac{2}{\pi}
\end{aligned}
$$

Q.12. Show that the function $f(x)=|x-3|, x \in \mid R$, is continuous but not differentiable at $x=3$.

Ans.

Here, $\quad f(x)=|x-3| \quad \Rightarrow \quad f(x)=\left\{\begin{array}{cl}-(x-3) & , x<3 \\ 0 & , x=3 \\ (x-3) & , x>3\end{array}\right.$

For Continuity:

Now, $\lim _{x \rightarrow 3^{+}} f(x)=\lim _{h \rightarrow 0} f(3+h) \quad\left[\right.$ Let $x=3+h$ and $\left.x \rightarrow 3^{+} \Rightarrow h \rightarrow 0\right]$

$$
=\lim _{h \rightarrow 0}(3+h-3)=\lim _{h \rightarrow 0} h=0
$$

$$
\begin{equation*}
\lim _{x \rightarrow 3^{+}} f(x)=0 \tag{i}
\end{equation*}
$$

$$
\begin{array}{rl}
\lim _{x \rightarrow 3} & f(x)=\lim _{h \rightarrow 0} f(3-h) \\
& =\lim _{h \rightarrow 0}-(3-h-3)=\lim _{h \rightarrow 0} h=0
\end{array}
$$

[Let $x=3-h$ and $x \rightarrow 3^{-} \Rightarrow h \rightarrow 0$]

$$
\begin{equation*}
\lim _{x \rightarrow 3^{+}} f(x)=0 \tag{iii}
\end{equation*}
$$

Also, $\quad f(3)=0$
From equation (i), (ii) and (iii)
$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3} f(x)=f(3)$
Hence, $f(x)$ is continuous at $x=3$

For Differentiability:

$$
\begin{align*}
\mathrm{RHD} & =\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{(3+h-3)-0}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h}=\lim _{h \rightarrow 0} 1=1 \tag{iv}\\
\text { LHD } & =\lim _{h \rightarrow 0} \frac{f(3-h)-f(3)}{-h}=\lim _{h \rightarrow 0} \frac{-(3-h-3)-0}{-h} \\
& =\lim _{h \rightarrow 0} \frac{h}{-h}=\lim _{h \rightarrow 0}(-1)=-1 \tag{v}
\end{align*}
$$

Equation (iv) and (v)
$\Rightarrow \quad$ RHD \neq LHD at $x=3$.

Hence, $f(x)$ is not differentiable at $x=3$.
Therefore, $f(x)=|x-3|, x \in \mid \mathrm{R}$ is continuous but not differentiable at $x=3$.

Q.13. Discuss the continuity and differentiability of the function

$f(x)=|x|+|x-1|$ in the interval (-1, 2).
Ans.
Given function is

$$
f(x)=|x|+|x-1|
$$

Function is also written as

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cl}
-x-(x-1), & \text { if }-1<x<0 \\
1, & \text { if } 0 \leq x<1 \\
x+(x-1), & \text { if } x \geq 1
\end{array}\right. \\
& \Rightarrow f(x)=\left\{\begin{array}{cl}
-2 x+1, & \text { if } x<0 \\
1, & \text { if } 0 \leq x<1 \\
2 x-1, & \text { if } x \geq 1
\end{array}\right.
\end{aligned}
$$

Obviously, in given function we need to discuss the continuity and differentiability of the function $f(x)$ at x $=0$ or 1 only.

For continuity at $\bar{x}=0$

$$
\begin{align*}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{h \rightarrow 0} f(0+h) \quad\left[\text { Let } x=0+h \text { and } x \rightarrow 0^{+} \Rightarrow h \rightarrow 0\right] \\
& =\lim _{h \rightarrow 0} f(h) \\
& =\lim _{h \rightarrow 0} 1 \quad[\because h \text { is very small positive quantity }] \\
& =1 \tag{i}
\end{align*}
$$

$$
\lim _{x \rightarrow 0} f(x)=\lim _{h \rightarrow 0} f(0-h) \quad\left[\text { Let } x=0-h \text { and } x \rightarrow 0^{-} \Rightarrow h \rightarrow 0\right]
$$

$$
=\lim _{h \rightarrow 0} f(-h)=\lim _{h \rightarrow 0}\{-2(-h)+1\}=\lim _{h \rightarrow 0}(2 h+1)
$$

$$
\begin{equation*}
\lim _{x \rightarrow 0} f(x)=1 \tag{ii}
\end{equation*}
$$

Also, $\quad f(0)=1$
(i), (ii) and (iii) $\Rightarrow \quad \lim _{x=0} f(x)=\lim _{x \rightarrow 0} f(x)=f(0)$

Hence, $f(x)$ is continuous at $x=0$
For differentiability at $\boldsymbol{x}=\mathbf{0}$

$$
\begin{align*}
& \text { RHD }=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} \quad[\because h \text { is very small positive quantity } \Rightarrow 0<h<1] \\
& =\lim _{h \rightarrow 0} \frac{1-1}{h}=\lim _{h \rightarrow 0} \frac{0}{h} \quad|\because| h|=h,|0|=0] \\
& =\lim _{h \rightarrow 0} 0 \\
& R H D=1 \\
& \text { LHD }=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=\lim _{h, 0} \frac{f(-h)-f(0)}{-h} \\
& =\lim _{h \rightarrow 0} \frac{-2(-h)+1-1}{-h}=\lim _{h \rightarrow 0} \frac{2 h}{h} \\
& =\lim _{h \rightarrow 0}(-2) \\
& \text { LHD }=-2 \tag{v}\\
& \text { (iv) and (} v \text {) } \Rightarrow \text { RHD } \neq \text { LHD at } x=0 \text {. }
\end{align*}
$$

Hence, $f(x)$ is not differentiable at $x=0$ but continuous at $x=0$.
Similarly, we can prove $f(x)$ is not differentiable at $x=1$ but continuous at $x=1$ (Do yourself)
Q.14. Show that the function $f(x)=|x-1|+|x+1|$, for all $x \in R$, is not differentiable at the points $x=-1$ and $x=1$.

Ans.
Here, given function is

$$
\begin{aligned}
& f(x)=|x-1|+|x+1| \\
\Rightarrow & f(x)= \begin{cases}-(x-1)-(x+1), & x<-1 \\
2, & x=-1 \\
-(x-1)+(x+1), & -1<x<1 \\
2 & x=1 \\
(x-1)+(x+1) & x>1\end{cases} \\
\Rightarrow & f(x)= \begin{cases}-2 x, & \text { if } x<-1 \\
2, & \text { if } x=-1 \\
2, & \text { if }-1<x<1 \\
2, & \text { if } x=1 \\
2 x, & \text { if } x>1\end{cases}
\end{aligned} \quad \Rightarrow \quad f(x)=\left\{\begin{array}{cl}
-2 x & \text { if } x<-1 \\
2 & \text { if }-1 \leq x \leq 1 \\
2 x & \text { if } x>1
\end{array}\right]
$$

For $x=-1$

$$
\begin{aligned}
\mathrm{RHD} & =\lim _{h \rightarrow 0} \frac{f(-1+h)-f(-1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2-2}{h}=\lim _{h \rightarrow 0} 0=0 \\
\mathrm{LHD} & =\lim _{h \rightarrow 0} \frac{f(-1-h)-f(-1)}{-h} \\
& =\lim _{h \rightarrow 0} \frac{-2(-1-h)-2}{-h}=\lim _{h \rightarrow 0} \frac{2+2 h-2}{-h} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{h}=\lim _{h \rightarrow 0}-2=-2
\end{aligned}
$$

i.e., $\mathrm{RHD} \neq \mathrm{LHD}$.

Hence, $f(x)$ is not differentiable at $x=-1$

For $x=1$

$$
\begin{aligned}
\text { RHD } & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2(1+h)-2}{h}=\lim _{h \rightarrow 0} \frac{2+2 h-2}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{h}=\lim _{h \rightarrow 0} 2=2 \\
\text { LHD } & =\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h} \\
& =\lim _{h \rightarrow 0} \frac{2-2}{-h}=\lim _{h \rightarrow 0} \frac{0}{h} \\
& =\lim _{h \rightarrow 0} 0=0 \\
\text { RHD } & \neq \text { LHD. }
\end{aligned}
$$

Hence, $f(x)$ not differentiable at $x=1$.

Long Answer Questions-I-A(OIQ)

[4 Marks]

Q.1. For what value of k, the following function is continuous at $\boldsymbol{x}=\mathbf{0}$?

$$
f(x)=\left\{\begin{array}{cl}
\frac{1-\cos 4 x}{8 x^{2}}, & x \neq 0 \\
k & , x=0
\end{array}\right.
$$

Ans.

Given function, $f(x)=\left\{\begin{array}{cl}\frac{1-\cos 4 x}{8 x^{2}} & , x \neq 0 \\ k & , x=0\end{array}\right.$
At $x=0$, we have $f(0)=k$

$$
\begin{aligned}
\mathrm{LHL} & =\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{1-\cos 4 x}{8 x^{2}} \\
& =\lim _{x \rightarrow 0^{-}} \frac{2 \sin ^{2} 2 x}{8 x^{2}}=\lim _{x \rightarrow 0^{-}} 2 \times\left(\frac{\sin 2 x}{2 x}\right)^{2} \times \frac{1}{2}=1
\end{aligned}
$$

$$
\mathrm{RHL}=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos 4 x}{8 x^{2}}=\lim _{x \rightarrow 0^{+}} 2 \times\left(\frac{\sin 2 x}{2 x}\right)^{2} \times \frac{1}{2}=1
$$

For $f(x)$ to be continuous at $x=0$

$$
\begin{aligned}
& \mathrm{LHL}=\mathrm{RHL}=f(0) \\
& \Rightarrow \quad 1=1=k \quad \therefore \quad k=1
\end{aligned}
$$

Q.2. Examine the continuity of the following function:

$$
f(x)=\left\{\begin{array}{l}
\frac{x}{2|x|}, x \neq 0 \\
\frac{1}{2}, x=0
\end{array} \quad \text { at } x=0\right.
$$

Ans.

Given, $f(x)=\left\{\begin{array}{c}\frac{x}{2|x|}, x \neq 0 \\ \frac{1}{2}, x=0\end{array}\right.$
For continuity at $x=0$, we have

$$
\begin{gathered}
\quad f(0)=\frac{1}{2} \\
\mathrm{LHL}=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{x}{2|x|}=\lim _{x \rightarrow 0^{-}} \frac{x}{-2 x}=-\frac{1}{2} \\
\mathrm{RHL}=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{x}{2|x|}=\lim _{x \rightarrow 0^{+}} \frac{x}{2 x}=\frac{1}{2}
\end{gathered}
$$

Hence, LHL \neq RHL

So, $f(x)$ is discontinuous at $x=0$.
Q.3. If the function f, as defined below is continuous at $x=0$, find the values of a, b and c.

$$
f(x)=\left\{\begin{array}{cl}
\frac{\sin (a+1) x+\sin x}{x}, & x<0 \\
c & x=0 \\
\frac{\sqrt{x+\mathrm{bx}^{2}}-\sqrt{x}}{\mathrm{bx}^{3 / 2}}, & x>0
\end{array}\right.
$$

Ans.

Since $f(x)$ is continuous at $x=0 \quad \therefore \quad \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)$
Now, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(0-h) \quad\left[\right.$ Let $\left.x=0-h, x \rightarrow 0^{-} \Rightarrow h \rightarrow 0\right]$

$$
=\lim _{h \rightarrow 0} f(-h)=\lim _{h \rightarrow 0} \frac{\sin (a+1)(-h)+\sin (-h)}{-h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\sin (a+1) h+\sin h}{h}=\lim _{h \rightarrow 0} \frac{\sin (a+1) h}{h}+\lim _{x \rightarrow 0} \frac{\sin h}{h}
$$

$$
=\lim _{(a+1) h \rightarrow 0} \frac{\sin (a+1) h}{(a+1) h} \times(a+1)+1 \quad\left[\because \lim _{h \rightarrow 0} \frac{\sin h}{h}=1\right]
$$

$$
\begin{equation*}
=1 \cdot(a+1)+1 \quad\left[\because \lim _{(a+1) h \rightarrow 0} \frac{\sin (a+1) h}{(a+1) h}=1\right] \tag{i}
\end{equation*}
$$

$\Rightarrow \quad \lim _{x \rightarrow 0^{-}} f(x)=a+2$
Again, $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h) \quad\left[\right.$ Let $\left.x=0+h, x \rightarrow 0^{+} \Rightarrow h \rightarrow 0\right]$

$$
\begin{align*}
& =\lim _{h \rightarrow 0} f(h)=\lim _{h \rightarrow 0} \frac{\sqrt{h+\mathrm{bh}^{2}}-\sqrt{h}}{\mathrm{bh}^{3 / 2}}=\lim _{h \rightarrow 0} \frac{\sqrt{h}(\sqrt{1+\mathrm{bh}}-1)}{\mathrm{bh}^{3 / 2}} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{1+\mathrm{bh}}-1}{\mathrm{bh}} \times \frac{\sqrt{1+\mathrm{bh}}+1}{\sqrt{1+\mathrm{bh}}+1}=\lim _{h \rightarrow 0} \frac{1+\mathrm{bh}-1}{\mathrm{bh}(\sqrt{1+\mathrm{bh}}+1)} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{1+\mathrm{bh}}+1}=\frac{1}{2} \\
\Rightarrow & \lim _{x \rightarrow 0^{0}} f(x)=\frac{1}{2} \tag{ii}
\end{align*}
$$

Also, $\quad f(0)=c$
Hence, (i), (ii) and (iii) $\Rightarrow a+2=\frac{1}{2}=c \quad \Rightarrow \quad a=-\frac{3}{2}, c=\frac{1}{2}$ and continuity of f does not depend on the value of b

Long Answer Questions-I-B (PYQ)

[4 Mark]

Q.1. If $y^{x}=e^{y-x}$, then prove that $\frac{d y}{d x}=\frac{(1+\log y)^{2}}{\log y}$.

Ans.
Given, $y^{x}=e^{y-x}$

Taking logarithm both sides, we get

$$
\begin{aligned}
& \log y^{x}=\log e^{y-x} \\
\Rightarrow & x \cdot \log y=(y-x) \cdot \log \mathrm{e} \quad \Rightarrow \quad x \cdot \log y=(y-x) \quad\left[\because \log (m)^{n}=n \log m\right] \\
\Rightarrow & x(1+\log y)=y \quad
\end{aligned} \quad \Rightarrow \quad x=\frac{y}{1+\log y} .
$$

Differentiating both sides with respect to y, we get

$$
\begin{gathered}
\frac{\mathrm{dx}}{\mathrm{dy}}=\frac{(1+\log y) \cdot 1-y \cdot\left(0+\frac{1}{y}\right)}{(1+\log y)^{2}} \\
=\frac{1+\log y-1}{(1+\log y)^{2}}=\frac{\log y}{(1+\log y)^{2}} \\
\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{(1+\log y)^{2}}{\log y} \\
{\left[\begin{array}{c}
\text { Note }:(i) \log _{e} \mathrm{mn}=\log _{e} m+\log _{e} n \\
\text { (ii) } \log _{e} \frac{m}{n}=\log _{e} m-\log _{e} n \\
\text { (iii) } \log _{e} m^{n}=n \log _{e} m \\
\text { (iv) } \log e=1
\end{array}\right.}
\end{gathered}
$$

If $x^{y}=e^{x-y}$, then show that $\frac{d y}{d x}=\frac{\log x}{\{\log (x e)\}^{2}}$.
Ans.

Given, $x^{y}=e^{x-y}$
Taking \log both sides, we get

$$
\begin{aligned}
& \Rightarrow \quad \log x^{y}=\log e^{x-y} \quad \Rightarrow \quad y \cdot \log x=(x-y) \cdot \log e \quad[\because \log e=1] \\
& \Rightarrow \quad y \cdot \log x=(x-y) \quad \Rightarrow \quad y \log x+y=x \\
& \Rightarrow \quad y=\frac{x}{1+\log x} \quad \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{(1+\log x) \cdot 1-x \cdot\left(0+\frac{1}{x}\right)}{(1+\log x)^{2}} \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1+\log x-1}{(1+\log x)^{2}}=\frac{\log x}{(\log e+\log x)^{2}} \quad[\because 1=\log e] \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\log x}{(\log \operatorname{ex})^{2}} \quad \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\log x}{\{\log (\mathrm{ex})\}^{2}}
\end{aligned}
$$

Prove that: $\frac{d}{\mathrm{dx}}\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)\right]=\sqrt{a^{2}-x^{2}}$
Q.3.
Ans.

$$
\begin{aligned}
\text { LHS } & =\frac{d}{d x}\left(\frac{x}{2} \sqrt{a^{2}-x^{2}}\right)+\frac{d}{d x}\left(\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{2}\right)\right)=\frac{d}{d x}\left(\frac{x}{2} \sqrt{a^{2}-x^{2}}\right)+\frac{d}{d x}\left(\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{2}\right)\right) \\
& =\frac{1}{2}\left\{x \cdot \frac{1}{2 \sqrt{a^{2}-x^{2}}} \times-2 x+\sqrt{a^{2}-x^{2}}\right\}+\frac{a^{2}}{2} \cdot \frac{1}{\sqrt{1-\frac{x^{2}}{a^{2}}}} \times \frac{1}{a} \quad\left[\begin{array}{c}
\text { Apply product rule } \\
\text { and inverse formula }
\end{array}\right] \\
& =\frac{x^{2}}{2 \sqrt{a^{2}-x^{2}}}+\frac{\sqrt{a^{2}-x^{2}}}{2}+\frac{a^{2}}{2 \sqrt{a^{2}-x^{2}}} \\
& =\frac{x^{2}+a^{2}-x^{2}+a^{2}}{2 \sqrt{a^{2}-x^{2}}}=\frac{a^{2}-x^{2}}{\sqrt{a^{2}-x^{2}}}=\sqrt{a^{2}-x^{2}}=\text { RHS }
\end{aligned}
$$

Q.4. If $(\cos x)^{y}=(\cos y)^{x}$, then find $\frac{d y}{d x}$.

Ans.

Given, $(\cos x)^{y}=(\cos y)^{x}$

Taking logrithm both sides, we get

$$
\left.\begin{array}{rl}
& \log (\cos x)^{y}=\log (\cos y)^{x} \\
\Rightarrow & y \cdot \log (\cos x)=x \cdot \log (\cos y)
\end{array} \quad\left[\because \log m^{n}=n \log m\right]\right) .
$$

Differentiating both sides, we get

$$
\begin{aligned}
& y \cdot \frac{1}{\cos x}(-\sin x)+\log (\cos x) \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=x \cdot \frac{1}{\cos y} \cdot(-\sin y) \cdot \frac{\mathrm{dy}}{\mathrm{dx}}+\log (\cos y) \\
\Rightarrow & -\frac{y \sin x}{\cos x}+\log (\cos x) \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{x \sin y}{\cos y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}+\log (\cos y) \\
\Rightarrow \quad & \log (\cos x) \cdot \frac{\mathrm{dy}}{\mathrm{dx}}+\frac{x \sin y}{\cos y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=\log (\cos y)+\frac{y \sin x}{\cos x} \\
\Rightarrow & \frac{\mathrm{dy}}{\mathrm{dx}}\left[\log (\cos x)+\frac{x \sin y}{\cos y}\right]=\log (\cos y)+\frac{y \sin x}{\cos x} \\
\Rightarrow & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\log (\cos y)+\frac{y \sin x}{\cos x}}{\log (\cos x)+\frac{x \sin y}{\cos y}}=\frac{\log (\cos y)+y \tan x}{\log (\cos x)+x \tan y}
\end{aligned}
$$

Q.5.

Find the value of $\frac{d y}{d x}$ at $\theta=\frac{\pi}{4}$, if $x=a e^{\theta}(\sin \theta-\cos \theta)$ and $y=a e^{\theta}(\sin \theta+\cos \theta)$.
Ans.

Given, $x=a e^{\theta}(\sin \theta-\cos \theta)$ and $y=a e^{\theta}(\sin \theta+\cos \theta)$

$$
x=a e^{\theta}(\sin \theta-\cos \theta)
$$

Differentiating with respect to \mathfrak{q}, we get

$$
\begin{align*}
\frac{\mathrm{dx}}{\mathrm{~d} \mathrm{\theta}}= & \mathrm{ae}^{\theta}(\cos \theta+\sin \theta)+a(\sin \theta-\cos \theta) \cdot e^{\theta}=\mathrm{ae}^{\theta}(\cos \theta+\sin \theta+\sin \theta-\cos \theta \\
& =2 \mathrm{ae} \sin \theta \tag{i}
\end{align*}
$$

Again, $\quad \because y=a e^{\theta}(\sin \theta+\cos \theta)$
Differentiating with respect to θ, we get

$$
\begin{align*}
\frac{\mathrm{dy}}{\mathrm{~d} \theta} & =a \mathrm{e}^{\theta}(\cos \theta-\sin \theta)+a(\sin \theta+\cos \theta) \cdot e^{\theta}=\mathrm{ae}^{\theta}(\cos \theta-\sin \theta+\sin \theta+\cos \theta \\
& =2 a e^{\theta} \cdot \cos \theta \tag{ii}
\end{align*}
$$

$\therefore \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\frac{\mathrm{dy}}{\mathrm{d} \theta}}{\frac{\mathrm{dx}}{\mathrm{d} \theta}}=\frac{2 \mathrm{ae}^{s} \cdot \cos \theta}{2 \mathrm{ae}^{\theta} \cdot \sin \theta} \quad[$ From (i) and (ii)]
$\left.\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\cot \theta \quad \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}\right]_{\theta=\frac{\pi}{4}}=\cot \frac{\pi}{4}=1$
Q.6. If $\sin y=x \sin (a+y)$, then prove that $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sin ^{2}(a+y)}{\sin a}$.

Ans.
Here, $\quad \sin y=x \sin (a+y) \quad \Rightarrow \quad \frac{\sin y}{\sin (a+y)}=x$

$$
\Rightarrow \quad \frac{\sin (a+y) \cdot \cos y \cdot \frac{\mathrm{dy}}{\mathrm{dx}}-\sin y \cdot \cos (a+y) \cdot \frac{\mathrm{dy}}{\mathrm{dx}}}{\sin ^{2}(a+y)}=1
$$

$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}\{\sin (a+y) \cdot \cos y-\sin y \cdot \cos (a+y)\}=\sin ^{2}(a+y)$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sin ^{2}(a+y)}{\sin (a+y-y)} \quad \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sin ^{2}(a+y)}{\sin a}$

Differentiate $\tan ^{-1}\left[\frac{\sqrt{1+x^{2}}-1}{x}\right]$ with respect to x. Q.7.
 Q.7.

Ans.
Let $y=\tan ^{-1}\left[\frac{\sqrt{1+x^{2}}-1}{x}\right]$
Put $x=\tan \theta \Rightarrow \quad \theta=\tan ^{-1} x$
Now, $\quad y=\tan ^{-1}\left(\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\right)=\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right)$

$$
=\tan ^{-1}\left(\frac{\frac{1}{\cos \theta}-1}{\frac{\sin \theta}{\cos \theta}}\right)=\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right)
$$

$$
\begin{aligned}
& {\left[\begin{array}{lc}
\because & -\infty x \infty \\
\Rightarrow & \tan \left(-\frac{\pi}{2}\right) \tan \theta \tan \left(\frac{\pi}{2}\right) \\
\Rightarrow & -\frac{\pi}{2} \theta \frac{\pi}{2} \\
\Rightarrow & -\frac{\pi}{4} \frac{\theta}{2} \frac{\pi}{4} \\
\Rightarrow & \frac{\theta}{2} \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \subset\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
\end{array}\right]} \\
& \quad=\tan ^{-1}\left(\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}}\right)=\tan ^{-1}\left(\tan \frac{\theta}{2}\right)=\frac{\theta}{2} \\
& \Rightarrow \quad y=\frac{1}{2} \tan ^{-1} x \quad \Rightarrow \quad \frac{d y}{d x}=\frac{1}{2\left(1+x^{2}\right)}
\end{aligned}
$$

Q.8. Differentiate the following with respect to x :

$(\sin x)^{x}+(\cos x)^{\sin x}$
Ans.

Let $u=(\sin x)^{x}$ and $v=(\cos x)^{\sin x}$
$\therefore \quad$ Given differential equation becomes $y=u+v$
$\Rightarrow \quad \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
Now, $u=(\sin x)^{x}$

Taking \log on both sides, we get

$$
\log u=x \log \sin x
$$

Differentiating with respect to x, we get

$$
\begin{align*}
& \quad \frac{1}{u} \cdot \frac{\mathrm{du}}{\mathrm{dx}}=x \frac{1}{\sin x} \cdot \cos x+\log \sin x \quad \Rightarrow \quad \frac{\mathrm{du}}{\mathrm{dx}}=u(x \cot x+\log \sin x) \\
& \Rightarrow \quad \frac{\mathrm{du}}{\mathrm{dx}}=(\sin x)^{x}\{x \cot x+\log \sin x\} \tag{ii}\\
& \text { Again } v=(\cos x)^{\sin x}
\end{align*}
$$

Taking \log on both sides, we get

$$
\log V=\sin x \cdot \log \cos x
$$

Differentiating both sides with respect to x, we get

$$
\begin{align*}
& \frac{1}{v} \cdot \frac{\mathrm{dv}}{\mathrm{dx}}=\sin x \cdot \frac{1}{\cos x}(-\sin x)+\log (\cos x) \cdot \cos x \\
\Rightarrow \quad & \frac{\mathrm{dv}}{\mathrm{dx}}=v\left\{-\frac{\sin ^{2} x}{\cos x}+\cos x \cdot \log \cos x\right\}=(\cos x)^{\sin x}\left\{\cos x \cdot \log (\cos x)-\frac{\sin ^{2} x}{\cos x}\right\} \\
\Rightarrow \quad & \frac{\mathrm{dv}}{\mathrm{dx}}=(\cos x)^{1+\sin x}\left\{\log (\cos x)-\tan ^{2} x\right\} \tag{iii}
\end{align*}
$$

From (i), (ii) and (iii), we get

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=(\sin x)^{x}\{x \cot x+\log \sin x\}+(\cos x)^{1+\sin x}\left\{\log (\cos x)-\tan ^{2} x\right\}
$$

Q.9. If $\cos \boldsymbol{y}=\boldsymbol{x} \cos (\boldsymbol{a}+\boldsymbol{y})$, with $\cos \boldsymbol{a} \neq \pm \mathbf{1}$, then prove that $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\cos ^{2}(a+y)}{\sin a}$

Hence show that $\sin a \frac{d^{2} y}{\mathrm{dx}^{2}}+\sin 2(a+y) \frac{\mathrm{dy}}{\mathrm{dx}}=0$
Ans.
To prove $\quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\cos ^{2}(a+y)}{\sin a}$ (Refer Q. 30 Page-208)

Differentiating both sides w.r.t. x, we get

$$
\begin{aligned}
& \frac{d^{2} y}{\mathrm{dx}^{2}}=\frac{1}{\sin a}\left\{-2 \cos (a+y) \cdot \sin (a+y) \cdot \frac{\mathrm{dy}}{\mathrm{dx}}\right\} \\
\Rightarrow & \sin a \frac{d^{2} y}{\mathrm{dx}^{2}}=-\sin 2(a+y) \cdot \frac{\mathrm{dy}}{\mathrm{dx}} \\
\Rightarrow & \sin a \frac{d^{2} y}{\mathrm{dx}^{2}}+\sin 2(a+y) \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=0
\end{aligned}
$$

Q.10. Differentiate the following with respect to: $\tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)$

Ans.

Let $\tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)=y$

$$
\begin{aligned}
y & =\tan ^{-1}\left(\frac{1-\frac{\sqrt{1-x}}{\sqrt{1+x}}}{1+\frac{\sqrt{1-x}}{\sqrt{1+x}}}\right) \\
\Rightarrow \quad y & =\tan ^{-1} 1-\tan ^{-1}\left(\frac{\sqrt{1-x}}{\sqrt{1+x}}\right) \\
\frac{\mathrm{dy}}{\mathrm{dx}} & =0-\frac{1}{1+\left(\frac{\sqrt{1-x}}{\sqrt{1+x}}\right)^{2}} \cdot \frac{d}{\mathrm{dx}}\left(\frac{\sqrt{1-x}}{\sqrt{1+x}}\right) \\
& =-\frac{1+x}{2}\left\{\frac{\frac{-1}{2 \sqrt{1-x}} \sqrt{1+x}-\frac{1}{2 \sqrt{1+x}} \sqrt{1-x}}{1+x}\right\} \\
& =\frac{1+x}{4}\left\{\frac{\frac{\sqrt{1+x} \times \sqrt{1+x}}{\sqrt{1-x} \times \sqrt{1+x}}+\frac{\sqrt{1-x} \times \sqrt{1-x}}{\sqrt{1+x} \times \sqrt{1-x}}}{1+x}\right\} \\
& =\frac{1}{4} \cdot \frac{2}{\sqrt{1-x^{2}}}=\frac{1}{2 \sqrt{1-x^{2}}}
\end{aligned}
$$

Q.11. If $y=\log \tan \left(\frac{\pi}{4}+\frac{x}{2}\right)$, then show that $\frac{\mathrm{dy}}{\mathrm{dx}}-\sec x=0$.

Ans.

Given, $y=\log \tan \left(\frac{\pi}{4}+\frac{x}{2}\right)$

$$
\begin{aligned}
\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}} & =\frac{1}{\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)} \cdot \frac{d}{\mathrm{dx}}\left[\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\right]=\cot \left(\frac{\pi}{4}+\frac{x}{2}\right) \cdot \sec ^{2}\left(\frac{\pi}{4}+\frac{x}{2}\right) \cdot \frac{1}{2} \\
& =\frac{\cos \left(\frac{\pi}{4}+\frac{x}{2}\right)}{\sin \left(\frac{\pi}{4}+\frac{x}{2}\right)} \cdot \frac{1}{2} \frac{1}{\cos ^{2}\left(\frac{\pi}{4}+\frac{x}{2}\right)}=\frac{1}{2 \sin \left(\frac{\pi}{4}+\frac{x}{2}\right) \cdot \cos \left(\frac{\pi}{4}+\frac{x}{2}\right)} \\
& =\frac{1}{\sin 2\left(\frac{\pi}{4}+\frac{x}{2}\right)}=\frac{1}{\sin \left(\frac{\pi}{2}+x\right)}=\frac{1}{\cos x}=\sec x
\end{aligned}
$$

$$
\Rightarrow \quad \frac{d y}{d x}-\sec x=0
$$

Hence proved.

Q.13. Differentiate the following function with respect to $x:(\log x)^{x}+x^{\log x}$.

Ans.
Let $y=(\log x)^{x}+x^{\log x}$
$\Rightarrow \quad y=u+v, \quad$ where $u=(\log x)^{x}, \quad v=x^{\log x}$
$\Rightarrow \quad \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
Now, $u=(\log x)^{x}$
Taking logarithm on both sides, we get

$$
\log u=x \cdot \log (\log x)
$$

Differentiating both sides with respect to x, we get

$$
\begin{align*}
& \quad \frac{1}{u} \cdot \frac{\mathrm{du}}{\mathrm{dx}}=x \cdot \frac{1}{\log x} \cdot \frac{1}{x}+\log (\log x) \quad \Rightarrow \quad \frac{\mathrm{du}}{\mathrm{dx}}=u\left\{\frac{1}{\log x}+\log (\log x)\right\} \\
& \Rightarrow \quad \frac{\mathrm{du}}{\mathrm{dx}}=(\log x)^{x}\left\{\frac{1}{\log x}+\log (\log x)\right\} \tag{ii}\\
& \text { Again } \quad v=x^{\log x}
\end{align*}
$$

Taking logarithm of both sides, we get

$$
\begin{aligned}
\log v & =\log x^{\log x} \\
\Rightarrow \quad \log v & =\log x \cdot \log x \quad \Rightarrow \quad \log v=(\log x)^{2}
\end{aligned}
$$

Differentiating both sides with respect to x, we get

$$
\begin{align*}
& \frac{1}{v} \frac{\mathrm{dv}}{\mathrm{dx}}=2 \log x \cdot \frac{1}{x} \\
\Rightarrow \quad & \frac{\mathrm{dv}}{\mathrm{dx}}=2 x^{\log x} \cdot \frac{\log x}{x}
\end{align*}
$$

From (i), (ii) and (iii), we get

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=(\log x)^{x}\left\{\frac{1}{\log x}+\log (\log x)\right\}+2 \frac{\log x \cdot x^{\log x}}{x}
$$

Q. 14.

If $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$, then show that $\frac{\mathrm{dy}}{\mathrm{dx}}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$.
Ans.
Given, $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$
Putting $x=\sin \alpha \Rightarrow \alpha=\sin ^{-1} x$ and $y=\sin \beta \Rightarrow \beta=\sin ^{-1} y$, we get

$$
\begin{aligned}
& \sqrt{1-\sin ^{2} \alpha}+\sqrt{1-\sin ^{2} \beta}=a(\sin \alpha-\sin \beta) \\
\Rightarrow & \cos \alpha+\cos \beta=a(\sin \alpha-\sin \beta) \\
\Rightarrow & 2 \cos \frac{(\alpha+\beta)}{2} \cos \left(\frac{\alpha-\beta}{2}\right)=a \cdot 2 \cos \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right) \\
\Rightarrow & \cot \left(\frac{\alpha-\beta}{2}\right)=a \quad \Rightarrow \quad \frac{\alpha-\beta}{2}=\cot ^{-1} a \quad \Rightarrow \quad \alpha-\beta=2 \cot ^{-1} a \\
\Rightarrow & \sin ^{-1} x-\sin ^{-1} y=2 \cot ^{-1} a
\end{aligned}
$$

Differentiating both sides with respect to x, we get

$$
\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-y^{2}}} \frac{\mathrm{dy}}{\mathrm{dx}}=0 \quad \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}
$$

Differentiate $\tan ^{-1} \frac{x}{\sqrt{1-x^{2}}}$ with respect to $\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$.
Ans.

Let $u=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)$ and $v=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$
We have to determine $\frac{\mathrm{du}}{\mathrm{dv}}$
Put $x=\sin \theta \quad \Rightarrow \quad \theta=\sin ^{-1} x$
Now, $u=\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}\right) \quad \Rightarrow \quad u=\tan ^{-1}\left(\frac{\sin \theta}{\cos \theta}\right) \quad \Rightarrow \quad u=\theta$
$\Rightarrow u=\sin ^{-1} x \quad \Rightarrow \quad \frac{d u}{d x}=\frac{1}{\sqrt{1-x^{2}}}$
Again, $v=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$
$\Rightarrow \quad v=\sin ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}=\sin ^{-1}(2 \sin \theta \cos \theta)\right.$
$\Rightarrow \quad v=\sin ^{-1}(\sin 2 \theta) \Rightarrow \quad v=2 \theta$
$\Rightarrow \quad V=2 \sin ^{-1} X \quad \Rightarrow \quad \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{2}{\sqrt{1-x^{2}}}$

$$
\left[\begin{array}{lc}
\because & -\frac{1}{\sqrt{2}} x \frac{1}{\sqrt{2}} \\
\Rightarrow & \sin \left(-\frac{\pi}{4}\right) \sin \theta \sin \left(\frac{\pi}{4}\right) \\
\Rightarrow & -\frac{\pi}{4} \theta \frac{\pi}{4} \\
\Rightarrow & -\frac{\pi}{2} 2 \theta \frac{\pi}{2} \\
\Rightarrow & 2 \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
\end{array}\right]
$$

$\therefore \quad \frac{\mathrm{du}}{\mathrm{dv}}=\frac{\frac{\mathrm{du}}{\mathrm{dx}}}{\frac{\mathrm{dv}}{\mathrm{dv}}}=\frac{\frac{1}{\sqrt{1-x^{2}}}}{\frac{2}{\sqrt{1-x^{2}}}}=\frac{1}{2}$
[Note: Here the range of x is taken as $-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}$]
Q.16.

If $x=\cos t\left(3-2 \cos ^{2} t\right)$ and $y=\sin t\left(3-2 \sin ^{2} t\right)$, then find the value of $\frac{\mathrm{dy}}{\mathrm{dx}}$ at $t=\frac{\pi}{4}$.
Ans.
Given, $x=\cos t\left(3-2 \cos ^{2} t\right)$

Differentiating both sides with respect to t, we get

$$
\begin{aligned}
\frac{\mathrm{dx}}{\mathrm{dt}} & =\cos t\{0+4 \cos t \cdot \sin t\}+\left(3-2 \cos ^{2} t\right) \cdot(-\sin t) \\
& =4 \sin t \cdot \cos ^{2} t-3 \sin t+2 \cos ^{2} t \cdot \sin t \\
& =6 \sin t \cos ^{2} t-3 \sin t=3 \sin t\left(2 \cos ^{2} t-1\right)=3 \sin t \cdot \cos 2 t
\end{aligned}
$$

Again, $\because y=\sin t\left(3-2 \sin ^{2} t\right)$
Differentiating both sides with respect to t, we get

$$
\begin{aligned}
\frac{\mathrm{dy}}{\mathrm{dt}} & =\sin t \cdot\{0-4 \sin t \cos t\}+\left(3-2 \sin ^{2} t\right\} \cdot \cos t \\
& =-4 \sin ^{2} t \cdot \cos t+3 \cos t-2 \sin ^{2} t \cdot \cos t=3 \cos t-6 \sin ^{2} t \cdot \cos t \\
& =3 \cos t\left(1-2 \sin ^{2} t\right)=3 \cos t \cdot \cos 2 t
\end{aligned}
$$

Now, $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\frac{\mathrm{dy}}{\mathrm{dt}}}{\frac{\mathrm{dx}}{\mathrm{dt}}}=\frac{3 \cos t \cdot \cos 2 t}{3 \sin t \cdot \cos 2 t}$

$$
\begin{aligned}
& \frac{\mathrm{dy}}{\mathrm{dx}}=\cot t \\
\therefore & \left.\frac{\mathrm{dy}}{\mathrm{dx}}\right]_{t=\frac{\pi}{4}}=\cot \frac{\pi}{4}=1
\end{aligned}
$$

Q.17.

Differentiate $\tan ^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right)$ with respect to $\cos ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$, when $x \neq 0$.

Ans.
Let $u=\tan ^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right)$ and $v=\cos ^{-1}\left(2 x \sqrt{\left.1-x^{2}\right)}\right.$
We have to determine $\frac{d u}{d v}$
Put $x=\sin \theta \Rightarrow \theta=\sin ^{-1} x$
Now, $u=\tan ^{-1}\left(\frac{\sqrt{1-\sin ^{2} \theta}}{\sin \theta}\right) \Rightarrow u=\tan ^{-1}\left(\frac{\cos \theta}{\sin \theta}\right)$
$\Rightarrow \quad u=\tan ^{-1}(\cot \theta) \quad \Rightarrow \quad u=\tan ^{-1}\left[\tan \left(\frac{\pi}{2}-\theta\right)\right]$
$\Rightarrow u=\frac{\pi}{2}-\theta \quad \Rightarrow \quad u=\frac{\pi}{2}-\sin ^{-1} x$
$\Rightarrow \quad \frac{\mathrm{du}}{\mathrm{dx}}=0-\frac{1}{\sqrt{1-x^{2}}} \quad \Rightarrow \quad \frac{\mathrm{du}}{\mathrm{dx}}=-\frac{1}{\sqrt{1-x^{2}}}$
Again, $v=\cos ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$
$\because \quad x=\sin \theta$
$\therefore \quad v=\cos ^{-1}\left(2 \sin \theta \sqrt{\left.1-\sin ^{2} \theta\right)}\right.$
$\Rightarrow \quad v=\cos ^{-1}(2 \sin \theta \cdot \cos \theta)$
$\Rightarrow \quad v=\cos ^{-1}(\sin 2 \theta)$
$\Rightarrow \quad v=\cos ^{-1}\left(\cos \left(\frac{\pi}{2}-2 \theta\right)\right)$
$\Rightarrow \quad v=\frac{\pi}{2}-2 \theta \quad \Rightarrow \quad v=\frac{\pi}{2}-2 \sin ^{-1} x$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{dv}}{\mathrm{dx}}=0-\frac{2}{\sqrt{1-x^{2}}} \quad \Rightarrow \quad \frac{\mathrm{dv}}{\mathrm{dx}}=-\frac{2}{\sqrt{1-x^{2}}} \\
& \therefore \quad \frac{\mathrm{du}}{\mathrm{dv}}=\frac{\frac{\mathrm{du}}{\mathrm{~d}}}{\frac{\mathrm{dv}}{\mathrm{dv}}}=\frac{-\frac{1}{\sqrt{1-x^{2}}}}{-\frac{2}{\sqrt{1-x^{2}}}}=\frac{1}{2} \\
& \\
& {\left[\begin{array}{ll}
\because & -\frac{1}{\sqrt{2}} x \frac{1}{\sqrt{2}} \\
\Rightarrow \sin \left(-\frac{\pi}{4}\right) \sin \theta \sin \left(\frac{\pi}{4}\right) \\
\Rightarrow & -\frac{\pi}{4} \theta \frac{\pi}{4} \\
\Rightarrow & -\frac{\pi}{2} 2 \theta \frac{\pi}{2} \\
\Rightarrow & \frac{\pi}{2}-2 \theta-\frac{\pi}{2} \\
\Rightarrow & \pi\left(\frac{\pi}{2}-2 \theta\right) 0 \\
\Rightarrow & \left(\frac{\pi}{2}-2 \theta\right) \in(0, \pi) \subset[0, \pi]
\end{array}\right]}
\end{aligned}
$$

[Note: Here the range of x is taken as $-\frac{1}{\sqrt{2}}<x>\frac{1}{\sqrt{2}}$]
Q.18.

Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, if $\left(x^{2}+y^{2}\right)^{2}=\mathrm{xy}$.

Ans.
Given, equation is $\left(x^{2}+y^{2}\right)^{2}=x y$.
Differentiating with respect to x, we get

$$
\begin{aligned}
& 2\left(x^{2}+y^{2}\right) \cdot\left(2 x+2 y \frac{\mathrm{dy}}{\mathrm{dx}}\right)=x \frac{\mathrm{dy}}{\mathrm{dx}}+y \\
\Rightarrow & 4 x\left(x^{2}+y^{2}\right)+4 y \cdot\left(x^{2}+y^{2}\right) \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=x \cdot \frac{\mathrm{dy}}{\mathrm{dx}}+y \\
\Rightarrow \quad & \left\{4 y\left(x^{2}+y^{2}\right)-x\right\} \frac{\mathrm{dy}}{\mathrm{dx}}=y-4 x\left(x^{2}+y^{2}\right) \\
\Rightarrow & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{y-4 x\left(x^{2}+y^{2}\right)}{4 y\left(x^{2}+y^{2}\right)-x}
\end{aligned}
$$

Q.19. Differentiate the following function with respect to x :

$$
y=(\sin x)^{x}+\sin ^{-1} \sqrt{x}
$$

Ans.

Given, $y=(\sin x)^{x}+\sin ^{-1} \sqrt{x}$

$$
\begin{align*}
& y=u+v, \text { where } u=(\sin x)^{x}, v=\sin ^{-1} \sqrt{x} \\
\therefore \quad & \frac{\mathrm{dy}}{\mathrm{dx}} \tag{i}
\end{align*}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{\mathrm{dv}}{\mathrm{dx}} .
$$

Now, $u=(\sin x)^{x}$
Taking log both sides, we get

$$
\log u=\log (\sin x)^{x} \quad \Rightarrow \quad \log u=x \cdot \log (\sin x)
$$

Differentiating both sides with respect to x, we get

$$
\begin{align*}
& \frac{1}{u} \cdot \frac{\mathrm{du}}{\mathrm{dx}}=x \cdot \frac{1}{\sin x} \cos x+\log \sin x \\
\Rightarrow \quad & \frac{\mathrm{du}}{\mathrm{dx}}=u\{x \cot x+\log \sin x\} \\
\Rightarrow \quad & \frac{\mathrm{du}}{\mathrm{dx}}=(\sin x)^{x}\{x \cot x+\log \sin x\} \tag{ii}
\end{align*}
$$

Also, $v=\sin ^{-1} \sqrt{x}$

$$
\begin{equation*}
\frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1}{\sqrt{1-(\sqrt{x})^{2}}} \times \frac{1}{2 \sqrt{x}}=\frac{1}{2 \sqrt{x(1-x)}} \tag{iii}
\end{equation*}
$$

From (i), (ii) and (iii), we get
$\therefore \quad \frac{\mathrm{dy}}{\mathrm{dx}}=(\sin x)^{x}\{x \cot x+\log \sin x\}+\frac{1}{2 \sqrt{x(1-x)}}$
Q.20. If $y=\cos ^{-1}\left\{\frac{3 x+4 \sqrt{1-x^{2}}}{5}\right\}$, then find $\frac{\mathrm{dy}}{\mathrm{dx}}$.

Ans.

Here, $y=\cos ^{-1}\left\{\frac{3 x+4 \sqrt{1-x^{2}}}{5}\right\}$
Let $x=\cos \alpha \Rightarrow \alpha=\cos ^{-1} x$

$$
\begin{aligned}
\therefore \quad y & =\cos ^{-1}\left\{\frac{3 \cos \alpha}{5}+\frac{4}{5} \sqrt{1-\cos ^{2} \alpha}\right\} \\
y & =\cos ^{-1}\left\{\frac{3}{5} \cos \alpha+\frac{4}{5} \sin \alpha\right\}
\end{aligned}
$$

Let $\frac{3}{5}=\cos \theta \quad \therefore \quad \sin \theta=\sqrt{1-\cos ^{2} \theta}=\sqrt{1-\frac{9}{25}}=\frac{4}{5}$
Now, $y=\cos ^{-1}\{\cos \theta \cdot \cos \alpha+\sin \theta \cdot \sin \alpha\}$

$$
\begin{aligned}
& \therefore \quad y=\cos ^{-1}(\cos (\theta-\alpha))=\theta-\alpha \\
& \Rightarrow \quad y=\cos ^{-1} \frac{3}{5}-\cos ^{-1} x \quad\left[\because \quad \cos \theta=\frac{3}{5} \quad \Rightarrow \quad \theta=\cos ^{-1} \frac{3}{5}\right] \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{-1}{\sqrt{1-x^{2}}}=\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Q.21. If $y=\cos ^{-1}\left(\frac{2^{x+1}}{1+4^{x}}\right)$, then find $\frac{\mathrm{dy}}{\mathrm{dx}}$.

Ans.

Given, $y=\cos ^{-1}\left(\frac{2^{x} \cdot 2}{1+\left(2^{x}\right)^{2}}\right)$
Let $2^{x}=\tan \alpha \Rightarrow \alpha=\tan ^{-1}\left(2^{x}\right)$
$\therefore \quad y=\cos ^{-1}\left(\frac{2 \tan \alpha}{1+\tan ^{2} \alpha}\right)$

$$
=\cos ^{-1}(\sin 2 \alpha)=\cos ^{-1}\left(\cos \left(\frac{\pi}{2}-2 \alpha\right)\right)=\frac{\pi}{2}-2 \alpha
$$

$\Rightarrow \quad y=\frac{\pi}{2}-2 \tan ^{-1}\left(2^{x}\right)$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=0-2 \frac{1}{1+\left(2^{x}\right)^{2}} \cdot \log _{e} 2 \cdot 2^{x}=-\frac{2 \cdot 2^{x} \cdot \log _{e} 2}{1+4^{x}}=-\frac{2^{x+1} \cdot \log _{e} 2}{1+4^{x}}$
Q.22. Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, if $y=\sin ^{-1}\left[x \sqrt{1-x}-\sqrt{x} \sqrt{\left.1-x^{2}\right]}\right.$.

Ans.
Given, $y=\sin ^{-1} / x \sqrt{1-x}-\sqrt{x} \sqrt{\left.1-x^{2}\right]}$

$$
\begin{aligned}
& =\sin ^{-1}\left[x \sqrt{1-(\sqrt{x})^{2}}-\sqrt{x} \sqrt{1-x^{2}}\right] \\
\Rightarrow \quad y & =\sin ^{-1} x-\sin ^{-1} \sqrt{x} \quad\left[\text { using } \sin ^{-1} x-\sin ^{-1} \quad y=\sin ^{-1}\left[x \sqrt{1-y^{2}}-y \sqrt{1-x^{2}}\right]\right.
\end{aligned}
$$

Differentiating with respect to x, we get

$$
\begin{aligned}
\frac{\mathrm{dy}}{\mathrm{dx}} & =\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-(\sqrt{x})^{2}}} \frac{d}{d x}(\sqrt{x}) \\
& =\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-x}} \cdot \frac{1}{2 \sqrt{x}}=\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{2 \sqrt{x(1-x)}}
\end{aligned}
$$

Q.23. Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, if $y=(\cos x)^{x}+(\sin x)^{1 / x}$.

Ans.

Given, $y=(\cos x)^{x}+(\sin x)^{1 / x}$

$$
\begin{align*}
y=u+v ; & \text { where } u=(\cos x)^{x}, \quad v=(\sin x)^{1 / x} \\
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{\mathrm{dv}}{\mathrm{dx}} & \ldots(i) \tag{i}
\end{align*}
$$

Now $u=(\cos x)^{x}$
Taking log both sides, we get

$$
\begin{aligned}
\log u & =\log (\cos x)^{x} \\
\Rightarrow \quad \log u & =x \log (\cos x)
\end{aligned}
$$

Differentiating with respect to x, we get

$$
\begin{aligned}
\frac{1}{u} \cdot \frac{\mathrm{du}}{\mathrm{dx}} & =-x \cdot \frac{1}{\cos x} \sin x+\log (\cos x) \\
\Rightarrow \quad \frac{\mathrm{du}}{\mathrm{dx}} & =u\{\log (\cos x)-x \tan x\} \\
& =(\cos x)^{x}\{\log (\cos x)-x \tan x\}
\end{aligned}
$$

Again, $V=(\sin x)^{1 / x}$

Taking log both sides, we get

$$
\log v=\frac{1}{x} \log (\sin x)
$$

Differentiating with respect to x, we get

$$
\begin{aligned}
\frac{1}{v} \cdot \frac{\mathrm{dv}}{\mathrm{dx}} & =\frac{1}{x} \cdot \frac{1}{\sin x} \cdot \cos x+\log (\sin x)\left(-\frac{1}{x^{2}}\right) \\
\frac{\mathrm{dv}}{\mathrm{dx}} & =v\left\{\frac{\cot x}{x}-\frac{\log (\sin x)}{x^{2}}\right\} \\
& =(\sin x)^{1 / x}\left\{\frac{\cot x}{x}-\frac{\log (\sin x)}{x^{2}}\right\}
\end{aligned}
$$

Putting the value of $\frac{\mathrm{du}}{\mathrm{dx}}$ and $\frac{\mathrm{dv}}{\mathrm{dx}}$ in equation (i), we get

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=(\cos x)^{x}\{\log (\cos x)-x \tan x\}+(\sin x)^{1 / x}\left\{\frac{\cot x}{x}-\frac{\log \sin x}{x^{2}}\right\}
$$

Q.24. Differentiate the following function with respect to

$x: f(x)=\tan ^{-1}\left(\frac{1-x}{1+x}\right)-\tan ^{-1}\left(\frac{x+2}{1-2 x}\right)$.
Ans.

$$
\begin{aligned}
f(x) & =\tan ^{-1}\left(\frac{1-x}{1+x}\right)-\tan ^{-1}\left(\frac{x+2}{1-2 x}\right)=\tan ^{-1}\left(\frac{1-x}{1+x .1}\right)-\tan ^{-1}\left(\frac{x+2}{1-2 . x}\right) \\
& =\left(\tan ^{-1} 1-\tan ^{-1} x\right)-\left(\tan ^{-1} x+\tan ^{-1} 2\right) \quad\left(\because \tan ^{-1} \frac{a-b}{1+a b}=\tan ^{-1} a-\tan ^{-1} b\right) \\
& =\tan ^{-1} 1-\tan ^{-1} 2-2 \tan ^{-1} x
\end{aligned}
$$

Differentiating with respect to x, we get

$$
f^{\prime}(x)=-\frac{2}{1+x^{2}}
$$

Q.25.

$$
\text { If } x^{13} y^{7}=(x+y)^{20} \text {, then prove that } \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{y}{x} \text {. }
$$

If $x^{m} y^{n}=(x+y)^{m+n}$, then prove that $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{y}{x}$

Q.26. Differentiate with respect to \boldsymbol{x} :

$$
\sin ^{-1}\left(\frac{2^{x+1} \cdot 3 x}{1+(36)^{x}}\right)
$$

Ans.

$$
\text { Let } y=\sin ^{-1}\left(\frac{2^{x+1.3 x}}{1+(36)^{x}}\right)=\sin ^{-1}\left(\frac{2.2^{z^{2}} \cdot 3^{x}}{1+\left(6^{2}\right)^{x}}\right)=\sin ^{-1}\left(\frac{2.6^{z}}{1+\left(6^{x}\right)^{2}}\right)
$$

Let $6^{x}=\tan \theta \Rightarrow \theta=\tan ^{-1}\left(6^{x}\right)$
$\therefore \quad y=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right) \quad \Rightarrow \quad y=\sin ^{-1}(\sin 2 \theta)$
$\Rightarrow \quad y=2 \theta \Rightarrow y=2 \cdot \tan ^{-1}\left(6^{x}\right)$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2}{1+\left(6^{x}\right)^{2}} \cdot \log _{e} 6 \cdot 6^{x} \quad \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2 \cdot 6^{x} \cdot \log _{6} 6}{1+36^{2}}$
Q.27. Differentiate $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}} 1}{x}\right)$ with respect to $\tan ^{-1} \boldsymbol{x}$, when $\boldsymbol{x} \neq \mathbf{0}$.

Ans.

Let $u=\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ and $v=\tan ^{-1} x$
We have to find $\frac{d u}{d v}$
Now, $u=\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$
Let $x=\tan \theta \Rightarrow \theta=\tan ^{-1} x$

$$
\begin{aligned}
& \therefore \quad u=\tan ^{-1}\left[\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\right]=\tan ^{-1}\left[\frac{\sec \theta-1}{\tan \theta}\right]=\tan ^{-1}\left[\frac{\frac{1}{\cos \theta}-1}{\frac{\sin \theta}{\cos \theta}}\right] \\
&=\tan ^{-1}\left[\frac{1-\cos \theta}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta}\right]=\tan ^{-1}\left[\frac{1-\cos \theta}{\sin \theta}\right]=\tan ^{-1}\left[\frac{2 \sin 2 \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right] \\
&=\tan ^{-1}\left[\frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}\right]=\tan ^{-1}\left(\tan \frac{\theta}{2}\right)=\frac{\theta}{2}
\end{aligned}
$$

$$
\therefore \quad u=\frac{1}{2} \tan ^{-1} x
$$

Differentiating both sides with respect to x, we get

$$
\begin{equation*}
\frac{\mathrm{du}}{\mathrm{dx}}=\frac{1}{2\left(1+x^{2}\right)} \tag{i}
\end{equation*}
$$

Also, $v=\tan ^{-1} X$

$$
\begin{equation*}
\Rightarrow \quad \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1}{1+x^{2}} \tag{ii}
\end{equation*}
$$

$\therefore \quad \frac{\mathrm{du}}{\mathrm{dv}}=\frac{1}{2\left(1+x^{2}\right)} \times \frac{1+x^{2}}{1}=\frac{1}{2}$
Q.28. If $x \sin (a+y)+\sin a \cos (a+y)=0$, then prove that $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sin ^{2}(a+y)}{\sin a}$.

Ans.
Given $x \sin (a+y)+\sin a \cos (a+y)=0$

$$
\Rightarrow \quad x=-\frac{\sin a \cdot \cos (a+y)}{\sin (a+y)} \quad \Rightarrow \quad x=-\sin a \cdot \cot (a+y)
$$

Differentiating with respect to y, we get

$$
\begin{aligned}
& \quad \frac{\mathrm{dx}}{\mathrm{dy}}=+\sin a \cdot \operatorname{cosec}^{2}(a+y)=\frac{\sin a}{\sin ^{2}(a+y)} \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sin ^{2}(a+y)}{\sin a} \\
& \text { Q.29. If } e^{x}+e^{y}=e^{x+y} \text {, then prove that } \frac{\mathrm{dy}}{\mathrm{dx}}+e^{y-x}=0 .
\end{aligned}
$$

Ans.

Given, $e^{x}+e^{y}=e^{x+y}$

Differentiating both sides with respect to x, we get

$$
\begin{aligned}
& e^{x}+e^{y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=e^{x+y}\left\{1+\frac{\mathrm{dy}}{\mathrm{dx}}\right\} \\
\Rightarrow & e^{x}+e^{y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=e^{x+y}+e^{x+y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}} \quad \Rightarrow \quad\left(e^{x+y}-e^{y}\right) \frac{\mathrm{dy}}{\mathrm{dx}}=e^{x}-e^{x+y} \\
\Rightarrow & \left(e^{x}+e^{y}-e^{y}\right) \frac{\mathrm{dy}}{\mathrm{dx}}=e^{x}-e^{x}-e^{y} \quad\left[\because e^{x}+e^{y}=e^{x+y}(\text { given })\right] \\
\Rightarrow & e^{x} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=-e^{y} \quad \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{e^{y}}{e^{x}} \\
\Rightarrow & \frac{\mathrm{dy}}{\mathrm{dx}}=-e^{y-x} \quad \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}+e^{y-x}=0
\end{aligned}
$$

Q.30. If $x=e^{\cos 2 t}$ and $y=e^{\sin 2 t}$, prove that $\frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{y \log x}{x \log y}$.

Ans.

We have

$$
x=e^{\cos 2 t}
$$

Differentiating w.r.t. t, we get

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=e^{\cos 2 t}(-2 \sin 2 t)=2 x \sin 2 t
$$

Again $y=e^{\sin 2 t}$
Differentiating w.r.t. t, we get

$$
\frac{\mathrm{dy}}{\mathrm{dt}}=e^{\sin 2 t} \cdot 2 \cos 2 t=2 y \cos 2 t
$$

Now, $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 y \cos 2 t}{2 x \sin 2 t}$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-y \cos 2 t}{x \sin 2 t} \quad\left[\because x=e^{\cos 2 t} \Rightarrow \log x=\cos 2 t ; y=e^{\sin 2 t} \Rightarrow \log y=\sin 2 t\right]$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{y \log x}{x \log y}$
Hence proved.

Long Answer Questions-I-B (OIQ)

[4 Mark]
Q.1. If $y=\sqrt{\frac{(x-3)\left(x^{2}+4\right)}{3 x^{2}+4 x+5}}$, then find $\frac{\mathrm{dy}}{\mathrm{dx}}$.

Ans.

Given, $y=\sqrt{\frac{(x-3)\left(x^{2}+4\right)}{3 x^{2}+4 x+5}}$
Taking \log on both sides, we get

$$
\log y=\frac{1}{2}\left[\log (x-3)+\log \left(x^{2}+4\right)-\log \left(3 x^{2}+4 x+5\right)\right]
$$

Differentiating both sides with respect to x, we get

$$
\begin{aligned}
& \frac{1}{y} \frac{\mathrm{dy}}{\mathrm{dx}} & =\frac{1}{2}\left[\frac{1}{x-3}+\frac{1}{x^{2}+4} \times 2 x-\frac{1}{3 x^{2}+4 x+5} \times(6 x+4)\right] \\
\therefore \quad & \frac{\mathrm{dy}}{\mathrm{dx}} & =\frac{y}{2}\left[\frac{1}{x-3}+\frac{2 x}{x^{2}+4}-\frac{6 x+4}{3 x^{2}+4 x+5}\right] \\
& \frac{\mathrm{dy}}{\mathrm{dx}} & =\frac{1}{2}\left(\sqrt{\frac{(x-3)\left(x^{2}+4\right)}{3 x^{2}+4 x+5}}\right)\left[\frac{1}{x-3}+\frac{2 x}{x^{2}+4}-\frac{6 x+4}{3 x^{2}+4 x+5}\right]
\end{aligned}
$$

Q.2. Find the derivative of y with respect to x, where $y=(x)^{\sin x}+(\sin x)^{x}$.

Ans.
Given, $y=(x)^{\sin x}+(\sin x)^{x}$
Let $u=x^{\sin x}$, and $v=(\sin x)^{x}$, then (i) becomes $y=u+v$

$$
\begin{equation*}
\Rightarrow \quad \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x} \tag{ii}
\end{equation*}
$$

First consider, $u=X^{\sin x}$

Taking \log on both sides, we get $\log u=\sin x \cdot \log x$
Differentiating with respect to x, we get

$$
\begin{align*}
& \frac{1}{u} \cdot \frac{\mathrm{du}}{\mathrm{dx}}=\cos x \cdot \log x+\sin x \cdot \frac{1}{x} \quad \Rightarrow \quad \frac{\mathrm{du}}{\mathrm{dx}}=u\left(\cos x \log x+\frac{\sin x}{x}\right) \\
\Rightarrow & \frac{\mathrm{du}}{\mathrm{dx}}=(x)^{\sin x}\left[\cos x(\log x)+\frac{\sin x}{x}\right] \tag{iii}
\end{align*}
$$

Again consider, $v=(\sin x)^{x}$
Taking \log on both sides, we get $\log V=x \log \sin x$

Differentiating with respect to x, we get

$$
\begin{align*}
& \frac{1}{v} \frac{\mathrm{dv}}{\mathrm{dx}}=1 \cdot \log \sin x+x \cdot \frac{1}{\sin x} \cdot \cos x \quad \Rightarrow \quad \frac{\mathrm{dv}}{\mathrm{dx}}=v(\log \sin x+x \cot x) \\
& \frac{\mathrm{dv}}{\mathrm{dx}}=(\sin x)^{x}[\log \sin x+x \cot x] \tag{iv}
\end{align*}
$$

From (ii), (iii) and (iv), we get

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=(x)^{\sin x}\left[\cos x(\log x)+\frac{\sin x}{x}\right]+(\sin x)^{x}[\log \sin x+x \cot x]
$$

Q.3.
 If $y=\left[x+\sqrt{x^{2}+a^{2}}\right]^{n}$, then prove that $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{ny}}{\sqrt{x^{2}+a^{2}}}$.

We have, $y=\left[x+\sqrt{x^{2}+a^{2}}\right]^{n} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{d}{\mathrm{dx}}\left[\left\{x+\sqrt{x^{2}+a^{2}}\right\}^{n}\right]$

$$
\begin{aligned}
& =n\left\{x+\sqrt{x^{2}+a^{2}}\right\}^{n-1} \frac{d}{\mathrm{dx}}\left\{x+\sqrt{\left.x^{2}+a^{2}\right\}} \quad\right. \text { [By chain rule] } \\
& =n\left\{x+\sqrt{x^{2}+a^{2}}\right\}^{n-1} \cdot\left\{\frac{d}{\mathrm{dx}}(x)+\frac{d}{\mathrm{dx}} \sqrt{x^{2}+a^{2}}\right\} \\
& =n\left\{x+\sqrt{x^{2}+a^{2}}\right\}^{n-1} \cdot\left\{1+\frac{1}{2}\left(x^{2}+a^{2}\right)^{-\frac{1}{2}} \cdot \frac{d}{\mathrm{dx}}\left(x^{2}+a^{2}\right)\right\} \\
& =n\left\{x+\sqrt{x^{2}+a^{2}}\right\}^{n-1} \cdot\left\{1+\frac{1}{2 \sqrt{x^{2}+a^{2}}} \cdot 2 x\right\}=n\left\{x+\sqrt{x^{2}+a^{2}}\right\}^{n-1} \cdot\left\{1+\frac{x}{\sqrt{x^{2}+a^{2}}}\right\} \\
& =n\left\{x+\sqrt{x^{2}+a^{2}}\right\}^{n-1}\left\{\frac{\sqrt{x^{2}+a^{2}}+x}{\sqrt{x^{2}+a^{2}}}\right\}=\frac{n\left\{x+\sqrt{x^{2}+a^{2}}\right\}^{n}}{\sqrt{x^{2}+a^{2}}} \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{ny}}{\sqrt{x^{2}+a^{2}}}
\end{aligned}
$$

Q.4.

If $y \sqrt{x^{2}+1}=\log \left(\sqrt{x^{2}+1}-x\right)$, then show that $\left(x^{2}+1\right) \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{xy}+1=0$.

Ans.

Given $y \sqrt{x^{2}+1}=\log \left(\sqrt{x^{2}+1}-x\right)$

Differentiating with respect to x on both sides, we get

$$
\begin{aligned}
& y \times \frac{1}{2 \sqrt{x^{2}+1}} \times 2 x+\sqrt{x^{2}+1} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\left(\sqrt{x^{2}+1}-x\right)} \times\left(\frac{1}{2 \sqrt{x^{2}+1}} \times 2 x-1\right) \\
& \Rightarrow \frac{\mathrm{xy}}{\sqrt{x^{2}+1}}+\sqrt{x^{2}+1} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\left(\frac{x}{\sqrt{x^{2}+1}}-1\right)}{\left(\sqrt{x^{2}+1}-x\right)} \\
& \Rightarrow \quad \frac{\mathrm{xy}}{\sqrt{x^{2}+1}}+\sqrt{x^{2}+1} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\left(x-\sqrt{x^{2}+1}\right)}{\left(\sqrt{x^{2}+1}\right)\left(\sqrt{x^{2}+1}-x\right)} \\
& \Rightarrow \frac{\mathrm{xy}}{\sqrt{x^{2}+1}}+\sqrt{x^{2}+1} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-1}{\sqrt{x^{2}+1}} \\
& \Rightarrow \quad \sqrt{x^{2}+1} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-1}{\sqrt{x^{2}+1}}-\frac{\mathrm{xy}}{\sqrt{x^{2}+1}} \\
& \Rightarrow \sqrt{x^{2}+1} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-(1+\mathrm{xy})}{\sqrt{x^{2}+1}} \\
& \Rightarrow\left(x^{2}+1\right) \frac{\mathrm{dy}}{\mathrm{dx}}=-(1+\mathrm{xy})
\end{aligned}
$$

Hence, $\left(x^{2}+1\right) \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{xy}+1=0$
Q.5. Find $\frac{\mathrm{dy}}{\mathrm{dx}}: y=(\sin x)^{x}+(\cos x)^{\tan x}$.

Ans.

Given, $y=(\sin x)^{x}+(\cos x)^{\tan x}$
Let $\quad u=(\sin x)^{x}$ and $\quad v=(\cos x)^{\tan x}$
We have, $y=u+v$ then

$$
\begin{equation*}
\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x} \tag{i}
\end{equation*}
$$

Now, $u=(\sin x)^{x}$
Taking \log on both sides, we get $\log u=x \log \sin x$ Differentiating both sides, with respect to x, we have

$$
\begin{align*}
& \quad \frac{1}{u} \frac{\mathrm{du}}{\mathrm{dx}}=x \times \frac{1}{\sin x} \times \cos x+\log \sin x \\
& \therefore \quad \frac{\mathrm{du}}{\mathrm{dx}}=u(x \cot x+\log \sin x) \\
& \frac{\mathrm{du}}{\mathrm{dx}}=(\sin x)^{x}(x \cot x+\log \sin x) \tag{ii}\\
& \text { Again, } \quad V=(\cos x)^{\tan x}
\end{align*}
$$

Taking log on both sides, we get

$$
\log V=\tan x[\log \cos x]
$$

Differentiating both sides with respect to x, we get

$$
\begin{align*}
\frac{1}{v} \cdot \frac{\mathrm{dv}}{\mathrm{dx}} & =\tan x \times \frac{1}{\cos x} \times(-\sin x)+\log \cos x \times \sec ^{2} x \\
& =-\tan ^{2} x+\sec ^{2} x \log \cos x \\
\frac{\mathrm{dv}}{\mathrm{dx}}= & v\left(\sec ^{2} x \log \cos x-\tan ^{2} x\right) \\
& =(\cos x)^{\tan x}\left(\sec ^{2} x \log \cos x-\tan ^{2} x\right) \tag{iii}
\end{align*}
$$

From (i), (ii) and (iii), we have

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=(\sin x)^{x}(x \cot x+\log \sin x)+(\cos x)^{\tan x}\left(\sec ^{2} x \log \cos x-\tan ^{2} x\right)
$$

Q.6.

If $x \in R-[-1,1]$ then prove that the derivative of $\sec ^{-1} x$ with respect to x is $\frac{1}{|x| \sqrt{x^{2}-1}}$.

Ans.

Let $y=\sec ^{-1} x$
Then, $\sec y=\sec \left(\sec ^{-1} x\right)=x$
Differentiating both sides with respect to x, we have

$$
\begin{aligned}
& \Rightarrow \quad \frac{d}{\mathrm{dx}} \sec y=\frac{d}{\mathrm{dx}}(x) \\
& \Rightarrow \quad \frac{d}{\mathrm{dy}}(\sec y) \frac{\mathrm{dy}}{\mathrm{dx}}=1 \\
& \Rightarrow \quad \sec y \tan y \frac{\mathrm{dy}}{\mathrm{dx}}=1 \quad \quad \text { [Using chain rule] } \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\sec y \tan y}=\frac{1}{|\sec y| \cdot|\tan y|} \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{|\sec y| \sqrt{\tan ^{2} y}}=\frac{1}{|\sec y| \sqrt{\sec ^{2} y-1}}=\frac{1}{|x| \sqrt{x^{2}-1}}
\end{aligned}
$$

$$
\left[\begin{array}{l}
\text { If } x 1 \text {, then } y \in\left(0, \frac{\pi}{2}\right) \\
\therefore \quad \sec y>0, \tan y>0 \\
\Rightarrow \quad|\sec y| \cdot|\tan y|=\sec y \tan y \\
\text { If } x-1, \text { then } \\
y \in\left(\frac{\pi}{2}, \pi\right) \therefore \quad \sec y<0, \tan y<0 \\
\Rightarrow \quad|\sec y| \tan y \mid \\
\Rightarrow \quad(-\sec y)(-\tan y)=\sec y \tan y
\end{array}\right]
$$

Long Answer Questions-I-C (PYQ)

[4 Marks]

Q.1. If $x=a \cos \theta+b \sin \theta$ and $y=a \sin \theta-b \cos \theta$, then show that $y^{2} \frac{d^{2} y}{\mathrm{dx}^{2}}-\frac{\mathrm{dy}}{\mathrm{dx}}+y=0$.

Ans.
Given, $x=a \cos \theta+b \sin \theta$
$\Rightarrow \quad \frac{\mathrm{dx}}{\mathrm{d} \theta}=-a \sin \theta+b \cos \theta$
Also, $y=a \sin \theta-b \cos \theta$

$$
\begin{align*}
& \frac{\mathrm{dy}}{\mathrm{~d} \theta}=a \cos \theta+b \sin \theta \tag{ii}\\
\therefore & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\frac{\mathrm{dy}}{\mathrm{~d} \theta}}{\frac{\mathrm{dx}}{\mathrm{~d} \theta}}=\frac{a \cos \theta+b \sin \theta}{a \sin \theta+b \cos \theta} \quad \ldots(i i) \\
\Rightarrow & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{a \cos \theta+b \sin \theta}{b \cos \theta-a \sin \theta} \quad[\text { From (i) and (ii)] } \\
\Rightarrow & \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{x}{y}
\end{align*}
$$

Differentiating again with respect to x, we get

$$
\begin{aligned}
& \frac{d^{2} y}{\mathrm{dx}^{2}}=-\frac{y-x \cdot \frac{\mathrm{dy}}{\mathrm{dx}}}{y^{2}} \\
\Rightarrow \quad & y^{2} \frac{d^{2} y}{\mathrm{dx}}=-y+x \frac{\mathrm{dy}}{\mathrm{dx}} \\
\Rightarrow \quad & y^{2} \frac{d^{2} y}{\mathrm{dx}^{2}}-x \frac{\mathrm{dy}}{\mathrm{dx}}+y=0
\end{aligned}
$$

Q.2. If $y=P e^{a x}+Q e^{b x}$, then show that $\frac{d^{2} y}{d x^{2}}-(a+b) \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{aby}=0$

Ans.

Given, $y=P e^{a x}+Q e^{b x}$
On differentiating with respect to x, we have

$$
\frac{d y}{d x}=P a e^{a x}+Q b e^{b x}
$$

Again, differentiating with respect to x, we have

$$
\frac{d^{2} y}{d \mathrm{x}^{2}}=\mathrm{Pa}^{2} e^{\mathrm{ax}}+\mathrm{Qb}^{2} e^{\mathrm{bx}}
$$

Now, LHS $=\frac{d^{2} y}{\mathrm{dx}^{2}}-(a+b) \frac{\mathrm{dy}}{\mathrm{dx}}+$ aby

$$
\begin{aligned}
& =P a^{2} e^{a x}+Q b^{2} e^{b x}-(a+b)\left(P a e^{a x}+Q b e^{b x}\right)+a b\left(P e^{a x}+Q e^{b x}\right) \\
& =P a^{2} e^{a x}+Q b^{2} e^{b x}-P a^{2} e^{a x}-P a b e^{a x}-Q a b e^{b x}-Q b^{2} e^{b x}+P a b e^{a x}+Q a b e^{b x} \\
& =0=\text { RHS }
\end{aligned}
$$

Q.3. If $y=\sin (\log x)$, then prove that $x^{2} \frac{d^{2} y}{\mathrm{dx}^{2}}+\frac{\mathrm{dy}}{\mathrm{dx}}+y=0$.

Ans.
Given, $y=\sin (\log x)$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\cos (\log x) \times \frac{1}{x}=\frac{\cos (\log x)}{x}$
Again, $\frac{d^{2} y}{\mathrm{dx}^{2}}=\frac{x\left[\sin (\log x) \times \frac{1}{x}\right] \cos (\log x)}{x^{2}}=\frac{-\cos (\log x)-\sin (\log x)}{x^{2}}$
Now, LHS $=x^{2} \frac{d^{2} y}{\mathrm{dx}^{2}}+x \frac{\mathrm{dy}}{\mathrm{dx}}+y$

$$
\begin{aligned}
& =\frac{x^{2}\{\cos (\log x)-\sin (\log x)\}}{x^{2}}+\frac{x \cos (\log x)}{x}+\sin (\log x) \\
& =-\cos (\log x)-\sin (\log x)+\cos (\log x)+\sin (\log x)=0=\text { RHS }
\end{aligned}
$$

[^0]
Ans.

Given, $y=\log \left[x+\sqrt{x^{2}+1}\right]$
Differentating with respect to x, we get

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{x+\sqrt{x^{2}+1}} \times\left[1+\frac{2 x}{2 \sqrt{x^{2}+1}}\right]=\frac{\left(x+\sqrt{x^{2}+1}\right)}{\left(x+\sqrt{x^{2}+1}\right) \times \sqrt{x^{2}+1}} \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\sqrt{x^{2}+1}}
\end{aligned}
$$

Differentiating again with respect to x, we get

$$
\begin{aligned}
& \frac{d^{2} y}{\mathrm{dx}^{2}}=-\frac{1}{2}\left(x^{2}+1\right)^{-3 / 2} \cdot 2 x=\frac{-x}{\left(x^{2}+1\right)^{3 / 2}} \\
\Rightarrow & \left(x^{2}+1\right) \frac{d^{2} y}{\mathrm{dx}}=\frac{-x}{\sqrt{x^{2}+1}} \\
\Rightarrow \quad & \left(x^{2}+1\right) \frac{d^{2} y}{\mathrm{dx}}+x \frac{\mathrm{dy}}{\mathrm{dx}}=0
\end{aligned}
$$

Q.5. If $y=\frac{\sin ^{1} x}{\sqrt{1-x^{2}}}$, then show that $\left(1-x^{2}\right) \frac{d^{2} y}{\mathrm{dx}^{2}}-3 x \frac{\mathrm{dy}}{\mathrm{dx}}-y=0$.

Ans.

Given, $y=\frac{\sin ^{1} x}{\sqrt{1-x^{2}}}$
Differentiating with respect to x, we get

$$
\begin{equation*}
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sqrt{1-x^{2}} \cdot \frac{1}{\sqrt{1-x^{2}}}-\sin ^{-1} x \cdot \frac{-2 x}{2 \sqrt{1-x^{2}}}}{\left(\sqrt{1-x^{2}}\right)^{2}}=\frac{1+\mathrm{xy}}{1-x^{2}} \tag{i}
\end{equation*}
$$

Again differentiating with respect to x, we get

$$
\begin{align*}
& \Rightarrow \quad \frac{d^{2} y}{d x^{2}}=\frac{\left(1-x^{2}\right) \cdot\left(x \cdot \frac{\mathrm{dy}}{\mathrm{dx}}+y\right)+(1+\mathrm{xy}) \cdot 2 x}{\left(1-x^{2}\right)^{2}} \\
& \Rightarrow \quad\left(1-x^{2}\right) \cdot \frac{d^{2} y}{d x^{2}}=x \cdot \frac{\mathrm{dy}}{\mathrm{dx}}+y+\frac{(1+\mathrm{xy}) \cdot 2 x}{1-x^{2}} \\
& \Rightarrow \quad\left(1-x^{2}\right) \cdot \frac{d^{2} y}{\mathrm{dx}}=x \frac{\mathrm{dy}}{\mathrm{dx}}+y+2 x \frac{\mathrm{dy}}{\mathrm{dx}} \tag{i}\\
& \Rightarrow \quad\left(1-x^{2}\right) \frac{d^{2} y}{\mathrm{dx}^{2}}-3 x \frac{\mathrm{dy}}{\mathrm{dx}}-y=0
\end{align*}
$$

Q.6. If $y=e^{x}(\sin x+\cos x)$, then show that $\frac{d^{2} y}{{d x^{2}}^{2}}-2 \frac{d y}{d x}+2 y=0$

Ans.

Given, $y=e^{x}(\sin x+\cos x)$

$$
\begin{aligned}
& \therefore \quad \frac{\mathrm{dy}}{\mathrm{dx}}=e^{x}(\cos x-\sin x)+(\sin x+\cos x) \cdot e^{x} \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=2 e^{x} \cos x \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=2 e^{x} \cos x \\
& \Rightarrow \quad \frac{d^{2} y}{\mathrm{dx}}=2\left(-e^{x} \sin x+\cos x \cdot e^{x}\right. \\
& \quad=-2 e^{x} \sin x+2 e^{x} \cos x=-2 e^{x} \sin x-2 e^{x} \cos x+4 e^{x} \cos x
\end{aligned}
$$

Now, $=-2 e^{x}(\sin x+\cos x)+2 \cdot\left(2 e^{x} \cos x\right)=-2 y+2 \frac{\mathrm{dy}}{\mathrm{dx}}$
$\Rightarrow \quad \frac{d^{2} y}{d x^{2}}-2 \frac{\mathrm{dy}}{\mathrm{dx}}+2 y=0$

$$
\text { If } y=\operatorname{cosec}^{-1} x, x>1 \text {, then show that } x\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+\left(2 x^{2}-1\right) \frac{\mathrm{dy}}{\mathrm{dx}}=0
$$

Ans.
$\because y=\operatorname{cosec}^{-1} x$
Differentiating with respect to x, we get

$$
\therefore \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-1}{x \sqrt{x^{2}-1}}
$$

Again differentiating with respect to x, we get

$$
\begin{array}{ll}
& \quad \frac{d^{2} y}{\mathrm{dx}^{2}}=\frac{x \sqrt{x^{2}-1} \cdot 0+1 \cdot\left\{x \cdot \frac{2 x}{2 \sqrt{x^{2}-1}}+\sqrt{x^{2}-1}\right\}}{x^{2}\left(x^{2}-1\right)} \\
\Rightarrow \quad & \frac{d^{2} y}{\mathrm{dx}}=\frac{x^{2}+x^{2}-1}{x^{2}\left(x^{2}-1\right) \cdot \sqrt{x^{2}-1}}=\frac{2 x^{2}-1}{\sqrt{x^{2}-1} \cdot x^{2}\left(x^{2}-1\right)} \\
\Rightarrow \quad & x\left(x^{2}-1\right) \frac{d^{2} y}{\mathrm{dx}^{2}}=\frac{2 x^{2}-1}{x \sqrt{x^{2}-1}}=\left(2 x^{2}-1\right)\left(-\frac{\mathrm{dy}}{\mathrm{dx}}\right) \\
\Rightarrow \quad & x\left(x^{2}-1\right) \frac{d^{2} y}{\mathrm{dx}^{2}}+\left(2 x^{2}-1\right) \frac{\mathrm{dy}}{\mathrm{dx}}=0
\end{array}
$$

If $y=\sin ^{-1} x$, show that $\left(1-x^{2}\right) \frac{d^{2} y}{\mathrm{dx}^{2}}-x \frac{\mathrm{dy}}{\mathrm{dx}}=0$.
Q.8.

Ans.

$$
\because \quad y=\sin ^{-1} x
$$

Differentiating with respect to x, we get

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\sqrt{1-x^{2}}} \\
& \Rightarrow \quad \sqrt{1-x^{2}} \frac{\mathrm{dy}}{\mathrm{dx}}=1
\end{aligned}
$$

Again differentiating with respect to x, we get

$$
\begin{aligned}
& \sqrt{1-x^{2}} \frac{d^{2} y}{\mathrm{dx}^{2}}+\frac{\mathrm{dy}}{\mathrm{dx}} \cdot \frac{1 \times(-2 x)}{2 \sqrt{1-x^{2}}}=0 \\
& \Rightarrow \quad\left(1-x^{2}\right) \frac{d^{2} y}{\mathrm{dx}^{2}}-\frac{\mathrm{xdy}}{\mathrm{dx}}=0 \\
& \text { If } y=3 \cos (\log x)+4 \sin (\log x) \text {, show that } \\
& \text { Q.9. } \quad x^{2} \frac{d^{2} y}{\mathrm{dx}^{2}}+x \frac{\mathrm{dy}}{\mathrm{dx}}+y=0 .
\end{aligned}
$$

Ans.

Given, $y=3 \cos (\log x)+4 \sin (\log x)$
Differentiating with respect to x, we get

$$
\begin{aligned}
& \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{3 \sin (\log x)}{x}+\frac{4 \cos (\log x)}{x} \\
\Rightarrow \quad y_{1} & =\frac{1}{x}[-3 \sin (\log x)+4 \cos (\log x)]
\end{aligned}
$$

Again differentiating with respect to x, we get

$$
\begin{aligned}
& \frac{d^{2} y}{\mathrm{dx}^{2}}=\frac{\left.x\left[\frac{-3 \cos (\log x)}{x}-\frac{4 \sin (\log x)}{x}\right]-/-3 \sin (\log x)+4 \cos (\log x)\right]}{x^{2}} \\
& =\frac{-3 \cos (\log x)-4 \sin (\log x)+3 \sin (\log x)+4 \cos (\log x)}{x^{2}} \\
& \frac{d^{2} y}{\mathrm{dx}^{2}}=\frac{-\sin (\log x)-7 \cos (\log x)}{x^{2}}
\end{aligned}
$$

$$
\Rightarrow \quad y_{2}=\frac{-\sin (\log x)-7 \cos (\log x)}{x^{2}}
$$

Now, LHS $=x^{2} y_{2}+x y_{1}+y$

$$
=x^{2}\left(\frac{-\sin (\log x)-7 \cos (\log x)}{x^{2}}\right)+x \times \frac{1}{x}[-3 \sin (\log x)+4 \cos (\log x)]+3 \cos (\log x)+4 \sin (\log
$$

x)

$$
\begin{aligned}
& =-\sin (\log x)-7 \cos (\log x)-3 \sin (\log x)+4 \cos (\log x)+3 \cos (\log x)+4 \sin (\log x) \\
& =0=\text { RHS }
\end{aligned}
$$

Q. 10 .

If $x=a(\cos t+t \sin t)$ and $y=a(\sin t-t \cos t), 0<t<\frac{\pi}{2}$, find $\frac{d^{2} x}{{d t^{2}}^{2}}, \frac{d^{2} y}{\mathrm{dt}^{2}}$ and $\frac{d^{2} y}{d x^{2}}$.

Ans.

Given, $x=a(\cos t+t \sin t)$

Differentiating both sides with respect to t, we get

$$
\begin{align*}
& \frac{\mathrm{dx}}{\mathrm{dt}}=a(-\sin t+t \cos t+\sin t) \\
\Rightarrow \quad & \frac{\mathrm{dx}}{\mathrm{dt}}=a t \cos t \tag{i}
\end{align*}
$$

Differentiating again with respect to t, we get

$$
\frac{d^{2} x}{d t^{2}}=a(-t \sin t+\cos t)=a(\cos t-t \sin t)
$$

Again, $y=a(\sin t-t \cos t)$
Differentiating with respect to t, we get

$$
\begin{equation*}
\frac{\mathrm{dy}}{\mathrm{dt}}=a(\cos t+t \sin t-\cos t) \tag{ii}
\end{equation*}
$$

$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dt}}=$ at $\sin t$
Differentiating again with respect to t we get

$$
\frac{d^{2} y}{d t^{2}}=a(t \cos t+\sin t)
$$

Now, $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dt} / \mathrm{dy}}{\mathrm{dt} / \mathrm{dx}} \quad[$ from (i) and (ii)]
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\text { at } \sin t}{\text { at } \cos t}$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\tan t$
Differentiating again with respect to x, we get

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\sec ^{2} t \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\sec ^{2} t \cdot \frac{1}{\mathrm{dt} / \mathrm{dx}}=\frac{\sec ^{2} t}{\mathrm{at} \cos t} \quad[\text { from }(i)] \\
& =\frac{\sec ^{3} t}{\mathrm{at}}
\end{aligned}
$$

Hence $\frac{d^{2} x}{d t^{2}}=a(\cos t-t \sin t)$
and $\quad \frac{d^{2} y}{\mathrm{dt}^{2}}=a(t \cos t+\sin t)$ and $\frac{d^{2} y}{d \mathrm{x}^{2}}=\frac{\sec ^{3} t}{\mathrm{at}}$
Q.11. If $x=a\left(\cos t+\log \tan \frac{t}{2}\right), y=a \sin t$, then find $\frac{d^{2} y}{\mathrm{dt}^{2}}$ and $\frac{d^{2} y}{\mathrm{dx}^{2}}$.

Ans.

Given, $x=a\left(\cos t+\log \tan \frac{t}{2}\right)$
Differentiating with respect to t, we get

$$
\begin{aligned}
\frac{\mathrm{dx}}{\mathrm{dt}} & =a\left(-\sin t+\frac{1}{\tan \frac{t}{2}} \cdot \sec ^{2} \frac{t}{2} \cdot \frac{1}{2}\right) \\
& =a\left\{-\sin t+\frac{1}{2 \sin \frac{t}{2} \cdot \cos \frac{t}{2}}\right\}=a\left\{-\sin t+\frac{1}{\sin t}\right\} \\
\frac{\mathrm{dx}}{\mathrm{dt}} & =a\left(\frac{1-\sin ^{2} t}{\sin t}\right)=a \frac{\cos ^{2} t}{\sin t} \\
\because \quad \mathrm{y} & =a \sin t
\end{aligned}
$$

Differentiating with respect to t, we get

$$
\begin{aligned}
& \quad \frac{\mathrm{dy}}{\mathrm{dt}}=a \cdot \cos t \Rightarrow \frac{d^{2} y}{\mathrm{dt}^{2}}=-a \sin t \\
& \therefore \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy} / \mathrm{dt}}{\mathrm{dx} / \mathrm{dt}}=\frac{a \cos t \cdot \sin t}{a \cos ^{2} t}=\tan t \\
& \therefore \quad \frac{d^{2} y}{\mathrm{dx}}=\sec ^{2} t \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\sec ^{2} t \cdot \frac{1 \times \sin t}{a \cos ^{2} t}=\frac{1}{a} \sec ^{4} t \cdot \sin t \\
& \text { Hence, } \frac{d^{2} y}{\mathrm{dx}^{2}}=-a \sin t \text { and } \frac{d^{2} y}{\mathrm{dx}^{2}}=\frac{\sec ^{4} t \sin t}{a}
\end{aligned}
$$

Q.12. If $x=a \sin t$ and $y=a\left(\cos t+\log \tan \frac{t}{2}\right)$, then find $\frac{d^{2} y}{\mathrm{dx}^{2}}$.

Ans.

Given, $x=a \sin t$

Differentiating both sides with respect to t, we get

$$
\begin{equation*}
\frac{\mathrm{dx}}{\mathrm{dt}}=a \cos t \tag{i}
\end{equation*}
$$

Again, $\because y=a\left[\cos t+\log \left(\tan \frac{t}{2}\right)\right]$
Differentiating both sides with respect to t, we get

$$
\begin{align*}
\quad \frac{\mathrm{dy}}{\mathrm{dt}} & =a\left[-\sin t+\frac{1}{\tan \frac{t}{2}} \cdot \sec ^{2} \frac{t}{2} \cdot \frac{1}{2}\right] \\
\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dt}} & =a\left[-\sin t+\frac{1}{\sin t}\right] \\
\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dt}} & =\frac{a\left(1-\sin ^{2} t\right)}{\sin t} \\
\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dt}} & =\frac{a \cos ^{2} t}{\sin t} \tag{ii}\\
\because \quad \frac{\mathrm{dy}}{\mathrm{dx}} & =\frac{\mathrm{dy} / \mathrm{dt}}{\mathrm{dx} / \mathrm{dt}} \quad \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{a \cos ^{2} t}{\sin t} \times \frac{1}{a \cos t} \\
\frac{\mathrm{dy}}{\mathrm{dx}} & =\cot t
\end{align*} \quad \quad[\text { From }(i) \text { and }(i i)]
$$

Differentiating again with respect to x, we get

$$
\begin{aligned}
\frac{d^{2} y}{d \mathrm{x}^{2}} & =-\operatorname{cosec}^{2} t \cdot \frac{\mathrm{dt}}{\mathrm{dx}} \\
\Rightarrow \quad \frac{d^{2} y}{d \mathrm{x}^{2}} & =-\operatorname{cosec}^{2} t \cdot \frac{1}{a \cos t}=\frac{-\operatorname{cosec}^{2} t}{a \cos t}
\end{aligned}
$$

Q.13. If $=\log \left[x+\sqrt{x^{2}+a^{2}}\right]$, show that $\left(x^{2}+a^{2}\right) \frac{d^{2} y}{\mathrm{dx}^{2}}+x \frac{\mathrm{dy}}{\mathrm{dx}}=0$.

Ans.

Given $y=\log \left[x+\sqrt{x^{2}+a^{2}}\right]$

$$
\begin{align*}
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{x+\sqrt{x^{2}+a^{2}}} \cdot\left[1+\frac{2 x}{2 \sqrt{x^{2}+a^{2}}}\right] \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{x+\sqrt{x^{2}+a^{2}}}{\left(x+\sqrt{x^{2}+a^{2}}\right)\left(\sqrt{x^{2}+a^{2}}\right)} \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\sqrt{x^{2}+a^{2}}} \tag{i}
\end{align*}
$$

Differentiating again with respect to x, we get

$$
\begin{aligned}
& \frac{d^{2} y}{\mathrm{dx}}=-\frac{1}{2}\left(x^{2}+a^{2}\right)^{-\frac{3}{2}} \cdot 2 x=\frac{-x}{\left(x^{2}+a^{2}\right)^{\frac{3}{2}}} \\
\Rightarrow \quad & \frac{d^{2} y}{\mathrm{dx}^{2}}=\frac{-x}{\left(x^{2}+a^{2}\right) \cdot \sqrt{x^{2}+a^{2}}} \\
\Rightarrow \quad & \left(x^{2}+a^{2}\right) \frac{d^{2} y}{\mathrm{dx}^{2}}=-\frac{x}{\sqrt{x^{2}+a^{2}}} \\
\Rightarrow \quad & \left(x^{2}+a^{2}\right) \frac{d^{2} y}{\mathrm{dx}}+x \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=0
\end{aligned}
$$

$$
[\text { from }(i)]
$$

If $x=a \cos ^{3} \theta$ and $y=a \sin ^{3} \theta$, then find the value of $\frac{d^{2} y}{d x^{2}}$ at $\theta=\frac{\pi}{6}$.
Q.14.

Ans.

Given, $x=a \cos ^{3} \theta$

Differentiating both sides with respect to θ, we get

$$
\begin{equation*}
\frac{\mathrm{dx}}{\mathrm{~d} \mathrm{\theta}}=-3 a \cos ^{2} \theta \cdot \sin \theta \tag{i}
\end{equation*}
$$

Also, $y=a \sin ^{3} \theta$

Differentiating both sides with respect to θ, we get

$$
\begin{equation*}
\frac{\mathrm{dy}}{d \theta}=3 a \sin ^{2} \theta \cdot \cos \theta \tag{ii}
\end{equation*}
$$

Now $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{d \theta / \mathrm{dy}}{d \theta / \mathrm{dx}}=\frac{3 a \sin ^{2} \theta \cdot \cos \theta}{-3 a \cos ^{2} \theta \cdot \sin \theta}$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=-\tan \theta$
$\Rightarrow \quad \frac{d^{2} y}{\mathrm{dx}^{2}}=-\sec ^{2} \theta \cdot \frac{d \theta}{\mathrm{dx}}$
$=\frac{-\sec ^{2} \theta}{-3 a \cos ^{2} \theta \cdot \sin \theta}$
$=\frac{1}{3 a} \sec ^{4} \theta \cdot \operatorname{cosec} \theta$
$\left.\therefore \quad \frac{d^{2} y}{\mathrm{dx}^{2}}\right]_{x=\frac{\pi}{6}}=\frac{1}{3 a} \sec ^{4} \frac{\pi}{6} \cdot \operatorname{cosec} \frac{\pi}{6}$

$$
=\frac{1}{3 a} \cdot\left(\frac{2}{\sqrt{3}}\right)^{4} \times 2=\frac{32}{27 a}
$$

If $y=X^{x}$, then prove that $\frac{d^{2} y}{\mathrm{dx}^{2}}-\frac{1}{y}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}-\frac{y}{x}=0$.
Q. 15.

Ans.

Given, $y=x^{x}$
Taking logarithm on both sides, we get

$$
\log y=x \cdot \log x
$$

Differentiating both sides, we get

$$
\begin{align*}
& \Rightarrow \quad \frac{1}{y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=x \cdot \frac{1}{x}+\log x \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=y(1+\log x) \tag{i}
\end{align*}
$$

Again differentiating both sides, we get

$$
\begin{aligned}
& \quad \frac{d^{2} y}{\mathrm{dx}^{2}}=y \cdot \frac{1}{x}+(1+\log x) \cdot \frac{\mathrm{dy}}{\mathrm{dx}} \\
& \Rightarrow \quad \\
& \quad \frac{d^{2} y}{\mathrm{dx}}=\frac{y}{x}+\frac{1}{y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}} \quad[\text { From (i)] } \\
& \Rightarrow \quad \frac{d^{2} y}{\mathrm{dx}^{2}}=\frac{y}{x}+\frac{1}{y}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2} \\
& \Rightarrow \quad \frac{d^{2} y}{\mathrm{dx}^{2}}-\frac{1}{y}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}-\frac{y}{x}=0 \\
& \text { Q.16. } \\
& \text { If } y=x^{3} \log \left(\frac{1}{x}\right) \text {, then prove that } x \frac{d^{2} y}{\mathrm{dx}^{2}}-2 \frac{\mathrm{dy}}{\mathrm{dx}}+3 x^{2}=0 .
\end{aligned}
$$

Ans.

The given differential equation is $y=x^{3} \log \left(\frac{1}{x}\right)$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=x^{3} \cdot x\left(\frac{-1}{x^{2}}\right)+\log \frac{1}{x} \cdot 3 x^{2}=-x^{2}+3 x^{2} \cdot \log \left(\frac{1}{x}\right) \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=-x^{2}+\frac{3}{x} \cdot x^{3} \log \left(\frac{1}{x}\right) \\
& \Rightarrow \quad x \frac{\mathrm{dy}}{\mathrm{dx}}=-x^{3}+3 y
\end{aligned}
$$

Again differentiating with respect to x

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}+x^{2} \frac{d^{2} y}{\mathrm{dx}^{2}}=-3 x^{2}+3 \frac{\mathrm{dy}}{\mathrm{dx}} \\
& \Rightarrow \quad x \frac{d^{2} y}{\mathrm{dx}^{2}}-2 \frac{\mathrm{dy}}{\mathrm{dx}}+3 x^{2}=0
\end{aligned}
$$

Hence proved.

$$
\text { If } \mathrm{y}=\left(\mathrm{x}+\sqrt{1+\mathrm{x}^{2}}\right)^{\mathrm{n}} \text {, then show that }
$$

Q.17. $\left(1+x^{2}\right) \frac{d^{2} y}{\mathrm{dx}^{2}}+x \frac{\mathrm{dy}}{\mathrm{dx}}=n^{2} y$

Ans.

Given $y=\left(x+\sqrt{1+x^{2}}\right)^{n}$
Differentiating with respect to x, we get

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=n\left(x+\sqrt{1+x^{2}}\right)^{n-1} \cdot\left\{1+\frac{2 x}{2 \sqrt{1+x^{2}}}\right\} \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=n\left(x+\sqrt{1+x^{2}}\right)^{n-1} \cdot\left(\frac{x+\sqrt{1+x^{2}}}{\sqrt{1+x^{2}}}\right) \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{n\left(x+\sqrt{1+x^{2}}\right)^{n}}{\sqrt{1+x^{2}}} \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{ny}}{\sqrt{1+x^{2}}} \\
& \Rightarrow \quad \sqrt{1+x^{2}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{ny}
\end{aligned}
$$

Again differentiating with respect to x, we get

$$
\begin{aligned}
& \sqrt{1+x^{2}} \cdot \frac{d^{2} y}{\mathrm{dx}^{2}}+\frac{2 x}{2 \sqrt{1+x^{2}}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=n \frac{\mathrm{dy}}{\mathrm{dx}} \\
\Rightarrow & \left(1+x^{2}\right) \frac{\mathrm{dy}}{\mathrm{dx}}+x \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=n \cdot \sqrt{1+x^{2}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}} \\
\Rightarrow \quad & \left(1+x^{2}\right) \frac{\mathrm{dy}}{\mathrm{dx}}+x \frac{\mathrm{dy}}{\mathrm{dx}}=n \cdot \sqrt{1+x^{2}} \cdot \frac{\mathrm{ny}}{\sqrt{1+x^{2}}} \\
\Rightarrow \quad & \left(1+x^{2}\right) \frac{d^{2} y}{\mathrm{dx}^{2}}+x \frac{\mathrm{dy}}{\mathrm{dx}}=n^{2} y
\end{aligned}
$$

Long Answer Questions-I-D (PYQ)

[4 Marks]

Q.1. Verify Lagrange's mean value theorem for the following function:
$f(x)=x^{2}+2 x+3$, for $[4,6]$.
Ans.
$f(x)=x^{2}+2 x+3$ for $[4,6]$
i. Given function is a polynomial hence it is continuous.
ii. $\quad f^{\prime}(x)=2 x+2$ which is differentiable.
$f(4)=16+8+3=27$ and $f(6)=36+12+3=51$
$\Rightarrow \quad f(4) \neq f(6)$. All conditions of mean value theorem are satisfied.
$\therefore \quad$ There exist at least one real value $c \in(4,6)$

$$
\text { such that } f^{\prime}(c)=\frac{f(6)-f(4)}{6-4}=\frac{24}{2}=12
$$

$$
\Rightarrow \quad 2 c+2=12 \quad \text { or } \quad c=5 \in(4,6)
$$

Hence, Lagrange' mean value theorem is verified.
Q.2. Verify Mean Value theorem for the function $f(x)=2 \sin x+\sin 2 x$ on [$0, \pi$].
Ans.
We have,
$f(x)=2 \sin x+\sin 2 x$
$f(x)$ is continuous in $[0, \pi]$ being trigonometric function.
Also $f(x)$ is differentiable on $(0, \pi)$.

Hence, condition of Mean Value theorem is satisfied.
Therefore, mean value theorem is applicable.
So, \exists a real number c such that

$$
\begin{equation*}
f^{\prime}(c)=\frac{f(\pi)-f(0)}{\pi-0} \tag{i}
\end{equation*}
$$

Now $f(0)=2 \sin 0+\sin 0=0$

$$
\begin{aligned}
& f(p)=2 \sin \pi+\sin 2 \pi=0 \\
& \text { and } f^{\prime}(x)=2 \cos x+2 \cos 2 x \\
& \therefore \quad f^{\prime}(c)=2 \cos c+2 \cos 2 c
\end{aligned}
$$

From (i)
$2 \cos c+2 \cos 2 c=\frac{0-0}{\pi}$
$\Rightarrow 2 \cos c+2 \cos 2 c=0$
$\Rightarrow \quad 2 \cos c+2\left(2 \cos ^{2} c-1\right)=0$
$\Rightarrow \quad \cos c+2 \cos ^{2} c-1=0$
$\Rightarrow \quad 2 \cos ^{2} c+\cos c-1=0$
$\Rightarrow \quad 2 \cos ^{2} c+2 \cos c-\cos c-1=0$
$\Rightarrow 2 \cos c(\cos c+1)-1(\cos c+1)=0$

$$
\begin{aligned}
& \Rightarrow \quad(\cos c+1)(2 \cos c-1)=0 \\
& \Rightarrow \quad \cos c=-1 \text { and } \cos c=\frac{1}{2} \\
& \Rightarrow \quad c=\pi \text { and } c=\frac{\pi}{3} \\
& \because \quad c=\frac{\pi}{3} \in(0, \pi)
\end{aligned}
$$

Hence Mean Value theorem is verified.

Long Answer Questions-I-D (OIQ)

[4 Marks]

Q.1. Verify Lagrange's mean value theorem for the function

$f(x)=x+\frac{1}{2}$ in $[1,3]$.
Ans.
Given, $f(x)=x+\frac{1}{x}$ or $f(x)=\frac{x^{2}+1}{x}$
i. Since $f(x)$ is a rational function such that the denominator is not zero for any value in $[1,3]$, it is a continuous function.
ii. $f^{\prime}(x)=1-\frac{1}{x^{2}}$ which exist in $(1,3) \quad \therefore \quad f(x)$ is differentiable in $(1,3)$

Thus, all the conditions of Lagrange's Mean Value theorem are satisfied. Hence, there exist at least one real value c such that

$$
\begin{equation*}
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \tag{i}
\end{equation*}
$$

where $f^{\prime}(c)=1-\frac{1}{c^{2}} ; f(b)=f(3)=\frac{10}{3}$ and $f(a)=f(1)=2$

From (i) and (ii), we get
$\Rightarrow \quad 1-\frac{1}{c^{2}}=\frac{\frac{10}{3}-2}{3-1}$
$\Rightarrow \quad \frac{c^{2}-1}{c^{2}}=\frac{2}{3}$
$\Rightarrow \quad 3 c^{2}-3=2 c^{2}$
$\Rightarrow \quad c^{2}=3$
$\Rightarrow \quad c= \pm \sqrt{3}$
Neglecting $c=-\sqrt{3}$ as $-\sqrt{3} \notin(1,3) \quad \therefore c=\sqrt{3} \in(1,3)$

Hence, Lagrange's mean value theorem is verified.
Q.2. Using Rolle's theorem, find the points on the curve $y=x^{2}$, where $x \in[-$ 2, 2] and the tangent is parallel to x-axis.

Ans.
$f(x)=x^{2}$
i. $f(x)$ is a polynomial, hence continuous in $[-2,2]$
ii. $f^{\prime}(x)=2 x$ which exist in $[-2,2]$
$\therefore f(x)$ is differentiable in $[-2,2]$
iii. $f(-2)=(-2)^{2}=4$
$f(2)=(2)^{2}=4$
$\therefore \quad f(2)=f(-2)$
Thus, all the conditions of Rolle's theorem are applicable, then there exist at least one real value c, such that
$f(c)=0$
$\Rightarrow \quad 2 \mathrm{c}=0$
$\Rightarrow \quad c=0$
when $x=0, y=(0)^{2}=0$
$\therefore \quad(0,0)$ is the required point.

[^0]: If $y=\log \left[x+\sqrt{\left.x^{2}+1\right]}\right.$, then prove that $\left(x^{2}+1\right) \frac{d^{2} y}{\mathrm{dx}^{2}}+x \frac{\mathrm{dy}}{\mathrm{dx}}=0$

 ## Q.4.

