Very Short Answer Questions (PYQ)

[1 Mark]

Q.1. What is the degree of the following differential equation?
$5 x\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}-\frac{d^{2} y}{\mathrm{dx}^{2}}-6 y=\log x ?$
Ans. Degree of differential equation is 1 because power of highest order derivative $\frac{d^{2} y}{d x^{2}}$ is one.
Q.2. Find the order and degree of differential equation:

$$
\frac{d^{4} y}{\mathrm{dx}^{2}}+\sin \left(\frac{d^{3} y}{\mathrm{dx}^{3}}\right)=0
$$

Ans.

Order is 4 but degree is not defined because given differential equation cannot be written in the form of polynomial in differential co-efficient.
Q.3. Find the differential equation representing the curve $y=c x+c^{2}$.

Ans.
Given $y=c x+c^{2}$
$\Rightarrow \quad \frac{d y}{d x}=c+0 \quad$ [Differentiating with respect to x]
$\Rightarrow \quad \frac{d y}{d x}=c$
Q.4. Find the differential equation representing the curve $y=e^{-x}+a x+$ b, where \boldsymbol{a} and \boldsymbol{b} are arbitrary constants.

Ans.

Given curve is

$$
y=e^{-x}+\mathrm{ax}+b
$$

Differentiating with respect to x, we get

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=-e^{-x}+a
$$

Differentiating again with respect to x, we get

$$
\frac{d^{2} y}{\mathrm{dx}^{2}}=e^{-x}
$$

Q.5. Find the differential equation representing the family of curves $v=\frac{A}{r}+B$, where A and B are arbitrary constants.

Ans.
Given family of curve is

$$
v=\frac{A}{r}+B
$$

Differentiating with respect to r, we get

$$
\frac{\mathrm{dv}}{\mathrm{dr}}=\frac{-A}{r^{2}}
$$

Again differentiating with respect to r, we get

$$
\begin{aligned}
& \frac{d^{2} v}{\mathrm{dr}^{2}}=\frac{2 A}{r^{3}} \\
\Rightarrow \quad & \frac{d^{2} v}{\mathrm{dr}^{2}}=\frac{2}{r} \cdot \frac{A}{r^{2}} \\
\Rightarrow \quad & \frac{d^{2} v}{\mathrm{dr}^{2}}=\frac{2}{r} \cdot\left(-\frac{\mathrm{dv}}{\mathrm{dr}}\right) \\
\Rightarrow \quad & r \frac{d^{2} v}{\mathrm{dr}^{2}}=-2 \frac{\mathrm{dv}}{\mathrm{dr}} \\
\Rightarrow \quad & r \frac{d^{2} v}{\mathrm{dr}^{2}}+2 \frac{\mathrm{dv}}{\mathrm{dr}}=0
\end{aligned}
$$

Q.6. Write the sum of the order and degree of the following differential equation:
$\frac{d}{\mathrm{dx}}\left\{\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{3}\right\}=0$
Ans.
Given differential equation is

$$
\begin{array}{ll}
& \frac{d}{\mathrm{dx}}\left[\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{3}\right]=0 \\
\Rightarrow & 3\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2} \cdot \frac{d^{2} y}{d x^{2}}=0 \\
\text { i.e., } & \text { order }=2 \text {, degree }=1 \\
\therefore \quad & \text { Required sum }=2+1=3 .
\end{array}
$$

Very Short Answer Questions (OIQ)

[1 Mark]

Q.1. Write the order and degree of each of the following differential equations:

i. $\frac{d^{3} y}{\mathrm{dx}^{3}}+2\left(\frac{d^{2} y}{\mathrm{dx}^{2}}\right)-\frac{\mathrm{dy}}{\mathrm{dx}}+y=0$
ii. $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+x^{2}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{3}=0$

Ans.
i. \quad Order $=3$, degree $=1$
ii. \quad Order $=2$, degree $=2$

Q.2. Write the integrating factor of

$$
\frac{\mathrm{dy}}{\mathrm{dx}}-\left(\frac{1}{1+x}\right) y=(1+x) e^{x}
$$

Ans.

$$
\mathrm{IF}=e^{\int-\left(\frac{1}{1+z}\right) \mathrm{dx}}=e^{-\log (1+x)}=e^{\log \left|(1+x)^{-1}\right|}=\frac{1}{1+x}
$$

Q.3. Write the integrating factor of
$(x \log x) \frac{\mathrm{dy}}{\mathrm{dx}}+y=2 \log x$

Ans.

From the given differential equation, we have

$$
\frac{\mathrm{dy}}{\mathrm{dx}}+\frac{1}{x \log x} \cdot y=\frac{2}{x}
$$

So, IF $=e^{\int \frac{1}{x \log x} \mathrm{dx}}=e^{\log |(\log x)|}=\log x$

Q.4. Write the integrating factor of

Ans.

$$
\frac{\mathrm{dx}}{\mathrm{dy}}+(\tan y) x=\sec ^{2} y
$$

Short Answer Questions

[2 Mark]

Q.1. Write the integrating factor of the following differential equation:

$$
\left(1+y^{2}\right)+(2 x y-\cot y) \frac{\mathrm{dy}}{\mathrm{dx}}=0
$$

Ans.

$$
\begin{aligned}
& \left(1+y^{2}\right)+(2 x y-\cot y) \frac{\mathrm{dy}}{\mathrm{dx}}=0 \\
& \Rightarrow \quad(2 \mathrm{xy}-\cot y) \frac{\mathrm{dy}}{\mathrm{dx}}=-\left(1+y^{2}\right) \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{1+y^{2}}{2 \mathrm{xy}-\cot y} \\
& \Rightarrow \quad \frac{\mathrm{dx}}{\mathrm{dy}}=-\frac{(2 \mathrm{xy}-\cot y)}{1+y^{2}} \\
& \Rightarrow \quad \frac{\mathrm{dx}}{\mathrm{dy}}+\frac{2 y}{1+y^{2}} \cdot x=\frac{\cot y}{1+y^{2}}
\end{aligned}
$$

It is in the form $\frac{\mathrm{dx}}{\mathrm{dy}}+\mathrm{Px}=Q$, where P and Q are function of y

$$
\Rightarrow \quad \mathrm{IF}=e^{\int p \mathrm{dy}}=e^{\int \frac{2 y}{1 \cdot y^{2}} \mathrm{dy}}=e^{\log \left|1+y^{2}\right|}=1+y^{2}
$$

Q.2. Write the general solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}$ Ans.

We have, $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{y}{x}$

$$
\Rightarrow \quad \frac{\mathrm{dy}}{y}=\frac{\mathrm{dx}}{x}
$$

Integrating both sides, we get

$$
\begin{aligned}
& \log |y|=\log |x|+\log |C| \\
\Rightarrow & |y|=\mid x C \\
\Rightarrow & y=C x
\end{aligned}
$$

Q.3. Find the general solution of the differential equation $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$

Ans.
Given $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1+\mathrm{y}^{2}}{1+x^{2}}$

$$
\Rightarrow \quad \frac{\mathrm{dy}}{1+y^{2}}=\frac{\mathrm{dx}}{1+x^{2}}
$$

Integrating both sides we get

$$
\begin{aligned}
& \int \frac{\mathrm{dy}}{1+y^{2}}=\int \frac{\mathrm{dx}}{1+x^{2}} \\
& \Rightarrow \quad \tan ^{-1} y=\tan ^{-1} x+C
\end{aligned}
$$

Q.4. Find the general solution of differential equation.

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1-\cos x}{1+\cos x}
$$

Ans.

Given $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1-\cos x}{1+\cos x}$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\tan ^{2} \frac{x}{2}$
$\Rightarrow \quad \mathrm{dy}=\left(\sec ^{2} \frac{x}{2}-1\right) \mathrm{dx}$

Integrating both sides

$$
\begin{aligned}
& \Rightarrow \quad \int \mathrm{dy}=\int \sec ^{2} x / 2 \mathrm{dx}-\int \mathrm{dx} \\
& \Rightarrow \quad y=2 \tan \frac{x}{2}-x+C
\end{aligned}
$$

Q.5. Solve the differential equation

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\left(1+x^{2}\right)\left(1+y^{2}\right)
$$

Ans.

$$
\begin{aligned}
& \text { Given } \frac{\mathrm{dy}}{\mathrm{dx}}=\left(1+x^{2}\right)\left(1+y^{2}\right) \\
& \Rightarrow \quad \frac{\mathrm{dy}}{1+y^{2}}=\left(1+x^{2}\right) \mathrm{dx} \\
& \Rightarrow \quad \int \frac{\mathrm{dy}}{1+y^{2}}=\int\left(1+x^{2}\right) \mathrm{dx} \\
& \Rightarrow \quad \tan ^{-1} y=x+\frac{x^{3}}{3}+C
\end{aligned}
$$

Q.6. Solve the differential equation.

$\mathbf{y} \log \mathbf{y d x}-\mathbf{x d y}=0$
Ans.

$$
\begin{aligned}
& \text { Given } y \log y d x-x d y=0] \\
& \Rightarrow \quad y \log y d x=x d y \\
& \Rightarrow \quad \frac{\mathrm{dx}}{x}=\frac{\mathrm{dy}}{y \log y} \\
& \Rightarrow \quad \int \frac{\mathrm{dy}}{y \log y}=\int \frac{\mathrm{dx}}{x} \\
& \text { Let } \quad \log y=t \\
& \Rightarrow \quad \frac{1}{y} \mathrm{dy}=\mathrm{dt} \\
& \Rightarrow \quad \int \frac{\mathrm{dt}}{t}=\log x+C C_{1} \\
& \Rightarrow \quad \log t=\log x+\log C \\
& \Rightarrow \quad t=C x \\
& \Rightarrow \quad \log y=C x \\
& \Rightarrow \quad y=e C x
\end{aligned} \quad\left[\text { where } C_{1}=\log C\right]
$$

Q.7. Solve differential equation $\frac{d x}{x}+\frac{d y}{y}=0$.

Ans.

Given $\frac{d x}{x}+\frac{d y}{y}=0$

$$
\Rightarrow \quad \frac{d y}{y}=-\frac{d x}{x}
$$

Integrating both sides, we get

$$
\begin{aligned}
& \int \frac{\mathrm{dy}}{y}=-\int \frac{\mathrm{dx}}{x} \\
\Rightarrow & \log y=-\log x+\log C \\
\Rightarrow & \log y+\log x=\log C \\
\Rightarrow & \log x y=\log C \\
\Rightarrow & x y=C
\end{aligned}
$$

Long Answer Questions-I (PYQ)

[4 Marks]

Q.1. Find the particular solution of the differential equation $\log \left(\frac{d y}{d x}\right)=3 x+4 y$, given that $\boldsymbol{y}=0$ when $\boldsymbol{x}=0$.

Ans.
Given differential equation is $\log \frac{\mathrm{dy}}{\mathrm{dx}}=3 x+4 y$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=e^{3 x+4 y}$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=e^{3 x} \cdot e^{4 y}$
$\Rightarrow \quad \frac{\mathrm{dy}}{e^{4 y}}=e^{3 x} \cdot \mathrm{dx}$
$\Rightarrow \quad e^{-4 y} \mathrm{dy}=e^{3 x} \mathrm{dx}$
Integrating both sides, we get

$$
\begin{align*}
& \int e^{-4 y} \mathrm{dy}=\int e^{3 x} \mathrm{dx} \\
& \Rightarrow \frac{e^{-4 y}}{-4}=\frac{e^{3 x}}{3}+C_{1} \\
& \Rightarrow \quad-3 e^{-4 y}=4 e^{3 x}+12 C_{1} \\
& \Rightarrow \quad 4 e^{3 x}+3 e^{-4 y}=-12 C_{1} \\
& \Rightarrow \quad 4 e^{3 x}+3 e^{-4 y}=C \tag{i}
\end{align*}
$$

It is general solution.

Now for particular solution we put $x=0$ and $y=0$ in (i)

$$
4+3=C \quad \Rightarrow \quad C=7 .
$$

Putting $C=7$ in (i), we get

$$
4 e^{3 x}+3 e^{-4 y}=7
$$

It is required particular solution.

Q.2. Solve the following differential equation:

$2 x^{2} \frac{\mathrm{dy}}{\mathrm{dx}}-2 \mathrm{xy}+y^{2}=0$
Ans.
Given $2 x^{2} \frac{\mathrm{dy}}{\mathrm{dx}}-2 \mathrm{xy}+y^{2}=0$
$\Rightarrow \quad 2 x^{2} \frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{xy}-y^{2}$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2 \mathrm{xy}-y^{2}}{2 x^{2}}$
It is homogeneous differential equation.

Let $y=\mathrm{vx}$

$$
\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=v+x \frac{\mathrm{dv}}{\mathrm{dx}}
$$

Equation (i) becomes

$$
\begin{aligned}
& v+x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{2 x . v \mathrm{vx}-v^{2} x^{2}}{2 x^{2}} \\
\Rightarrow & v+x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{2 x^{2}\left(v-\frac{v^{2}}{2}\right)}{2 x^{2}} \\
\Rightarrow \quad & x \frac{\mathrm{dv}}{\mathrm{dx}}=v-\frac{v^{2}}{2}-v \\
\Rightarrow \quad & x \frac{\mathrm{dv}}{\mathrm{dx}}=-\frac{v^{2}}{2} \\
\Rightarrow \quad & \frac{\mathrm{dx}}{x}=-\frac{2 \mathrm{dv}}{v^{2}}
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{aligned}
& \Rightarrow \quad \int \frac{\mathrm{dx}}{x}=-2 \int \frac{\mathrm{dv}}{v^{2}} \\
& \Rightarrow \quad \log |x|+C=-2 \frac{v^{2+1}}{-2+1} \\
& \Rightarrow \quad \log |x|+C=2 \cdot \frac{1}{v}
\end{aligned}
$$

Putting $v=\frac{y}{x}$, we get

$$
\log |x|+C=\frac{2 x}{y}
$$

Q.3. Find the particular solution of the following differential equation:

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=1+x^{2}+y^{2}+x^{2} y^{2}, \text { given that } y=1 \text { when } x=0
$$

Ans.

Given $\frac{\mathrm{dy}}{\mathrm{dx}}=1+x^{2}+y^{2}+x^{2} y^{2}$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\left(1+x^{2}\right)+y^{2}\left(1+x^{2}\right)$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\left(1+x^{2}\right)\left(1+y^{2}\right)$
$\Rightarrow \quad\left(1+x^{2}\right) \mathrm{dx}=\frac{\mathrm{dy}}{\left(1+y^{2}\right)}$
Integrating both sides, we get

$$
\begin{aligned}
& \int\left(1+x^{2}\right) \mathrm{dx}=\int \frac{\mathrm{dy}}{\left(1+y^{2}\right)} \\
\Rightarrow & \int \mathrm{dx}+\int x^{2} \mathrm{dx}=\int \frac{\mathrm{dy}}{\left(1+y^{2}\right)} \\
\Rightarrow & x+\frac{x^{3}}{3}+C=\tan ^{-1} y
\end{aligned}
$$

Putting $y=1$ and $x=0$, we get

$$
\begin{aligned}
& \tan ^{-1}(1)=0+0+C \\
\Rightarrow & C=\tan ^{-1}(1)=\frac{\pi}{4}
\end{aligned}
$$

Therefore, required particular solution is

$$
\tan ^{-1} y=x+\frac{x^{3}}{3}+\frac{\pi}{4}
$$

Q.4. Find the particular solution of the differential equation:

$$
x\left(x^{2}-1\right) \frac{\mathrm{dy}}{\mathrm{dx}}=1 ; y=0 ; \text { when } x=2
$$

Ans.

Given differential equation is,

$$
\begin{aligned}
& x\left(x^{2}-1\right) \frac{\mathrm{dy}}{\mathrm{dx}}=1 \\
\Rightarrow & \mathrm{dy}=\frac{\mathrm{dx}}{x\left(x^{2}-1\right)} \\
\Rightarrow & \mathrm{dy}=\frac{\mathrm{dx}}{x(x-1)(x+1)}
\end{aligned}
$$

Integrating both sides, we get,

$$
\begin{align*}
& \int \mathrm{dy}=\int \frac{\mathrm{dx}}{x(x-1)(x+1)} \\
\Rightarrow \quad & y=\int \frac{\mathrm{dx}}{x(x-1)(x+1)} \tag{i}
\end{align*}
$$

Let $\frac{1}{x(x-1)(x+1)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1}$
$\Rightarrow \quad \frac{1}{x(x-1)(x+1)}=\frac{A(x-1)(x+1)+\mathrm{Bx}(x+1)+\mathrm{Cx}(x-1)}{x(x-1)(x+1)}$
$\Rightarrow \quad 1=A(x-1)(x+1)+B x(x+1)+C x(x-1)$
Putting $x=1$, we get $1=0+B \cdot 1.2+0 \Rightarrow B=\frac{1}{2}$

Putting $x=-1$, we get $1=0+0+C \cdot(-1) \cdot(-2) \Rightarrow \quad C=\frac{1}{2}$

Putting $x=0$, we get $1=A(-1) \cdot 1 \Rightarrow A=-1$
Hence, $\frac{1}{x(x-1)(x+1)}=\frac{-1}{x}+\frac{1}{2(x-1)}+\frac{1}{2(x+1)}$

$$
\begin{align*}
& \text { From (i) } y=\int\left(-\frac{1}{x}+\frac{1}{2(x-1)}+\frac{1}{2(x+1)}\right) \mathrm{dx} \\
& \Rightarrow \quad y=-\int \frac{\mathrm{dx}}{x}+\frac{1}{2} \int \frac{\mathrm{dx}}{x-1}+\frac{1}{2} \int \frac{\mathrm{dx}}{x+1} \\
& \Rightarrow \quad y=-\log x+\frac{1}{2} \log |x-1|+\frac{1}{2} \log |x+1|+\log C_{1} \\
& \Rightarrow \quad 2 y=2 \log \frac{1}{x}+\log \left|x^{2}-1\right|+2 \log C_{1} \\
& \Rightarrow \quad 2 y=\log \left|\frac{x^{2}-1}{x^{2}}\right|+\log C_{1}^{2} \quad \ldots \text { (ii) } \tag{ii}
\end{align*}
$$

When $x=2, y=0$
$\Rightarrow \quad 0=\log \left|\frac{4-1}{4}\right|+\log C_{1}^{2}$
$\Rightarrow \quad \log C_{1}^{2}=-\log \frac{3}{4}$
Putting $\log C_{1}^{2}=-\log \frac{3}{4}$ in (ii) we get

$$
\begin{gathered}
2 y=\log \left|\frac{x^{2}-1}{x^{2}}\right|-\log \frac{3}{4} \\
\Rightarrow \quad y=\frac{1}{2} \log \left|\frac{x^{2}-1}{x^{2}}\right|-\frac{1}{2} \log \frac{3}{4}
\end{gathered}
$$

Q.5. Solve the differential equation $\left.\left(1+x^{2}\right)\right) \frac{\mathrm{dy}}{\mathrm{dx}}+y=e^{\tan ^{1} x}$. Ans.

Given differential equation is

$$
\begin{align*}
& \left(1+x^{2}\right) \frac{\mathrm{dy}}{\mathrm{dx}}+y=e^{\tan ^{-1} x} \\
\Rightarrow \quad & \frac{\mathrm{dy}}{\mathrm{dx}}+\frac{1}{1+x^{2}} y=\frac{e^{\tan ^{-1} x}}{1+x^{2}} \tag{i}
\end{align*}
$$

Equation (i) is of the form

$$
\begin{aligned}
& \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{Py}=Q, \text { where } P=\frac{1}{1+x^{2}}, Q=\frac{e^{\tan ^{-1} x}}{1+x^{2}} \\
\therefore \quad & \quad \mathrm{IF}=e^{\int \mathrm{Pdx}}=e^{\int \frac{1}{1+x^{2}} \mathrm{dx}}=e^{\tan ^{1} x}
\end{aligned}
$$

Therefore, general solution of required differential equation is

$$
\begin{align*}
y \cdot e^{\tan ^{-1} x} & =\int e^{\tan ^{-1} x} \cdot \frac{e^{\tan ^{-1} x}}{1+x^{2}} d x+C \\
\Rightarrow \quad & y \cdot e^{\tan ^{-1} x}=\int \frac{e^{2 \tan ^{-1} x}}{1+x^{2}} \mathrm{dx}+C \tag{ii}
\end{align*} .
$$

Let $\tan ^{-1} x=Z \quad \Rightarrow \quad \frac{1}{1+x^{2}} \mathrm{dx}=\mathrm{dz}$
(ii) becomes

$$
\left.\left.\begin{array}{rl}
& y \cdot e^{\tan ^{-1} x}=\int e^{2 z} \mathrm{dz}+C \\
\Rightarrow & y \cdot e^{\tan ^{-1} x}=\frac{e^{2 z}}{2}+C \\
\Rightarrow & y \cdot e^{\tan ^{-1} x}=\frac{e^{2 \tan ^{-1} x}}{2}+C \quad \\
\Rightarrow & y=\frac{e^{\tan ^{-1} x}}{2}+C \cdot e^{-\tan ^{-1} x} \quad
\end{array} \quad\left[\text { Putting } z=\tan ^{-1} x\right]\right] \text { Dividing both sides by } e^{\tan ^{-1} x}\right]
$$

It is required solution.

Q.6. Find the particular solution of the differential equation

$e^{x} \sqrt{1-y^{2}} \mathrm{dx}+\frac{y}{x} \mathrm{dy}=0$ given that $\boldsymbol{y}=1$ when $\boldsymbol{x}=0$.
Ans.
We have, $e^{x} \sqrt{1-y^{2}} \mathrm{dx}+\frac{y}{x} \mathrm{dy}=0$
$\Rightarrow \quad e^{x} \sqrt{1-y^{2}} \mathrm{dx}=-\frac{y}{x} \mathrm{dy}$
$\Rightarrow \quad \mathrm{xe}^{x} \mathrm{dx}=-\frac{y}{\sqrt{1-y^{2}}} \mathrm{dy}$
$\Rightarrow \quad \int \underset{I I}{ } x e^{x} \mathrm{dx}=-\int \frac{y}{\sqrt{1-y^{2}}} \mathrm{dy}$
$\Rightarrow \quad \mathrm{xe}^{x}-\int e^{x} \mathrm{dx}=\frac{1}{2} \int \frac{\mathrm{dt}}{\sqrt{t}}$, where $t=1-y^{2}$
(Using ILATE on LHS)

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{xe}^{x}-e^{x}=\frac{1}{2}\left(\frac{t^{1 / 2}}{1 / 2}\right)+C \\
& \Rightarrow \quad \mathrm{xe}^{x}-e^{x}=\sqrt{t}+C
\end{aligned}
$$

$$
\Rightarrow \quad \mathrm{xe}^{x}-e^{x}=\sqrt{1-y^{2}}+C \text {, is the required solution. }
$$

Putting $y=1$ and $x=0$, we get

$$
\begin{aligned}
& 0 e^{0}-e^{0}=\sqrt{1-1^{2}}+C \\
\Rightarrow & C=-1
\end{aligned}
$$

Therefore, required particular solution is $\mathrm{xe}^{x}-e^{x}=\sqrt{1-y^{2}}-1$.
Q.7. Solve: $x \frac{\mathrm{dy}}{\mathrm{dx}}=y-x \tan \left(\frac{y}{x}\right)$

Ans.

We have, $\quad x \frac{\mathrm{dy}}{\mathrm{dx}}=y-x \tan \left(\frac{y}{x}\right)$

$$
\begin{equation*}
\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{y}{x}-\tan \left(\frac{y}{x}\right) \tag{i}
\end{equation*}
$$

Clearly, the given differential equation is homogeneous.

Putting $y=\mathrm{vx}$ and $\frac{\mathrm{dy}}{\mathrm{dx}}=v+x \frac{\mathrm{dv}}{\mathrm{dx}}$ in (i), we get

$$
v+x \frac{\mathrm{dv}}{\mathrm{dx}}=v-\tan v
$$

$$
\begin{aligned}
& v+x \frac{\mathrm{dv}}{\mathrm{dx}}=v-\tan v \\
\Rightarrow & x \frac{\mathrm{dv}}{\mathrm{dx}}=\tan v \\
\Rightarrow & \cot v \mathrm{dv}=\frac{-\mathrm{dx}}{x}, \text { if } x \neq 0 \quad \text { [By separating the variables] }
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{aligned}
& \int \cot v \mathrm{dv}=-\int \frac{\mathrm{dx}}{x} \\
\Rightarrow \quad & \log |\sin v|=-\log |x|+\log C \\
\Rightarrow \quad & \log |\sin v|=\log C \\
\Rightarrow \quad & \left|x \sin \frac{y}{x}\right|=|C|
\end{aligned}
$$

Hence, $x \sin \frac{y}{x}=C$ is the required solution.

Q.8. Solve the differential equation:

$\left(\tan ^{-1} \mathbf{y}-\mathbf{x}\right) \mathbf{d y}=\left(1+\mathbf{y}^{2}\right) \mathbf{d x}$
OR
Find the particular solution of the differential equation $\left(\tan ^{-1} \mathbf{y}-\mathbf{x}\right) \mathbf{d y}=$ $\left(1+y^{2}\right) d x$, given that $\boldsymbol{x}=1$ when $\boldsymbol{y}=0$.

Ans.

The given differential equation can be written as

$$
\begin{equation*}
\frac{\mathrm{dx}}{\mathrm{dy}}+\frac{x}{1+y^{2}}=\frac{\tan ^{-1} y}{1+y^{2}} \tag{i}
\end{equation*}
$$

Now, (i) is a linear differential equation of the form $\frac{\mathrm{dx}}{\mathrm{dy}}+\mathrm{Px}=Q$, where, $P=\frac{1}{1+y^{2}}$ and $Q=\frac{\tan ^{-1} y}{1+y^{2}}$

Therefore, $\mathrm{IF}=e^{\int \frac{1}{1+y^{2}} \mathrm{dy}}=e^{\tan ^{1} y}$
Thus, the solution of the given differential equation is

$$
\begin{equation*}
\mathrm{xe}^{\tan ^{1} y}=\int\left(\frac{\tan ^{-1} y}{1+y^{2}}\right) e^{\tan ^{1} y} \mathrm{dy}+C \tag{ii}
\end{equation*}
$$

Let $I=\int\left(\frac{\tan ^{-1} y}{1+y^{2}}\right) e^{\tan ^{1} y} \mathrm{dy}$
Substituting $\tan ^{-1} y=t$ so that $\left(\frac{1}{1+y^{2}}\right) \mathrm{dy}=\mathrm{dt}$, we get

$$
I=\int t e^{t} \mathrm{dt}=t e^{t}-\int 1 \cdot e^{t} \mathrm{dt}=t e^{t}-e^{t} \equiv e^{t}(t-1)
$$

or $\quad I=e^{\tan ^{1} y}\left(\tan ^{-1} y-1\right)$
Substituting the value of I in equation (ii), we get

$$
\begin{array}{r}
x \cdot e^{\tan ^{-1} y}=e^{\tan ^{1} y}\left(\tan ^{-1} y-1\right)+C \\
x=\left(\tan ^{-1} y-1\right)+2 e^{-\tan ^{-1} y}
\end{array}
$$

or

Which is the general solution of the given differential equation.

For general solution same as above.
General solution is $x=\left(\tan ^{-1} y-1\right)+\mathrm{Ce}^{-\tan ^{-1} y}$

For particular solution putting $x=1, y=0$, we get

$$
\begin{aligned}
& 1=\left(\tan ^{-1} 0-1\right)+C \cdot e^{-\tan ^{-1} 0} \\
& 1=-1+C \quad \Rightarrow \quad C=2
\end{aligned}
$$

Therefore required particular solution is

$$
x=\left(\tan ^{-1} y-1\right)+e^{-\tan ^{-1} y}
$$

Q.9. Solve the following differential equation:

$\left[\frac{e^{2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}\right] \frac{\mathrm{dx}}{\mathrm{dy}}=1, x \neq 0$

Ans.

$$
\begin{aligned}
& \text { Given }\left(\frac{e^{2} \sqrt{x}}{\sqrt{x}}-\frac{y}{\sqrt{x}}\right) \frac{\mathrm{dx}}{\mathrm{dy}}=1, x \neq 0 \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{e^{2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}} \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}+\frac{1}{\sqrt{x}} \cdot y=\frac{e^{2 \sqrt{x}}}{\sqrt{x}}
\end{aligned}
$$

It is in the form $\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{Py}=Q$, where $P=\frac{1}{\sqrt{x}}, Q=\frac{e^{2 \sqrt{7}}}{\sqrt{x}}$
$\therefore \quad \mathrm{IF}=e^{\int P \mathrm{dx}}=e^{\int \frac{1}{\sqrt{z}} \mathrm{dx}}=e^{\int x^{\frac{1}{2}} \mathrm{dx}}=e^{\frac{x^{\frac{1}{2} \cdot 1}}{-\frac{1}{2}+1}}=e^{2 \sqrt{x}}$

Therefore general solution is

$$
\begin{aligned}
& y \cdot e^{2 \sqrt{x}}=\int Q \times \mathrm{IF} \mathrm{dx}+C \\
\Rightarrow & y \cdot e^{2 \sqrt{x}}=\int \frac{e^{-2 \sqrt{x}}}{\sqrt{x}} \cdot e^{2 \sqrt{x}} \mathrm{dx}+C \\
\Rightarrow \quad & y \cdot e^{2 \sqrt{x}}=\int \frac{\mathrm{dx}}{\sqrt{x}}+C \\
\Rightarrow \quad & y \cdot e^{2 \sqrt{x}}=\frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+C \\
\Rightarrow \quad & y \cdot e^{2 \sqrt{x}}=2 \sqrt{x}+C
\end{aligned}
$$

Q.10. Solve the differential equation

$\left(x^{2}-1\right) \frac{\mathrm{dy}}{\mathrm{dx}}+2 \mathrm{xy}=\frac{2}{x^{2}-1}$, where $x \in(-\infty,-1) \bigcup(1, \infty)$
Ans.
The given differential equation is $\left(x^{2}-1\right) \frac{\mathrm{dy}}{\mathrm{dx}}+2 \mathrm{xy}=\frac{2}{x^{2}-1}$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}+\frac{2 x}{x^{2}-1} y=\frac{2}{\left(x^{2}-1\right)^{2}}$
This is a linear differential equation of the form
$\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{Py}=Q$, where $P=\frac{2 x}{x^{2}-1}$ and $Q=\frac{2}{\left(x^{2}-1\right)^{2}}$
$\therefore \quad \mathrm{IF}=e^{\int P \mathrm{dx}}=e^{\int 2 x /\left(x^{2}-1\right) \mathrm{dx}}=e^{\log \left(x^{2}-1\right)}=\left(x^{2}-1\right)$
Multiplying both sides of (i) by $\mathrm{IF}=\left(x^{2}-1\right)$, we get $\left(x^{2}-1\right) \frac{\mathrm{dy}}{\mathrm{dx}}+2 \mathrm{xy}=\frac{2}{x^{2}-1}$

Integrating both sides, we get

$$
\begin{aligned}
& \left.y\left(x^{2}-1\right)=\int \frac{2}{x^{2}-1} \mathrm{dx}+C \quad \text { UUsing }: y(\mathrm{IF})=\int Q \cdot(\mathrm{IF}) \mathrm{dx}+C\right] \\
\Rightarrow & y\left(x^{2}-1\right)=\frac{2}{2} \log \left|\frac{x-1}{x+1}\right|+C \\
\Rightarrow & y\left(x^{2}-1\right)=\log \left|\frac{x-1}{x+1}\right|+C
\end{aligned}
$$

This is the required solution.
Q.11. Find the particular solution of the differential equation $\frac{d y}{d x}=1+x+y+x y$ given that $y=0$ when $x=1$.

Ans.
Given differential equation is $\frac{\mathrm{dy}}{\mathrm{dx}}=1+x+y+\mathrm{xy}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=(1+x)+y(1+x) \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=(1+x)(1+y) \\
& \Rightarrow \quad \frac{\mathrm{dy}}{1+y}=(1+x) \mathrm{dx}
\end{aligned}
$$

Integrating both sides, we get $\log |1+y|=\int(1+x) \mathrm{dx}$
Integrating both sides, we get $\log |1+y|=\int(1+x) \mathrm{dx}$
$\Rightarrow \quad \log |1+y|=x+\frac{x^{2}}{2}+C$, it is general solution.

Putting $x=1, y=0$, we get

$$
\begin{aligned}
& \log 1=1+\frac{1}{2}+C \\
\Rightarrow & 0=\frac{3}{2}+C \\
\Rightarrow & C=\frac{-3}{2}
\end{aligned}
$$

Hence, particular solution is $\log |1+y|=x+\frac{x^{2}}{2}-\frac{3}{2}$.
Q.12. Solve the following differential equation:
$x \log x \frac{\mathrm{dy}}{\mathrm{dx}}+y=2 \log x$
Ans.
We have the differential equation

$$
\begin{aligned}
& x \log x \frac{\mathrm{dy}}{\mathrm{dx}}+y=2 \log x \\
\Rightarrow \quad & \frac{\mathrm{dy}}{\mathrm{dx}}+\frac{1}{x \log x} \cdot y=\frac{2}{x}
\end{aligned}
$$

It is linear differential equation of the form
$\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{Py}=Q$, where $P=\frac{1}{x \log x}$ and $Q=\frac{2}{x}$
Now, IF $=e^{\int \mathrm{pdx}}=e^{\int \frac{1}{x \log x} \mathrm{dx}}=e^{\log |\log x|}=\log x$
Hence, solution of given differential equation is $y \times \mathrm{IF}=\int Q \times \mathrm{IF} \mathrm{dx}$

$$
\begin{aligned}
& \Rightarrow \quad y \log x=\int \frac{2}{x} \cdot \log x \mathrm{dx}=2 \int \frac{1}{x} \cdot \log x \mathrm{dx}=2 \frac{(\log x)^{2}}{2}+C \\
& \Rightarrow \quad y \log x=(\log x)^{2}+C
\end{aligned}
$$

Q.13. Solve the differential equation

Ans.
Given differential equation is $x \log x \frac{\mathrm{dy}}{\mathrm{dx}}+y=\frac{2}{x} \log x$

$$
\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}+\left(\frac{1}{x \cdot \log x}\right) \cdot y=\frac{2}{x^{2}} \quad \text { (Divide each term by } x \log x \text {) }
$$

It is in the form $\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{Py}=Q$ where $P=\frac{1}{x \cdot \log x}, Q=\frac{2}{x^{2}}$

$$
\therefore \quad \mathrm{IF}=e^{\int \mathrm{Pdx}}=e^{\int \frac{\mathrm{dx}}{x \log x}}
$$

Put $\log x=z \Rightarrow \frac{\mathrm{dx}}{x}=\mathrm{dz}=e^{\int \frac{1}{z} \mathrm{dz}}=e^{\log z}=z=\log x$
\therefore General solution is

$$
\begin{aligned}
y \cdot \log x & =\int \log x \cdot \frac{2}{x^{2}} \mathrm{dx}+C \\
\Rightarrow \quad y \log x & =2 \int \frac{\log x}{x^{2}} \mathrm{dx}+C
\end{aligned}
$$

Let $\log x=z \quad \Rightarrow \quad \frac{1}{x} \mathrm{dx}=\mathrm{dz}$,

Also $\quad \log x=z \Rightarrow x=e^{z}$
$\therefore \quad y \log x=2 \int \frac{z}{e^{z}} \mathrm{dz}+C$
$\Rightarrow \quad y \log x=2 \int z \cdot e^{-z} \mathrm{dz}+C$
$\Rightarrow \quad y \log x=2\left[z \cdot \frac{e^{-z}}{-1}-\int \frac{e^{-z}}{-1} \mathrm{dz}\right]+C$
$\Rightarrow \quad y \log x=2\left[-\mathrm{ze}^{-z}+\int e^{-z} \mathrm{dz}\right]+C$
$\Rightarrow \quad y \log x=-2 z \mathrm{e}^{-z}-2 \mathrm{e}^{-z}+C$
$\Rightarrow \quad y \log x=-2 \log x e^{-\log x}-2 e^{-\log x}+\mathrm{C}$
$\Rightarrow \quad y \log x=-2 \log x \cdot \frac{1}{x}-\frac{2}{x}+C \quad\left[\because e^{-\log x}=e^{\log \frac{1}{x}}=\frac{1}{x}\right]$
$\Rightarrow \quad y \log x=-\frac{2}{x}(1+\log x)+C$
Q.14. Solve the following differential equation:
$\operatorname{cosec} x \log y \frac{\mathrm{dy}}{\mathrm{dx}}+x^{2} y^{2}=0$
Ans.

We have, $\operatorname{cosec} x \log y \frac{\mathrm{dy}}{\mathrm{dx}}+x^{2} y^{2}=0$
$\Rightarrow \quad \operatorname{cosec} x \cdot \log y \frac{\mathrm{dy}}{\mathrm{dx}}=-x^{2} y^{2}$
$\Rightarrow \quad \frac{\log y \cdot d y}{y^{2}}=-\frac{x^{2} d x}{\operatorname{cosec} x}$
$\Rightarrow \quad \int y^{-2} \cdot \log y \mathrm{dy}=-\int x^{2} \sin x \mathrm{dx}$
$\Rightarrow \quad \log y \cdot \frac{y^{2+1}}{-2+1}-\int \frac{1}{y} \cdot \frac{y^{2+1}}{-2+1} \mathrm{dy}=-\left[x^{2}(-\cos x)-\int 2 x(-\cos x) \mathrm{dx}\right]$
$\Rightarrow \quad-\frac{1}{y} \log y+\int y^{-2} \mathrm{dy}=x^{2} \cos x-2 \int x \cos x \mathrm{dx}$
$\Rightarrow \quad-\frac{1}{y} \log y+\frac{y^{-2+1}}{-2+1}=x^{2} \cos x-2\left[x \sin x-\int \sin x \mathrm{dx}\right]$
$\Rightarrow \quad-\frac{1}{y} \log y-\frac{1}{y}=x^{2} \cos x-2 x \sin +2(-\cos x)+C$
$\Rightarrow \quad-\frac{1}{y}(\log y+1)=x^{2} \cos x-2 x \sin x-2 \cos x+C$

Q.15. Solve the following differential equation:

$$
\frac{\mathrm{dy}}{\mathrm{dx}}+y=\cos x-\sin x
$$

Ans.

Given differential equation,
$\frac{\mathrm{dy}}{\mathrm{dx}}+y=\cos x-\sin x$ is a linear differential equation of the type $\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{Py}=Q$, where $P=1, Q=\cos x-\sin x$

Here, $\mathrm{IF}=e^{\int 1 . \mathrm{dx}}=e^{x}$

Its solution is given by

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{ye}^{x}=\int e^{x}(\cos x-\sin x) \mathrm{dx} \\
& \Rightarrow \quad \mathrm{ye}^{x}=\int e^{x} \cos x \mathrm{dx}-\int e^{x} \sin x \mathrm{dx} \quad \text { (Integrating by parts) } \\
& \Rightarrow \quad \mathrm{ye}^{x}=e^{x} \cos x-\int-\sin \mathrm{xe}^{x} \mathrm{dx}-\int e^{x} \sin x \mathrm{dx} \\
& \therefore \quad y e^{x}=e^{x} \cos x+C \\
& \Rightarrow \quad y=\cos x+C e^{-x}
\end{aligned}
$$

Q.16. Show that the differential equation $x \frac{\mathrm{dy}}{\mathrm{dx}} \sin \left(\frac{y}{x}\right)+x-y \sin \left(\frac{y}{x}\right)=0$ is homogeneous. Find the particular solution of this differential equation, given that $\mathrm{x}=1$ when $\mathrm{y}=\frac{\pi}{2}$.

Ans.
Given differential equation is $x \frac{\mathrm{dy}}{\mathrm{dx}} \sin \frac{y}{x}+x-y \sin \frac{y}{x}=0$
Dividing both sides by $x \sin \frac{y}{x}$, we get

$$
\begin{align*}
& \frac{\mathrm{dy}}{\mathrm{dx}}+\operatorname{cosec} \frac{y}{x}-\frac{y}{x}=0 \\
\Rightarrow \quad & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{y}{x}-\operatorname{cosec} \frac{y}{x} \tag{i}
\end{align*}
$$

Let $F(x, y)=\frac{y}{x}-\operatorname{cosec} \frac{y}{x}$
$\therefore \quad F(\lambda x, \lambda y)=\frac{\lambda y}{\lambda x}-\operatorname{cosec} \frac{\lambda y}{\lambda x}=\lambda^{0}\left[\frac{y}{x}-\operatorname{cosec} \frac{y}{x}\right]=\lambda^{0} F(x, y)$

Hence, differential equation (i) is homogeneous.

Let $y=\mathrm{vx}$
$\Rightarrow \quad \frac{y}{x}=v$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=v+x \cdot \frac{\mathrm{dv}}{\mathrm{dx}}$

Now, equation (i) becomes

$$
\begin{align*}
& v+x \cdot \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{\mathrm{vx}}{x}-\operatorname{cosec} \frac{\mathrm{vx}}{x} \\
& v+x \cdot \frac{\mathrm{dv}}{\mathrm{dx}}=v-\operatorname{cosec} v \\
\Rightarrow & x \cdot \frac{\mathrm{dv}}{\mathrm{dx}}=-\operatorname{cosec} v \\
\Rightarrow \quad & -\sin v \mathrm{dv}=\frac{\mathrm{dx}}{x} \\
\Rightarrow \quad & -\int \sin v \mathrm{dv}=\int \frac{\mathrm{dx}}{x} \\
\Rightarrow \quad & \cos v=\log |x|+C \\
\Rightarrow \quad & \cos \frac{y}{x}=\log |x|+C \tag{ii}
\end{align*}
$$

Putting $y=\frac{\pi}{2}, x=1$ in (ii), we get

$$
\therefore \quad \cos \frac{\pi}{2}=\log 1+C
$$

$$
\Rightarrow \quad 0=0+C \quad \Rightarrow \quad C=0
$$

Hence, particular solution is

$$
\cos \frac{\pi}{2}=\log |x|+0 \quad \text { i.e., } \quad \cos \frac{y}{x}=\log |x|
$$

Q.17. Solve the following differential equation:

$$
\cos ^{2} x \frac{\mathrm{dy}}{\mathrm{dx}}+y=\tan x
$$

Ans.

Given differential equation is,

$$
\begin{gathered}
\cos ^{2} x \cdot \frac{\mathrm{dy}}{\mathrm{dx}}+y=\tan x \\
\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}+y \sec ^{2} x=\tan x \cdot \sec ^{2} x
\end{gathered}
$$

Given differential equation is a linear differential equation of the type $\frac{d y}{d x}+P y=Q$ where $P=\sec ^{2} x, Q=\tan x \cdot \sec ^{2} x$.

$$
\mathrm{IF}=e^{\int P \mathrm{dx}}=e^{\int \sec ^{2} x \mathrm{dx}}=e^{\tan x}
$$

\therefore Solution is given by

$$
e^{\tan x} y=\int \tan x \cdot \sec ^{2} x \cdot e^{\tan x} \mathrm{dx}
$$

Let $I=\int \tan x \cdot \sec ^{2} x \cdot e^{\tan x} d \mathrm{x}$

Put $\tan x=t, \sec ^{2} x d x=d t$, we get

$$
\begin{aligned}
I & =\int t e^{t} \mathrm{dt} \\
\therefore \quad & =t e^{t}-\int e^{t} \mathrm{dt}=t e^{t}-e^{t}+C \quad \text { [Integrating by parts] } \\
& =\tan x e^{\tan x}-e^{\tan x}+C
\end{aligned}
$$

Hence, $e^{\tan x} y=e^{\tan x}(\tan x-1)+C$
$\Rightarrow \quad y=\tan x-1+C e^{-\tan x}$

Q.18. Find the particular solution of the differential equation satisfying the given

 condition $\frac{\mathrm{dy}}{\mathrm{dx}}=y \tan x$, given that $\boldsymbol{y}=\mathbf{1}$ when $\boldsymbol{x}=\mathbf{0}$.Ans.
We have $\frac{\mathrm{dy}}{\mathrm{dx}}=y \tan x \quad \Rightarrow \quad \frac{\mathrm{dy}}{y}=\tan x \mathrm{dx}$
By integrating both sides, we get

$$
\begin{align*}
& \int \frac{d y}{y}=\int \tan x d x \\
& \log y=\log |\sec x|+C \tag{i}
\end{align*}
$$

By putting $x=0$ and $y=1$ (as given) in (i), we get

$$
\log 1=\log (\sec 0)+C \Rightarrow C=0
$$

$\therefore(i) \Rightarrow \log y=\log |\sec x|$
\Rightarrow Hence, the particular solution is $y=\sec x$
Q.19. Solve the differential equation:

$$
\sqrt{1+x^{2}+y^{2}+x^{2} y^{2}}+\mathrm{xy} \frac{\mathrm{dy}}{\mathrm{dx}}=0
$$

Ans.
Given $\sqrt{1+x^{2}+y^{2}+x^{2} y^{2}}+\mathrm{xy} \frac{\mathrm{dy}}{\mathrm{dx}}=0$
By simplifying the equation, we get

$$
\begin{aligned}
& \mathrm{xy} \frac{\mathrm{dy}}{\mathrm{dx}}=-\sqrt{1+x^{2}+y^{2}+x^{2} y^{2}} \\
\Rightarrow \quad & \mathrm{xy} \frac{\mathrm{dy}}{\mathrm{dx}}=-\sqrt{\left(1+x^{2}\right)+\left(1+y^{2}\right)}=-\sqrt{\left(1+x^{2}\right)} \sqrt{\left(1+y^{2}\right)}
\end{aligned}
$$

$$
\Rightarrow \quad \frac{y}{\sqrt{\left(1+y^{2}\right)}} \mathrm{dy}=-\frac{\sqrt{\left(1+x^{2}\right)}}{x} \mathrm{dx}
$$

Integrating both sides, we get

$$
\begin{align*}
& \quad \int \frac{y}{\sqrt{\left(1+y^{2}\right)}} \mathrm{dy}=-\int \frac{\sqrt{\left(1+x^{2}\right)}}{x} \mathrm{dx} \tag{i}\\
& \text { Let } 1+y^{2}=t \quad \Rightarrow 2 y d y=d t \tag{ForLHS}\\
& \text { and } 1+x^{2}=m^{2} \Rightarrow 2 x d x=2 m d m \Rightarrow x d x=m d m \tag{ForRHS}\\
& \therefore \quad(i) \Rightarrow \frac{1}{2} \int \frac{1}{\sqrt{t}} \mathrm{dt}=-\int \frac{m}{m^{2}-1} \cdot m \mathrm{dm} \\
& \Rightarrow \quad \frac{1}{2} \frac{t^{1 / 2}}{1 / 2}+\int \frac{m^{2}}{m^{2}-1} \mathrm{dm}=0 \\
& \Rightarrow \sqrt{t}+\int \frac{m^{2}+1-1}{m^{2}-1} \mathrm{dm}=0 \\
& \Rightarrow \sqrt{t}+\int\left(1+\frac{1}{m^{2}-1}\right) \mathrm{dm}=0 \\
& \Rightarrow \sqrt{t}+m+\frac{1}{2} \log \left|\frac{m-1}{m+1}\right|=0
\end{align*}
$$

Now, substituting these value of t and m, we get

$$
\sqrt{1+y^{2}}+\sqrt{1+x^{2}}+\frac{1}{2} \log \left|\frac{\sqrt{1+x^{2}}-1}{\sqrt{1+x^{2}}+1}\right|+C=0
$$

Q.20. Show that the following differential equation is homogeneous and then solve it.
$y \mathrm{dx}+x \log \left(\frac{y}{x}\right) \mathrm{dy}-2 x \mathrm{dy}=0$
Ans.

We have $y \mathrm{dx}+x \log \left(\frac{y}{x}\right) \mathrm{dy}-2 x \mathrm{dy}=0$
Simplifying the above equation, we get

$$
\begin{align*}
& {\left[x \log \left(\frac{y}{x}\right)-2 x\right] \mathrm{dy}=-y \mathrm{dx} } \\
\Rightarrow \quad & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{y}{2 x-x \log \left(\frac{y}{x}\right)} \tag{i}
\end{align*}
$$

Let $F(x, y)=\frac{y}{2 x-x \log \left(\frac{y}{z}\right)}$

$$
F(\mu x, \mu y)=\frac{\mu y}{2 \mu x+\mu x \log \left(\frac{\mu y}{\mu x}\right)}=\frac{y}{2 x-x \log \left(\frac{y}{x}\right)}=\mu^{\circ} F(x, y)
$$

\therefore Function $F(x, y)$ is homogenous and hence the equation is homogeneous.
Let $y=v X \quad \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=v+x \frac{\mathrm{dv}}{\mathrm{dx}}$
Substituting in equation (i), we get

$$
\begin{aligned}
& v+x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{\mathrm{vx}}{2 x-x \log v} \\
\Rightarrow & x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{v}{2-\log v}-v \\
\Rightarrow \quad & x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{v \log v-v}{2-\log v} \\
\Rightarrow \quad & \frac{2-\log v}{v \log v-v} \mathrm{dv}=\frac{\mathrm{dx}}{x}
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{aligned}
& \int \frac{2-\log v}{v \log v-v} \mathrm{dv}=\int \frac{\mathrm{dx}}{x} \\
& \Rightarrow \quad \int \frac{1+(1-\log v)}{v(\log v-1)} \mathrm{dv}=\int \frac{\mathrm{dx}}{x} \\
& \Rightarrow \quad \int \frac{\mathrm{dv}}{v(\log v-1)}-\int \frac{\mathrm{dv}}{v}=\int \frac{\mathrm{dx}}{x} \\
& \text { Let } \log v-1=m \Rightarrow \frac{1}{v} \mathrm{dv}=\mathrm{dm} \\
& \Rightarrow \quad \int \frac{1}{m} \mathrm{dm}-\int \frac{1}{v} \mathrm{dv}=\int \frac{\mathrm{dx}}{x} \\
& \Rightarrow \quad \log |m|-\log |v|=\log |x|+\log \mid C \\
& \Rightarrow \quad \log \left|\frac{m}{v}\right|=\log |\mathrm{Cx}| \Rightarrow \\
& \Rightarrow \quad(\log v-1)=v C x \\
& \Rightarrow \quad {\left[\log \left(\frac{y}{x}\right)-1\right]=\mathrm{Cx} }
\end{aligned}
$$

which is the required solution.

Q.21. Solve the differential equation:

$$
\left(x^{2}+1\right) \frac{\mathrm{dy}}{\mathrm{dx}}+2 x y=\sqrt{x^{2}+4}
$$

Ans.

We have $\left(x^{2}+1\right) \frac{\mathrm{dy}}{\mathrm{dx}}+2 \mathrm{xy}=\sqrt{x^{2}+4}$

Simplifying the above equation, we get

$$
\frac{\mathrm{dy}}{\mathrm{dx}}+\frac{2 x}{x^{2}+1} y=\frac{\sqrt{x^{2}+4}}{\left(x^{2}+1\right)}
$$

This is a linear differential equation of the form $\frac{d y}{d x}+\mathrm{Py}=Q$
where, $P=\frac{2 x}{x^{2}+1}, Q=\frac{\sqrt{x^{2}+4}}{\left(x^{2}+1\right)}$
$\therefore \quad \mathrm{IF}=e^{\int P \mathrm{dx}}=e^{\int \frac{2 x}{x^{2}+1} \mathrm{dx}}=e^{\log \left(x^{2}+1\right)}=\left(x^{2}+1\right)$
Its solution is given by

$$
\begin{aligned}
& \left(x^{2}+1\right) y=\int\left(x^{2}+1\right) \cdot \frac{\sqrt{x^{2}+4}}{\left(x^{2}+1\right)} \mathrm{dx}=\int \sqrt{x^{2}+4} \mathrm{dx} \\
\Rightarrow \quad & \left(x^{2}+1\right) y=\frac{x}{2} \sqrt{x^{2}+4}+\frac{4}{2} \log \left|x+\sqrt{x^{2}+4}\right|+C
\end{aligned}
$$

Q.22. Find the particular solution of the following differential equation satisfying the given condition:

$$
\left(3 x^{2}+y\right) \frac{\mathrm{dx}}{\mathrm{dy}}=x, x>0, \text { when } x=1, y=1
$$

Ans.
We are given

$$
\begin{aligned}
& \left(3 x^{2}+y\right) \frac{\mathrm{dx}}{\mathrm{dy}}=x, x>0 \\
\Rightarrow \quad & \frac{\mathrm{dx}}{\mathrm{dy}}=\frac{x}{3 x^{2}+y} \\
\Rightarrow \quad & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{3 x^{2}+y}{x}=3 x+\frac{y}{x} \\
\Rightarrow \quad & \frac{\mathrm{dx}}{\mathrm{dy}}-\frac{1}{x} y=3 x
\end{aligned}
$$

This is a linear differential equation of the form $\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{Py}=Q$, where $P=-\frac{1}{x}, Q=3 x$

$$
\therefore \quad \mathrm{IF}=e^{\int P \mathrm{dx}}=e^{-\int \frac{1}{x} \mathrm{dx}}=e^{-\log x}=e^{\log x^{-1}}=\frac{1}{x}
$$

Its solution is given by

$$
\begin{array}{ll}
\therefore & \frac{y}{x}=\int \frac{1}{x} 3 x \mathrm{dx}=3 \int \mathrm{dx} \\
\Rightarrow & \frac{y}{x}=3 x+C \\
\Rightarrow & y=3 x^{2}+\mathrm{Cx}
\end{array}
$$

Putting $x=1, y=1$, we get

$$
\begin{aligned}
& \Rightarrow \quad 1=3+C \\
& \Rightarrow \quad C=-2 \\
& \therefore \quad y=3 x^{2}-2 x
\end{aligned}
$$

Q.23. $\left(x^{2}+y^{2}\right) d y=x y d x$. If $y(1)=1$ and $y\left(x_{0}\right)=e$, then find the value of x_{0}. Ans.

Given differential equation is $\left(x^{2}+y^{2}\right) \mathrm{dy}=\mathrm{xy} \mathrm{dx}$

It is also written as

$$
\begin{equation*}
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{xy}}{x^{2}+y^{2}} \tag{i}
\end{equation*}
$$

Now, to solve let $y=v x$.

Differentiating $y=v x$ with respect to x, we get

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{xy}}{x^{2}+y^{2}}
$$

Putting $y=\mathrm{vx}$ and $\frac{\mathrm{dy}}{\mathrm{dx}}=v+x \frac{\mathrm{dy}}{\mathrm{dx}}$ in (i), we get

$$
\begin{aligned}
& v+x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{x \cdot \mathrm{vx}}{x^{2}+(\mathrm{vx})^{2}} \\
& v+x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{\mathrm{vx}^{2}}{x^{2}+v^{2} x^{2}} \\
\Rightarrow \quad & v+x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{\mathrm{vx}^{2}}{x^{2}\left(1+v^{2}\right)} \\
\Rightarrow \quad & x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{v}{\left(1+v^{2}\right)}-v \\
\Rightarrow \quad & x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{v-v-v^{3}}{\left(1+v^{2}\right)} \\
\Rightarrow \quad & x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{-v^{3}}{\left(1+v^{2}\right)} \\
\Rightarrow \quad & \frac{\left(1+v^{2}\right) \mathrm{dv}}{v^{3}}=-\frac{\mathrm{dx}}{x}
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{align*}
& \int \frac{\left(1+v^{2}\right) \mathrm{dv}}{v^{3}}=-\int \frac{\mathrm{dx}}{x} \\
\Rightarrow \quad & \int \frac{\mathrm{dv}}{v^{3}}+\int \frac{\mathrm{dv}}{v}=-\log |x|+C \\
\Rightarrow \quad & -\frac{1}{2 v^{2}}+\log |v|=-\log |x|+C \\
\Rightarrow \quad & -\frac{x^{2}}{2 y^{2}}+\log \left|\frac{y}{x}\right|=-\log |x|+C \\
\Rightarrow \quad & -\frac{x^{2}}{2 y^{2}}+\log |y|-\log |x|=-\log |x|+C \\
\Rightarrow \quad & -\frac{x^{2}}{2 y^{2}}+\log |y|=C \tag{ii}
\end{align*}
$$

Given, $x=1, y=1$

$$
\begin{aligned}
& \Rightarrow \quad-\frac{1}{2 \times 1}+\log |1|=C \\
& \Rightarrow \quad-\frac{1}{2}=C \quad[\because \log 1=0]
\end{aligned}
$$

Now (ii) becomes

$$
\begin{aligned}
& -\frac{x^{2}}{2 y^{2}}+\log |y|=-\frac{1}{2} \\
\Rightarrow & \quad \log |y|=\frac{x^{2}}{2 y^{2}}-\frac{1}{2} \\
\Rightarrow & \quad \log |y|=\frac{x^{2}-y^{2}}{2 y^{2}}
\end{aligned}
$$

Putting $x=x_{0}$ and $y=e$ in (iii), we get

$$
\begin{aligned}
& \log |e|=\frac{x_{0}^{2}-e^{2}}{2 e^{2}} \\
\Rightarrow & 1=\frac{x_{0}^{2}-e^{2}}{2 e^{2}} \\
\Rightarrow & x_{0}^{2}-e^{2}=2 e^{2} \\
\Rightarrow & x_{0}^{2}=3 e^{2} \\
\Rightarrow & x_{0}=\sqrt{3} e
\end{aligned}
$$

Q.24. Find the particular solution of the differential equation. $\frac{\mathrm{dy}}{\mathrm{dx}}+y \tan x=3 x^{2}+x^{3} \tan x, x \neq \frac{\pi}{2}$, given that $y=0$ when $x=\frac{\pi}{3}$.

Ans.

Given, $\frac{\mathrm{dy}}{\mathrm{dx}}+y \tan x=3 x^{2}+x^{3} \tan x$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}+\tan x \cdot y=3 x^{2}+x^{3} \tan x$
Comparing the given differential equation with linear from

$$
\begin{aligned}
& \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{Py}=Q, \text { we get } \\
& P=\tan x, Q=3 x^{2}+x^{3} \tan x .
\end{aligned}
$$

$\therefore \quad \mathrm{IF}=e^{\int \tan x \mathrm{dx}}=e^{\log \sec x}=\sec x$.

Therefore, general solution is given by

$$
\begin{aligned}
& y \cdot \sec x=\int\left(3 x^{2}+x^{3} \tan x\right) \cdot \sec x \mathrm{dx}+C \\
\Rightarrow & y \cdot \sec x=\int 3 x^{2} \sec x \mathrm{dx}+\int x^{3} \tan x \cdot \sec x \mathrm{dx}+C \\
\Rightarrow & y \sec x=\int 3 x^{2} \sec x \mathrm{dx}+x^{3} \cdot \sec x-\int 3 x^{2} \cdot \sec x \mathrm{dx}+C \\
\Rightarrow & y \sec x=x^{3} \sec x+C \\
\Rightarrow & y=x^{3}+C \cos x
\end{aligned}
$$

Now $x=\frac{\pi}{3}, y=0$

$$
\begin{array}{ll}
\therefore & 0=\left(\frac{\pi}{3}\right)^{3}+C \cdot \cos \left(\frac{\pi}{3}\right) \\
\Rightarrow & 0=\frac{\pi^{3}}{27}+\frac{C}{2} \\
\Rightarrow & C=-\frac{2 \pi^{3}}{27}
\end{array}
$$

Hence required particular solution is

$$
y=x^{3}-\frac{2 \pi^{3}}{27} \cos x .
$$

Q.25. Show that the differential equation $(x-y) \frac{\mathrm{dy}}{\mathrm{dx}}=x+2 y$ is homogeneous and solve it.

Ans.

Given, $\quad(x-y) \frac{\mathrm{dy}}{\mathrm{dx}}=x+2 y$
By simplifying the above equation, we get

$$
\begin{equation*}
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{x+2 y}{x-y} \tag{i}
\end{equation*}
$$

Let $F(x, y)=\frac{x+2 y}{x-y}$
then $F(\lambda x, \lambda y)=\frac{\lambda x+2 \lambda y}{\lambda x-\lambda y}=\frac{\lambda(x+2 y)}{\lambda(x-y)}=\lambda \circ F(x, y)$
$F(x, y)$ is homogeneous function and hence given differential equation is homogeneous.
Now, let $y=v x \quad \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=v+x \frac{\mathrm{dv}}{\mathrm{dx}}$
Substituting these values in equation (i), we get

$$
\begin{aligned}
& v+x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{x+2 \mathrm{vx}}{x-\mathrm{vx}} \\
\Rightarrow & x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1+2 v}{1-v}-v=\frac{1+2 v-v+v^{2}}{1-v}=\frac{1+v+v^{2}}{1-v}
\end{aligned}
$$

$\Rightarrow \quad \frac{1-v}{1+v+v^{2}} \mathrm{dv}=\frac{\mathrm{dx}}{x}$

By integrating both sides, we get

$$
\begin{equation*}
\int \frac{1-v}{1+v+v^{2}} d v=\int \frac{d x}{x} \tag{ii}
\end{equation*}
$$

LHS $\int \frac{1-v}{v^{2}+v+1} d v$
Let $1-v=A(2 v+1)+B=2 A v+(A+B)$

Comparing coefficients of both sides, we get

$$
\begin{aligned}
& 2 A=-1, A+B=1 \\
& \text { or } \quad A=-\frac{1}{2}, B=\frac{3}{2} \\
& \therefore \quad \int \frac{1-v}{v^{2}+v+1} \mathrm{dv}=\int \frac{-\frac{1}{2}(2 v+1)+\frac{3}{2}}{v^{2}+v+1} \mathrm{dv} \\
& = \\
& \quad \begin{aligned}
\therefore & =-\frac{1}{2} \int \frac{2 v+1}{v^{2}+v+1} \mathrm{dv}+\frac{3}{2} \int \frac{\mathrm{dv}}{v^{2}+v+1} \\
& \left.=-\frac{1}{2} \log \right\rvert\, v^{2}+v+1 \\
& \mathrm{dv}+\frac{3}{2} \int \frac{\mathrm{dv}}{\left(v+\frac{1}{2}\right)^{2}+\frac{3}{4}} \\
&
\end{aligned}
\end{aligned}
$$

Now, substituting it in equation (ii), we get

$$
\begin{aligned}
& -\frac{1}{2} \log \left|v^{2}+v+1\right|+\sqrt{3} \tan ^{-1}\left(\frac{2 v+1}{\sqrt{3}}\right)=\log x+C \\
\Rightarrow & -\frac{1}{2} \log \left|\frac{y^{2}}{x^{2}}+\frac{y}{x}+1\right|+\sqrt{3} \tan ^{-1}\left(\frac{\frac{2 y}{x}+1}{\sqrt{3}}\right)=\log x+C \\
\Rightarrow & -\frac{1}{2} \log \left|x^{2}+\mathrm{xy}+y^{2}\right|+\frac{1}{2} \log x^{2}+\sqrt{3} \tan ^{-1}\left(\frac{2 y+x}{\sqrt{3} x}\right)=\log x+C \\
\Rightarrow & -\frac{1}{2} \log \left|x^{2}+\mathrm{xy}+y^{2}\right|+\sqrt{3} \tan ^{-1}\left(\frac{2 y+x}{\sqrt{3} x}\right)=C
\end{aligned}
$$

Q.26. Solve the following differential equation:

$$
\left(x^{3}+x^{2}+x+1\right) \frac{\mathrm{dy}}{\mathrm{dx}}=2 x^{2}+x
$$

Ans.
We have $\left(x^{3}+x^{2}+x+1\right) \frac{\mathrm{dy}}{\mathrm{dx}}=2 x^{2}+x$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2 x^{2}+x}{x^{3}+x^{2}+x+1} \\
& \Rightarrow \quad \mathrm{dy}=\frac{22 x^{2}+x}{\left(x^{2}+1\right)(x+1)} \mathrm{dx}
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{aligned}
& \int \mathrm{dy}=\int \frac{2 x^{2}+x}{\left(x^{2}+1\right)(x+1)} \mathrm{dx} \\
\Rightarrow & \frac{2 x^{2}+x}{\left(x^{2}+1\right)(x+1)}=\frac{A}{x+1}+\frac{\mathrm{Bx}+C}{x^{2}+1}=A\left(x^{2}+1\right)(\mathrm{Bx}+C)(x+1) \quad[\text { By partial fraction }]
\end{aligned}
$$

$$
\Rightarrow \quad 2 x^{2}+x=x^{2}(A+B)+x(B+C)+(A+C)
$$

Comparing coefficients of both the sides, we get

$$
\begin{aligned}
& A+B=2, B+C=1 \text { and } A+C=0 \\
& \Rightarrow \quad B=\frac{3}{2}, A=\frac{1}{2}, C=\frac{-1}{2} \\
& \therefore \quad(i) \Rightarrow y=\int\left[\frac{\frac{1}{2}}{x+1}+\frac{\frac{3}{2} x-\frac{1}{2}}{x^{2}+1}\right] \mathrm{dx} \\
& \quad=\frac{1}{2} \int \frac{1}{x+1} \mathrm{dx}+\frac{3}{2} \int \frac{x}{x^{2}+1} \mathrm{dx}-\frac{1}{2} \int \frac{1}{x^{2}+1} \mathrm{dx} \\
& \quad y=\frac{1}{2} \log |x+1|+\frac{3}{4} \log \left|x^{2}+1\right|-\frac{1}{2} \tan ^{-1} x+C
\end{aligned}
$$

Q.27. Solve the following differential equation:

$$
\left(1+y^{2}\right)(1+\log x) d x+x d y=0
$$

Ans.
We have $\left(1+y^{2}\right)(1+\log x) d x+x d y=0$

$$
\begin{aligned}
& x d y=-\left(1+y^{2}\right)(1+\log x) d x \\
& \Rightarrow \quad \frac{\mathrm{dy}}{1+y^{2}}=-\frac{1+\log x}{x} \mathrm{dx}
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{aligned}
& \int \frac{\mathrm{dy}}{1+y^{2}}=-\int \frac{1+\log x}{x} \mathrm{dx} \\
\Rightarrow & \tan ^{-1} y=-\int z \mathrm{dz} \quad\left[\text { Let } 1+\log x=z \Rightarrow \frac{1}{x} \mathrm{dx}=\mathrm{dz}\right] \\
\Rightarrow & \tan ^{-1} y=-\frac{z^{2}}{2}+C \\
\Rightarrow & \tan ^{-1} y=-\frac{1}{2}(1+\log x)^{2}+C
\end{aligned}
$$

Q.28. Solve the following differential equation:
$x d y-\left(y+2 x^{2}\right) d x=0$
Ans.
We have $\quad x d y-\left(y+2 x^{2}\right) d x=0$
The given differential equation can be written as

$$
\Rightarrow \quad x \frac{\mathrm{dy}}{\mathrm{dx}}-y=2 x^{2} \quad \text { or } \quad \frac{\mathrm{dy}}{\mathrm{dx}}-\frac{1}{x} \cdot y=2 x
$$

This is of the form $\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{Py}=Q$, where $P=\frac{-1}{x}, Q=2 x$

$$
\mathrm{IF}=e^{-\int \frac{1}{x} \mathrm{dx}}=e^{-\log x}=e^{\log x^{1}}=\frac{1}{x}
$$

\therefore Solution is $y \cdot \frac{1}{x}=\int 2 x \cdot \frac{1}{x} \mathrm{dx}$

$$
\Rightarrow \quad y \cdot \frac{1}{x}=2 x+C \quad \text { or } \quad y=2 x^{2}+\mathrm{Cx}
$$

Q.29. Solve the differential equation, $x d x+\left(y-x^{3}\right) d x=0$. Ans.

We have $x d y+\left(y-x^{3}\right) d x=0$
$\Rightarrow \quad x d y=-\left(y-x^{3}\right) d x$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-y+x^{3}}{x}$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-y}{x}+x^{2}$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}+\left(\frac{1}{x}\right) \cdot y=x^{2}$
It is in the form of $\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{Py}=Q$, where $P=\frac{1}{x}$ and $Q=x^{2}$
$\therefore \quad \mathrm{IF}=e^{\int \frac{1}{x} \mathrm{dx}}=e^{\log x}=x$

Hence, solution is $y \cdot x=\int x \cdot x^{2} \mathrm{dx}+C$

$$
\mathrm{xy}=\frac{x^{4}}{4}+C \Rightarrow y=\frac{x^{3}}{4}+\frac{C}{x}
$$

Q.30. Find the particular solution of the following differential equation.

$x \frac{\mathrm{dy}}{\mathrm{dx}}-y+x \sin \left(\frac{y}{x}\right)=0$, given that when $x=2, y=\pi$
Ans.
Given differential equation is $x \frac{\mathrm{dy}}{\mathrm{dx}}-y+x \sin \left(\frac{y}{x}\right)=0$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}-\frac{y}{x}+\sin \left(\frac{y}{x}\right)=0$
It is homogeneous differential equation.
Let $\frac{y}{x}=v \Rightarrow y=\mathrm{vx}$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=v+x \frac{\mathrm{dv}}{\mathrm{dx}}$

Putting these values in (i), we get

$$
\begin{aligned}
& v+x \frac{\mathrm{dv}}{\mathrm{dx}}-v+\sin v=0 \\
\Rightarrow & x \frac{\mathrm{dv}}{\mathrm{dx}}+\sin v=0 \\
\Rightarrow \quad & x \frac{\mathrm{dv}}{\mathrm{dx}}=-\sin v \\
\Rightarrow & \quad \frac{\mathrm{dv}}{\sin v}=\frac{-\mathrm{dx}}{x} \\
\Rightarrow \quad & \operatorname{cosec} v \mathrm{dv}=-\frac{\mathrm{dx}}{x}
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{align*}
& \Rightarrow \quad \int \operatorname{cosec} v d v=-\int \frac{d x}{x} \\
& \Rightarrow \quad \log |\operatorname{cosec} v-\cot v|=-\log |x|+C \\
& \Rightarrow \quad \log \left|\operatorname{cosec} \frac{y}{x}-\cot \frac{y}{x}\right|+\log |x|=C \tag{i}
\end{align*}
$$

Putting $x=2, y=\mathrm{p}$ we get

$$
\begin{aligned}
& \Rightarrow \quad \log \left|\operatorname{cosec} \frac{\pi}{2}-\cot \frac{\pi}{2}\right|+\log 2=C \\
& \Rightarrow \quad \log 1+\log 2=C \quad[\because \log 1=0] \\
& \Rightarrow \quad C=\log 2
\end{aligned}
$$

Hence, particular solution, is

$$
\begin{aligned}
& \log \left|\operatorname{cosec} \frac{y}{x}-\cot \frac{y}{x}\right|+\log |x|=\log 2 \\
\Rightarrow & \quad \log \left|x \cdot\left(\operatorname{cosec} \frac{y}{x}-\cot \frac{y}{x}\right)\right|=\log 2 \\
\Rightarrow & x\left(\operatorname{cosec} \frac{y}{x}-\cot \frac{y}{x}\right)=2
\end{aligned}
$$

Q.31. Find the particular solution of the differential equation:

$\left(1-y^{2}\right)(1+\log x) d x+2 x y d y=0$ given that $y=0$ when $x=1$.
Ans.
We have

$$
\begin{aligned}
& \left(1-y^{2}\right)(1+\log x) d x+2 x y d y=0, \\
\Rightarrow & 2 x y d y=-\left(1-y^{2}\right)(1+\log x) d x \\
\Rightarrow & \frac{2 y \mathrm{dy}}{1-y^{2}}=-\frac{(1+\log x) \mathrm{dx}}{x}
\end{aligned}
$$

Integrating both sides, we get
$\Rightarrow \quad \int \frac{2 y \mathrm{dy}}{1-y^{2}}=-\int \frac{(1+\log x)}{x} \mathrm{dx}$
$\Rightarrow \quad-\log \left|1-y^{2}\right|=-\int \frac{(1+\log x)}{x} \mathrm{dx}$
$\Rightarrow \quad-\log \left|1-y^{2}\right|=-\int z \mathrm{dz} \quad\left[\right.$ Let $\left.1+\log x=z \quad \Rightarrow \quad \frac{1}{x} \mathrm{dx}=\mathrm{dz}\right]$

$$
\begin{aligned}
& \Rightarrow \quad \log \left|1-y^{2}\right|=\frac{z^{2}}{2}+C \\
& \Rightarrow \quad \log \left|1-y^{2}\right|=\frac{(1+\log x)^{2}}{2}+C
\end{aligned}
$$

Putting $x=1$ and $y=0$, we get

$$
\begin{aligned}
& \Rightarrow \quad \log 1=\frac{(1+\log 1)^{2}}{2}+C \\
& \Rightarrow \quad 0=\frac{1}{2}+C \quad \Rightarrow \quad C=-\frac{1}{2}
\end{aligned}
$$

Hence particular solution is

$$
\log \left|1-y^{2}\right|=\frac{(1+\log x)^{2}}{2}-\frac{1}{2}
$$

Q.32. Find the general solution of the following differential equation:
$\left(1+y^{2}\right)+\left(x-e^{\tan ^{1} y}\right) \frac{\mathrm{dy}}{\mathrm{dx}}=0$
Ans.
We have $\left(1+y^{2}\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{\mathrm{dy}}{\mathrm{dx}}=0$
$\Rightarrow \quad\left(x-e^{\tan ^{-1} y}\right) \frac{\mathrm{dy}}{\mathrm{dx}}=-\left(1+y^{2}\right)$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{1+y^{2}}{x-e^{\tan 1 y}}$
$\Rightarrow \quad \frac{\mathrm{dx}}{\mathrm{dy}}=-\frac{x-e^{\tan ^{1} y}}{1+y^{2}}$
$\Rightarrow \quad \frac{\mathrm{dx}}{\mathrm{dy}}=-\frac{x}{1+y^{2}}+\frac{e^{\tan ^{1} y}}{1+y^{2}}$
$\Rightarrow \quad \frac{\mathrm{dx}}{\mathrm{dy}}+\frac{1}{1+y^{2}} x=-\frac{e^{\tan 1} y}{1+y^{2}}$

It is in the form $\frac{d x}{d y}+P x=Q$.
Where $P=\frac{1}{1+y^{2}}$ and $Q=\frac{e^{\tan ^{1} y}}{1+y^{2}}$

$$
\begin{aligned}
\therefore \quad \mathrm{IF} & =e^{\int P . \mathrm{dy}}=e^{\int \frac{1}{1+y^{2}} \mathrm{dy}} \\
& =e^{\tan ^{-1} y}
\end{aligned}
$$

Therefore, general solution is

$$
\begin{aligned}
& x \cdot e^{\tan ^{-1} y}=\int \frac{e^{\tan ^{1} y}}{1+y^{2}} \cdot e^{\tan ^{1} y} \mathrm{dy}+C \\
\Rightarrow & x \cdot e^{\tan ^{-1} y}=\int e^{z} \cdot e^{z} \mathrm{~d} z+C \quad \text { Let } \tan ^{-1} y=z \\
\Rightarrow & x \cdot e^{\tan ^{-1} y}=\int e^{2 z} \mathrm{dz}+C \quad \quad \frac{1}{1+y^{2}} \mathrm{dy}=\mathrm{dz} \\
\Rightarrow & x \cdot e^{\tan ^{-1} y}=\frac{e^{2 z}}{2}+C \\
\Rightarrow & x \cdot e^{\tan ^{-1} y}=\frac{e^{2 \tan ^{-1} y}}{2}+C \\
\Rightarrow & x=\frac{1}{2} e^{\tan ^{-1} y}+C \cdot e^{-\tan ^{-1} y}
\end{aligned}
$$

Q.33. Find the particular solution of differential equation

$: \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{x+y \cos x}{1+\sin x}$
given that $y=1$ when $x=0$.
Ans.

We have

$$
\begin{aligned}
& \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{x+y \cos x}{1+\sin x} \\
\Rightarrow \quad & \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{x}{1+\sin x}-\frac{y \cos x}{1+\sin x} \\
\Rightarrow \quad & \frac{\mathrm{dy}}{\mathrm{dx}}+\frac{\cos x}{1+\sin x} y=-\frac{x}{1+\sin x}
\end{aligned}
$$

Comparing it with linear form of differential equation $\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{Py}=Q$, we get

$$
P=\frac{\cos x}{1+\sin x}, Q=-\frac{x}{1+\sin x}
$$

Now $\mathrm{IF}=e^{\int \frac{\cos x}{1+\sin x} \mathrm{dx}}=e^{\log |1+\sin x|}=1+\sin x$

Therefore, general solution is

$$
\begin{aligned}
& y(1+\sin x)=\int-\frac{x}{1+\sin x}(1+\sin x) \mathrm{dx}+C \\
& =-\int x \mathrm{dx}+C \\
& y(1+\sin x)=-\frac{x^{2}}{2}+C
\end{aligned}
$$

Given $y=1$ and $x=0$

$$
\begin{aligned}
& 1(1+\sin 0)=0+C \\
\Rightarrow & C=1
\end{aligned}
$$

Hence, particular solution is

$$
\begin{gathered}
\Rightarrow \quad y(1+\sin x)=-\frac{x^{2}}{2}+1 \\
y=\frac{2-x^{2}}{2(1+\sin x)}
\end{gathered}
$$

Q.34. Solve the following differential equation :

$$
\left(\cot ^{-1} y+x\right) d y=\left(1+y^{2}\right) d x
$$

Ans.
We have

$$
\left(\cot ^{-1} y+x\right) d y=\left(1+y^{2}\right) d x
$$

This can be written as

$$
\begin{aligned}
& \frac{\mathrm{dx}}{\mathrm{dy}}=\frac{\cot ^{-1} y+x}{1+y^{2}}=\frac{\cot ^{-1} y}{1+y^{2}}+\frac{x}{1+y^{2}} \\
\Rightarrow \quad & \frac{\mathrm{dx}}{\mathrm{dy}}-\frac{1}{1+y^{2}} \cdot x=\frac{\cot ^{-1} y}{1+y^{2}}
\end{aligned}
$$

It is linear differential equation of the form

$$
\begin{aligned}
& \frac{\mathrm{dx}}{\mathrm{dy}}+\mathrm{Px}=Q, \text { where } P=\frac{-1}{1+y^{2}} \text { and } Q=\frac{\cot ^{-1} y}{1+y^{2}} \\
\therefore \quad & \mathrm{IF}=e^{\int-\frac{1}{1+y^{2}} \mathrm{dy}}=e^{\cot ^{-1} y}
\end{aligned}
$$

Therefore, required solution of differential equation is

$$
\begin{align*}
& x \cdot e^{\cot ^{1} y}=\int \frac{\cot ^{-1} y}{1+y^{2}} \cdot e^{\cot ^{1} y} \mathrm{dy}+C \\
\Rightarrow \quad & x \cdot e^{\cot ^{1} y}=I+C \tag{i}
\end{align*}
$$

Where, $I=\int \frac{\cot ^{-1} y}{1+y^{2}} \cdot e^{\cot ^{1} y} \mathrm{dy}$
Let $\cot ^{-1} y=t$

$$
\begin{aligned}
& -\frac{1}{1+y^{2}} \mathrm{dy}=\mathrm{dt} \\
\Rightarrow & \frac{1}{1+y^{2}} \mathrm{dy}=-\mathrm{dt} \\
\Rightarrow \quad & I=-\int t \cdot e^{t} \mathrm{dt}=-\left[t \cdot e^{t}-\int e^{t} \mathrm{dt}\right]=-t \cdot e^{t}+e^{t} \\
& =e^{t}(1-t)=e^{\cot ^{1} y}\left(1-\cot ^{-1} y\right)
\end{aligned}
$$

Hence, required solution is

$$
\begin{aligned}
& x \cdot e^{\tan ^{-1} y}=e^{\cot ^{-1} y}\left(1-\cot ^{-1} y\right)+C \\
& x=\left(1-\cot ^{-1} y\right)+\mathrm{Ce}^{-\cot ^{-1} y}
\end{aligned}
$$

Q.35. Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.

Ans. Let C denotes the family of circles in the second quadrant and touching the coordinate axes. Let $(-a, a)$ be the coordinate of the centre of any member of this family (see figure).

Equation representing the family C is

$$
\begin{equation*}
(x+a)^{2}+(y-a)^{2}=a^{2} \tag{i}
\end{equation*}
$$

or $x^{2}+y^{2}+2 a x-2 a y+a^{2}=0$

Differentiating equation (ii) with respect to x, we get

$$
2 x+2 y \frac{\mathrm{dy}}{\mathrm{dx}}+2 a-2 a \frac{\mathrm{dy}}{\mathrm{dx}}=0
$$

or $\quad x+y \frac{\mathrm{dy}}{\mathrm{dx}}=a\left(\frac{\mathrm{dy}}{\mathrm{dx}}-1\right)$
or $\quad a=\frac{x+y y^{\prime}}{y^{\prime}-1} \quad\left(y^{\prime}=\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
Substituting the value of a in equation (i), we get

$$
\left[x+\frac{x+y y^{\prime}}{y^{\prime}-1}\right]^{2}+\left[y-\frac{x+y y^{\prime}}{y^{\prime}-1}\right]^{2}=\left[\frac{x+y y^{\prime}}{y^{\prime}-1}\right]^{2}
$$

or $\quad\left[x y^{\prime}-x+x+y y^{\prime}\right]^{2}+\left[y y^{\prime}-y-x-y y\right]^{2}=\left[x+y y^{\prime}\right]^{2}$
or $(x+y)^{2} y^{2}+(x+y)^{2}=(x+y y)^{2}$
or $(x+y)^{2}\left[\left(y^{\prime}\right)^{2}+1\right]=[x+y y]^{2}$, is the required differential equation representing the given family of circles.

Long Answer Questions-I (OIQ)

[4 Marks]

Q.1. Solve: $\sec ^{2} \mathbf{x} \tan \mathbf{y d x}+\sec ^{2} \mathbf{y} \tan \mathbf{x} d \boldsymbol{y}=\mathbf{0}$

Ans.

We have, $\quad \sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$
$\Rightarrow \quad \sec ^{2} x \tan y d x=-\sec ^{2} y \tan x d y$
$\Rightarrow \quad \frac{\sec ^{2} x}{\tan x} \mathrm{dx}=-\frac{\sec ^{2} y}{\tan y} \mathrm{dy}$
$\Rightarrow \quad \int \frac{\sec ^{2} x}{\tan x} \mathrm{dx}=-\int \frac{\sec ^{2} y}{\tan y} \mathrm{dy}$
$\Rightarrow \quad \log |\tan x|=-\log |\tan y|+\log C$
$\Rightarrow \log |(\tan x)(\tan y)|=\log \mathrm{C}$
$\Rightarrow \quad|\tan x \tan y|=C$
Clearly, it is defined for $x \in \mid R-\{(2 n+1) \pi / 2: n \in Z\}$
Hence, $|\tan x \tan y|=C$, where $x \in \mid \mathrm{R}-\{(2 n+1) \pi / 2: n \in Z\}$ is the solution of the given differential equation.

Solve: $\left(x+3 y^{2}\right) \frac{\mathrm{dy}}{\mathrm{dx}}=y(y>0)$

Ans.

Given differential equation is $\left.\left(x+3 y^{2}\right) \frac{\mathrm{dy}}{\mathrm{dx}}=y, y 0\right)$

We can write this as

$$
\begin{aligned}
& \frac{\mathrm{dx}}{\mathrm{dy}}=\frac{x+3 y^{2}}{y}=\frac{1}{y} \cdot x+3 y \\
\Rightarrow \quad & \frac{\mathrm{dx}}{\mathrm{dy}}+\left(-\frac{1}{y}\right) \cdot x=3 y
\end{aligned}
$$

This is a linear equation of the form

$$
\frac{\mathrm{dx}}{\mathrm{dy}}+\mathrm{Px}=Q, \text { where } P=-\frac{1}{y}, Q=3 y
$$

So, $\mathrm{IF}=e^{\int-\frac{1}{y} \mathrm{dy}}=e^{-\log y}=e^{\log y^{-1}}=y^{-1}=\frac{1}{y}$

Multiplying both sides by IF, we get

$$
\begin{aligned}
& \frac{1}{y} \times \frac{\mathrm{dx}}{\mathrm{dy}}-\frac{1}{y^{2}} x=3 \\
\Rightarrow \quad & \frac{d}{\mathrm{dy}}\left(\frac{1}{y} \cdot x\right)=3
\end{aligned}
$$

Integrating both sides, with respect to y, we get

$$
\frac{1}{y} \cdot x=3 y+C
$$

Hence, $x=3 y^{2}+C y$ is the required solution.
Q.3. Solve $\frac{\mathrm{dy}}{\mathrm{dx}}+y \sec x=\tan x$.

Ans.
The given differential equation is

$$
\begin{equation*}
\frac{\mathrm{dy}}{\mathrm{dx}}+(\sec x) y=\tan x \tag{i}
\end{equation*}
$$

This is a linear differential equation of the form $\frac{\mathrm{dy}}{\mathrm{dx}}+\operatorname{Py}=Q$, where $P=\sec x$ and $Q=$ $\tan x$
$\therefore \quad \mathrm{IF}=e^{\int P \mathrm{dx}}=e^{\int \sec x \mathrm{dx}}=e^{\log (\sec x+\tan x)}=(\sec x+\tan x)$
Multiplying both sides of (i) by $\mathrm{IF}=(\sec x+\tan x)$, we get

$$
(\sec x+\tan x) \frac{\mathrm{dy}}{\mathrm{dx}}+y \sec x(\sec x+\tan x)=\tan x(\sec x+\tan x)
$$

Integrating both sides, we get

$$
\begin{aligned}
& y(\sec x+\tan x)=\int \tan x(\sec x+\tan x) \mathrm{dx}+C \quad\left[\mathrm{U} \operatorname{sing}: y(\mathrm{IF})=\int Q \cdot(\mathrm{IF}) \mathrm{dx}+C\right] \\
\Rightarrow & y(\sec x+\tan x)=\int\left(\tan x \sec x+\tan ^{2} x\right) \mathrm{dx}+C \\
\Rightarrow & y(\sec x+\tan x)=\int\left(\tan x \sec x+\sec ^{2} x-1\right) \mathrm{dx}+C \\
\Rightarrow & y(\sec x+\tan x)=\sec x+\tan x-x+C, \text { which is the required solution. }
\end{aligned}
$$

Q.4.

Solve: $\frac{\mathrm{dy}}{\mathrm{dx}}=e^{x-y}+x^{2} e^{-y}$

Ans.
We have,

$$
\begin{aligned}
& \frac{\mathrm{dy}}{\mathrm{dx}}=e^{x-y}+x^{2} e^{-y} \\
\Rightarrow \quad & d y=\left(e^{x-y}+x^{2} e^{-y}\right) d x \\
\Rightarrow & e^{y} d y=\left(e^{x}+x^{2}\right) d x
\end{aligned}
$$

Integrating both sides, we get
$\Rightarrow \quad \int e^{y} \mathrm{dy}=\int\left(e^{x}+x^{2}\right) \mathrm{dx}$
$\Rightarrow \quad e^{y}=e^{x}+\frac{x^{3}}{3}+C$, which is the required solution.
Q.5. Form the differential equation representing the family of curves $y^{2}-$ $2 a y+x^{2}=a^{2}$, where a is an arbitrary constant.

Ans.

Given family of curves $y^{2}-2 a y+x^{2}=a^{2}$

Differentiating with respect to x, we get

$$
\begin{aligned}
& 2 y \frac{\mathrm{dy}}{\mathrm{dx}}-2 a \frac{\mathrm{dy}}{\mathrm{dx}}+2 x=0 \\
\Rightarrow & (y-a) \frac{\mathrm{dy}}{\mathrm{dx}}+x=0 \\
& (y-a) \frac{\mathrm{dy}}{\mathrm{dx}}=-x \\
\Rightarrow & y-a=-x \cdot \frac{\mathrm{dx}}{\mathrm{dy}} \\
\Rightarrow & a=\left(y+x \frac{\mathrm{dx}}{\mathrm{dy}}\right)
\end{aligned}
$$

Substituting the value of a, in (i), we get

$$
\begin{align*}
& y^{2}-2\left(y+x \frac{\mathrm{dx}}{\mathrm{dy}}\right) y+x^{2}=\left(y+x \frac{\mathrm{dx}}{\mathrm{dy}}\right)^{2} \\
\Rightarrow & y^{2}-2 y^{2}-2 \mathrm{xy} \frac{\mathrm{dx}}{\mathrm{dy}}+x^{2}=y^{2}+x^{2}\left(\frac{\mathrm{dx}}{\mathrm{dy}}\right)^{2}+2 \mathrm{xy} \frac{\mathrm{dx}}{\mathrm{dy}} \\
\Rightarrow \quad & \left(x^{2}-y^{2}\right)-2 \mathrm{xy} \frac{\mathrm{dx}}{\mathrm{dy}}=y^{2}+x^{2}\left(\frac{\mathrm{dx}}{\mathrm{dy}}\right)^{2}+2 \mathrm{xy} \frac{\mathrm{dx}}{\mathrm{dy}} \\
\Rightarrow \quad & \left(x^{2}-2 y^{2}\right)-4 \mathrm{xy} \frac{\mathrm{dx}}{\mathrm{dy}}=x^{2}\left(\frac{\mathrm{dx}}{\mathrm{dy}}\right)^{2} \tag{ii}
\end{align*}
$$

Let $\frac{\mathrm{dy}}{\mathrm{dx}}=p \Rightarrow \frac{\mathrm{dx}}{\mathrm{dy}}=\frac{1}{p}$
Therefore, (ii) becomes, $\left(x^{2}-2 y^{2}\right)-4$ xy $\frac{1}{p}=x^{2}\left(\frac{1}{p}\right)^{2}$
$\Rightarrow \quad p^{2}\left(x^{2}-2 y^{2}\right)-4 x y p=x^{2}$
$\Rightarrow \quad p^{2}\left(x^{2}-2 y^{2}\right)-4 x y p-x^{2}=0$, where $p=\frac{\mathrm{dy}}{\mathrm{dx}}$.

Q.6. Find the general solution of the following differential equation:

$x \cos \left(\frac{y}{x}\right) \frac{\mathrm{dy}}{\mathrm{dx}}=y \cos \left(\frac{y}{x}\right)+x$

Ans.

Given differential equation is $x \cos \left(\frac{y}{x}\right) \frac{\mathrm{dy}}{\mathrm{dx}}=y \cos \left(\frac{y}{x}\right)+x$

$$
\begin{equation*}
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{y \cos y / x+x}{x \cos y / x} \tag{i}
\end{equation*}
$$

It is homogeneous differential equation.

$$
\begin{aligned}
& \text { Let } y=v X \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=v+x \frac{\mathrm{dv}}{\mathrm{dx}} \\
& \text { (i) } \Rightarrow v+x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{v x \cos v+x}{x \cdot \cos v} \\
& \Rightarrow \quad x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{v \cos v+1}{\cos v}-v \\
& \Rightarrow \quad x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{v \cos v+1-v \cos v}{\cos v} \\
& \Rightarrow \quad x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1}{\cos v} \\
& \Rightarrow \quad \cos v \mathrm{dv}=\frac{\mathrm{dx}}{x}
\end{aligned}
$$

Integrating both sides

$$
\begin{aligned}
& \Rightarrow \quad \sin v=\log |x|+C \\
& \Rightarrow \quad \sin \frac{y}{x}=\log |x|+C
\end{aligned}
$$

Long Answer Questions-II

[6 Marks]

Q.1. Solve the following differential equation: $3 \mathbf{e}^{\mathbf{x}} \tan \mathbf{y d x}+\left(2-\mathbf{e}^{\mathbf{x}}\right) \sec ^{2} \mathbf{y} \mathbf{d y}=0$, given that when $x=0, y=\frac{\pi}{4}$

Ans.
Given, $3 e^{x} \tan y d x+\left(2-e^{x}\right) \sec ^{2} y d y=0$
$\Rightarrow \quad\left(2-e^{x}\right) \sec ^{2} y d y=-3 e^{x} \tan y d x$
$\Rightarrow \quad \frac{\sec ^{2} y}{\tan y} \mathrm{dy}=\frac{-3 e^{x}}{2-e^{x}} \mathrm{dx}$
$\Rightarrow \quad \int \frac{\sec ^{2} y \mathrm{dy}}{\tan y}=3 \int \frac{-e^{x} \mathrm{dx}}{2-e^{x}}$
$\Rightarrow \quad \log |\tan y|=3 \log \left|2-e^{x}\right|+\log C$
$\Rightarrow \log |\tan y|=\log \mid$ C. $\left(2-e^{x}\right)^{3} \mid$
$\Rightarrow \quad \tan y=C\left(2-e^{x}\right)^{3}$

Putting $x=0, y=\frac{\pi}{4}$, we get
$\Rightarrow \quad \tan \frac{\pi}{4}=C\left(2-e^{0}\right)^{3}$
$\Rightarrow \quad 1=C(2-1)^{3}$
$\Rightarrow \quad 1=C$

Therefore, particular solution is
$\tan y=\left(2-e^{x}\right)^{3}$.
Q.2. Solve: $x \mathrm{dy}-y \mathrm{dx}=\sqrt{x^{2}+y^{2}} \mathrm{dx}$

Ans.

The given differential equation can be written as

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sqrt{x^{2}+y^{2}}+y}{x}, x \neq 0
$$

Clearly, it is a homogeneous differential equation.
Putting $y=\mathrm{vx}$ and $\frac{\mathrm{dy}}{\mathrm{dx}}=v+x \frac{\mathrm{dv}}{\mathrm{dx}}$ in it, we get

$$
\begin{aligned}
& v+x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{\sqrt{x^{2}+v^{2} x^{2}}+\mathrm{vx}}{x} \\
\Rightarrow & v+x \frac{\mathrm{dv}}{\mathrm{dx}}=\sqrt{1+v^{2}}+v \\
\Rightarrow & x \frac{\mathrm{dv}}{\mathrm{dx}}=\sqrt{1+v^{2}} \\
\Rightarrow & \frac{\mathrm{dv}}{\sqrt{1+v^{2}}}=\frac{\mathrm{dx}}{x}
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{aligned}
& \int \frac{1}{\sqrt{1+v^{2}}} \mathrm{dv}=\int \frac{1}{x} \mathrm{dx} \\
\Rightarrow & \log \left|v+\sqrt{1+v^{2}}\right|=\log |x|+\log C \\
\Rightarrow & \left|v+\sqrt{1+v^{2}}\right|=|\mathrm{Cx}| \\
\Rightarrow & \left|\frac{y}{x}+\sqrt{1+\frac{y^{2}}{x^{2}}}\right|=|\mathrm{Cx}| \quad[\because v=y / x] \\
\Rightarrow & \left\{y+\sqrt{x^{2}+y^{2}}\right\}^{2}=C^{2} x^{4} \quad \text { [Squaring both sides] }
\end{aligned}
$$

Hence, $\left\{y+\sqrt{x^{2}+y^{2}}\right\}^{2}=C^{2} x^{4}$ gives the required solution.
Q.3. Find the particular solution of the differential equation $\left(1+x^{3}\right) \frac{\mathrm{dy}}{\mathrm{dx}}+6 x^{2} y=\left(1+x^{2}\right)$, given that $\boldsymbol{y}=1$ when $\boldsymbol{x}=1$.

Ans.

The given differential equation is

$$
\begin{aligned}
& \left(1+x^{3}\right) \frac{\mathrm{dy}}{\mathrm{dx}}+6 x^{2} y=\left(1+x^{2}\right) \\
\Rightarrow \quad & \frac{\mathrm{dy}}{\mathrm{dx}}+\frac{6 x^{2}}{\left(1+x^{3}\right)} y=\frac{1+x^{2}}{1+x^{3}}
\end{aligned}
$$

It is in the form of $\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{Py}=Q$, where $P=\frac{6 x^{2}}{\left(1+x^{3}\right)}, Q=\frac{1+x^{2}}{1+x^{3}}$
$\therefore \quad \mathrm{IF}=e^{\int P \mathrm{dx}}=e^{\int \frac{6 \mathrm{x}^{2}}{1+\mathrm{x}^{3}} \mathrm{dx}}$

$$
\begin{aligned}
& =e^{2 \int \frac{3 x^{2}}{1+x^{3}} \mathrm{dx}}=e^{2 \int \frac{\mathrm{dt}}{t}} \quad\left[\text { Let } 1+x^{3}=t \Rightarrow 3 x^{2} \mathrm{dx}=\mathrm{dt}\right] \\
& =\mathrm{e}^{2 \log t}=e^{\log t 2}=t^{2} \\
& =\left(1+x^{3}\right)^{2}
\end{aligned}
$$

Therefore, general solution is

$$
y \cdot\left(1+x^{3}\right)^{2}=\int \frac{1+x^{2}}{1+x^{3}} \times\left(1+x^{3}\right)^{2} \mathrm{dx}+C
$$

$$
=\int\left(1+x^{2}\right)\left(1+x^{3}\right) \mathrm{dx}+C=\int\left(x^{5}+x^{3}+x^{2}+1\right) \mathrm{dx}+C
$$

$y \cdot\left(1+x^{3}\right)^{2}=\frac{x^{6}}{6}+\frac{x^{4}}{4}+\frac{x^{3}}{3}+x+C$
Putting $y=1, x=1$, we get
$\therefore \quad 4=\frac{1}{6}+\frac{1}{4}+\frac{1}{3}+1+C$
$\Rightarrow \quad C=4-\frac{1}{6}-\frac{1}{4}-\frac{1}{3}-1=\frac{9}{4}$
Required particular solution is $y\left(1+x^{3}\right)^{2}=\frac{x^{6}}{6}+\frac{x^{4}}{4}+\frac{x^{3}}{3}+x+\frac{9}{4}$.
Q.4. Show that the differential equation $\left(x^{\frac{y}{x}}+y\right) d x=x d y$ is homogeneous. Find the particular solution of this differential equation, given that $x=1$ when $y=$ 1.

Ans.

Given differential equation is,

$$
\begin{align*}
& \left(x \cdot e^{\frac{y}{x}}+y\right) \mathrm{dx}=\mathrm{xdy} \\
\Rightarrow \quad & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{x \cdot e^{\frac{y}{x}}+y}{x} \tag{i}
\end{align*}
$$

Let $F(x, y)=\frac{x \cdot e^{\frac{y}{x}}+y}{x}$
$\therefore \quad F(\lambda x, \lambda y)=\frac{\lambda x \cdot e^{\frac{2 y}{x x}}+\lambda y}{\lambda x}=\lambda^{0} \frac{x \cdot e^{\frac{y}{x}}+y}{x}=\lambda^{0} F(x, y)$
Hence, given differential equation (i) is homogenous.
Let $y=v x \quad \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=v+x \cdot \frac{\mathrm{dv}}{\mathrm{dx}}$
Now, given differential equation (i) would become

$$
\begin{aligned}
& v+x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{x \cdot e^{\frac{\mathrm{vx}}{x}}+\mathrm{vx}}{x} \\
\Rightarrow \quad & v+x \cdot \frac{\mathrm{dv}}{\mathrm{dx}}=e^{v}+v \\
\Rightarrow \quad & x \cdot \frac{\mathrm{dv}}{\mathrm{dx}}=e^{v} \\
& \frac{\mathrm{dv}}{e^{v}}=\frac{\mathrm{dx}}{x} \\
\Rightarrow \quad & \int e^{-v} \mathrm{dv}=\int \frac{\mathrm{dv}}{v} \\
\Rightarrow \quad & \frac{e^{-v}}{-1}=\log x+C \\
& -e^{-\frac{y}{x}}=\log x+C
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad-\frac{1}{e^{\frac{y}{x}}}=\log x+C \\
& \Rightarrow \quad e^{\frac{y}{x}} \cdot \log x+\mathrm{Ce}^{\frac{y}{x}}+1=0
\end{aligned}
$$

Putting $x=1, y=1$, we get
$\therefore \quad e \log 1+C e+1=0$
$\Rightarrow \quad C=-\frac{1}{e}$
$\therefore \quad$ The required particular solution is

$$
e^{\frac{y}{x}} \cdot \log x-\frac{1}{e} e^{\frac{y}{x}}+1=0 \quad \text { or } \quad e^{\frac{y}{x}} \log x-e^{\frac{y}{x}-1}+1=0
$$

Q.5. Show that the differential equation $\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right] \mathrm{dx}+x \mathrm{dy}=0$ is homogeneous. Find the particular solution of this differential equation, given that $y=\frac{\pi}{4}$ when $x=1$.

Ans.

Given differential equation is,

$$
\begin{align*}
& {\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right] \mathrm{dx}+x \mathrm{dy}=0 } \\
\Rightarrow & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{y-x \sin ^{2}\left(\frac{y}{x}\right)}{x} \tag{i}
\end{align*}
$$

Let $F(x, y)=\frac{y-x \sin ^{2}\left(\frac{y}{x}\right)}{x}$
Then $F(\lambda x, \lambda y)=\frac{\lambda y-\lambda x \sin ^{2} \frac{\lambda y}{\lambda x}}{\lambda x}=\lambda^{0} \frac{y-x \sin ^{2} \frac{y}{x}}{x}=\lambda^{0} F(x, y)$
Hence, differential equation (i) is homogeneous.

Now, let $y=v x \quad \Rightarrow \quad \frac{d y}{d x}=v+x \frac{d v}{d x}$
Putting these value in (i), we get

$$
\begin{aligned}
& \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{\mathrm{vx}-x \sin ^{2} \frac{\mathrm{vx}}{x}}{x} \\
\Rightarrow \quad & v+x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{x\left\{v-\sin ^{2} v\right\}}{x} \\
\Rightarrow \quad & v+x \frac{\mathrm{dv}}{\mathrm{dx}}=v-\sin ^{2} v \\
\Rightarrow \quad & x \frac{\mathrm{dv}}{\mathrm{dx}}=-\sin ^{2} v \\
\Rightarrow \quad & \frac{\mathrm{dv}}{\sin ^{2} v}=-\frac{\mathrm{dx}}{x}
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{align*}
& \Rightarrow \quad \int \operatorname{cosec}^{2} v \mathrm{dv}=-\int \frac{1}{x} \mathrm{dx} \\
& \Rightarrow \quad-\cot v=-\log x+C \\
& \Rightarrow \quad \log x-\cot \left(\frac{y}{x}\right)=C \tag{ii}
\end{align*}
$$

Putting $y=\frac{\pi}{4}$ and $x=1$ in (ii), we get

$$
\begin{aligned}
& \log 1-\cot \frac{\pi}{4}=C \\
\Rightarrow & 0-1=C \\
\Rightarrow & C=-1
\end{aligned}
$$

Hence, particular solution is

$$
\begin{gathered}
\quad \log x-\cot \left(\frac{y}{x}\right)=-1 \\
\Rightarrow \quad \\
\quad \log x-\cot \left(\frac{y}{x}\right)+1=0
\end{gathered}
$$

Q.6. Find the differential equation of the family of

 curves $(x-h)^{2}+(y-k)^{2}=r^{2}$, where \boldsymbol{h} and \boldsymbol{k} are arbitrary constants. Ans.Given family of curve is:

$$
\begin{equation*}
(x-h)^{2}+(y-k)^{2}=r^{2} \tag{i}
\end{equation*}
$$

Differentiating with respect to x, we get

$$
\begin{align*}
& \Rightarrow \quad 2(x-h)+2(y-k) \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=x \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{x-h}{y-k} \tag{ii}
\end{align*}
$$

Differentiating again with respect to x, we get

$$
\begin{align*}
& \quad \frac{d^{2} y}{\mathrm{dx}}=-\left\{\frac{(y-k)(x-h) \cdot \frac{\mathrm{dy}}{\mathrm{dx}}}{(y-k)^{2}}\right\}=-\left\{\frac{(y-k)+(x-h) \cdot \frac{x-h}{y-k}}{(y-k)^{2}}\right\} \quad \text { [From (ii)] } \\
& \Rightarrow \quad \frac{d^{2} y}{\mathrm{dx}}=-\left\{\frac{(y-k)^{2}+(x-h)^{2}}{(y-k)^{3}}\right\}=-\frac{r^{2}}{(y-k)^{3}} \quad \ldots \text { (iii) } \quad \text { [From (i)] } \tag{iii}\\
& \text { From (ii) }\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}=\left(\frac{x-h}{y-k}\right)^{2} \\
& \Rightarrow \quad\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}=\frac{(x-h)^{2}}{(y-k)^{2}}
\end{align*}
$$

Adding 1 both the sides, we get
$\Rightarrow \quad\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}+1=\frac{(x-h)^{2}}{(y-k)^{2}}+1=\frac{(x-h)^{2}+(y-k)^{2}}{(y-k)^{2}}$
Putting exponent (power) $\frac{3}{2}$ both sides, we get
$\Rightarrow \quad\left[\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}+1\right]^{\frac{3}{2}}=\left[\frac{r^{2}}{(y-k)^{2}}\right]^{\frac{3}{2}}=\frac{r^{3}}{(y-k)^{3}}$
$\Rightarrow \quad\left[\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}+1\right]^{\frac{3}{2}}=r \cdot \frac{r^{2}}{(y-k)^{3}}=-r \frac{d^{2} y}{\mathrm{dx}^{2}} \quad[$ Using (iii)]
$\Rightarrow \quad r \frac{d^{2} y}{\mathrm{dx}^{2}}+\left[\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}+1\right]^{3 / 2}=0$

Q.7. Find the particular solution of the differential equation $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{x(2 \log x+1)}{\sin y+y \cos y}$ given that $y=\frac{\pi}{2}$ when $x=1$.

Ans.

$$
\begin{align*}
& \text { Given differential equation is } \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{x(2 \log x+1)}{\sin y+y \cos y} \\
& \Rightarrow \quad(\sin y+y \cos y) d y=x(2 \log x+1) d x \\
& \Rightarrow \quad \int \sin y \mathrm{dy}+\int y \cos y \mathrm{dy}=2 \int x \log x \mathrm{dx}+\int x \mathrm{dx} \\
& \left.\Rightarrow \quad \int \sin y \mathrm{dy}+\int y \sin y-\int \sin y \mathrm{dy}\right]=2\left[\log x \frac{x^{2}}{2}-\int \frac{1}{x} \cdot \frac{x^{2}}{2} \mathrm{dx}\right]+\int x \mathrm{dx} \\
& \Rightarrow \quad \int \sin y \mathrm{dy}+y \sin y-\int \sin y \mathrm{dy}=x^{2} \log x-\int x \mathrm{dx}+\int x \mathrm{dx}+C \\
& \Rightarrow \quad y \sin y=x^{2} \log x+C \tag{i}
\end{align*}
$$

It is general solution.
For particular solution, we put $y=\frac{\pi}{2}$ when $x=1$
(i) becomes $\frac{\pi}{2} \sin \frac{\pi}{2}=1 \cdot \log 1+C$

$$
\frac{\pi}{2}=C \quad[\because \log 1=0]
$$

Putting the value of C in (i), we get the required particular solution

$$
y \sin y=x^{2} \log x+\frac{\pi}{2}
$$

Q.8. Show that the family of curves for which the slope of the tangent at any point (x, y) on it is $\frac{x^{2}+y^{2}}{2 x y}$, is given by $\boldsymbol{x}^{2}-\boldsymbol{y}^{2}=\boldsymbol{C x}$.
Ans.

We know that the slope of the tangent at any point on a curve is $\frac{d y}{d x}$
Therefore, $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{x^{2}+y^{2}}{2 \mathrm{xy}}$
$\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1+\frac{y^{2}}{x^{2}}}{\frac{2 y}{x}}$
Clearly, equation (i) is a homogeneous differential equation. To solve it we make substitution

$$
\begin{aligned}
& y=\mathrm{vx} \\
\Rightarrow \quad & \frac{\mathrm{dy}}{\mathrm{dx}}=v+x \frac{\mathrm{dv}}{\mathrm{dx}}
\end{aligned}
$$

Putting the value of y and $\frac{d y}{d x}$ in equation (i), we get

$$
v+x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1+v^{2}}{2 v}
$$

or $\quad x \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1-v^{2}}{2 v}$
$\Rightarrow \quad \frac{2 v}{1-v^{2}} \mathrm{dv}=\frac{\mathrm{dx}}{x}$
$\Rightarrow \quad \frac{2 v}{v^{2}-1} \mathrm{dv}=-\frac{\mathrm{dx}}{x}$
Integrating both sides, we get

$$
\int \frac{2 v}{v^{2}-1} \mathrm{dv}=-\int \frac{1}{x} \mathrm{dx}
$$

or $\quad \log \left|v^{2}-1\right|=-\log |x|+\log \left|C_{1}\right|$
or $\quad \log \left|\left(v^{2}-1\right)(x)\right|=\log \left|C_{1}\right|$
or $\left(v^{2}-1\right) x= \pm C_{1}$
Replacing v by $\frac{y}{x}$ we get

$$
\begin{aligned}
& \left(\frac{y^{2}}{x^{2}}-1\right) x= \pm C_{1} \\
\Rightarrow & \left(y^{2}-x^{2}\right)= \pm C_{1} x \\
\Rightarrow & x^{2}-y^{2}=\mathrm{Cx} \quad\left(\text { where } \pm C_{1}=C\right)
\end{aligned}
$$

