Very Short Answer Questions

[1 Mark]

Q.1. Find a vector in the direction of vector $\overrightarrow{a}=\hat{i}-2\hat{j}$ that has magnitude 7 units.

Ans.

The unit vector in the direction of the given vector \overrightarrow{a} is

$$\widehat{a}=rac{1}{|\stackrel{
ightarrow}{|a|}}\stackrel{
ightarrow}{a}=rac{1}{\sqrt{5}}(\hat{i}-2\hat{j})=rac{1}{\sqrt{5}}\hat{i}-rac{2}{\sqrt{5}}\hat{j}$$

Therefore, the vector having magnitude equal to 7 and in the direction of \overrightarrow{a} is

$$7\hat{a} = 7\left(\frac{1}{\sqrt{5}}\hat{i} - \frac{2}{\sqrt{5}}\hat{j}\right) = \frac{7}{\sqrt{5}}\hat{i} - \frac{14}{\sqrt{5}}\hat{j}$$

Q.2. Find the value of λ so that the vectors

$$\overrightarrow{a}=2\hat{i}+\lambda\hat{j}+\hat{k}$$
 and $\overrightarrow{b}=\hat{i}-2\hat{j}+3\hat{k}$

are perpendicular to each other.

Ans.

The vectors \overrightarrow{a} and \overrightarrow{b} are perpendicular to each other, if

$$\overrightarrow{a}$$
. $\overrightarrow{b} = 0$ \Rightarrow $(2\hat{i} + \lambda\hat{j} + \hat{k})$. $(\hat{i} - 2\hat{j} + 3\hat{k}) = 0$

(2) (1) + (
$$\lambda$$
) (-2) + (1) (3) = 0 \Rightarrow -2 λ + 5 = 0 \Rightarrow $\lambda = \frac{5}{2}$

Q.3. Write the number of vectors of unit length perpendicular to both the vectors

$$\overrightarrow{a} = 2\hat{i} + \hat{j} + 2\hat{k}$$
 and $\overrightarrow{b} = \hat{j} + \hat{k}$.

Ans.

Number of vectors of unit length perpendicular to both vectors = 2

Q.4. Find the angle between the vectors

$$\overrightarrow{a} = \hat{i} - \hat{j} + \hat{k}$$
 and $\overrightarrow{b} = \hat{i} + \hat{j} - \hat{k}$.

Ans.

Here,
$$\overrightarrow{a} = \hat{i} - \hat{j} + \hat{k}$$
 \Rightarrow $\left| \overrightarrow{a} \right| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3}$ and $\overrightarrow{b} = \hat{i} + \hat{j} - \hat{k}$ \Rightarrow $\left| \overrightarrow{b} \right| = \sqrt{(1)^2 + (1)^2 + (-1)^2} = \sqrt{3}$ $\overrightarrow{a} \cdot \overrightarrow{b} = \left| \overrightarrow{a} \right| \left| \overrightarrow{b} \right| \cos \theta$ $\Rightarrow 1 - 1 - 1 = \sqrt{3} \cdot \sqrt{3} \cos \theta \Rightarrow -1 = 3 \cos \theta$ $\Rightarrow \cos \theta = -\frac{1}{3}$ $\Rightarrow \theta = \cos^{-1} \left(-\frac{1}{3} \right)$

Q.5.

If
$$\left| \overrightarrow{a} \right| = \sqrt{3}$$
, $\left| \overrightarrow{b} \right| = 2$ and angle between \overrightarrow{a} and \overrightarrow{b} is 60°, then find \overrightarrow{a} . \overrightarrow{b} .

Ans.

Given,
$$\left| \overrightarrow{a} \right| = \sqrt{3}$$
, $\left| \overrightarrow{b} \right| = 2$ and $\theta = 60^{\circ}$

$$\overrightarrow{a} \cdot \overrightarrow{b} = \left| \overrightarrow{a} \right| \left| \overrightarrow{b} \right| \cos \theta$$

$$= \sqrt{3} \cdot 2 \cdot \cos 60^{\circ} = \sqrt{3} \qquad \left[\because \cos 60^{\circ} = \frac{1}{2} \right]$$

Q.6.

Find the projection of $\stackrel{\rightarrow}{a}$ on $\stackrel{\rightarrow}{b}$, if $\stackrel{\rightarrow}{a}$. $\stackrel{\rightarrow}{b}=8$ and $\stackrel{\rightarrow}{b}=2\hat{i}+6\hat{j}+3\hat{k}$.

Given,
$$\overrightarrow{a}$$
. $\overrightarrow{b}=8$ and $\overrightarrow{b}=2\hat{i}+6\hat{j}+3\hat{k}$

We know projection of
$$\overrightarrow{a}$$
 on $\overrightarrow{b} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\left| \overrightarrow{b} \right|} = \frac{8}{\sqrt{4+36+9}} = \frac{8}{7}$

Q.7. Write a unit vector in the direction of $\overset{
ightarrow}{a}=2\hat{i}-6\hat{j}+3\hat{k}$. Ans.

Given,
$$\overrightarrow{a} = 2\hat{i} - 6\hat{j} + 3\hat{k}$$

Unit vector in the direction of $\overrightarrow{a} = \frac{\overrightarrow{a}}{\left|\overrightarrow{a}\right|} = \widehat{a}$

$$\Rightarrow \widehat{a} = rac{2\hat{i} - 6\hat{j} + 3\hat{k}}{\sqrt{4 + 36 + 9}} \qquad \Rightarrow \widehat{a} = rac{2}{7}\hat{i} - rac{6}{7}\hat{j} + rac{3}{7}\hat{k}$$

Q.8. Write the value of p for which

$$\overrightarrow{a}=3\hat{i}+2\hat{j}+9\hat{k}$$
 and $\overrightarrow{b}=\hat{i}+p\hat{j}+3\hat{k}$

are parallel vector.

Ans.

Since
$$\overrightarrow{a} \mid \mid \overrightarrow{b}$$
, therefore $\overrightarrow{a} = \lambda \overrightarrow{b}$

$$\Rightarrow$$
 $3\hat{i} + 2\hat{j} + 9\hat{k} = \lambda(\hat{i} + p\hat{j} + 3\hat{k})$

$$\Rightarrow \lambda = 3$$
, $2 = \lambda p$, $9 = 3\lambda$ or $\lambda = 3$, [By comparing the coefficients]

If \overrightarrow{p} is a unit vector of $(\overrightarrow{x} - \overrightarrow{p})$. $(\overrightarrow{x} + \overrightarrow{p}) = 80$, then find $|\overrightarrow{x}|$

Given
$$(\overrightarrow{x} - \overrightarrow{p})$$
. $(\overrightarrow{x} + \overrightarrow{p}) = 80$

$$\begin{vmatrix} \overrightarrow{x} \end{vmatrix}^2 - \begin{vmatrix} \overrightarrow{p} \end{vmatrix}^2 = 80 \qquad \Rightarrow \qquad \begin{vmatrix} \overrightarrow{x} \end{vmatrix}^2 - 1 = 80 \qquad \Rightarrow \qquad \begin{vmatrix} \overrightarrow{x} \end{vmatrix}^2 = 81 \quad \text{or} \quad \begin{vmatrix} \overrightarrow{x} \end{vmatrix} = 9$$

Q.10.

If $|\overrightarrow{a}| = \sqrt{3}$, $|\overrightarrow{b}| = 2$ and $|\overrightarrow{a}| = \sqrt{3}$ then find the angle between $|\overrightarrow{a}|$ and $|\overrightarrow{b}| = \sqrt{3}$.

Ans.

Given,
$$|\overrightarrow{a}| = \sqrt{3}$$
, $|\overrightarrow{b}| = 2$, $|\overrightarrow{a}| = \sqrt{3}$

We know, $|\overrightarrow{a}| = \sqrt{3}$ $|\overrightarrow{b}| = 2$, $|\overrightarrow{a}| = \sqrt{3}$ $|\overrightarrow{b}| = \sqrt{3}$ $|\overrightarrow{b}| = \sqrt{3}$ $|\overrightarrow{a}| = \sqrt{3}$ (2) $|\overrightarrow{a}| = \sqrt{3}$

$$\frac{1}{2} = \cos \theta$$
 \Rightarrow $\theta = \frac{\pi}{3}$

Q.11. Write a vector of magnitude 15 units in the direction of vector $\hat{i}-2\hat{j}+2\hat{k}$.

Ans.

Let
$$\overrightarrow{a} = \hat{i} - 2\hat{j} + 2\hat{k}$$

Unit vector in the direction of
$$\overrightarrow{a}$$
 is $\widehat{a} = \frac{\widehat{i} - 2\widehat{j} + 2\widehat{k}}{\sqrt{(1)^2 + (-2)^2 + (2)^2}} = \frac{1}{3}(\widehat{i} - 2\widehat{j} + 2\widehat{k})$

Vector of magnitude 15 units in the direction of $\overrightarrow{a} = 15$ $\widehat{a} = 15$ $\frac{(\hat{i} - 2\hat{j} + 2\hat{k})}{3}$

$$= \frac{15}{3}\hat{i} - \frac{30}{3}\hat{j} + \frac{30}{3}\hat{k}$$

$$= 5\hat{i} - 10\hat{j} + 10\hat{k}$$

Q.12. What is the cosine of the angle, which the vector $\sqrt{2}\hat{i} + \hat{j} + \hat{k}$ makes with *y*-axis?

We will consider $\overrightarrow{a} = \sqrt{2\hat{i}} + \hat{j} + \hat{k}$

Unit vector in the direction of \overrightarrow{a} is $\widehat{a} = \frac{\sqrt{2}\widehat{i} + \widehat{j} + \widehat{k}}{\sqrt{(\sqrt{2})^2 + (1)^2 + (1)^2}}$

$$= \ \frac{\sqrt{2}\,\hat{i} + \hat{j} + \hat{k}}{\sqrt{4}} \ = \ \frac{\sqrt{2}\,\hat{i} + \hat{j} + \hat{k}}{2}$$

$$= \frac{\sqrt{2}}{2}\hat{i} + \frac{1}{2}\hat{j} + \frac{1}{2}\hat{k} = \frac{1}{\sqrt{2}}\hat{i} + \frac{1}{2}\hat{j} + \frac{1}{2}\hat{k}$$

The cosine of the angle which the vector $\sqrt{2}\hat{i}+\hat{j}+\hat{k}$ makes with y-axis is $\left(\frac{1}{2}\right)$

Q.13. Find λ if $(2\hat{i}+6\hat{j}+14\hat{k}) \times (\hat{i}-\lambda\hat{j}+7\hat{k}) = \overset{\rightarrow}{0}$.

Ans.

We have given $(2\hat{i}+6\hat{j}+14\hat{k}) imes (\hat{i}-\lambda\hat{j}+7\hat{k})=\stackrel{
ightarrow}{0}$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 6 & 14 \\ 1 & -\lambda & 7 \end{vmatrix} = \stackrel{\rightarrow}{0} \quad \Rightarrow \quad \hat{i} \begin{vmatrix} 6 & 14 \\ -\lambda & 7 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 14 \\ 1 & 7 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 6 \\ 1 & -\lambda \end{vmatrix} = \stackrel{\rightarrow}{0}$$

$$\Rightarrow$$
 $\hat{i} (42 + 14\lambda) - 0\hat{j} + \hat{k}(-2\lambda - 6) = \stackrel{\rightarrow}{0}$

$$\Rightarrow$$
 42 + 14 λ = 0 \Rightarrow 14 λ = -42 \Rightarrow λ = -3

Also,
$$-2\lambda - 6 = 0$$
 \Rightarrow $\lambda = -3$

 \therefore Value of $\lambda = -3$

Q.14.

If
$$\left| \overrightarrow{a} \right| = 4$$
, $\left| \overrightarrow{b} \right| = 3$ and \overrightarrow{a} . $\overrightarrow{b} = 6\sqrt{3}$, then the value of $\left| \overrightarrow{a} \times \overrightarrow{b} \right|$.

We have,
$$a$$
 . $b=6\sqrt{3}$ $\Rightarrow \left|\overrightarrow{a}\right|$. $\left|\overrightarrow{b}\right|\cos \theta=6\sqrt{3}$

$$\Rightarrow 4 \times 3 \cos \theta = 6\sqrt{3}$$

$$\Rightarrow \cos \theta = \frac{6\sqrt{3}}{4 \times 3} = \frac{\sqrt{3}}{2}$$

$$\Rightarrow \theta = \frac{\pi}{6}$$

Now,
$$\left| \overrightarrow{a} \times \overrightarrow{b} \right| = \left| \overrightarrow{a} \right|$$
. $\left| \overrightarrow{b} \right| \sin \theta = 4 \times 3 \sin \frac{\pi}{6} = 4 \times 3 \times \frac{1}{2} = 6$

Q.15. Find the sum of the vectors.

$$\overrightarrow{a} = \hat{i} - 2\hat{j} + \widehat{k}, \ \overrightarrow{b} = -2\hat{i} + 4\hat{j} + 5k \text{ and } \overrightarrow{c} = \hat{i} - 6\hat{j} - 7\hat{k}.$$

Ans.

$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = (1-2+1)\hat{i} + (\hat{O} \otimes \Omega + 4-6)\hat{j} + (1+5-7)\hat{k}$$

$$= -4\hat{j} - \hat{k}$$

Q.16. Write the value of the area of the parallelogram determined by the vectors $2\hat{j}$ and $3\hat{j}$.

Ans.

Required area of parallelogram = $|\hat{2i} \times \hat{3j}|$

$$= 6|\hat{i} \times \hat{j}| = 6|\hat{k}| = 6 \text{ sq units.}$$

[Note: Area of parallelogram whose sides are represented by \overrightarrow{a} and \overrightarrow{b} is $|\overrightarrow{a} \times \overrightarrow{b}|$]

Q.17. Write the value of $(\hat{i} imes \hat{j})$. $\hat{k} + (\hat{j} imes \hat{k})$. \hat{i}

$$(\hat{i} \times \hat{j}). \hat{k} + (\hat{j} \times \hat{k}). \hat{i} = \hat{k}. \hat{k} + \hat{i}. \hat{i}$$

= 1 + 1 = 2

[Note:
$$\overrightarrow{a}$$
. $\overrightarrow{b} = |\overrightarrow{a}|$. $|\overrightarrow{b}| \cos \theta$. Also $|\widehat{i}| = |\widehat{j}| = |\widehat{k}| = 1$]

Q.18. Write a unit vector in the direction of $\overset{
ightarrow}{b}=2\hat{i}+\hat{j}+2\hat{k}$.

Ans.

Given,
$$\overset{
ightarrow}{b}=2\hat{i}+\hat{j}+2\hat{k}$$

Unit vector in the direction of $\overrightarrow{b} = \frac{\overrightarrow{b}}{|\overrightarrow{b}|} \hat{b}$

$$\hat{b} = rac{2\hat{i} + \hat{j} + 2\hat{k}}{\sqrt{2^2 + 1^2 + 2^2}} = rac{2}{3}\hat{i} + rac{1}{3}\hat{j} + rac{2}{3}\hat{k}$$

Q.19. For what value of 'a' the vectors $2\hat{i}-3\hat{j}+4\hat{k}$ and $a\hat{i}+6\hat{j}-8\hat{k}$ are collinear?

Ans.

$$2\hat{i} - 3\hat{j} + 4\hat{k}$$
 and $a\hat{i} + 6\hat{j} - 8\hat{k}$ are collinear

$$\therefore \quad \frac{2}{a} = \frac{-3}{6} = \frac{4}{-8} \quad \Rightarrow \quad a = \frac{2 \times 6}{-3} \quad \text{or} \quad a = \frac{2 \times (-8)}{4}$$

$$\Rightarrow a = -4$$

[Note: If \overrightarrow{a} and \overrightarrow{b} are collinear vectors then the respective components of \overrightarrow{a} and \overrightarrow{b} are proportional.]

Q.20. Write the direction cosines of the vector ${}^{-}$ $2\hat{i}+\hat{j}-5\hat{k}$.

Direction cosines of vector $-2\hat{i}+\hat{j}-5\hat{k}$ are

$$\begin{bmatrix} \frac{-2}{\sqrt{(-2)^2+1^2+(-5)^2}}, & \frac{1}{\sqrt{(-2)^2+1^2+(-5)^2}}, & \frac{-5}{\sqrt{(-2)^2+1^2+(-5)^2}} \\ \frac{-2}{\sqrt{30}}, & \frac{1}{\sqrt{30}}, & \frac{-5}{\sqrt{30}} \end{bmatrix}$$

Note: If *l, m, n* are direction cosine of $a\hat{i} + b\hat{j} + c\hat{k}$ then

$$l = rac{a}{\sqrt{a^2 + b^2 + c^2}}, \quad m = rac{b}{\sqrt{a^2 + b^2 + c^2}}, \quad n = rac{c}{\sqrt{a^2 + b^2 + c^2}}$$

Q.21. Write the value of $(\hat{i} imes \hat{j})$. $\hat{k} + \hat{i}.\hat{j}$.

Ans.

$$(\hat{i} \times \hat{j}).\hat{k} + \hat{i}.\hat{j} = \hat{k}.\hat{k} + 0$$
$$= 1 + 0 = 1$$

Note:

$$\hat{\hat{i}}.\hat{\hat{j}} = \hat{j}.\hat{k} = \hat{k}.\hat{i} = 0, \ \hat{i}.\hat{i} = \hat{j}.\hat{j} = \hat{k}.\hat{k} = 1, \hat{i} \times \hat{j} = \hat{k}, \hat{j} \times \hat{k} = \hat{i} \ \text{and} \ \hat{k} \times \hat{i} = \hat{j}, \hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k}$$

0 22

If vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} are such that $\left|\overrightarrow{a}\right| = \frac{1}{2}$, $\left|\overrightarrow{b}\right| = \frac{4}{\sqrt{3}}$ and $\left|\overrightarrow{a} \times \overrightarrow{b}\right| = \frac{1}{\sqrt{3}}$, then find $\left|\overrightarrow{a} \cdot \overrightarrow{b}\right|$.

We have,
$$\begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix} = \frac{1}{\sqrt{3}}$$
 $\Rightarrow \begin{vmatrix} |\overrightarrow{a}| \end{vmatrix} \begin{vmatrix} \overrightarrow{b} \end{vmatrix} \sin \theta \, \widehat{n} \end{vmatrix} = \frac{1}{3}$
 $\Rightarrow \begin{vmatrix} \overrightarrow{a} \end{vmatrix} \begin{vmatrix} |\overrightarrow{b}| \end{vmatrix} \sin \theta = \frac{1}{\sqrt{3}}$ $f : \theta \text{ is angles between } \overrightarrow{a} \text{ and } \overrightarrow{b} f$
 $\Rightarrow \frac{1}{2} \times \frac{4}{\sqrt{3}} \cdot \sin \theta = \frac{1}{\sqrt{3}}$ $\Rightarrow \sin \theta = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{2}$
 $\Rightarrow \sin \theta = \frac{1}{2}$ $\Rightarrow \theta = 30^{\circ}$
Now, $\begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{b} \end{vmatrix} = \begin{vmatrix} \overrightarrow{a} \end{vmatrix} \begin{vmatrix} \overrightarrow{b} \end{vmatrix} \cos \theta$
 $= \frac{1}{2} \times \frac{4}{\sqrt{3}} \cdot \cos 30^{\circ} = \frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2} = 1$

Q.23. Let \overrightarrow{a} and \overrightarrow{b} be two vectors such that $|\overrightarrow{a}|=3$ and $|\overrightarrow{b}|=\frac{\sqrt{2}}{3}$ and $|\overrightarrow{a}|\times|\overrightarrow{b}|$ is a unit vector. What is the angle between \overrightarrow{a} and $|\overrightarrow{b}|=3$?

We have,
$$|\overrightarrow{a}| = 3$$
, $|\overrightarrow{b}| = \frac{\sqrt{2}}{3}$

Now, $|\overrightarrow{a}| \times |\overrightarrow{b}| = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta$

$$\Rightarrow \sin \theta = \frac{|\overrightarrow{a}| \times |\overrightarrow{b}|}{|\overrightarrow{a}| |\overrightarrow{b}|} = \frac{1}{3 \times \frac{\sqrt{2}}{3}} = \frac{1}{\sqrt{2}} \Rightarrow \theta = 45^{\circ}$$

Short Answer Questions-I (PYQ)

[2 Mark]

Q.1. The x-coordinate of a point on the line joining the point P(2, 2, 1) and Q(5, 1, -2) is 4. Find its z-coordinate.

Ans.

$$k (4,y_1, z_1)$$
 $R 1$
 $P(2, 2,1)$
 $Q(5, 1, -2)$

Let required point be $R(4, y_1, z_1)$

Which divides PQ in ratio k:1

By section formula

$$4 = \frac{5k+2}{k+1}$$

$$\Rightarrow 4k + 4 = 5k + 2$$
 $\Rightarrow k = 2$

$$z_1 = \frac{2 \times (-2) + 1 \times 1}{2 + 1} = \frac{-4 + 1}{3} = \frac{-3}{3} = -1$$

Q.2. Find ' λ ' when the projection of $\overrightarrow{a}=\lambda\hat{i}+\hat{j}+4\hat{k}$ on $\overrightarrow{b}=2\hat{i}+6\hat{j}+3\hat{k}$ is 4 units.

Ans.

We know that projection of \overrightarrow{a} on $\overrightarrow{b} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|}$

$$\Rightarrow 4 = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|} \dots (i)$$

Now,
$$\overrightarrow{a}$$
. $\overrightarrow{b} = 2\lambda + 6 + 12 = 2\lambda + 18$

Also
$$|\overrightarrow{b}| = \sqrt{2^2 + 6^2 + 3^2} = \sqrt{4 + 36 + 9} = 7$$

Putting in (i), we get

$$4 = \frac{2\lambda + 18}{7}$$
 \Rightarrow $2\lambda = 28 - 18$ \Rightarrow $\lambda = \frac{10}{2} = 5$

Q.3. What are the direction cosines of a line, which makes equal angles with the co-ordinate axes?

Ans.

Let a be the angle made by line with coordinate axes.

⇒ Direction cosines of line are cos α, cos α, cos α

$$\Rightarrow \cos^2 \alpha + \cos^2 \alpha + \cos^2 \alpha = 1$$

$$\Rightarrow$$
 3 $\cos^2 \alpha = 1$ \Rightarrow $\cos^2 \alpha = \frac{1}{3}$

$$\Rightarrow$$
 $\cos \alpha = \pm \frac{1}{\sqrt{3}}$

Hence, the direction cosines, of the line equally inclined to the coordinate axes are

$$\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$$

[Note: If I, m, n are direction cosines of line, then $l^2+m^2+n^2=1$]

Q.4. For what value of p, is $(\hat{i} + \hat{j} + \widehat{k})$ p a unit vector? Ans.

Let,
$$\overrightarrow{a} = p(\hat{i} + \hat{j} + \hat{k})$$

Magnitude of \overrightarrow{a} is $|\overrightarrow{a}|$

$$|\overrightarrow{a}| = \sqrt{(p)^2 + (p)^2 + (p)^2} = \pm \sqrt{3}p$$

As \overrightarrow{a} is a unit vector $|\overrightarrow{a}| = 1$,

$$\therefore \implies \pm \sqrt{3}p = 1 \implies p = \pm \frac{1}{\sqrt{3}}$$

Q.5. Find the value of $ig(2\hat{i}+6\hat{j}+27\hat{k}ig) imes (\hat{i}+3\hat{j}+p\hat{k}ig)=\overrightarrow{0}$. Ans.

$$(2\hat{i}+6\hat{j}+27\hat{k})\times(\hat{i}+3\hat{j}+p\hat{k})=\overrightarrow{0}$$

$$\begin{vmatrix} \hat{i} & j & \hat{k} \\ 2 & 6 & 27 \\ 1 & 3 & p \end{vmatrix} = \overrightarrow{0} \qquad \Rightarrow \qquad (6p - 81)\hat{i} - (2p - 27)\hat{j} + 0\hat{k} = \overrightarrow{0}$$

$$\Rightarrow$$
 6p = 81 \Rightarrow p = $\frac{81}{6}$ = $\frac{27}{2}$

Q.6. Write the position vector of the mid-point of the vector joining the points P(2, 3, 4) and Q(4, 1, -2).

Ans.

Let \overrightarrow{a} , \overrightarrow{b} be position vector of points P(2, 3, 4) and Q(4, 1, -2) respectively.

$$\therefore \overrightarrow{a} = 2\hat{i} + 3\hat{j} + 4\hat{k} \text{ and } \overrightarrow{b} = 4\hat{i} + \hat{j} + 2\hat{k}$$

$$\therefore$$
 Position vector of mid point of P and $Q=\frac{\overrightarrow{a}+\overrightarrow{b}}{2}=\frac{6\hat{i}+4\hat{j}+2\hat{k}}{2}=3\hat{i}+2\hat{j}+\hat{k}$

Q.7. If $|\overline{a}| = a$, then find the value of the following:

$$\left|\overrightarrow{a}\right| \times \left|\widehat{i}\right|^2 + \left|\overrightarrow{a}\right| \times \left|\widehat{j}\right|^2 + \left|\overrightarrow{a}\right| \times \left|\widehat{k}\right|^2$$

Let \overrightarrow{a} makes angle α , β , γ with x, y and z axis.

$$\therefore \ \left| \overrightarrow{a} \times \hat{i} \right| = \left| \overrightarrow{a} \right|.1. \sin \alpha = a \sin \alpha$$

Similarly, $|\overrightarrow{a} \times \hat{j}| = a \sin \beta$

and
$$|\overrightarrow{a} imes \widehat{k}| = a\sin\gamma$$

Q.8. The vectors $\overrightarrow{a}=3\hat{i}+x\hat{j}$ and $\overrightarrow{b}=2\hat{i}+\hat{j}+y\hat{k}$ are mutually perpendicular. If $|\overrightarrow{a}|=|\overrightarrow{b}|$, then find the value of y.

 $\therefore \overrightarrow{a}$ and \overrightarrow{b} are mutually perpendicular.

$$\vec{a} \cdot \vec{a} \cdot \vec{b} = 0$$

$$\Rightarrow$$
 $(3\hat{i} + x\hat{j}).(2\hat{i} + \hat{j} + y\hat{k}) = 0$

$$\Rightarrow$$
 6 + x + 0. y = 0

$$\Rightarrow 6 + x = 0$$
 $\Rightarrow x = -6$

Again,
$$|\overrightarrow{a}| = |\overrightarrow{b}|$$

$$\Rightarrow \sqrt{3^2+x^2} = \sqrt{2^2+1+y^2}$$

$$\Rightarrow \sqrt{9+36} = \sqrt{5+y^2} \qquad \left[\because x = -6 \right]$$

$$\Rightarrow \sqrt{45} = \sqrt{5 + y^2} \qquad \Rightarrow y^2 = 45 - 5$$

$$\Rightarrow y = \pm \sqrt{40} = \pm 2\sqrt{10}$$

Q.9. Find the value of \overrightarrow{a} . \overrightarrow{b} if $|\overrightarrow{a}|=10$, $|\overrightarrow{b}|=2$ and $|\overrightarrow{a}\times\overrightarrow{b}|=16$.

Ans.

$$|\overrightarrow{a} \times \overrightarrow{b}| = 16$$
 \Rightarrow $|\overrightarrow{a}| |\overrightarrow{b}| \sin \theta = 16$

$$\Rightarrow 10 \times 2 \sin \theta = 16 \qquad \Rightarrow \sin \theta = \frac{16}{20} = \frac{4}{5}$$

$$\Rightarrow$$
 $\cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \frac{16}{25}} = \pm \frac{3}{5}$

$$\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta = \pm 10 \times 2 \times \frac{3}{5} = \pm 2$$

Short Answer Questions-I (OIQ)

Q.1. Find the unit vector in the direction of the sum of the vectors

$$\overrightarrow{a} = 2\hat{i} - \hat{j} + 2\hat{k}$$
 and $\overrightarrow{b} = -\hat{i} + \hat{j} + 3\hat{k}$

Ans.

Let \overrightarrow{c} be the sum of \overrightarrow{a} and \overrightarrow{b}

$$\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b}$$

$$=(2\hat{i}-\hat{j}+2\hat{k})+(-\hat{i}+\hat{j}+3\hat{k})$$

$$|\overrightarrow{c}| = \hat{i} + 5\hat{k}$$

$$=\sqrt{(1)^2+0^2+(5)^2}=\sqrt{1+25}=\sqrt{26}$$

Therefore required unit vector is

$$\frac{\hat{i}+5\hat{k}}{\sqrt{26}} = \frac{1}{\sqrt{26}}\,\hat{i} + \frac{5}{\sqrt{26}}\,\hat{k}$$

Q.2. Write the direction ratio's of the vector $\overrightarrow{a}=\hat{i}+\hat{j}-2\hat{k}$ and hence calculate its direction cosines.

Ans.

We know that, the direction ratio's a, b, c of a vector $\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{k}$ are just the respective components x, y and z of the vector. So, for the given vector, we have a = 1, b = 1 and c = -2. Further, if l, m and n are the direction cosines of the given vector, then

$$l=rac{a}{|\overrightarrow{r}|}=rac{1}{\sqrt{6}}, \qquad m=rac{b}{|\overrightarrow{r}|}=rac{1}{\sqrt{6}},$$

$$n = \frac{c}{|\overrightarrow{r}|} = \frac{-2}{\sqrt{6}} \text{as } |\overrightarrow{r}| = \sqrt{6}$$

Thus, the direction cosines are $\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right)$

Q.3. Find the value of λ for which the two vectors

$$2\hat{i} - \hat{j} + 2k$$
 and $3\hat{i} + \lambda\hat{j} + \hat{k}$

and are perpendicular to each other.

Ans.

Let
$$\overrightarrow{a} = 2\hat{i} - \hat{j} + 2\hat{k}$$
 and $\overrightarrow{b} = 3\hat{i} + \lambda\hat{j} + \hat{k}$

 \vec{a} is perpendicular to \vec{b}

$$\Rightarrow \overrightarrow{a} \cdot \overrightarrow{b} = 0$$

$$\Rightarrow$$
 $(2\hat{i} - \hat{j} + 2\hat{k})$. $(3\hat{i} + \lambda\hat{j} + \hat{k}) = 0$

$$\Rightarrow$$
 2 \times 3 + (-1)×(λ) + 2 \times 1 = 0

$$\Rightarrow 6 - \lambda + 2 = 0 \Rightarrow \lambda = 8$$

Q.4. Find the area of a parallelogram whose adjacent sides are

$$\hat{i} + \hat{k}$$
 and $2\hat{i} + \hat{j} + \hat{k}$.

Let \overrightarrow{a} and \overrightarrow{b} be adjacent sides of parallelogram such that

$$\overrightarrow{a} = \hat{i} + \hat{k}$$
 and $\overrightarrow{b} = 2\hat{i} + \hat{j} + \hat{k}$

 \therefore Area of parallelogram = $|\overrightarrow{a} \times \overrightarrow{b}|$

Now
$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{vmatrix} = (0 - 1)\hat{i} - (1 - 2)\hat{j} + (1 - 0)\hat{k}$$

$$=-\hat{i}+\hat{j}+\hat{k}$$

: Area of parallelogram =
$$\sqrt{(-1)^2 + 1^2 + 1^2}$$

$$=\sqrt{1+1+1} = \sqrt{3}$$
 sq. units.

Long Answer Questions-I (PYQ)

[4 Mark]

Q.1. Prove that, for any three vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c}

$$[\overrightarrow{a} + \overrightarrow{b} \quad \overrightarrow{b} + \overrightarrow{c} \quad \overrightarrow{c} + \overrightarrow{a}] = 2[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}]$$

Ans.

LHS =
$$[\overrightarrow{a} + \overrightarrow{b} \overrightarrow{b} + \overrightarrow{c} \overrightarrow{c} + \overrightarrow{a}] = (\overrightarrow{a} + \overrightarrow{b}) \cdot \{(\overrightarrow{b} + \overrightarrow{c}) \times (\overrightarrow{c} + \overrightarrow{a})\}$$

= $(\overrightarrow{a} + \overrightarrow{b}) \cdot \{\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{a} + \overrightarrow{c} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}\}$
= $(\overrightarrow{a} + \overrightarrow{b}) \cdot \{\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{a} + \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{c} \times \overrightarrow{a}\}$
[: $\overrightarrow{c} \times \overrightarrow{c} = \overrightarrow{0}$]
= $\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{a}) + \overrightarrow{a} \cdot (\overrightarrow{c} \times \overrightarrow{a}) + \overrightarrow{b} \cdot (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{b} \cdot (\overrightarrow{b} \times \overrightarrow{$

Q.2. Find the value of x such that the point A(3, 2, 1), B(4, x, 5), C(4, 2, -2) and D(6, 5, -1) are coplanar.

We have A(3, 2, 1), B(4, x, 5), C(4, 2, -2) and D(6, 5, -1)

$$\overrightarrow{\mathrm{AB}} = \hat{i} + (x-2)\hat{j} + 4\hat{k}; \ \overrightarrow{\mathrm{AC}} = \hat{i} + 0\hat{j} - 3\hat{k}; \ \overrightarrow{\mathrm{AD}} = 3\hat{i} + 3\hat{j} - 2\hat{k}$$

: Points A, B, C and D are coplanar $\Rightarrow \overrightarrow{AB}$, \overrightarrow{AC} , \overrightarrow{AD} are coplanar

$$\Rightarrow \ \, [\ \, \overrightarrow{AB} \ \, \overrightarrow{AC} \ \, \overrightarrow{AD} \ \,] = 0$$

$$\Rightarrow \begin{vmatrix} 1 & x-2 & 4 \\ 1 & 0 & -3 \\ 3 & 3 & -2 \end{vmatrix} = 0$$

$$\Rightarrow 1 (0+9) - (x-2)(-2+9) + 4(3-0) = 0$$

$$\Rightarrow 9 - 7x + 14 + 12 = 0$$

$$\Rightarrow 7x = 35$$
 $\Rightarrow x = 5$

Q.3. Show that the vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar, if $\overrightarrow{a} + \overrightarrow{b}$, and $\overrightarrow{b} + \overrightarrow{c}$ and $\overrightarrow{c} + \overrightarrow{a}$ are coplanar.

Ans.

If part: Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar

 \Rightarrow Scalar triple product of $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ and $\stackrel{\rightarrow}{c}$ is zero

$$\Rightarrow [\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}] = 0 \Rightarrow \qquad \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) = \overrightarrow{b} \cdot (\overrightarrow{c} \times \overrightarrow{a}) = \overrightarrow{c} \cdot (\overrightarrow{a} \times \overrightarrow{b}) = 0$$

Now,
$$[\overrightarrow{a} + \overrightarrow{b} \xrightarrow{\overrightarrow{b}} \overrightarrow{b} + \overrightarrow{c} \xrightarrow{\overrightarrow{c}} + \overrightarrow{a}] = (\overrightarrow{a} + \overrightarrow{b}) \cdot \{(\overrightarrow{b} + \overrightarrow{c}) \times (\overrightarrow{c} + \overrightarrow{a})\}$$

$$= (\overrightarrow{a} + \overrightarrow{b}).\{\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{a} + \overrightarrow{c} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}\}$$

$$= (\overrightarrow{a} + \overrightarrow{b}).\{\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{a} + \overrightarrow{c} \times \overrightarrow{a}\} \qquad [\because \overrightarrow{c} \times \overrightarrow{c} = 0]$$

$$= \overrightarrow{a}.(\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{a}.(\overrightarrow{b} \times \overrightarrow{a}) + \overrightarrow{a}.(\overrightarrow{c} \times \overrightarrow{a}) + \overrightarrow{b}.(\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{b}.(\overrightarrow{b} \times \overrightarrow{a}) + \overrightarrow{b}.(\overrightarrow{c} \times \overrightarrow{a})$$

$$= [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] + \overrightarrow{0} + \overrightarrow{0} + \overrightarrow{0} + \overrightarrow{0} + \overrightarrow{0} + [\overrightarrow{b} \overrightarrow{c} \overrightarrow{a}]$$
 [By property of scalar triple product]
$$= [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] + [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = 2[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = 2$$

$$= 2 \times 0 = 0 \quad [\because \overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = 0]$$
Hence, $\overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{b} + \overrightarrow{c}$ and $\overrightarrow{c} + \overrightarrow{a}$ are coplanar

Only if part: Let $\overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{b} + \overrightarrow{c}$, $\overrightarrow{c} + \overrightarrow{a}$ are coplanar.

$$\Rightarrow (\overrightarrow{a} + \overrightarrow{b}).\{(\overrightarrow{b} + \overrightarrow{c}) \times (\overrightarrow{c} + \overrightarrow{a})\} = 0$$

$$\Rightarrow (\overrightarrow{a} + \overrightarrow{b}).\{(\overrightarrow{b} + \overrightarrow{c}) \times (\overrightarrow{c} + \overrightarrow{a})\} = 0$$

$$\Rightarrow (\overrightarrow{a} + \overrightarrow{b}).\{(\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{b} \times \overrightarrow{a} + \overrightarrow{c} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}\} = 0$$

$$\Rightarrow (\overrightarrow{a} + \overrightarrow{b}).\{(\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{a}.((\overrightarrow{b} \times \overrightarrow{a})) + \overrightarrow{a}.((\overrightarrow{c} \times \overrightarrow{a})) + (\overrightarrow{b}.(\overrightarrow{b} \times \overrightarrow{c})) + (\overrightarrow{b}.(\overrightarrow{b} \times \overrightarrow{a})) + (\overrightarrow{b}.(\overrightarrow{c} \times \overrightarrow{a})) = 0$$

$$\Rightarrow \overrightarrow{a}.((\overrightarrow{b} \times \overrightarrow{c})) + \overrightarrow{a}.((\overrightarrow{b} \times \overrightarrow{a})) + \overrightarrow{a}.((\overrightarrow{c} \times \overrightarrow{a})) + (\overrightarrow{b}.(\overrightarrow{b} \times \overrightarrow{c})) + (\overrightarrow{b}.(\overrightarrow{b} \times \overrightarrow{a})) + (\overrightarrow{b}.(\overrightarrow{c} \times \overrightarrow{a})) = 0$$

$$\Rightarrow \overrightarrow{a}.((\overrightarrow{b} \times \overrightarrow{c})) + \overrightarrow{a}.((\overrightarrow{b} \times \overrightarrow{a})) + (\overrightarrow{a}.((\overrightarrow{c} \times \overrightarrow{a}))) + (\overrightarrow{b}.((\overrightarrow{c} \times \overrightarrow{a}))) + (\overrightarrow{b}.((\overrightarrow{c} \times \overrightarrow{a}))) = 0$$

$$\Rightarrow \overrightarrow{a}.((\overrightarrow{b} \times \overrightarrow{c})) + (\overrightarrow{b}.((\overrightarrow{c} \times \overrightarrow{a}))) + (\overrightarrow{c}.((\overrightarrow{c} \times \overrightarrow{a}))) + (\overrightarrow{c}.((\overrightarrow{c} \times \overrightarrow{a}))) + (\overrightarrow{c}.((\overrightarrow{c} \times \overrightarrow{a}))) = 0$$

$$\Rightarrow \overrightarrow{a}.((\overrightarrow{b} \times \overrightarrow{c})) + (\overrightarrow{c}.((\overrightarrow{c} \times \overrightarrow{a}))) + (\overrightarrow{c}.((\overrightarrow{c} \times \overrightarrow{a}))) + (\overrightarrow{c}.((\overrightarrow{c} \times \overrightarrow{a}))) + (\overrightarrow{c}.((\overrightarrow{c} \times \overrightarrow{a}))) = 0$$

$$\Rightarrow \overrightarrow{a}.((\overrightarrow{b} \times \overrightarrow{c})) + (\overrightarrow{c}.((\overrightarrow{c} \times \overrightarrow{a}))) + (\overrightarrow{c}.((\overrightarrow$$

Hence, \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar.

Let
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = \hat{i}$ and $\overrightarrow{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ then

- (a) Let $c_1 = 1$ and $c_2 = 2$, find c_3 which makes \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} coplanar.
- (b) If $c_2 = -1$ and $c_3 = 1$, show that no value of c_1 can make \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} coplanar.

Given
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
; $\overrightarrow{b} = \hat{i}$ and $\overrightarrow{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$

(a) Since $\overrightarrow{a} \xrightarrow{\overrightarrow{b}} \overrightarrow{a}$ and \overrightarrow{c} vectors are coplanar

$$\Rightarrow [\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}] = 0$$

$$\Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 2 & c_3 \end{vmatrix} = 0 \qquad [Given that c_1 = 1 and c_2 = 2]$$

$$\Rightarrow 1(0-0)-1(c_3-0)+1(2-0)=0$$

$$\Rightarrow$$
 - $c_3 + 2 = 0 \Rightarrow c_3 = 2$

(b) To make $\overrightarrow{a} \quad \overrightarrow{b} \quad \text{and} \quad \overrightarrow{c} \quad \text{coplanar}$.

$$\Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ c_1 & -1 & 1 \end{vmatrix} = 0 \qquad [Given that $c_2 = -1 \text{ and } c_3 = 1]$$$

$$\Rightarrow 1(0-0)-1(1-0)+1(-1-0)=0$$

$$\Rightarrow -1 - 1 = 0$$

 \Rightarrow -2 = 0 which is never possible.

Hence, if $c_2 = -1$ and $c_3 = 1$, there is no value of c_1 which can make $\overrightarrow{a} \xrightarrow{b} \overrightarrow{b}$ and \overrightarrow{c} coplanar.

Q.5.

If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are mutually perpendicular vectors of equal magnitudes, show that the vector \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} is equally inclined to \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} . Also, find the angle which \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} makes with \overrightarrow{a} or \overrightarrow{b} or \overrightarrow{c}

Ans.

Let
$$|\overrightarrow{a}| = |\overrightarrow{b}| = |\overrightarrow{c}| = x$$
 (say)

Since \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are mutually perpendicular vectors. Therefore,

$$\overrightarrow{a}$$
 \overrightarrow{b} \overrightarrow{b} \overrightarrow{b} \overrightarrow{c} \overrightarrow{c} \overrightarrow{c} \overrightarrow{c} \overrightarrow{a} \overrightarrow{a} \overrightarrow{a} \overrightarrow{b} \overrightarrow{a} \overrightarrow{c} \overrightarrow{c} \overrightarrow{c}

Now,
$$|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|^2 = (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}).(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})$$

$$=\overrightarrow{a} \cdot \overrightarrow{a} + \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{a} + \overrightarrow{b} \cdot \overrightarrow{a} + \overrightarrow{b} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a} + \overrightarrow{c} \cdot \overrightarrow{b} + \overrightarrow{c} \cdot \overrightarrow{c}$$

$$= x^2 + 0 + 0 + 0 + x^2 + 0 + 0 + 0 + x^2 = 3x^2$$

$$\Rightarrow |\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}| = \sqrt{3}x$$

Let θ_1 and θ_2 and θ_3 be the angles made by $(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})$ with \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} respectively.

$$\ \, \div \ \, \cos \, \, \theta_1 = \frac{a.(\stackrel{\rightarrow}{a},\stackrel{\rightarrow}{b},\stackrel{\rightarrow}{c})}{\stackrel{\rightarrow}{|a|.|a|+b+c|}} = \frac{\stackrel{\rightarrow}{a}.\stackrel{\rightarrow}{a+a}.\stackrel{\rightarrow}{b+a}.\stackrel{\rightarrow}{c}}{\stackrel{\rightarrow}{x.\sqrt{3}x}}$$

$$=rac{x^2+0+0}{\sqrt{3}x^2}=rac{1}{\sqrt{3}}$$

$$\Rightarrow \theta_1 = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

Similarly, we have $\; \theta_2 = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right) \; ext{and} \; \; \theta_3 = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$

$$(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})$$
 is equally inclined with \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c}

 \Rightarrow

$$42+14\lambda=0 \implies 14\lambda=-42 \implies \lambda=-3$$

Q.6. Find a vector of magnitude 6, perpendicular to each of the vectors

$$\overrightarrow{a} + \overrightarrow{b}$$
 and $\overrightarrow{a} - \overrightarrow{b}$, where $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$ and $\overrightarrow{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.

Ans.

$$\overrightarrow{a} + \overrightarrow{b} = 2\hat{i} + 3\hat{j} + 4\hat{k}$$

$$\overrightarrow{a} - \overrightarrow{b} = -\hat{j} - 2\hat{k}$$

Now vector perpendicular to $(\overrightarrow{a} + \overrightarrow{b})$ and $(\overrightarrow{a} - \overrightarrow{b})$ is

$$egin{array}{c|cccc} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 0 & -1 & -2 \end{array} = (-6+4)\hat{i} - (-4-0)\hat{j} + (-2-0)\hat{k} = -2\hat{i} + 4\hat{j} - 2\hat{k}$$

$$\text{: Required vector} = \pm 6 \frac{(-2\hat{i} + 4\hat{j} - 2\hat{k})}{\sqrt{(-2)^2 + 4^2 + (-2)^2}} = \pm \frac{6}{\sqrt{24}} \left(-2\hat{i} + 4\hat{j} - 2\hat{k} \right)$$

$$=\pmrac{6}{2\sqrt{6}}\left(-\,\,2\hat{i}+4\hat{j}-2\hat{k}
ight)=\pm\sqrt{6}\,\,\left(-\,\hat{i}\,+2\hat{j}-\hat{k}
ight)$$

Q.7. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors such that

$$|\overrightarrow{a}| = 5$$
, $|\overrightarrow{b}| = 12$ and $|\overrightarrow{c}| = 13$, and $|\overrightarrow{a}| + |\overrightarrow{b}| + |\overrightarrow{c}| = |\overrightarrow{0}|$ then find the value of $|\overrightarrow{a}| \cdot |\overrightarrow{b}| + |\overrightarrow{b}| \cdot |\overrightarrow{c}| + |\overrightarrow{c}| \cdot |\overrightarrow{a}|$.

Similarly taking dot product of both sides of (i) by \vec{b} and \vec{c} respectively, we get

$$\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} = -|\overrightarrow{b}|^2 = -144 \qquad \dots(iii)$$
and $\overrightarrow{c} \cdot \overrightarrow{a} + \overrightarrow{b} \cdot \overrightarrow{c} = -|\overrightarrow{c}|^2 = -169 \qquad \dots(iv)$

Adding (ii), (iii) and (iv), we get

$$= \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{c} \cdot \overrightarrow{a} + \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a} + \overrightarrow{b} \cdot \overrightarrow{c} = 25 - 144 - 169$$

$$2(\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}) = -338$$

$$= \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a} = -\frac{338}{2} - 169$$

Q.8. If $\overrightarrow{\alpha}=3\hat{i}+4\hat{j}+5\hat{k}$ and $\overrightarrow{\beta}=2\hat{i}+\hat{j}-4\hat{k}$ then express $\overrightarrow{\beta}$ in the form , $\overrightarrow{\beta}=\overrightarrow{\beta_1}+\overrightarrow{\beta}_2$ where $\overrightarrow{\beta}_1$ is parallel to $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}_2$ is perpendicular to $\overrightarrow{\alpha}$.

$$\vec{\beta}_1$$
 is parallel to $\vec{\alpha}$, \Rightarrow $\vec{\beta}_1 = \lambda \vec{\alpha}$ where λ is any scalar quantity

$$\Rightarrow \stackrel{\rightarrow}{\beta}_1 = 3\lambda \hat{i} + 4\lambda \hat{j} + 5\lambda \hat{k}$$

Also if,
$$\overrightarrow{\beta} = \overrightarrow{\beta}_1 + \overrightarrow{\beta}_2$$

$$\Rightarrow 2\hat{i} + \hat{j} - 4\hat{k} = (3\lambda\hat{i} + 4\lambda\hat{j} + 5\lambda\hat{k}) + \stackrel{\rightarrow}{\beta}_{2}$$

$$\Rightarrow\stackrel{
ightarrow}{eta}_2=(2-3\lambda)\hat{i}+(1-4\lambda)\hat{j}-(4+5\lambda)\,\hat{k}$$

It is given $\overrightarrow{\beta}_2 \perp \overrightarrow{\alpha}$

$$\Rightarrow \frac{(2-3\lambda).\ 3+(1-4\lambda).\ 4-(4+5\lambda).5=0}{\Rightarrow 6-9\lambda+4-16\lambda-20-25\lambda=0}$$

$$\Rightarrow -10 - 50\lambda = 0$$
 \Rightarrow $\lambda = \frac{-1}{5}$

Therefore,
$$\overrightarrow{\beta}_1 = -\frac{3}{5}\hat{i} - \frac{4}{5}\hat{j} - \hat{k}$$

$$\overrightarrow{\beta}_2 = \left(2 + \frac{3}{5}\right)\hat{i} + \left(1 + \frac{4}{5}\right)\hat{j} - (4 - 1)\hat{k} = \frac{13}{5}\hat{i} + \frac{9}{5}\hat{j} - 3\hat{k}$$

The required expression is

$$(2\hat{i}+\hat{j}-4\hat{k})=\left(-\ rac{3}{5}\hat{i}-rac{4}{5}j-\hat{k}
ight)+\left(rac{13}{5}\hat{i}+rac{9}{5}\hat{j}-3\hat{k}
ight)$$

Q.9. Show that the four points A, B, C and D with position vectors

$$4\hat{i}+5\hat{j}+\hat{k},-\hat{j}-\hat{k},\,3\hat{i}+9\hat{j}+4\hat{k}$$
 and $4(-\hat{i}+\hat{j}+\hat{k})$ respectively are coplanar.

Position vector of
$$\pmb{A} \equiv \hat{\pmb{4i}} + \hat{\pmb{5j}} + \hat{\pmb{k}}$$
 ; Position vector of $\pmb{B} \equiv -\hat{\pmb{j}} - \hat{\pmb{k}}$

Position vector of
$$C \equiv 3\hat{i} + 9\hat{j} + 4\hat{k}$$
 ; Position vector of $D \equiv -4\hat{i} + 4\hat{j} + 4\hat{k}$

$$ightharpoonup \overrightarrow{AB} = -4\hat{i} - 6\hat{j} - 2\hat{k}, \quad \overrightarrow{AC} = -\hat{i} + 4\hat{j} + 3\hat{k}, \quad \overrightarrow{AD} = -8\hat{i} - \hat{j} + 3\hat{k}$$

Now,
$$\overrightarrow{AB} \cdot (\overrightarrow{AC} \times \overrightarrow{AD}) = \begin{vmatrix} -4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3 \end{vmatrix}$$

$$= -4(12+3) + 6(-3+24) - 2(1+32) = -60 + 126 - 66 = 0$$

i.e.,
$$\overrightarrow{AB}$$
. $(\overrightarrow{AC} \times \overrightarrow{AD}) = 0$

Hence, \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} are coplanar *i.e.*, points A, B, C, D are coplanar.

[Note: Three vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar, if the scalar triple product of these three vectors is zero.]

Q.10. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
 and $\overrightarrow{b} = \hat{j} - \hat{k}$, then find a vector \overrightarrow{c} such that $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b}$ and \overrightarrow{a} . $\overrightarrow{c} = 3$.

Let
$$\overrightarrow{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$$
 . Then,

$$\div (\overrightarrow{a} \times \overrightarrow{c}) = \overrightarrow{b}$$

$$\Rightarrow (c_3 - c_2) \hat{i} + (c_1 - c_3) \hat{j} + (c_2 - c_1) \hat{k} = \hat{j} - \hat{k}$$

$$\Rightarrow c_3 - c_2 = 0, c_1 - c_3 = 1 \text{ and } c_2 - c_1 = -1$$
 ...(i)

Also,
$$\overrightarrow{a}$$
. $\overrightarrow{c} = (\hat{i} + \hat{j} + \hat{k})$. $(c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k})$

$$\Rightarrow \overrightarrow{a}$$
. $\overrightarrow{c} = c_1 + c_2 + c_3$

$$\Rightarrow c_1 + c_2 + c_3 = 3$$

$$\left[egin{array}{ccc} \ddots & \overrightarrow{a} \ . & \overrightarrow{c} = 3 \end{array}
ight]$$

$$\Rightarrow c_1+c_2+c_1-1=3$$
 $\left[\because c_1-c_3=1\right]$... $\left(\emph{iii}\right)$

$$[\because c_1 - c_3 = 1]$$

$$\Rightarrow 2c_1 + c_2 = 4$$

On solving c_1 - $c_2 = 1$ and $2c_1 + c_2 = 4$ we get

$$3c_1=5$$
 \Rightarrow $c_1=rac{5}{3}$

$$c_2 = (c_1 - 1) = (\frac{5}{3} - 1) = \frac{2}{3}$$
 and $c_3 = c_2 = \frac{2}{3}$

Hence,
$$\overrightarrow{c}=\left(\frac{5}{3}\hat{i}+\frac{2}{3}\hat{j}+\frac{2}{3}\hat{k}\right)$$
.

If $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ and $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$ and $|\overrightarrow{c}| = 7$ then show that the angle between \overrightarrow{a} and $|\overrightarrow{b}|$ is

$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$

$$\Rightarrow (\overrightarrow{a} + \overrightarrow{b})^2 = (-\overrightarrow{c})^2$$

$$\Rightarrow (\overrightarrow{a} + \overrightarrow{b}). (\overrightarrow{a} + \overrightarrow{b}) = \overrightarrow{c}. \overrightarrow{c}$$

$$\Rightarrow \left|\overrightarrow{a}\right|^2 + \left|\overrightarrow{b}\right|^2 + 2\overrightarrow{a} \cdot \overrightarrow{b} = \left|\overrightarrow{c}\right|^2$$

$$\Rightarrow 9 + 25 + 2 \stackrel{\longrightarrow}{a}$$
. $\stackrel{\longrightarrow}{b} = 49$

$$\Rightarrow 2\overrightarrow{a}$$
. $\overrightarrow{b} = 49 - 25 - 9$

$$\Rightarrow 2 \left| \overrightarrow{a} \right| \left| \overrightarrow{b} \right| \cos \theta = 15 \qquad \qquad \Rightarrow 30 \ \cos \theta = 15$$

$$\Rightarrow 30 \cos \theta = 15$$

$$\Rightarrow \cos \theta = \frac{1}{2} = \cos 60^{\circ}$$
 $\theta = 60^{\circ}$

$$\theta = 60^{\circ}$$

Q.12.

If $\hat{i} + \hat{j} + \hat{k}$. $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} - 3\hat{k}$ and $\hat{i} - 6\hat{j} - \hat{k}$ are the position vectors of the points A, B, C and D, then find the angle between \overrightarrow{AB} and \overrightarrow{CD} . Deduce that \overrightarrow{AB} and \overrightarrow{CD} are collinear.

Ans.

Given,
$$\overrightarrow{\mathrm{OA}} = \hat{i} + \hat{j} + \hat{k}$$
 , $\overrightarrow{\mathrm{OB}} = 2\hat{i} + 5\hat{j}$

$$\overrightarrow{ ext{OC}} = 3\hat{i} + 2\hat{j} - 3\hat{k}, \qquad \overrightarrow{ ext{OD}} = \hat{i} - 6\hat{j} - \hat{k}$$

$$\overrightarrow{\mathrm{AB}} = \overrightarrow{\mathrm{OB}} - \overrightarrow{\mathrm{OA}} = \hat{i} + 4\hat{j} - \hat{k}$$

$$\overrightarrow{\text{CD}} = \overrightarrow{\text{OD}} - \overrightarrow{\text{OC}} = -2\hat{i} - 8\hat{j} + 2\hat{k}$$

$$\overrightarrow{\mathrm{CD}} = -2(\hat{i} + 4\hat{j} - \hat{k}) \qquad \Rightarrow \qquad \overrightarrow{\mathrm{CD}} = -2\overrightarrow{\mathrm{AB}}$$

Therefore, \overrightarrow{AB} and \overrightarrow{CD} are parallel vector so \overrightarrow{AB} and \overrightarrow{CD} are collinear and angle between them is zero.

Q.13.

If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors such that \overrightarrow{a} . $\overrightarrow{b} = \overrightarrow{a}$. \overrightarrow{c} and $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}$, $\overrightarrow{a} \neq 0$, then show that $\overrightarrow{b} = \overrightarrow{c}$.

Ans.

Given, \overrightarrow{a} . $\overrightarrow{b} = \overrightarrow{a}$. \overrightarrow{c}

$$\Rightarrow \overrightarrow{a} \cdot \overrightarrow{b} - \overrightarrow{a} \cdot \overrightarrow{c} = 0$$
 $\Rightarrow \overrightarrow{a} \cdot (\overrightarrow{b} - \overrightarrow{c}) = 0$

$$\Rightarrow$$
 either $\overrightarrow{b} = \overrightarrow{c}$ or $\overrightarrow{a} \perp (\overrightarrow{b} - \overrightarrow{c})$

Also given
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}$$
 \Rightarrow $\overrightarrow{a} \times \overrightarrow{b} - \overrightarrow{a} \times \overrightarrow{c} = 0$

$$\Rightarrow \overrightarrow{a} \times (\overrightarrow{b} - \overrightarrow{c}) = 0$$
 $\Rightarrow \overrightarrow{a} || \overrightarrow{b} - \overrightarrow{c}$ or $\overrightarrow{b} = \overrightarrow{c}$

But \overrightarrow{a} cannot be both parallel and perpendicular to $(\overrightarrow{b}-\overrightarrow{c})$. Hence, $\overrightarrow{b}=\overrightarrow{c}$

Q.14. Find the position vector of a point R which divides the line joining two points P and Q, whose position vectors are

 $(2\overrightarrow{a}+\overrightarrow{b})$ and $(\overrightarrow{a}-3\overrightarrow{b})$ respectively, externally in the ratio 1 : 2. Also, show that P is the mid point of the line segment RQ.

Ans.

The position vector of the point R dividing the join of P and Q externally in the ratio 1:2 is

Position vector of R

$$(\overrightarrow{OR}) = \frac{1 (\overrightarrow{a} - 3\overrightarrow{b}) - 2 (2\overrightarrow{a} + \overrightarrow{b})}{1 - 2}$$

$$= \frac{\overrightarrow{a} - 3\overrightarrow{b} - 4\overrightarrow{a} - 2\overrightarrow{b}}{-1} = \frac{-3\overrightarrow{a} - 5\overrightarrow{b}}{-1} = 3\overrightarrow{a} + 5\overrightarrow{b}$$

Mid-point of the line segment RQ is $\frac{(3\overrightarrow{a}+5\overrightarrow{b})+(\overrightarrow{a}-3\overrightarrow{b})}{2}=2\overrightarrow{a}+\overrightarrow{b}$

As it is same as position vector of point P, so P is the mid-point of the line segment RQ.

Q.15. If $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{b} = 4\hat{i} - 2\hat{j} + 3\hat{k}$ and $\overrightarrow{c} = \hat{i} - 2\hat{j} + \hat{k}$ then find a vector of magnitude 6 units which is parallel to the vector $2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}$.

Given,
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = 4\hat{i} - 2\hat{j} + 3\hat{k}$, $\overrightarrow{c} = \hat{i} - 2\hat{j} + \hat{k}$

Consider,
$$\overrightarrow{r} = 2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}$$

$$= 2\hat{i} + 2\hat{j} + 2\hat{k} - 4\hat{i} + 2\hat{j} - 3\hat{k} + 3\hat{i} - 6\hat{j} + 3\hat{k} = \hat{i} - 2\hat{j} + 2\hat{k}$$

Since the required vector has magnitude 6 units and parallel to \overrightarrow{r} .

Required vector =
$$\frac{6\overrightarrow{r}}{|\overrightarrow{r}|}$$
, where $|\overrightarrow{r}| = \sqrt{(1)^2 + (-2)^2 + (2)^2}$

$$= 6 \left[rac{\hat{i} - 2\hat{j} + 2\hat{k}}{\sqrt{(1)^2 + (-2)^2 + (2)^2}}
ight] = 6 \left[rac{\hat{i} - 2\hat{j} + 2\hat{k}}{\sqrt{1 + 4 + 4}}
ight] = 2\hat{i} - 4\hat{j} + 4\hat{k}$$

Q.16.

Let
$$\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}$$
, $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$.

Find a vector \overrightarrow{p} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} and \overrightarrow{p} . $\overrightarrow{c} = 18$.

Ans.

Given,
$$\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}$$
, $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$, $\overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$

Vector \overrightarrow{p} is perpendicular to both \overrightarrow{a} and \overrightarrow{b} i.e., \overrightarrow{p} is parallel to vector $\overrightarrow{a} \times \overrightarrow{b}$.

$$dots \stackrel{
ightarrow}{a} imes \stackrel{
ightarrow}{b} = egin{bmatrix} \hat{i} & \hat{j} & \hat{k} \ 1 & 4 & 2 \ 3 & -2 & 7 \ \end{bmatrix}$$

$$=\hat{i}egin{array}{c|c} 4 & 2 \ -2 & 7 \end{array} - \hat{j} egin{array}{c|c} 1 & 2 \ 3 & 7 \end{array} + \hat{k} egin{array}{c|c} 1 & 4 \ 3 & -2 \end{array} = 32\hat{i} - \hat{j} - 14\hat{k} \end{array}$$

Since \overrightarrow{p} is parallel to $\overrightarrow{a} \times \overrightarrow{b}$

$$\vec{p} = \mu(32\hat{i} - \hat{j} - 14\hat{k})$$

Also,
$$\overrightarrow{p}$$
. $\overrightarrow{c} = 18$

$$\Rightarrow \mu \ (32\hat{i} - \hat{j} - 14\hat{k}). \ (2\hat{i} - \hat{j} + 4\hat{k}) = 18$$

$$\Rightarrow \mu (64+1-56)=18 \Rightarrow 9\mu=18 \text{ or } \mu=2$$

$$\vec{p} = 2 (32\hat{i} - \hat{j} - 14\hat{k}) = 64\hat{i} - 2\hat{j} - 28\hat{k}$$

Q.17. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors

$$\overrightarrow{a} = 2\hat{i} + 3\hat{j} - \hat{k} \text{ and } \overrightarrow{b} = \hat{i} - 2\hat{j} + \hat{k}.$$

Given, two vectors are $\overrightarrow{a}=2\hat{i}+3\hat{j}-\hat{k}$ and $\overrightarrow{b}=\hat{i}-2\hat{j}+\hat{k}$

If \overrightarrow{c} is the resultant vector of \overrightarrow{a} and \overrightarrow{b} then

$$\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b} = (2\hat{i} + 3\hat{j} - \hat{k}) + (\hat{i} - 2\hat{j} + \hat{k}) = 3\hat{i} + \hat{j} + 0.\hat{k}$$

Now, a vector having magnitude 5 and parallel to \overrightarrow{c} is given by

$$\frac{5\vec{c}}{|\vec{c}|} = \frac{5(3\hat{i}+\hat{j}+0\hat{k})}{\sqrt{3^2+1^2+0^2}} = \frac{15}{\sqrt{10}}\,\hat{i} + \frac{5}{\sqrt{10}}\,\hat{j}$$

It is required vector.

[Note: A vector having magnitude l and parallel to \overrightarrow{a} is given by l. $\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$.]

Q.18. If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $|\overrightarrow{a}+\overrightarrow{b}|=|\overrightarrow{a}|$, then prove that vector $2\overrightarrow{a}+\overrightarrow{b}$ is perpendicular to vector \overrightarrow{b} .

$$\Rightarrow \left|\overrightarrow{a} + \overrightarrow{b}\right|^2 = \left|\overrightarrow{a}\right|^2$$

$$\Rightarrow (\overrightarrow{a} + \overrightarrow{b}). (\overrightarrow{a} + \overrightarrow{b}) = |\overrightarrow{a}|^2$$

$$\Rightarrow \overrightarrow{a} \cdot \overrightarrow{a} + \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{a} + \overrightarrow{b} \cdot \overrightarrow{b} = \left| \overrightarrow{a} \right|^2$$

$$\Rightarrow \left|\overrightarrow{a}\right|^2 + 2\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{b} = \left|\overrightarrow{a}\right|^2$$

$$[\because \overrightarrow{a}, \overrightarrow{b} = \overrightarrow{b}, \overrightarrow{a}]$$

$$\Rightarrow 2\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{b} = 0$$

$$\Rightarrow$$
 $(2\overrightarrow{a} + \overrightarrow{b})$. $\overrightarrow{b} = 0$

$$\Rightarrow$$
 $(2\overrightarrow{a} + \overrightarrow{b})$ is perpendicular to \overrightarrow{b} .

Q.19. If $\overrightarrow{a} = \hat{i} - \hat{j} + 7\hat{k}$ and $\overrightarrow{b} = 5\hat{i} - \hat{j} + \lambda\hat{k}$ then find the value of λ , so that $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ are perpendicular vectors. 1

Here
$$\overrightarrow{a} = \hat{i} - \hat{j} + 7\hat{k}; \overrightarrow{b} = 5\hat{i} - \hat{j} + \lambda\hat{k}$$

$$\therefore \stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b} = 6\hat{i} - 2\hat{j} + (7 + \lambda)\hat{k}; \stackrel{\rightarrow}{a} - \stackrel{\rightarrow}{b} = -4\hat{i} + (7 - \lambda)\hat{k}$$

$$(\overrightarrow{a} + \overrightarrow{b})$$
 is perpendicular to $(\overrightarrow{a} - \overrightarrow{b})$

$$\Rightarrow (\overrightarrow{a} + \overrightarrow{b}). (\overrightarrow{a} - \overrightarrow{b}) = 0 \qquad \Rightarrow -24 + (7 + \lambda). (7 - \lambda) = 0$$

$$\Rightarrow -24 + 49 - \lambda^2 = 0 \qquad \Rightarrow \lambda^2 = 25$$

$$\Rightarrow$$
 $\lambda = \pm 5$.

Q.20. The magnitude of the vector product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vectors $2\hat{i}+4\hat{j}-5\hat{k}$ and $\lambda\hat{i}+2\hat{j}+3\hat{k}$ is equal to $\sqrt{2}$. Find the value of λ .

Ans.

Let
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}; \quad \overrightarrow{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}; \quad \overrightarrow{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k}$$

From question

$$\begin{vmatrix} \overrightarrow{a} \times \frac{\overrightarrow{b} + \overrightarrow{c}}{|\overrightarrow{b} + \overrightarrow{c}|} \end{vmatrix} = \sqrt{2} \implies \begin{vmatrix} \overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) \\ |\overrightarrow{b} + \overrightarrow{c}| \end{vmatrix} = \sqrt{2} \qquad \dots (i)$$

$$\overrightarrow{b} + \overrightarrow{c} = (2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k}$$

$$\therefore |\overrightarrow{b} + \overrightarrow{c}| = \sqrt{(2 + \lambda)^2 + 6^2 + (-2)^2}$$

$$= \sqrt{4 + \lambda^2 + 4\lambda + 36 + 4} = \sqrt{\lambda^2 + 4\lambda + 44}$$

$$\Rightarrow \overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 + \lambda & 6 & -2 \end{vmatrix}$$

$$= (-2 - 6)\hat{i} - (-2 - 2 - \lambda)\hat{j} + (6 - 2 - \lambda)\hat{k}$$

$$= -8\hat{i} + (4 + \lambda)\hat{j} + (4 - \lambda)\hat{k}$$

Putting it in (i), we get

$$\left| \frac{-8\hat{i} + (4+\lambda)\hat{j} + (4-\lambda)\hat{k}}{\sqrt{\lambda^2 + 4\lambda + 44}} \right| = \sqrt{2}$$

$$\Rightarrow \frac{\sqrt{(-8)^2 + (4+\lambda)^2 + (4-\lambda)^2}}{\sqrt{\lambda^2 + 4\lambda + 44}} = \sqrt{2}$$

Squaring both sides, we get

$$\frac{64+16+\lambda^2+8\lambda+16+\lambda^2-8\lambda}{\lambda^2+4\lambda+44} = 2$$

$$\Rightarrow \frac{96+2\lambda^2}{\lambda^2+4\lambda+44} = 2$$

$$\Rightarrow 8\lambda = 8 \Rightarrow \lambda = 1$$

Q.21. Show that the points A, B, C with position vectors

$$2\hat{i} - \hat{j} + \hat{k}$$
, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$

respectively, are the vertices of a right-angled triangle. Hence find the area of the triangle.

Ans.

Given, Position vector of $A = 2\hat{i} - \hat{j} + \hat{k}$

Position vector of $B = \hat{i} - 3\hat{j} - 5\hat{k}$

Position vector of $C = 3\hat{i} - 4\hat{j} - 4\hat{k}$

$$\Rightarrow \overrightarrow{AB} = -\hat{i} - 2\hat{j} - 6\hat{k}; \quad \overrightarrow{AC} = \hat{i} - 3\hat{j} - 5\hat{k}$$
 and $\overrightarrow{BC} = 2\hat{i} - \hat{j} + \hat{k}$

Now,
$$\left|\overrightarrow{AB}\right|^2 = \overrightarrow{AB}$$
 . $\overrightarrow{AB} = 1 + 4 + 36 = 41$

$$\left|\overrightarrow{AC}\right|^2 = 1 + 9 + 25 = 35$$

$$\left|\overrightarrow{\mathrm{BC}}\right|^2 = 4 + 1 + 1 = 6$$

 \Rightarrow A, B, C are the vertices of right triangle.

Now,
$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & -2 & -6 \\ 1 & -3 & -5 \end{vmatrix}$$
$$= \hat{i} (10 - 18) - \hat{j} (5 + 6) + \hat{k} (3 + 2) = -8\hat{i} - 11\hat{j} + 5\hat{k}$$

$$|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(-8)^2 + (-11)^2 + 5^2} = \sqrt{64 + 121 + 25} = \sqrt{210}$$

$$\therefore$$
 Area $(\Delta ABC) = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{\sqrt{210}}{2}$ sq. units

Alternate method to find area:

Area of
$$\triangle ABC = \frac{1}{2} \times |\overrightarrow{BC}| \times |\overrightarrow{AC}| = \frac{1}{2} \times \sqrt{35} \times \sqrt{6} = \frac{\sqrt{210}}{2}$$
 sq. units

Q.22. Find a unit vector perpendicular to each of the vectors $\stackrel{\rightarrow}{a} + 2\stackrel{\rightarrow}{b}$ and $2\stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b}$, where $\stackrel{\rightarrow}{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\stackrel{\rightarrow}{b} = \hat{i} + 2\hat{j} - 2\hat{k}$.

Given,
$$\overrightarrow{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$$
 and $\overrightarrow{b} = \hat{i} + 2\hat{j} - 2\hat{k}$

$$\overrightarrow{a} + 2\overrightarrow{b} = (3\hat{i} + 2\hat{j} + 2\hat{k}) + (2\hat{i} + 4\hat{j} - 4\hat{k}) = 5\hat{i} + 6\hat{j} - 2\hat{k}$$

$$2\overrightarrow{a} + \overrightarrow{b} = (6\hat{i} + 4\hat{j} + 4\hat{k}) + (\hat{i} + 2\hat{j} - 2\hat{k}) = 7\hat{i} + 6\hat{j} + 2\hat{k}$$

Now, perpendicular vector of $(\overrightarrow{a} + 2\overrightarrow{b})$ and $(2\overrightarrow{a} + \overrightarrow{b})$

Required unit vector
$$= \pm \frac{12(2\hat{i} - 2\hat{j} - \hat{k})}{12\sqrt{2^2 + (-2)^2 + (-1)^2}}$$
$$= \pm \frac{2\hat{i} - 2\hat{j} - \hat{k}}{3} = \pm \left(\frac{2}{3}\hat{i} - \frac{2}{3}\hat{j} - \frac{1}{3}\hat{k}\right)$$

Q.23. If
$$\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
, find $(\overrightarrow{r} \times \hat{i}).(\overrightarrow{r} \times \hat{j}) + xy$.

Ans.

Here,
$$\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

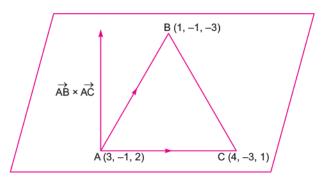
Now,
$$(\overrightarrow{r} \times \hat{i}) \cdot (\overrightarrow{r} \times \hat{j}) + xy = \{(x\hat{i} + y\hat{j} + z\hat{k}) \times \hat{i}\} \cdot \{(x\hat{i} + y\hat{j} + z\hat{k}) \times \hat{j}\} + xy$$

$$= (-y\hat{k} + z\hat{j}) \cdot (x\hat{k} - z\hat{i}) + xy$$

$$= (0\hat{i} + z\hat{j} - y\hat{k}) \cdot (-z\hat{i} + 0\hat{j} + x\hat{k}) + xy$$

$$= 0 + 0 - xy + xy = 0$$

Q.24. Find a unit vector perpendicular to the plane of triangle ABC, where the coordinates of its vertices are A(3, -1, 2), B(1, -1, -3) and C(4, -3, 1).



Here,
$$\overrightarrow{\mathrm{AB}} = (1-3)\hat{i} + (-1+1)\hat{j} + (-3-2)\hat{k}$$

$$=-2\hat{i}+0.\ \hat{j}-5\hat{k}$$

And
$$\overrightarrow{AC} = (4-3)\hat{i} + (-3+1)\hat{j} + (1-2)\hat{k}$$

$$= \hat{i} - 2\hat{j} - \hat{k}$$

$$\overrightarrow{\mathrm{AB}} \, imes \overrightarrow{\mathrm{AC}} = egin{bmatrix} \hat{i} & \hat{j} & \hat{k} \ -2 & 0 & -5 \ 1 & -2 & -1 \ \end{pmatrix}$$

$$= (0-10)\hat{i} - (2+5)\hat{j} + (4-0)\hat{k} = -10\hat{i} - 7\hat{j} + 4\hat{k}$$

Since, $\overrightarrow{AB} \times \overrightarrow{AC}$ is perpendicular to both \overrightarrow{AB} and \overrightarrow{AC} .

 $\Rightarrow \overrightarrow{AB} \times \overrightarrow{AC}$ is perpendicular to the plane of triangle *ABC*.

$$\therefore \qquad \text{Required vector} = \frac{\overrightarrow{AB} \times \overrightarrow{AC}}{|\overrightarrow{AB} \times \overrightarrow{AC}|}$$

$$=rac{-10\hat{i}-7\hat{j}+4\hat{k}}{\sqrt{(-10)^2+(-7)^2+4^2}}=rac{1}{\sqrt{165}}(-10\hat{i}-7\hat{j}+4\hat{k})$$

$$=rac{-10}{\sqrt{165}}\,\hat{i}-rac{7}{\sqrt{165}}\,\hat{j}+rac{4}{\sqrt{165}}\hat{k}$$

Q.25. Find the area of a parallelogram *ABCD* whose side *AB* and the diagonal *AC* are given by the vectors $3\hat{i} + \hat{j} + 4\hat{k}$ and $4\hat{i} + 5\hat{k}$ respectively.

Ans.

$$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC} = -\overrightarrow{AB} + \overrightarrow{AC}$$

$$= -3\hat{i} - \hat{j} - 4\hat{k} + 4\hat{i} + 5\hat{k} = \hat{i} - \hat{j} + \hat{k}$$

$$\therefore \overrightarrow{AD} = \overrightarrow{BC} = \hat{i} - \hat{j} + \hat{k}$$

$$\therefore$$
 Area of parallelogram = $|\overrightarrow{AB} \times \overrightarrow{AD}|$

$$=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 4 \\ 1 & -1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} (1+4)\hat{i} - (3-4)\hat{j} + (-3-1)\hat{k} \end{vmatrix} = \begin{vmatrix} 5\hat{i} & + \hat{j} - 4\hat{k} \end{vmatrix}$$

$$= \sqrt{5^2 + 1^2 + (-4)^2} = \sqrt{25 + 1 + 16} = \sqrt{42} \text{ sq. units.}$$

Q.26.

If $\overrightarrow{a}=2\hat{i}-\hat{j}-2\hat{k}$ and $\overrightarrow{b}=7\hat{i}+2\hat{j}-3\hat{k}$ then express \overrightarrow{b} in the from of $\overrightarrow{b}=\overrightarrow{b}_1+\overrightarrow{b}_2$, where \overrightarrow{b}_1 is parallel to \overrightarrow{a} and \overrightarrow{b}_2 is perpendicular to \overrightarrow{a} .

Since
$$\overrightarrow{b}_1 || \overrightarrow{a}$$

$$\Rightarrow \qquad \stackrel{
ightarrow}{b}_1 = \lambda \stackrel{
ightarrow}{a} = \lambda (2\hat{i} - \hat{j} - 2\hat{k}) = 2\lambda \hat{i} - \lambda \hat{j} - 2\lambda \hat{k}$$

$$\therefore \qquad \overrightarrow{b}_1 + \overrightarrow{b}_2 = \overrightarrow{b} \qquad \Rightarrow \qquad \overrightarrow{b}_2 = \overrightarrow{b} - \overrightarrow{b}_1$$

$$=$$
 $(7\hat{i} + 2\hat{j} - 3\hat{k}) - (2\lambda\hat{i} - \lambda\hat{j} - 2\lambda\hat{k})$

$$= (7-2\lambda)\hat{i} + (2+\lambda)\hat{j} - (3-2\lambda)\hat{k}$$

It is given that \overrightarrow{b}_2 is perpendicular to \overrightarrow{a} .

$$\Rightarrow \overrightarrow{b}_{2}. \overrightarrow{a} = 0 \qquad \Rightarrow (7 - 2\lambda).2 - (2 + \lambda).1 + (3 - 2\lambda).2 = 0$$

$$\Rightarrow 14 - 4\lambda - 2 - \lambda + 6 - 4\lambda = 0 \qquad \Rightarrow -9\lambda + 18 = 0$$

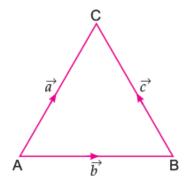
$$\Rightarrow \lambda = \frac{18}{9} = 2$$

Hence,
$$\overrightarrow{b}_1 = 4\hat{i} - 2\hat{j} - 4\hat{k};$$
 $\overrightarrow{b}_2 = 3\hat{i} + 4\hat{k} + \hat{k}$

Now,
$$7\hat{i} + 2\hat{j} - 3\hat{k} = (4\hat{i} - 2\hat{j} - 4\hat{k}) + (3\hat{i} + 4\hat{j} + \hat{k}), i.e., \ \ \vec{b} = \vec{b}_1 + \vec{b}_2$$

Q.27. Given that vectors \vec{a} , \vec{b} , \vec{c} form a triangle such that $\vec{a}=\vec{b}+\vec{c}$. Find $\it p, q, r, s$ such that area of triangle is

$$5\sqrt{6}$$
 where $\overrightarrow{a}=p\hat{i}+q\hat{j}+r\hat{k},\ \overrightarrow{b}=s\hat{i}+3\hat{j}+4\hat{k}$ and $\overrightarrow{c}=3\hat{i}+\hat{j}-2\hat{k}$.



Given,
$$\overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c}$$

$$\Rightarrow \hat{pi} + \hat{qj} + \hat{rk} = (\hat{si} + \hat{3j} + \hat{4k}) + (\hat{3i} + \hat{j} - \hat{2k})$$

$$\Rightarrow \hat{p}\hat{i} + \hat{q}\hat{j} + r\hat{k} = (s+3)\hat{i} + 4\hat{j} + 2\hat{k}$$

Equating the co-efficient of \hat{i} , \hat{j} , \hat{k} from both sides, we get

$$\Rightarrow s + 3 = p$$
 $\Rightarrow q = 4$ and $r = 2$...(i)

Now, area of triangle = $\frac{1}{2} \left| \overrightarrow{b} \times \overrightarrow{c} \right|$

$$ightarrow 5\sqrt{6} = rac{1}{2} egin{array}{cccc} \hat{i} & \hat{j} & \hat{k} \ s & 3 & 4 \ 3 & 1 & -2 \ \end{array} igg| = rac{1}{2} \left| (-6-4)\hat{i} - (-2s-12)\hat{j} + (s-9)\hat{k}
ight|$$

$$\Rightarrow 5\sqrt{6} = \frac{1}{2}\sqrt{10^2 + (2s+12)^2 + (s-9)^2}$$

$$\Rightarrow 5\sqrt{6} = \frac{1}{2}\sqrt{100 + 4s^2 + 144 + 48s + s^2 + 81 - 18s}$$

$$\Rightarrow 5\sqrt{6} = \frac{1}{2}\sqrt{325 + 5s^2 + 30s}$$

Squaring both sides

$$\Rightarrow 150 = \frac{1}{4} (325 + 5s^2 + 30s)$$

$$\Rightarrow$$
 600 - 325 = 5 s^2 + 30s \Rightarrow 5 s^2 +30s - 275=0

$$\Rightarrow s = \frac{-30 \pm \sqrt{900 + 4 \times 5 \times 275}}{10} = \frac{-30 \pm \sqrt{6400}}{10} = \frac{-30 \pm 80}{10}$$

$$\Rightarrow s = -11, 5$$
 ...(ii)

From (i) and (ii)

$$s = -11, 5; p = -8, 8$$

$$q = 4$$
 and $r = 2$

Q.28. If \overrightarrow{a} and \overrightarrow{b} are unit vectors, then what is the angle between \overrightarrow{a} and \overrightarrow{b} for $\overrightarrow{a} - \sqrt{2}$ \overrightarrow{b} to be a unit vector?

Ans.

Given, $\overrightarrow{a} - \sqrt{2} \overrightarrow{b}$ is an unit vector

$$\Rightarrow \left| \overrightarrow{a} - \sqrt{2} \stackrel{
ightarrow}{
ightarrow}
ight| = 1 \qquad \Rightarrow \left| \overrightarrow{a} - \sqrt{2} \stackrel{
ightarrow}{
ightarrow}
ight|^2 = 1$$

$$\Rightarrow (\overrightarrow{a} - \sqrt{2} \quad \overrightarrow{b}).(\overrightarrow{a} - \sqrt{2} \quad \overrightarrow{b}) = 1 \Rightarrow$$

$$\Rightarrow \overrightarrow{a}. \overrightarrow{a} - \sqrt{2} \quad \overrightarrow{a}. \overrightarrow{b} - \sqrt{2} \quad \overrightarrow{b}. \overrightarrow{a} + 2 \quad \overrightarrow{b}. \overrightarrow{b} = 1$$

$$\Rightarrow |a|^{2} - 2\sqrt{2} \overrightarrow{a} \cdot \overrightarrow{b} + 2|b|^{2} = 1 \qquad \Rightarrow \overrightarrow{[a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}]$$

$$\Rightarrow 1 - 2\sqrt{2} \overrightarrow{a} \cdot \overrightarrow{b} + 2 = 1 \qquad \qquad [\because \overrightarrow{|a|} = \overrightarrow{|b|} = 1]$$

$$\Rightarrow -2\sqrt{2} \overrightarrow{a} \cdot \overrightarrow{b} = -2 \qquad \Rightarrow \overrightarrow{a} \cdot \overrightarrow{b} = \frac{-2}{-2\sqrt{2}}$$

$$\Rightarrow \overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{\sqrt{2}}$$

$$\Rightarrow |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cos \theta = \frac{1}{\sqrt{2}} \qquad [\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cos \theta]$$

$$\Rightarrow 1 \cdot 1 \cdot \cos \theta = \frac{1}{\sqrt{2}} \qquad \Rightarrow \cos \theta = \cos \frac{\pi}{4} \qquad \Rightarrow \theta = \frac{\pi}{4}$$

Q.29. Using vectors, find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).

Given,
$$A \equiv (1, 1, 2)$$
; $B \equiv (2, 3, 5)$; $C \equiv (1, 5, 5)$

$$\vec{AB} = (2-1)\hat{i} + (3-1)\hat{j} + (5-2)\hat{k}$$

$$\overrightarrow{AC} = (1-1)\hat{i} + (5-1)\hat{j} + (5-2)\hat{k} = 0.\hat{i} + 4\hat{j} + 3\hat{k}$$

$$\therefore$$
 The area of required triangle $= \left. \frac{1}{2} \left| \overrightarrow{AB} \right. \times \left. \overrightarrow{AC} \right| \right.$

$$\overrightarrow{\mathrm{AB}} \, imes \, \overrightarrow{\mathrm{AC}} = egin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 0 & 4 & 3 \end{bmatrix} = \, \{ (6 - 12)\hat{i} - \, (3 - 0)\hat{j} + (4 - 0)\hat{k} \} = - \, 6\hat{i} - 3\hat{j} + 4\hat{k}$$

$$\therefore \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| = \sqrt{(-6)^2 + (-3)^2 + (4)^2} = \sqrt{61}$$

$$\therefore$$
 Required area = $\frac{1}{2}\sqrt{61} = \frac{\sqrt{61}}{2}$ sq units.

Q.30. Show that four points A, B, C and D whose position vectors are

$$4\hat{i}+5\hat{j}+\hat{k},-\hat{j}-\hat{k},\,3\hat{i}+9\hat{j}+4\hat{k}$$
 and $4(-\hat{i}+\hat{j}+\hat{k})$ respectively are coplanar.

Ans.

Position vector of
$$A = 4\hat{i} + 5\hat{j} + \hat{k}$$

and Position vector of
$$B = -\hat{j} - \hat{k}$$

Position vector of
$$C = 3\hat{i} + 9\hat{j} + 4\hat{k}$$

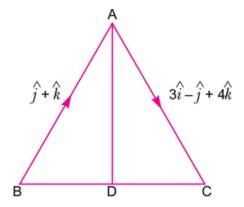
and Position vector of
$$D = 4(-\hat{i} + \hat{j} + \hat{k})$$

$$\vec{A} \overrightarrow{A} = -4\hat{i} - 6\hat{j} - 2\hat{k}; \qquad \overrightarrow{AC} = -\hat{i} + 4\hat{j} + 3\hat{k} \text{ and } \overrightarrow{AD} = -8\hat{i} - \hat{j} + 3\hat{k}$$

Now,
$$[\overrightarrow{AB} \ \overrightarrow{AC} \ \overrightarrow{AD}] = \begin{vmatrix} -4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3 \end{vmatrix} = -4(12+3) + 6(-3+24) - 2(1+32) = -60 + 126 - 66 = 0$$

- \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} are coplanar.
- A, B, C, D are coplanar.

Q.31. The two vectors $\hat{j} + \hat{k}$ and $3\hat{i} - \hat{j} + 4\hat{k}$ represent the two side vectors \overrightarrow{AB} and \overrightarrow{AC} respectively of triangle *ABC*. Find the length of the median through A.



Here
$$\overrightarrow{AB} = \hat{j} + \hat{k}$$
 and $\overrightarrow{AC} = 3\hat{i} - \hat{j} + 4\hat{k}$

$$\therefore \quad \overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$$

$$= \quad -\overrightarrow{AB} + \overrightarrow{AC} = -\hat{j} - \hat{k} + 3\hat{i} - \hat{j} + 4\hat{k} = 3\hat{i} - 2\hat{j} + 3\hat{k}$$

$$\overrightarrow{BD} = \frac{1}{2}\overrightarrow{BC}$$

$$\Rightarrow \overrightarrow{\mathrm{BD}} = rac{1}{2} \left(3\hat{i} - 2\hat{j} + 3\hat{k}
ight)$$

$$\Rightarrow \overrightarrow{\mathrm{BD}} = rac{3}{2}\hat{i} - \hat{j} + rac{3}{2}\hat{k}$$

Now,
$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD}$$

$$=$$
 $(\hat{j}+\hat{k})+\left(rac{3}{2}\hat{i}-\hat{j}+rac{3}{2}\hat{k}
ight)$ \Rightarrow $rac{3}{2}\hat{i}+rac{5}{2}\hat{k}$

Length of
$$AD = |\overrightarrow{AD}| = \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{5}{2}\right)^2} = \frac{\sqrt{34}}{2}$$
 units.

Q.32. Show that the four points A(4, 5, 1), B(0, -1, -1), C(3, 9, 4) and D(-4, 4, 4) are coplanar.

Given four points are A(4, 5, 1), B(0, -1, -1), C(3, 9, 4) and D(-4, 4, 4)

Now,
$$\overrightarrow{AB} = (0-4)\hat{i} + (-1-5)\hat{j} + (-1-1)\hat{k} = -4\hat{i} - 6\hat{j} - 2\hat{k}$$

$$\overrightarrow{AC} = (3-4)\hat{i} + (9-5)\hat{j} + (4-1)\hat{k} = \hat{i} + 4\hat{j} + 3\hat{k}$$

$$\overrightarrow{\mathrm{AD}} = (-4-4)\hat{i} + (4-5)\hat{j} + (4-1)\hat{k} = -8\hat{i} - \hat{j} + 3\hat{k}$$

$$|\overrightarrow{AB} \overrightarrow{AC} \overrightarrow{AD}| = \begin{vmatrix} -4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3 \end{vmatrix}$$

$$= -4(12+3)+6(-3+24)-2(1+32)$$

$$= -60 + 126 - 66 = 0$$

 \Rightarrow \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} are coplanar vectors

 \Rightarrow A, B, C and D are coplanar points.

Q.33

If $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$ and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$, then show that $(\overrightarrow{a} - \overrightarrow{d})$ is parallel to $(\overrightarrow{b} - \overrightarrow{c})$, it is being given that $\overrightarrow{a} \neq \overrightarrow{d}$ and $\overrightarrow{b} \neq \overrightarrow{c}$.

Given,
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$$
 and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$

$$\Rightarrow \overrightarrow{a} \times \overrightarrow{b} - \overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{d} - \overrightarrow{b} \times \overrightarrow{d}$$

$$\Rightarrow \overrightarrow{a} \times \overrightarrow{b} - \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{d} - \overrightarrow{c} \times \overrightarrow{d} = \overrightarrow{0}$$

$$\Rightarrow \overrightarrow{a} \times (\overrightarrow{b} - \overrightarrow{c}) + (\overrightarrow{b} - \overrightarrow{c}) \times \overrightarrow{d} = \overrightarrow{0}$$
 [By left and right distributive law]

$$\Rightarrow \overrightarrow{a} \times (\overrightarrow{b} - \overrightarrow{c}) - \overrightarrow{d} \times (\overrightarrow{b} - \overrightarrow{c}) = \overrightarrow{0} \qquad [\because \overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}]$$

$$\Rightarrow (\overrightarrow{a} - \overrightarrow{d}) \times (\overrightarrow{b} - \overrightarrow{c}) = \overrightarrow{0}$$
 [By right distributive law]

$$\Rightarrow (\overrightarrow{a} - \overrightarrow{d}) || (\overrightarrow{b} - \overrightarrow{c})$$

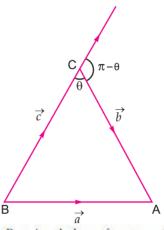
Long Answer Questions-I (OIQ)

[4 Mark]

Q.1. (Cosine formula) If a, b, c are the lengths of the opposite sides respectively to the angles A, B, C of a triangle ABC then show that:

$$\cos\theta = \frac{a^2 + b^2 - c^2}{2 \text{ ab}}$$

Ans.



By triangle law of vector addition, we have

$$\Rightarrow \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{BA} \Rightarrow \overrightarrow{BC} + \overrightarrow{CA} = -\overrightarrow{AB}$$

$$\Rightarrow \overrightarrow{a} + \overrightarrow{b} = -\overrightarrow{c}$$

$$\Rightarrow (\overrightarrow{a} + \overrightarrow{b}), (\overrightarrow{a} + \overrightarrow{b}) = (-\overrightarrow{c}), (-\overrightarrow{c})$$

$$\Rightarrow$$
 $(\overrightarrow{a} + \overrightarrow{b})$. $(\overrightarrow{a} + \overrightarrow{b}) = (-\overrightarrow{c})$. $(-\overrightarrow{c})$

$$\Rightarrow (\overrightarrow{a} + \overrightarrow{b}). (\overrightarrow{a} + \overrightarrow{b}) = \overrightarrow{c}. \overrightarrow{c}$$

$$\Rightarrow \overrightarrow{a}. \overrightarrow{a} + \overrightarrow{a}. \overrightarrow{b} + \overrightarrow{b}. \overrightarrow{a} + \overrightarrow{b}. \overrightarrow{b} = \overrightarrow{c}. \overrightarrow{c}$$

$$\Rightarrow \left|\overrightarrow{a}\right|^2 + \left|\overrightarrow{b}\right|^2 + 2\overrightarrow{a} \,.\,\, \overrightarrow{b} = |\overrightarrow{c}|^2$$

$$\textit{i.e.,} \left| \overrightarrow{a} \right|^2 + \left| \overrightarrow{b} \right|^2 + 2 |\overrightarrow{a}| |\overrightarrow{b}| \cos (\pi - \theta) = \left| \overrightarrow{c} \right|^2$$

$$\Rightarrow a^2 + b^2 - 2ab \cos q = c^2$$

$$\Rightarrow 2ab\cos\theta = a^2 + b^2 - c^2 \qquad \Rightarrow \cos\theta = \frac{a^2 + b^2 - c^2}{2ab}$$

Q.2. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ are coplanar, then show that $c^2 = ab$.

Ans.

Let
$$\overrightarrow{P} = a\hat{i} + a\hat{j} + c\hat{k}, \overrightarrow{Q} = \hat{i} + \hat{k}$$
 and $\overrightarrow{R} = c\hat{i} + c\hat{j} + b\hat{k}$

Since \overrightarrow{P} , \overrightarrow{Q} and \overrightarrow{R} are coplanar vectors, therefore,

$$\begin{vmatrix}
\overrightarrow{P} & \overrightarrow{Q} & \overrightarrow{R} \\
\overrightarrow{P} & \overrightarrow{Q} & \overrightarrow{R}
\end{vmatrix} = 0 \implies \begin{vmatrix}
a & a & c \\
1 & 0 & 1 \\
c & c & b
\end{vmatrix} = 0$$

$$\Rightarrow a(0-c) - a(b-c) + c(c-0) = 0$$

$$\Rightarrow -ac - ab + ac + c^2 = 0 \implies c^2 = ab$$

Q.3.

If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$
, then prove that $(\overrightarrow{a} \times \overrightarrow{b}) = (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{c} \times \overrightarrow{a})$

We have,
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$

$$\Rightarrow \overrightarrow{a} + \overrightarrow{b} = -\overrightarrow{c} \qquad \Rightarrow \qquad (\overrightarrow{a} + \overrightarrow{b}) \times \overrightarrow{b} = (-\overrightarrow{c}) \times \overrightarrow{b}$$

$$\Rightarrow (\overrightarrow{a} \times \overrightarrow{b}) + (\overrightarrow{b} \times \overrightarrow{b}) = (-\overrightarrow{c}) \times \overrightarrow{b}$$
 [By the distributive law]

$$\Rightarrow (\overrightarrow{a} \times \overrightarrow{b}) + 0 = (\overrightarrow{b} \times \overrightarrow{c}) \qquad [\because \overrightarrow{b} \times \overrightarrow{b} = 0 \text{ and } (-\overrightarrow{c}) \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c}]$$

$$\Rightarrow (\overrightarrow{a} \times \overrightarrow{b}) = (\overrightarrow{b} \times \overrightarrow{c}) \qquad \dots (i)$$

Also,
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$
 \Rightarrow $\overrightarrow{b} + \overrightarrow{c} = -\overrightarrow{a}$

$$\Rightarrow \qquad (\overrightarrow{b} + \overrightarrow{c}) \times \overrightarrow{c} = (-\overrightarrow{a}) \times \overrightarrow{c}$$

$$\Rightarrow \qquad (\overrightarrow{b} \times \overrightarrow{c}) + (\overrightarrow{c} \times \overrightarrow{c}) = (-\overrightarrow{a}) \times \overrightarrow{c}$$
 [By the distributive law]

$$\Rightarrow (\overrightarrow{b} \times \overrightarrow{c}) + 0 = (\overrightarrow{c} \times \overrightarrow{a}) \qquad [\because \overrightarrow{c} \times \overrightarrow{c} = 0 \text{ and } (-\overrightarrow{a}) \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}]$$

$$\Rightarrow (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{c} \times \overrightarrow{a}) \qquad \dots(ii)$$

From (i) and (ii), we get $(\overrightarrow{a} \times \overrightarrow{b}) = (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{c} \times \overrightarrow{a})$.

Q.4. Express the vector $\overrightarrow{a}=5\hat{i}-2\hat{j}+5\hat{k}$ as the sum of two vectors such that one is parallel to the vector $\overrightarrow{b}=3\hat{i}+\hat{k}$ and the other is perpendicular to \overrightarrow{b} . Ans.

Let
$$\overrightarrow{a} = \overrightarrow{c} + \overrightarrow{d}$$
 such that \overrightarrow{c} is parallel to \overrightarrow{b} and \overrightarrow{d} is perpendicular to \overrightarrow{b}(i)

Now,
$$\overrightarrow{c} = \lambda \overrightarrow{b} = 3\lambda \hat{i} + \lambda \hat{k}$$

Also
$$\overrightarrow{d} = \overrightarrow{a} - \overrightarrow{c}$$

$$\Rightarrow \stackrel{
ightarrow}{d} = (5\hat{i} - 2\hat{j} + 5\hat{k}) - (3\lambda\hat{i} + \lambda\hat{k})$$

$$\Rightarrow \stackrel{
ightarrow}{d} = (5-3\lambda)\hat{i} - 2\hat{j} + (5-\lambda)\hat{k}$$

Again, $\because \overrightarrow{d}$ is perpendicular to \overrightarrow{b} .

$$\Rightarrow \overrightarrow{d} \cdot \overrightarrow{b} = 0$$

$$\Rightarrow$$
 $(5-3\lambda)$. $3+(5-\lambda)$. $1=0$ \Rightarrow $15-9\lambda+5-\lambda=0$

$$\Rightarrow$$
 $-10\lambda + 20 = 0$ \Rightarrow $\lambda = 2$

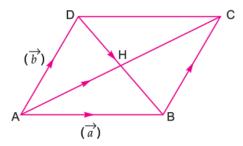
Hence, $\overrightarrow{c}=6\hat{i}+2\hat{k}$ and

$$\stackrel{
ightarrow}{d}=-\hat{i}-2\hat{j}+3\hat{k}$$
 ... (ii)

$$dots$$
 $\overrightarrow{a} = (6\hat{i} + 2\hat{k}) + (-\hat{i} - 2\hat{j} + 3\hat{k})$ [From (i) and (ii)]

Q.5. Prove by vector method that the diagonals of a parallelogram bisect each other.

Ans.



Let A be at origin and $\overrightarrow{AB} = \overrightarrow{a}$ and $\overrightarrow{AD} = \overrightarrow{b}$

Again, let AC and BD intersect each other at H.

We have to prove that H is middle point of AC and BD.

Let
$$\overrightarrow{AH} = x \xrightarrow{AC}$$
 and $\overrightarrow{HB} = y \overrightarrow{DB}$... (i)

Now,
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{a} + \overrightarrow{b}$$

Also,
$$\overrightarrow{DB} = \overrightarrow{DA} + \overrightarrow{AB} = \overrightarrow{AB} - \overrightarrow{AD} = \overrightarrow{a} - \overrightarrow{b}$$

From (i)
$$\overrightarrow{AH} = x(\overrightarrow{a} + \overrightarrow{b})$$
 and $\overrightarrow{HB} = y(\overrightarrow{a} - \overrightarrow{b})$

Now,
$$\overrightarrow{AB} = \overrightarrow{AH} + \overrightarrow{HB}$$

$$\Rightarrow \overrightarrow{a} = x(\overrightarrow{a} + \overrightarrow{b}) + y(\overrightarrow{a} - \overrightarrow{b}) \qquad \Rightarrow \overrightarrow{a} = x \overrightarrow{a} + x \overrightarrow{b} + y \overrightarrow{a} - y \overrightarrow{b}$$

$$\Rightarrow \overrightarrow{a} = (x+y)\overrightarrow{a} + (x-y)\overrightarrow{b}$$

Equating the co-efficient of \overrightarrow{a} and \overrightarrow{b} , we get

$$x + y = 1$$
 and $x - y = 0$

$$2x = 1$$
 \Rightarrow $x = \frac{1}{2}$ \Rightarrow $y = \frac{1}{2}$

(i)
$$\Rightarrow$$
 $\overrightarrow{AH} = \frac{1}{2}\overrightarrow{AC}$ and $\overrightarrow{HB} = \frac{1}{2}\overrightarrow{DB}$

Hence, H is middle point of AC and BD or diagonals of parallelogram bisect each other.

Prove that :
$$\begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix}^2 = \begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{a} & \overrightarrow{a} \cdot \overrightarrow{b} \\ \overrightarrow{a} \cdot \overrightarrow{b} & \overrightarrow{b} \cdot \overrightarrow{b} \end{vmatrix}$$
.

Q.6.

Ans.

Let θ be the angle between \overrightarrow{a} and \overrightarrow{b} . Then,

LHS
$$\left| \overrightarrow{a} \times \overrightarrow{b} \right|^2 = (\overrightarrow{a} \times \overrightarrow{b}). (\overrightarrow{a} \times \overrightarrow{b})$$

=
$$(ab \sin \theta)\widehat{n}$$
. $(ab \sin \theta)\widehat{n} = (a^2b^2 \sin^2\theta)(\widehat{n}.\widehat{n}) = a^2b^2 \sin^2\theta$

$$= a^2b^2(1-\cos^2\theta) = a^2b^2 - (ab \cos\theta)^2$$

$$= (\overrightarrow{a}, \overrightarrow{a}) (\overrightarrow{b}, \overrightarrow{b}) - (\overrightarrow{a}, \overrightarrow{b})^{2} \qquad \dots (i)$$

Also, RHS =
$$\begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{a} & \overrightarrow{a} \cdot \overrightarrow{b} \\ \overrightarrow{a} \cdot \overrightarrow{b} & \overrightarrow{b} \cdot \overrightarrow{b} \end{vmatrix} = (\overrightarrow{a} \cdot \overrightarrow{a}) \cdot (\overrightarrow{b} \cdot \overrightarrow{b}) - (\overrightarrow{a} \cdot \overrightarrow{b}) \cdot (\overrightarrow{a} \cdot \overrightarrow{b})$$

$$= (\overrightarrow{a}.\overrightarrow{a}).(\overrightarrow{b}.\overrightarrow{b}) - (\overrightarrow{a}.\overrightarrow{b})^2 \qquad ...(ii)$$

Ans.

[Hence proved]

Q.7. If \overrightarrow{a} , \overrightarrow{b} are unit vectors such that the vector $\overrightarrow{a} + 3\overrightarrow{b}$ is perpendicular to $7\overrightarrow{a} - 5\overrightarrow{b}$ and $\overrightarrow{a} - 4\overrightarrow{b}$ is perpendicular to $7\overrightarrow{a} - 2\overrightarrow{b}$, then find the angle between \overrightarrow{a} and \overrightarrow{b} .

Let angle between \overrightarrow{a} and \overrightarrow{b} be θ

Given,
$$(\overrightarrow{a} + 3\overrightarrow{b}) \perp (7\overrightarrow{a} - 5\overrightarrow{b})$$
 $\Rightarrow (\overrightarrow{a} + 3\overrightarrow{b}) \cdot (7\overrightarrow{a} - 5\overrightarrow{b}) = 0$

$$\Rightarrow 7{\left|\overrightarrow{a}\right|^2} + 16{\left(\overrightarrow{a}.\overrightarrow{b}\right)} - 15{\left|\overrightarrow{b}\right|^2} = 0$$

$$\Rightarrow \cos \theta = \frac{8}{16} = \frac{1}{2}$$
 $\Rightarrow \theta = \frac{\pi}{3}$

Also, given that $(\overrightarrow{a} - 4\overrightarrow{b}) \perp (7\overrightarrow{a} - 2\overrightarrow{b})$

$$\Rightarrow (\overrightarrow{a} - 4\overrightarrow{b}). \ (7\overrightarrow{a} - 2\overrightarrow{b}) = 0 \qquad \Rightarrow 7|\overrightarrow{a}|^2 + 8|\overrightarrow{b}|^2 - 30 \ (\overrightarrow{a} . \overrightarrow{b}) = 0$$

$$\Rightarrow$$
 15 - 30 cos θ = 0

$$\Rightarrow \cos \theta = \frac{1}{2}$$
 $\Rightarrow \theta = \frac{\pi}{3}$

Q.8. If the vector $-\hat{i}+\hat{j}-\hat{k}$ bisects the angle between the vector \vec{c} and the vector $3\hat{i}+4\hat{j}$, then find the unit vector in the direction of \vec{c} .

Ans.

Let $x\hat{i}+y\hat{j}+z\hat{k}$ be the unit vector along \overrightarrow{c} . Since $-\hat{i}+\hat{j}-\hat{k}$ bisects the angle between \overrightarrow{c} and $3\hat{i}+4\hat{j}$.

Therefore,

$$\lambda(-\hat{i}+\hat{j}-\hat{k})=(x\hat{i}+y\hat{j}+z\hat{k})+rac{3\hat{i}+4\hat{j}}{5}$$

$$\Rightarrow x + \frac{3}{5} = -\lambda, \ y + \frac{4}{5} = \lambda \ \text{ and } \ z = -\lambda$$

Now,
$$x^2 + y^2 + z^2 = 1$$
 [: $\hat{x}i + \hat{y}j + z\hat{k}$ is a unit vector]

$$\Rightarrow \left(-\lambda - \frac{3}{5}\right)^2 + \left(\lambda - \frac{4}{5}\right)^2 + \lambda^2 = 1 \\ \Rightarrow 3\lambda^2 - \frac{2}{5}\lambda = 0$$

$$\Rightarrow \lambda = 0$$
 or $\lambda = \frac{2}{15}$

But $\lambda \neq 0$, because $\lambda = 0$ implies that the given vectors are parallel.

$$\dot{x} = rac{2}{15}$$
 $\Rightarrow x = -rac{11}{15}, \ y = rac{-10}{15} \ ext{and} \ \ z = rac{-2}{15}$

Hence,
$$x\hat{i} + y\hat{j} + z\hat{k} = -\frac{1}{15} \left(11\hat{i} + 10\hat{j} + 2\hat{k}\right)$$