Very Short Answer Questions (PYQ)

[1 Mark]

Q1. If a line has direction ratios $2,-1,-2$, then what are its direction cosines?
Ans.
Here direction ratios of line are $2,-1,-2$
\therefore Direction cosines of line are $\frac{2}{\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}}, \frac{-1}{\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}}, \frac{-2}{\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}}$
i.e., $\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}$

Note: If a, b, c are the direction ratios of a line, the direction cosines are

$$
\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

Q.2. If the equation of a line $A B$ is $\frac{x-3}{1}=\frac{y+2}{-2}=\frac{z-5}{4}$ then find the direction ratios of line parallel to $A B$.
Ans. The direction ratios of line parallel to $A B$ is $1,-2$ and 4.
Q.3. Write the direction cosine of a line equally inclined to the three coordinate axes.

Ans.
Any line equally inclined to coordinate axes will have direction cosines I, I, I
$\therefore \quad P^{2}+P^{2}+P^{2}=1$

$$
3 l^{2}=1 \quad \Rightarrow \quad l= \pm \frac{1}{\sqrt{3}}
$$

\therefore Direction cosines are $+\frac{1}{\sqrt{3}},+\frac{1}{\sqrt{3}},+\frac{1}{\sqrt{3}}$ or $-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}$
Q.4. Write the distance of the following plane from the origin.
$2 x-y+2 z+1=0$

Ans.
We have given plane
$2 x-y+2 z+1=0$
Distance from origin $=\left|\frac{(2 \times 0)-(1 \times 0)+(2 \times 0)+1}{\sqrt{(2)^{2}+(-1)^{2}+(2)^{2}}}\right|=\left|\frac{1}{\sqrt{4+1+4}}\right|=\frac{1}{3}$
Q.5. Write the cartesian equation of the following line given in vector form.

$$
\vec{r}=(2 \hat{i}+\hat{j}-4 \hat{k})+\lambda(\hat{i}-\hat{j}-\hat{k})
$$

Ans.

Vector form of a line is given as

$$
\vec{r}=2 \hat{i}+\hat{j}-4 \hat{k}+\lambda(\hat{i}-\hat{j}-\hat{k})
$$

Direction ratios of above equation are $(1,-1,-1)$ and point through which the line passes is $(2,1,-4)$.
\therefore Cartesian equation is
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
i.e., $\frac{x-2}{1}=\frac{y-1}{-1}=\frac{z+4}{-1} \quad$ or $\quad x-2=1-y=-z-4$
Q.6. Write the direction cosines of a line parallel to z-axis.

Ans.
The angle made by a line parallel to z-axis with x, y and z-axis are $90^{\circ}, 90^{\circ}$ and 0° respectively.
\therefore The direction cosines of the line are $\cos 90^{\circ}, \cos 90^{\circ}, \cos 0^{\circ}$ i.e., $0,0,1$.
Q.7. Write the cartesian equation of a plane, bisecting the line segment joining the points $A(2,3,5)$ and $B(4,5,7)$ at right angles.

Ans.

One point of required plane $=$ mid point of given line segment.
$=\left(\frac{2+4}{2}, \frac{3+5}{2}, \frac{5+7}{2}\right)=(3,4,6)$
Also Dr's of normal to the plane $=(4-2),(5-3),(7-5)$
$=2,2,2$

Therefore, required equation of plane is
$2(x-3)+2(y-4)+2(z-6)=0$
$2 x+2 y+2 z=26$ or $x+y+z=13$
Q.8. Write the vector equation of the plane, passing through the point (a, b, c) and parallel to the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$.

Ans.
Since, the required plane is parallel to plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$.
\therefore Normal of required plane is normal of given plane.
\Rightarrow Normal of required plane $=\hat{i}+\hat{j}+\hat{k}$
\therefore Required vector equation of plane

$$
\{\vec{r}-(a \hat{i}+b \hat{j}+c \hat{k})\} \cdot(\hat{i}+\hat{j}+\hat{k})=0
$$

Q.9. Find the angle between the lines $2 x=3 y=-z$ and $6 x=-y=-4 z$.

Ans.

Given lines are

$2 x=3 y=-z$ and $6 x=-y=-4 z$ which may be written as
$\frac{x-0}{\frac{1}{2}}=\frac{y-0}{\frac{1}{3}}=\frac{z-0}{-1} \quad \ldots$ (i) and $\quad \frac{x-0}{\frac{1}{6}}=\frac{y-0}{-1}=\frac{z-0}{\frac{-1}{4}}$
Parallel vectors $\overrightarrow{b_{1}}$ and $\overrightarrow{b_{2}}$ of (i) and (ii) respectively are
$\overrightarrow{b_{1}}=\frac{1}{2} \hat{i}+\frac{1}{3} \hat{j}-\hat{k}$ and $\overrightarrow{b_{2}}=\frac{1}{6} \hat{i}-\hat{j}-\frac{1}{4} \hat{k}$
\therefore Angle between lines (i) and $(i i)=$ Angle between $\overrightarrow{b_{1}}$ and $\overrightarrow{b_{2}}$

$$
\begin{aligned}
& =\cos ^{-1}\left(\left|\frac{\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}}{\mid \overrightarrow{b_{1}| | b_{2} \mid}}\right|\right)=\cos ^{-1}\left(\left|\frac{\left(\frac{1}{2} \hat{i}+\frac{1}{3} \hat{j}-\hat{k}\right) \cdot\left(\frac{1}{6} \hat{i}-\hat{j}-\frac{1}{4} \hat{k}\right)}{\left.\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{3}\right)^{2}+(-1)^{2}} \sqrt{\left(\frac{1}{6}\right)^{2}+(-1)^{2}+\left(-\frac{1}{4}\right)^{2}} \right\rvert\,}\right|\right) \\
& =\cos ^{-1}\left(\left|\frac{\frac{1}{12}-\frac{1}{3}+\frac{1}{4}}{\sqrt{\frac{1}{4}+\frac{1}{9}+1} \sqrt{\frac{1}{36}+1+\frac{1}{16}}}\right|\right)=\cos ^{-1} 0=\frac{\pi}{2}
\end{aligned}
$$

Q.10. Find the sum of the intercepts cut off by the plane $2 x+y-z=5$, on the coordinate axes.

Ans.
Let a, b, c be the intercepts cut off by the plane

$2 x+y-z=5 \quad \ldots$ (i) on x, y and z-axis respectively.
$\Rightarrow A(\mathrm{a}, 0,0), B(0, b, 0)$ and $C(0,0, c)$ satisfy the equation (i)
Hence, $2 a+0-0=5 \Rightarrow a=\frac{5}{2}$
$2 \times 0+b-0=5 \Rightarrow b=5$
$2 \times 0+0-c=5 \Rightarrow c=-5$
$\therefore \quad a+b+c=\frac{5}{2}+5-5=\frac{5}{2}$
Q.11. Write the coordinates of the point which is the reflection of the point in the XZ-plane.

Ans.
The reflection of the point (α, β, γ) in the $X Z$ plane is $(\alpha,-\beta, \gamma)$.

Q.12. Find the distance between the planes $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+6 \hat{k})-4=0$ and $\vec{r} \cdot(6 \hat{i}-9 \hat{j}+18 \hat{k})+30=0$

Ans.

Given two planes are

$$
\vec{r} \cdot(2 \hat{i}-3 \hat{j}+6 \hat{k})-4=0 \text { and } \vec{r} \cdot(6 \hat{i}-9 \hat{j}+18 \hat{k})+30=0
$$

Given planes may be written in cartesian form as

$$
\begin{equation*}
2 x-3 y+6 z-4=0 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
6 x-9 y+18 z+30=0 \tag{ii}
\end{equation*}
$$

Let $P\left(x_{1}, y_{1}, z_{1}\right)$ be a point on plane (i)

$$
\therefore 2 x_{1}-3 y_{1}+6 z_{1}-4=0
$$

$$
\Rightarrow \quad 2 x_{1}-3 y_{1}+6 z_{1}=4 \quad \ldots(i i i)
$$

The length of the perpendicular from $P\left(x_{1}, y_{1}, z_{1}\right)$ to plane (ii)

$$
\begin{aligned}
& =\left|\frac{6 x_{1}-9 y_{1}+18 z_{1}+30}{\sqrt{6^{2}+(-9)^{2}+18^{2}}}\right|=\left|\frac{3\left(2 x_{1}-3 y_{1}+6 z_{1}\right)+30}{\sqrt{36+81+324}}\right| \\
& =\left|\frac{3 \times 4+30}{\sqrt{441}}\right|=\left|\frac{42}{21}\right|=2[\text { Using (iii) }]
\end{aligned}
$$

Q.13. Write the equation of a plane which is at a distance of $5 \sqrt{3}$ units from origin and the normal to which is equally inclined to coordinate axes.

Ans.

Obviously, a vector equally inclined to co-ordinate axes is given by $\hat{i}+\hat{j}+\hat{k}$
$\therefore \quad$ Unit vector equally inclined to co-ordinate axes $=\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$
Therefore, required equation of plane is

$$
\begin{aligned}
& \vec{r} \cdot\left\{\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})\right\}=5 \sqrt{3} \\
& \vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=15 \text { or } x+y+z=15
\end{aligned}
$$

Q.14. If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of \boldsymbol{z}-axis.

Ans.
Let the angle made by line with positive direction of z-axis be then,
we know that

$$
\begin{aligned}
& \cos ^{2} 90+\cos ^{2} 60+\cos ^{2} \theta=1 \\
& \Rightarrow 0+\left(\frac{1}{2}\right)^{2}+\cos ^{2} \theta=1 \Rightarrow \frac{1}{4}+\cos ^{2} \theta=1 \\
& \Rightarrow \cos ^{2} \theta=1-\frac{1}{4} \Rightarrow \cos ^{2} \theta=\frac{3}{4} \\
& \Rightarrow \cos \theta= \pm \frac{\sqrt{3}}{2} \\
& \Rightarrow \quad \theta=60^{\circ} \text { or } \frac{\pi}{3} \text { if } \cos \theta=\frac{\sqrt{3}}{2} \text { and } \theta=150^{\circ} \text { or } \frac{5 \pi}{6} \text { if } \cos \theta=-\frac{\sqrt{3}}{2}
\end{aligned}
$$

Q.15. Find the distance between the planes $2 x-y+2 z=5$ and $5 x-2.5 y+5 z=20$.

Ans.

Let $P\left(x_{1}, y_{1}, z_{1}\right)$ be any point on plane

$$
\begin{aligned}
& 2 x-y+2 z=5 \ldots(i) \\
& \Rightarrow \quad 2 x_{1}-y_{1}+2 z_{1}=5
\end{aligned}
$$

Now distance of point $P\left(x_{1}, y_{1}, z_{1}\right)$ from plane $5 x-2.5 y+5 z=20$ is given by

$$
\begin{aligned}
d & =\left|\frac{5 x_{1}-2.5 y_{1}+5 z_{1}-20}{\sqrt{5^{2}+(2.5)^{2}+(5)^{2}}}\right|=\left|\frac{2.5\left(2 x_{1}-y_{1}+2 z_{1}-8\right)}{\sqrt{25+6.25+25}}\right| \\
& =\left|\frac{2.5(5-8)}{\sqrt{56.25}}\right| \\
& =\frac{7.5}{7.5}=1 \text { unit }
\end{aligned}
$$

Very Short Answer Questions (OIQ)

[1 Mark]

Q.1. Write the angle between lines

$$
\frac{x-2}{3}=\frac{y+1}{-2}, z=2 \text { and } \frac{x-1}{1}=\frac{2 y+3}{3}=\frac{z+5}{2} .
$$

Ans.
From two given lines, we have direction ratios $3,-2,0$ and $1, \frac{3}{2}, 2$ respectively.
Therefore, $\cos \mathrm{q}=\frac{3 \times 1+(-2) \times \frac{3}{2}+0 \times 2}{\sqrt{3^{2}+(-2)^{2}+0^{2}}} \sqrt{1^{2}+\left(\frac{3}{2}\right)^{2}+2^{2}}=\frac{3-3}{\sqrt{13} \sqrt{\frac{24}{4}}}=0 \Rightarrow \theta=\frac{\pi}{2}$
Q.2. Find the angle between the pair of lines given by
$\vec{r}=3 i+2 j-4 k+\lambda(i+2 j+2 k)$ and $\vec{r}=5 i-2 j+\mu(3 i+2 j+6 k)$
Ans.

Here, $\overrightarrow{b_{1}}=\hat{i}+2 \hat{j}+2 \hat{k}$ and $\overrightarrow{b_{2}}=3 \hat{i}+2 \hat{j}+6 \hat{k}$

The angle qbetween the two lines is given by
$\cos \theta=\left|\frac{\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}}{\left|\overrightarrow{b_{1}}\right|\left|\overrightarrow{b_{2}}\right|}\right|=\left|\frac{(\hat{i}+2 \hat{j}+2 \hat{k}) \cdot(3 \hat{i}+2 \hat{j}+6 \hat{k})}{\sqrt{1+4+4} \sqrt{9+4+36}}\right|=\left|\frac{3+4+12}{3 \times 7}\right|=\frac{19}{21}$
Hence, $\theta=\cos ^{1}\left(\frac{19}{21}\right)$
Q.3. Find the equation of line passing through the point $(2,1,3)$ having the direction ratios 1, 1, - 2 .

Ans.
Let the point $A(2,1,3)$ and $a=1, b=1$, and $c=-2$. Since, we know that cartesian equation of straight line passing through the point $\left(x_{1}, y_{1}, z_{1}\right)$ having direction ratios, a, b, c is
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
Therefore, equation of required line is
$\frac{x-2}{1}=\frac{y-1}{1}=\frac{z-3}{-2}$.

Q.4. Cartesian equation of a line $A B$ is

$$
\frac{2 x-1}{2}=\frac{4-y}{7}=\frac{z+1}{2}
$$

Write the direction ratios of a line parallel to $A B$.
Ans.

We have equations of line
$\frac{2 x-1}{2}=\frac{4-y}{7}=\frac{z-1}{2} \Rightarrow \frac{x-\frac{1}{2}}{1}=\frac{y-4}{-7}=\frac{z-(-1)}{2}$
Direction ratios of given line are $1,-7,2$.

Hence, direction ratios of any parallel line are $1,-7,2$ or any multiples of ratios.
Q.5. Find the equation of a plane that cuts the coordinates axes at $(a, 0,0),(0, b$, 0) and ($0,0, c$).

Ans.
The equation of such plane is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
Q.6. If a line makes an angle $30^{\circ}, 60^{\circ}, 90^{\circ}$ with the positive direction of x, y, z axes respectively, then find its direction cosines.

Ans.

Since, the direction cosine of line which makes an angle of $\mathrm{a}, \mathrm{b}, \mathrm{g}$ with x, y and z are $\cos \mathrm{a}$, $\cos b$ and $\cos g$.
\therefore Dc's of given line are $\cos 30^{\circ}, \cos 60^{\circ}, \cos 90^{\circ}$
i.e., $\frac{\sqrt{3}}{2}, \frac{1}{2}, 0$

Short Answer Questions-I (PYQ)

[2 Mark]

Q.1. Write the vector equation of the following line.

$\frac{x-5}{3}=\frac{y+4}{7}=\frac{6-z}{2}$
Ans.
Cartesian form of the line is given as
$\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{-2}$
The standard form of line's equation
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
We get by comparing that the given line passes through the point $\left(x_{1}, y_{1}, z_{1}\right)$ i.e., $(5,-4,6)$ and direction ratios are (a, b, c) i.e., $(3,7,-2)$.

Now, we can write vector equation of line as

$$
\vec{a}=(5 \hat{i}-4 \hat{j}+6 \hat{k})+\lambda(3 \hat{i}+7 \hat{j}-2 \hat{k})
$$

Q.2. Find the direction cosines of the line passing through two points $(-2,4,-5)$ and $(1,2$,
3).

Ans.
We know that direction cosines of the line passing through two points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ are given by
$\frac{x_{2}-x_{1}}{\mathrm{PQ}}, \frac{y_{2}-y_{1}}{\mathrm{PQ}}, \frac{z_{2}-z_{1}}{\mathrm{PQ}}$, where $\mathrm{PQ}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
Here P is $(-2,4,-5)$ and Q is $(1,2,3)$.
So $\mathrm{PQ}=\sqrt{(1-(-2))^{2}+(2-4)^{2}+(3-(-5))^{2}}=\sqrt{77}$
Thus, the direction cosines of the line joining two points are $\frac{1+2}{\sqrt{77}}, \frac{2-4}{\sqrt{77}}, \frac{3+5}{\sqrt{77}}$
or $\frac{3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{8}{\sqrt{77}}$
Q.3. Find the value of 1 so that the lines $\frac{1-x}{3}=\frac{y-2}{2 \lambda}=\frac{z-3}{2}$ and $\frac{x-1}{3 \lambda}=\frac{y-1}{1}=\frac{6-z}{7}$ are perpendicular to each other.

Ans.

The given lines can be expressed as
$\frac{x-1}{-3}=\frac{y-2}{2 \lambda}=\frac{z-3}{2}$ and $\frac{x-1}{3 \lambda}=\frac{y-1}{1}=\frac{z-6}{-7}$
The direction ratios of these lines are $-3,2 \mathrm{l}, 2$ and $3 \mathrm{l}, \mathrm{I},-7$ respectively.

Since the lines are perpendicular, therefore

$$
\begin{aligned}
& -3(3 \lambda)+(2 \lambda(1)+2(-7)=0 \Rightarrow \quad-9 \lambda+2 \lambda-14=0 \\
& \Rightarrow-7 \lambda=14 \Rightarrow \quad \lambda=-2
\end{aligned}
$$

Short Answer Questions-I (OIQ)

[2 Mark]

Q.1. Show that the points $A(2,3,-4), B(1,-2,3)$ and $C(3,8,-11)$ are collinear.

Ans.
Direction ratios of the line joining A and B are (1-2), $(-2-3),(3+4)$ i.e., $-1,-5,7$
Direction ratios of the line joining A and C are $(3-2),(8-3),(-11+4)$ i.e., $1,5,-7$
It is clear that direction ratios of line $A B$ and $A C$ are proportional.
\Rightarrow Parallel vectors of both lines are parallel to each other.
\Rightarrow Both given lines are parallel.
\Rightarrow But point A is common. So, points $A B C$ are collinear.
Q.2. Find the equation of line in vector and cartesian form that passes through the point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction $\hat{i}+2 \hat{j}-\hat{k}$

Ans.
P.V. of a point of line $=2 \hat{i}-\hat{j}+4 \hat{k}$.
\Rightarrow the coordinate of that point $=(2,-1,4)$

Therefore vector equation of the plane is
$\vec{r}=\vec{a}+\lambda \vec{b}$
$\vec{r}=(2 \hat{i}-\hat{j}+4 \hat{k})+\lambda(\hat{i}+2 \hat{j}-\hat{k})$

Also its cartesian form is
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
Here, $x_{1}=2, y_{1}=-1, z_{1}=4$ and $a=1, b=2, c=-1$,

Therefore required equation in cartesian form is
$\frac{x-2}{1}=\frac{y+1}{2}=\frac{z-4}{-1}$
Q.5. Find the distance of the point whose position vector is $(4 \hat{i}+3 \hat{j}-\hat{k})$ from the plane $\vec{r}(\hat{i}-2 \hat{j}+3 \hat{k})=4$.

Ans.

Given P.V. of point $=4 \hat{i}+3 \hat{j}-\hat{k}$
\Rightarrow Coordinates of point $=(4,3,-1)$
Equation of plane $\vec{r}(\hat{i}-2 \hat{j}+3 \hat{k})=4$
\therefore Cartesian form of equation
$x-2 y+3 z-4=0$
If d be the distance of point from the given plane then.
$d=\left|\frac{4 \times 1+3 \times(-2)+(-1) \times 3-4}{\sqrt{(1)^{2}+(-2)^{2}+3^{2}}}\right|$
$\Rightarrow \quad d=\left|\frac{4-6-3-4}{\sqrt{14}}\right|$
$\Rightarrow \quad d=\frac{9}{\sqrt{14}}$ units

Long Answer Questions-I (PYQ)

[4 Mark]

Q.1. Find the shortest distance between the lines whose vector equations are:
$\vec{r}=(\hat{i}+\hat{j})+\lambda(2 \hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=(2 \hat{i}+\hat{j}-\hat{k})+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k})$.
Ans.
Comparing the given equations with equations

$$
\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}} \text { and } \vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}
$$

We get $\overrightarrow{a_{1}}=\hat{i}+\hat{j}, \overrightarrow{b_{1}}=2 \hat{i}-\hat{j}+\hat{k}$ and $\overrightarrow{a_{2}}=2 \hat{i}+\hat{j}-\hat{k}, \overrightarrow{b_{2}}=3 \hat{i}-5 \hat{j}+2 \hat{k}$
Therefore, $\overrightarrow{a_{2}}-\overrightarrow{a_{1}}=(\hat{i}-\hat{k})$ and
$\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=(2 \hat{i}-\hat{j}+\hat{k}) \times(3 \hat{i}-5 \hat{j}+2 \hat{k})=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 3 & -5 & 2\end{array}\right|=3 \hat{i}-\hat{j}-7 \hat{k}$

$$
\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|=\sqrt{9+1+49}=\sqrt{59}
$$

Hence, the shortest distance between the given lines is given by

$$
\left.\begin{aligned}
& d=\left|\frac{\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}\right.}{\mid \overrightarrow{b_{1}} \times \overrightarrow{b_{2}}}\right|
\end{aligned} \right\rvert\,
$$

Q.2. Find the vector and cartesian equations of the line passing through the point $\boldsymbol{P}(\mathbf{3}, \mathbf{0}, \mathbf{1})$ and parallel to the planes $\vec{r} \cdot(\hat{i}+2 \hat{j})=0$ and $\vec{r} \cdot(3 \hat{j}-\hat{k})=0$. Ans.

Let $\overrightarrow{n_{1}}$ and $\overrightarrow{n_{2}}$ be normal vector of given plane

$$
\begin{align*}
& \vec{r} \cdot(\hat{i}+2 \hat{j})=0 \quad \ldots(i) \text { and }=\vec{r} \cdot(3 \hat{j}-\hat{k}) 0 \tag{ii}\\
& \therefore \overrightarrow{n_{1}}=\hat{i}+2 \hat{j} \text { and } \overrightarrow{n_{2}}=3 \hat{j}-\hat{k}
\end{align*}
$$

since, required line is parallel to the plane (i) and (ii)
$\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}$ is parallel vector of required line.
Now, $\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 0 \\ 0 & 3 & -1\end{array}\right|=(-2-0) \hat{i}-(-1-0) \hat{j}+(3-0) \hat{k}=-2 \hat{i}+\hat{j}+3 \hat{k}$
Hence, the vector equation of required line is

$$
\vec{r}=(3 \hat{i}+\hat{k})+\lambda(-2 \hat{i}+\hat{j}+3 \hat{k})
$$

Corresponding cartesian equation is

$$
\frac{x-3}{-2}=\frac{y}{1}=\frac{z-1}{3}
$$

Q.3. Find the distance between the lines I_{1} and I_{2} given by

$l_{1}: \vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{\hat{k}}) ; l_{2}: \vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(4 \hat{i}+6 \hat{j}+12 \hat{k})$
Ans.
Given lines are
$l_{1}: \vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$

$l_{2}: \vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(4 \hat{i}+6 \hat{j}+12 \hat{k})$

After observation, we get $I_{1} \| I_{2}$
Therefore, it is sufficient to find the perpendicular distance of a point of line I_{1} to line I_{2}.

The coordinate of a point of I_{1} is $P(1,2,-4)$

Also the cartesian form of line l_{2} is
$\frac{x-3}{4}=\frac{y-3}{6}=\frac{z+5}{12}$

Let $Q(\alpha, \beta, \gamma)$ be foot of perpendicular drawn from P to line l_{2}
$\because Q(\mathrm{a}, \mathrm{b}, \mathrm{g})$ lie on line l_{2}
$\therefore \frac{\alpha-3}{4}=\frac{\beta-3}{6}=\frac{\gamma+5}{12}=\lambda$ (say)
$\Rightarrow a=4 \lambda+3, b=6 \lambda+3, Y=12 \lambda-5$
Again, $\because \overrightarrow{\mathrm{PQ}}$ is perpendicular to line l_{2}.
$\Rightarrow \overrightarrow{\mathrm{PQ}} \cdot \vec{b}=0$, where \vec{b} is parallel vector of I_{2}

$$
\begin{aligned}
& \Rightarrow(\alpha-1) \cdot 4+(\beta-2) \cdot 6+(Y+4) \cdot 12=0[\because \overrightarrow{\mathrm{PQ}}=(\alpha-1) \hat{i}+(\beta-2) \hat{j}+(\gamma+4) \hat{k}] \\
& \Rightarrow 4 \alpha-4+6 \mathrm{~b}-12+12 \mathrm{~g}+48=0 \\
& \Rightarrow 4 \alpha+6 \mathrm{~b}+12 \mathrm{~g}+32=0 \\
& \Rightarrow 4(4 \lambda+3)+6(6 \lambda+3)+12(12 \lambda-5)+32=0 \\
& \Rightarrow 16 \lambda+12+36 \lambda+18+144 \lambda-60+32=0 \\
& \Rightarrow 196 \lambda+2=0 \Rightarrow \lambda=\frac{-2}{196}=\frac{-1}{98}
\end{aligned}
$$

Coordinate of $Q \equiv\left(4 \times\left(-\frac{1}{98}\right)+3,6 \times\left(-\frac{1}{98}\right)+3,12 \times\left(-\frac{1}{98}\right)-5\right)$

$$
\equiv\left(-\frac{2}{49}+3,-\frac{3}{49}+3,-\frac{6}{49}-5\right) \equiv\left(\frac{145}{49}, \frac{144}{49},-\frac{251}{49}\right)
$$

Therefore required perpendicular distance is

$$
\begin{aligned}
& \sqrt{\left(\frac{145}{49}-1\right)^{2}+\left(\frac{144}{49}-2\right)^{2}+\left(\frac{-251}{49}+4\right)^{2}}=\sqrt{\left(\frac{96}{49}\right)^{2}+\left(\frac{46}{49}\right)^{2}+\left(\frac{-55}{49}\right)^{2}} \\
& =\sqrt{\frac{96^{2}+46^{2}+55^{2}}{49^{2}}}=\sqrt{\frac{9216+2116+3025}{49^{2}}} \\
& =\frac{\sqrt{14357}}{49}=\frac{7 \sqrt{293}}{49}=\frac{\sqrt{293}}{7} \text { units }
\end{aligned}
$$

Q.4. Find the coordinates of the point where the line through the points $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane $2 x+y+z=7$.
Ans.
The equation of line passing through the points $(3,-4,-5)$ and $(2,-3,1)$ is

$\frac{x-3}{2-3}=\frac{y+4}{-3+4}=\frac{z+5}{1+5} \quad \Rightarrow \quad \frac{x-3}{-1}=\frac{y+4}{1}=\frac{z+5}{6}$.
Let the line (i) crosses at point $P(\alpha, \beta, \gamma)$ the plane $2 x+y+z=7 \ldots$ (ii)
$\because P$ lies on line (i), therefore $(\mathrm{a}, \mathrm{b}, \mathrm{g})$ satisfy equation (i)
$\therefore \quad \frac{\alpha-3}{-1}=\frac{\beta+4}{1}=\frac{\gamma+5}{6}=\lambda$ (say)
$\alpha=-\lambda+3 ; \beta=\lambda-4$ and $Y=6 \lambda-5$

Also $P(\alpha, \beta, \gamma)$ lie on plane (ii)
$\therefore 2 \alpha+\beta+\gamma=7$
$\Rightarrow 2(-\lambda+3)+(\lambda-4)+(6 \lambda-5)=7$
$\Rightarrow-2 \lambda+6+\lambda-4+6 \lambda-5=7$
$\Rightarrow 5 \lambda=10 \quad \Rightarrow \quad \lambda=2$

Hence, the coordinate of required point P is $(-2+3,2-4,6 \times 2-5)$ i.e., $(1,-2,7)$
Q.5. A line passes through $(2,-1,3)$ and is perpendicular to the lines
$\vec{r}=\hat{i}+\hat{j}-\hat{k}+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$ and $\vec{r}=(2 \hat{i}-\hat{j}-3 \hat{k})+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$. Obtain its equation in vector and cartesian form.

Ans.

Let \vec{b} be parallel vector of required line.
$\Rightarrow \vec{b}$ is perpendicular to both given line.
$\Rightarrow \vec{b}=(2 \hat{i}-2 \hat{j}+\hat{k}) \times(\hat{i}+2 \hat{j}+2 \hat{k})$
$=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & -2 & 1 \\ 1 & 2 & 2\end{array}\right|=(-4-2) \hat{i}-(4-1) \hat{j}+(4+2) \hat{k}=-6 \hat{i}-3 \hat{j}+6 \hat{k}$.
Hence, the equation of line in vector form is

$$
\begin{aligned}
\vec{r} & =(2 \hat{i}-\hat{j}+3 \hat{k})+\lambda(-6 \hat{i}-3 \hat{j}+6 \hat{k}) \quad \vec{r}=(2 \hat{i}-\hat{j}+3 \hat{k})-3 \lambda(2 \hat{i}+\hat{j}-2 \hat{k}) \\
\vec{r} & =(2 \hat{i}-\hat{j}+3 \hat{k})+\mu(2 \hat{i}+\hat{j}-2 \hat{k})[\mu=-3 \lambda]
\end{aligned}
$$

Equation in cartesian form is

$$
\frac{x-2}{2}=\frac{y+1}{1}=\frac{z-3}{-2}
$$

Q.6. Find the shortest distance between the following lines :

$\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1} \quad$ and $\quad \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$
Ans.
Let $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}=\lambda \quad$ and $\quad \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}=k$

Now, let's take a point on first line as
$A(\lambda+3,-2 \lambda+5, \lambda+7)$ and let
$B(7 k-1,-6 k-1, k-1)$ be point on the second line
The direction ratio of the line $A B$
$7 k-\lambda-4,-6 k+2 \lambda-6, k-\lambda-8$

Now, as $A B$ is the shortest distance between line 1 and line 2 so,
$(7 k-\lambda-4) \times 1+(-6 k+2 \lambda-6) \times(-2)+(k-\lambda-8) \times 1=0$
and $(7 k-\lambda-4) \times 7+(-6 k+2 \lambda-6) \times(-6)+(k-\lambda-8) \times 1=0 \ldots(i i)$
Solving equation (i) and (ii), we get
$\lambda=0$ and $k=0$
$\therefore A \equiv(3,5,7)$ and $B \equiv(-1,-1,-1)$
$\therefore A B=\sqrt{(3+1)^{2}+(5+1)^{2}+(7+1)^{2}}=\sqrt{16+36+64}=\sqrt{116}$ units $=2 \sqrt{29}$ units
Q.7. Find the point on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$ at a distance $3 \sqrt{2}$ from the point (1, 2, 3).

Ans.

Let $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}=\lambda$
$\therefore(3 \lambda-2,2 \lambda-1,2 \lambda+3)$ is any general point on the line

Now if the distance of the point from $(1,2,3)$ is $3 \sqrt{2}$, then

$$
\begin{aligned}
& \Rightarrow \sqrt{(3 \lambda-2-1)^{2}+(2 \lambda-1-2)^{2}+(2 \lambda+3-3)^{2}}=(3 \sqrt{2}) \\
& \Rightarrow(3 \lambda-3)^{2}+(2 \lambda-3)^{2}+4 \lambda^{2}=18 \Rightarrow 9 \lambda^{2}-18 \lambda+9+4 \lambda^{2}-12 \lambda+9+4 \lambda^{2}=18 \\
& \Rightarrow 17 \lambda^{2}-30 \lambda=0 \Rightarrow \lambda(17 \lambda-30)=0 \\
& \Rightarrow \lambda=0 \text { or } \lambda=\frac{30}{17}
\end{aligned}
$$

\therefore Required point on the line is $(-2,-1,3)$ or $\left(\frac{56}{17}, \frac{43}{17}, \frac{77}{17}\right)$
Q.8. Find the equation of the line passing through the point $P(4,6,2)$ and the point of intersection of the line ${ }^{\frac{x-1}{3}=\frac{y}{2}=\frac{z+1}{7}}$ and the plane $\boldsymbol{x}+\boldsymbol{y}-\boldsymbol{z}=8$.

Ans.
Given line and plane are

$$
\begin{equation*}
\frac{x-1}{3}=\frac{y}{2}=\frac{z+1}{7}=\lambda \tag{i}
\end{equation*}
$$

and $x+y-z=8 \ldots(i i)$
Let $Q(\alpha, \beta, \gamma)$ be point of intersection of equation (i) and (ii),
' Q ' lie on line (i)

$$
\frac{\alpha-1}{3}=\frac{\beta}{2}=\frac{\gamma+1}{7}=\lambda
$$

Also $Q(\alpha, \beta, \gamma)$ lie on plane (ii),
$\alpha+\beta-\gamma=8$
$\Rightarrow 3 \lambda+1+2 \lambda-7 \lambda+1=8$
$\Rightarrow-2 \lambda=6 \Rightarrow \lambda=-3$
\therefore Coordinates of $Q \equiv(-8,-6,-22)$.
Required equation of line passing through $P(4,6,2)$ and $Q(-8,-6,-22)$ is

$$
\begin{aligned}
& \frac{x-4}{4+8}=\frac{y-6}{6+6}=\frac{z-2}{2+22} \\
& \Rightarrow \frac{x-4}{12}=\frac{y-6}{12}=\frac{z-2}{24} \quad \Rightarrow \quad x-4=y-6=\frac{z-2}{2}
\end{aligned}
$$

Q.9. Find the shortest distance between the following two lines:

$\vec{r}=(1+\lambda) \hat{i}+(2-\lambda) \hat{j}+(\lambda+1) \hat{k}$ and $\vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$
Ans.

The given equation of the lines can be rearranged as given below.
$\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$
Thus, $\overrightarrow{a_{1}}=\hat{i}+2 \hat{j}+\hat{k}, \quad \overrightarrow{b_{1}}=\hat{i}-\hat{j}+\hat{k}$ and $\overrightarrow{a_{2}}=2 \hat{i}-\hat{j}-\hat{k}, \quad \overrightarrow{b_{2}}=2 \hat{i}+\hat{j}+2 \hat{k}$
Shortest distance between lines $=\left|\frac{\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right|$
We have $\overrightarrow{a_{2}}-\overrightarrow{a_{1}}=\hat{i}-3 \hat{j}-2 \hat{k}$

$$
\begin{aligned}
& \overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -1 & 1 \\
2 & 1 & 2
\end{array}\right|=-3 \hat{i}+0 \hat{j}+3 \hat{k} \\
& \left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|=\sqrt{9+9}=3 \sqrt{2}
\end{aligned}
$$

$\therefore \quad$ Shortest distance $\left|\frac{(\hat{i}-3 \hat{j}-2 \hat{k}) .(-3 \hat{i}+3 \hat{k})}{3 \sqrt{2}}\right|=\left|\frac{-3-6}{3 \sqrt{2}}\right|=\frac{3}{\sqrt{2}}=\frac{3 \sqrt{2}}{2}$ units.
Q.10. Find the vector and cartesian equations of the line passing through the point $(2,1,3)$ and perpendicular to the lines
$\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x}{-3}=\frac{y}{2}=\frac{z}{5}$.
Ans.

Let the cartesian equation of the line passing through $(2,1,3)$ be

$$
\begin{equation*}
\frac{x-2}{a}=\frac{y-1}{b}=\frac{z-3}{c} \tag{i}
\end{equation*}
$$

Since, line (i) is perpendicular to given line

$$
\begin{equation*}
\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3} \tag{ii}
\end{equation*}
$$

and $\frac{x}{-3}=\frac{y}{2}=\frac{z}{5}$
$\therefore a+2 b+3 c=0$
$-3 a+2 b+5 c=0$

From equation (iv) and (v).
$\frac{a}{10-6}=\frac{b}{-9-5}=\frac{c}{2+6} \Rightarrow \quad \frac{a}{4}=\frac{b}{-14}=\frac{c}{8}=\lambda \quad($ say $)$
$\Rightarrow a=4 \lambda, b=-14 \lambda, c=8 \lambda$
Putting the value of a, b and c in (i), we get
$\frac{x-2}{4 \lambda}=\frac{y-1}{-14 \lambda}=\frac{z-3}{8 \lambda} \Rightarrow \quad \frac{x-2}{4}=\frac{y-1}{-14}=\frac{z-3}{8}$
$\Rightarrow \frac{x-2}{2}=\frac{y-1}{-7}=\frac{z-3}{4}$, which is the cartesian form
The vector form is $\vec{r}=(2 \hat{i}+\hat{j}+3 \hat{k})+\lambda(2 \hat{i}-7 \hat{j}+4 \hat{k})$
 $2 y-11 z=3$.

Ans.

Given line can be rearranged to get
$\frac{x-(-1)}{2}=\frac{y-(-5 / 3)}{3}=\frac{z-3}{6}$
Its direction ratios are $2,3,6$.

Direction ratios of normal to the plane $10 x+2 y-11 z=3$ are $10,2,-11$

Angle between the line and plane
$\sin \theta=\frac{2 \times 10+3 \times 2+6(-11)}{\sqrt{4+9+36} \sqrt{100+4+121}}=\frac{20+6-66}{7 \times 15}=\frac{-40}{105}$
$\sin \theta=\frac{-8}{21}$ or $\theta=\sin ^{-1}\left(\frac{-8}{21}\right)$
Q.12. Find the equation of the perpendicular drawn from the point $(1,-2,3)$ to the plane $2 x-3 y+4 z+9=0$. Also, find the coordinates of the foot of the perpendicular.

Ans.
Let the foot of the perpendicular on the plane be A.
$P A$ perpendicular to the plane
$2 x-3 y+4 z+9=0$
Dr's of $P A=2,-3,4$
Equation of $P A$ can be written as

General points of line $P A=(2 \lambda+1,-3 \lambda-2,4 \lambda+3)$
The point is on the plane hence
$2(2 \lambda+1)-3(-3 \lambda-2)+4(4 \lambda+3)+9=0$
$\Rightarrow 29 \lambda+29=0$ or $\lambda=-1$
\therefore Coordinates of foot of perpendicular are $(-1,1,-1)$.
Q.13. Find the cartesian equation of the plane passing through the points $\boldsymbol{A}(0,0$, 0) and $B(3,-1,2)$ and parallel to the line $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$.

Ans.

Equation of plane is given by
$a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$
Given plane passes through $(0,0,0)$
$\therefore a(x-0)+b(y-0)+c(z-0)=0 \ldots(i)$
Plane (i), passes through $(3,-1,2)$
$\therefore 3 a-b+2 c=0$

Also, plane (i) is parallel to the line
$\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$
$a-4 b+7 c=0$
Eliminating a, b, c from equations (i), (ii) and (iii), we get

$$
\begin{aligned}
& \left|\begin{array}{ccc}
x & y & z \\
3 & -1 & 2 \\
1 & -4 & 7
\end{array}\right|=0 \\
& \Rightarrow x\left|\begin{array}{ll}
-1 & 2 \\
-4 & 7
\end{array}\right|-y\left|\begin{array}{ll}
3 & 2 \\
1 & 7
\end{array}\right|+z\left|\begin{array}{ll}
3 & -1 \\
1 & -4
\end{array}\right|=0 \\
& \Rightarrow x(-7+8)-y(21-2)+z(-12+1)=0
\end{aligned}
$$

$\Rightarrow x-19 y-11 z=0$, which is the required equation
Q.14. Find the points on the line ${ }^{\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}}$ at a distance 5 units from the point $P(1,3,3)$.

Ans.

Given cartesian form of line is:
$\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}=\mu$
\therefore General point on line is $(3 \mu-2,2 \mu-1,2 \mu+3)$
Since, distance of point on line from $P(1,3,3)$ is 5 units.
$\therefore \sqrt{(3 \mu-2-1)^{2}+(2 \mu-1-3)^{2}+(2 \mu+3-3)^{2}}=5$
$\Rightarrow(3 \mu-3)^{2}+(2 \mu-4)^{2}+(2 \mu)^{2}=25$
$\Rightarrow 17 \mu^{2}-34 \mu=0$
$\Rightarrow 17 \mu(\mu-2)=0 \Rightarrow \mu=0,2$
\therefore Required point on line is $(-2,-1,3)$ for $\mu=0$, or $(4,3,7)$ for $\mu=2$.
Q.15. Find the distance of the point $P(6,5,9)$ from the plane determined by the points $A(3,-1,2), B(5,2,4)$ and $C(-1,-1,6)$.

Ans.

Plane determined by the points $A(3,-1,2), B(5,2,4)$ and $C(-1,-1,6)$ is

$$
\begin{aligned}
& \left|\begin{array}{ccc}
x-3 & y+1 & z-2 \\
5-3 & 2+1 & 4-2 \\
-1-3 & -1+1 & 6-2
\end{array}\right|=0 \quad \Rightarrow\left|\begin{array}{ccc}
x-3 & y+1 & x-2 \\
2 & 3 & 2 \\
-4 & 0 & 4
\end{array}\right|=0 \\
& (x-3)\left|\begin{array}{cc}
3 & 2 \\
0 & 4
\end{array}\right|-(y+1)\left|\begin{array}{cc}
2 & 2 \\
-4 & 4
\end{array}\right|+(z-2)\left|\begin{array}{cc}
2 & 3 \\
-4 & 0
\end{array}\right|=0 \\
& \Rightarrow 12 x-36-16 y-16+12 z-24=0 \\
& \Rightarrow 3 x-4 y+3 z-19=0
\end{aligned}
$$

Distance of this plane from point $P(6,5,9)$ is

$$
\left|\frac{(3 \times 6)-(4 \times 5)+(3 \times 9)-19}{\sqrt{(3)^{2}+(4)^{2}+(3)^{2}}}\right|=\left|\frac{18-20+27-19}{\sqrt{9+16+9}}\right|=\frac{6}{\sqrt{34}} \text { units. }
$$

$$
\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7} \text { and } \frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5} \text { intersect. }
$$

Q.16. Show that the lines
Also find their point of intersection.

Ans.

Given lines are
$\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7} \ldots(i)$
$\frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5}$
Let two lines (i) and (ii) intersect at a point $P(\mathrm{a}, \mathrm{b}, \mathrm{Y})$.
$\Rightarrow(\alpha, \beta, \gamma)$ satisfy line (i)
$\Rightarrow \frac{\alpha+1}{3}=\frac{\beta+3}{5}=\frac{\gamma+5}{7}=\lambda($ say $)$
$\Rightarrow a=3 \lambda-1, b=5 \lambda-3, y=7 \lambda-5, \ldots$ (iii)
Again (α, β, γ) also lie on (ii)
$\frac{\alpha-2}{1}=\frac{\beta-4}{3}=\frac{\gamma-6}{5} \quad \Rightarrow \quad \frac{3 \lambda-1-2}{1}=\frac{5 \lambda-3-4}{3}=\frac{7 \lambda-5-6}{5}$
$\Rightarrow \frac{3 \lambda-3}{1}=\frac{5 \lambda-7}{3}=\frac{7 \lambda-11}{5}$
I II III

From I and II
From II and III
$\frac{3 \lambda-3}{1}=\frac{5 \lambda-7}{3}$
$\frac{5 \lambda-7}{3}=\frac{7 \lambda-11}{5}$

$$
\begin{array}{ll}
\Rightarrow 9 \lambda-9=5 \lambda-7 & \Rightarrow 25 \lambda-35=21 \lambda-33 \\
\Rightarrow 4 \lambda=2 & \Rightarrow 4 \lambda=2 \\
\Rightarrow \lambda=\frac{1}{2} \quad \Rightarrow \quad \lambda=\frac{1}{2} &
\end{array}
$$

Since, the value of 1 in both the cases is same
\Rightarrow Both lines intersect each other at a point.
\therefore Intersecting point $=(\alpha, \beta, \gamma)=\left(\frac{3}{2}-1, \frac{5}{2}-3, \frac{7}{2}-5\right)[$ From (iii) $]$
$\left(\frac{1}{2},-\frac{1}{2}, \frac{-3}{2}\right)$
Q.17. Find the vector and cartesian equations of the line passing through the point ($1,2,-4$) and perpendicular to the two lines

$$
\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7} \text { and } \frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5} .
$$

OR

Find the equation of a line passing through the point (1, 2, -4) and perpendicular to two lines

$$
\vec{r}=(8 \hat{i}-19 \hat{j}+10 \hat{k})+\lambda(3 \hat{i}-16 \hat{j}+7 \hat{k}) \text { and } \vec{r}=(15 \hat{i}+29 \hat{j}+5 \hat{k})+\mu(3 \hat{i}+8 \hat{j}-5 \hat{k}) .
$$

Ans.

Let the cartesian equation of line passing through $(1,2,-4)$ be

$$
\begin{equation*}
\frac{x-1}{a}=\frac{y-2}{b}=\frac{z+4}{c} \tag{i}
\end{equation*}
$$

Given lines are
$\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$
$\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$
Obviously parallel vectors $\overrightarrow{b_{1}}, \overrightarrow{b_{2}}$ and $\overrightarrow{b_{3}}$ of (i), (ii) and (iii) respectively are given as

$$
\overrightarrow{b_{1}}=a \hat{i}+b \hat{j}+c \hat{k} ; \quad \overrightarrow{b_{2}}=3 \hat{i}-16 \hat{j}+7 \hat{k} ; \quad \overrightarrow{b_{3}}=3 \hat{i}+8 \hat{j}-5 \hat{k}
$$

According to question
(i) $\perp($ ii $) \overrightarrow{b_{1}} \perp \overrightarrow{b_{2}} \Rightarrow \quad \overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}=0$
(i) $\perp($ iii $) \quad \Rightarrow \overrightarrow{b_{1}} \perp \overrightarrow{b_{3}} \quad \Rightarrow \overrightarrow{b_{1}} \cdot \overrightarrow{b_{3}}=0$

Hence, $3 a-16 b+7 c=0$
and $3 a+8 b-5 c=0$

From equation (iv) and (v), we get
$\frac{a}{80-56}=\frac{b}{21+15}=\frac{c}{24 / 48}$
$\Rightarrow \frac{a}{24}=\frac{b}{36}=\frac{c}{72} \quad \Rightarrow \quad \frac{a}{2}=\frac{b}{3}=\frac{c}{6}=\lambda($ say $)$
$\Rightarrow a=2 \lambda, b=3 \lambda, c=6 \lambda$

Putting the value of a, b, c in (i), we get the required cartesian equation of line as
$\frac{x-1}{2 \lambda}=\frac{y-2}{3 \lambda}=\frac{z+4}{6 \lambda} \quad \Rightarrow \quad \frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6}$
Hence, vector equation is

$$
\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})
$$

Q.18. Find the angle between the following pair of lines:

$$
\frac{-x+2}{-2}=\frac{y-1}{7}=\frac{z+3}{-3} \text { and } \frac{x+2}{-1}=\frac{2 y-8}{4}=\frac{z-5}{4}
$$

and check whether the lines are parallel or perpendicular.
Ans.

The equation of given lines can be written in standard form as
$\frac{x-2}{2}=\frac{y-1}{7}=\frac{z-(-3)}{-3}$
and $\frac{x-(-2)}{-1}=\frac{y-4}{2}=\frac{z-5}{4} \ldots$ (ii)
If $\overrightarrow{b_{1}}$ and $\overrightarrow{b_{2}}$ are vectors parallel to lines (i) and (ii) respectively, then
$\overrightarrow{b_{1}}=2 \hat{i}+7 \hat{j}-3 \hat{k}$ and $\overrightarrow{b_{2}}=-\hat{i}+2 \hat{j}+4 \hat{k}$
Obviously, if q is the angle between lines (i) and (ii) then q is also the angle between $\overrightarrow{b_{1}}$ and $\overrightarrow{b_{2}}$.
$\therefore \cos \theta=\left|\frac{\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}}{\left|\overrightarrow{b_{1}}\right|\left|\overrightarrow{b_{2}}\right|}\right|=\left|\frac{(2 i+7 j-3 k) \cdot(-i+2 j+4 k)}{\sqrt{2^{2}+7^{2}+(-3)^{2}} \cdot \sqrt{(-1)^{2}+2^{2}+4^{2}}}\right|=\left|\frac{-2+14-12}{\sqrt{62} \cdot \sqrt{21}}\right|=0$
$\Rightarrow \quad \theta=\frac{\pi}{2}$
Angle between both lines is 90°.
Hence, given lines are perpendicular to each other.
Q.19. A line passing through the point \boldsymbol{A} with position vector $\vec{a}=4 \hat{i}+2 \hat{j}+2 \hat{k}$ is parallel to the vector $\vec{b}=2 \hat{i}+3 \hat{j}+6 \hat{k}$. Find the length of the perpendicular drawn on this line from a point P with position vector $\overrightarrow{r_{1}}=\hat{i}+2 \hat{j}+3 \hat{k}$.

Ans.
The equation of line passing through the point A and parallel to \vec{b} is given in cartesian form as
$\frac{x-4}{2}=\frac{y-2}{3}=\frac{z-2}{6}$

Let $Q(\alpha, \beta, \gamma)$ be foot of perpendicular drawn from point P to the line (i).

Co-ordinate or point $P \equiv(1,2,3) \quad[\because P . V$. of P is $\hat{i}+2 \hat{j}+3 \hat{k}]$

Since, Q lie on line (i)

$$
\begin{aligned}
& \frac{\alpha-4}{2}=\frac{\beta-2}{3}=\frac{\gamma-2}{6}=\lambda \\
& \alpha=2 \lambda+4, \beta=3 \lambda+2, \gamma=6 \lambda+2 .
\end{aligned}
$$

$\frac{x-4}{2}=\frac{y-2}{3}=\frac{z-2}{6}$
Now, $\overrightarrow{\mathrm{PQ}}=(\alpha-1) \hat{i}+(\beta-2) \hat{j}+(\gamma-3) \hat{k}$

Obviously, $\overrightarrow{\mathrm{PQ}} \perp \vec{b} \quad \therefore \quad \overrightarrow{\mathrm{PQ}} \cdot \vec{b}=0$
$\Rightarrow 2(\alpha-1)+3(\beta-2)+6(\gamma-3)=0$
$\Rightarrow 2 \alpha-2+3 \beta-6+6 \gamma-18=0$
$\Rightarrow 2 \alpha+3 \beta+6 \gamma-26=0$

Putting the value of α, β, γ; we get
$2(2 \lambda+4)+3(3 \lambda+2)+6(6 \lambda+2)-26=0$

$$
\begin{aligned}
& \Rightarrow 4 \lambda+8+9 \lambda+6+36 \lambda+12-26=0 \\
& \Rightarrow 49 \lambda=0 \quad \Rightarrow \quad \lambda=0
\end{aligned}
$$

Hence, the co-ordinate of $Q \equiv(4,2,2)$
\therefore Length of perpendicular $Q \equiv(4,2,2)$
$=\sqrt{9+0+1}=\sqrt{10}$ nits.
Q.20. Find the coordinates of the point, where the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2}$ intersects the plane $x-y+z-5=0$. Also find the angle between the line and the plane.

Ans.
Let the given line

$$
\begin{equation*}
\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2} \tag{i}
\end{equation*}
$$

intersect at point $P(\mathrm{a}, \mathrm{b}, \mathrm{g})$ to the plane $x-y+z-5=0$
$\because \quad P(\alpha, \beta, \gamma)$ lie on line (i)
$\therefore \frac{\alpha-2}{3}=\frac{\beta+1}{4}=\frac{\gamma-2}{2}=\lambda$ (say)
$a=3 \lambda+2 ; b=4 \lambda-1 ; g=2 \lambda+2$
Also, $P(\alpha, \beta, \gamma)$ lies on plane (ii)
$\therefore(3 \lambda+2)-(4 \lambda-1)+(2 l+2)-5=0$
$\Rightarrow 3 \lambda+2-4 \lambda+1+2 \lambda+2-5=0 \Rightarrow \lambda=0$
$\therefore \alpha=2, \beta=-1, \gamma=2$

Hence, co-ordinate of required point $=(2,-1,2)$
Now, find angle between line (i) and plane (ii)
If θ be the required angle, then

$$
\begin{aligned}
& \sin \theta=\left|\frac{\vec{b} \cdot \vec{n}}{|\vec{b}| \cdot|\vec{n}|}\right| \\
& \therefore \sin \theta=\left|\frac{1}{\sqrt{9+16+4} \cdot \sqrt{1^{2}+(-1)^{2}+1^{2}}}\right|=\left|\frac{1}{\sqrt{29} \cdot \sqrt{3}}\right| \\
& \sin \theta=\frac{1}{\sqrt{87}} \quad\left[\begin{array}{l}
\because \vec{b}=3 \hat{i}+4 \hat{j}+2 \hat{k} \\
\vec{n}=\hat{i}-\hat{j}+\hat{k} \\
\vec{b} \cdot \vec{n}=3-4+2=1
\end{array}\right] \\
& \therefore \quad \theta=\sin ^{-1}\left(\frac{1}{\sqrt{87}}\right)
\end{aligned}
$$

Q.21. Find the coordinates of the point where the line through the points $A(3,4,1)$ and $B(5,1,6)$ crosses the $X Z$ plane. Also find the angle which this line makes with the $X Z$ plane.
Ans.

Let $P(\mathrm{a}, \mathrm{b}, \mathrm{g})$ be the point at which the given line crosses the $X Z$ plane.
Now the equation of given line $A B$ is
$\frac{x-3}{2}=\frac{y-4}{-3}=\frac{z-1}{5}$
Since $P(\alpha, \beta, \gamma)$ lies on line (i)
$\therefore \quad \frac{\alpha-3}{2}=\frac{\beta-4}{-3}=\frac{\gamma-1}{5}=\lambda($ say $)$
$\Rightarrow \alpha=2 \lambda+3 ; b=-3 \lambda+4$ and $g=5 \lambda+1$
Also $P(\alpha, \beta, \gamma)$ lie on $X Z$ plane, i.e., $y=0(0 x+1 y+0 z=0)$
$0 a+1 . b+0 . g=0$
$\Rightarrow \beta=0 \Rightarrow-3 \lambda+4=0 \Rightarrow \lambda=\frac{4}{3}$
Hence, the co-ordinates of required point P is
$\alpha=2 \times \frac{4}{3}+3=\frac{8}{3}+3=\frac{17}{3}$
$\beta=-3 \times \frac{4}{3}+4=0$
$\gamma=5 \times \frac{4}{3}+1=\frac{23}{3}$
\therefore Co-ordinate of required point is $\left(\frac{17}{3}, 0, \frac{23}{3}\right)$
Let q be the angle made by line $A B$ with $X Z$ plane.
$\therefore \sin \theta=\left|\frac{\vec{n} \cdot \vec{b}}{|\vec{b}||\vec{n}|}\right|$
Here $\vec{n}=\hat{j}$

$$
\begin{aligned}
& \vec{b}=2 \hat{i}-3 \hat{j}+5 \hat{k} \\
& |\vec{n}|=1 \text { and }|\vec{b}|=\sqrt{4+9+25}=\sqrt{38} \\
& \Rightarrow \sin \theta=\left|\frac{\hat{j} \cdot(2 \hat{i}-3 \hat{j}+5 \hat{k})}{1 \cdot \sqrt{38}}\right|=\left|\frac{-3}{\sqrt{38}}\right| \\
& \Rightarrow \sin \theta=\frac{3}{\sqrt{38}} \quad \Rightarrow \quad \theta=\sin ^{-1}\left(\frac{3}{\sqrt{38}}\right)
\end{aligned}
$$

Q.22. Find the vector equation of the line passing through the point $\boldsymbol{A}(1,2,-1)$ and parallel to the line $5 x-25=14-7 y=35 z$.
Ans.
Given line is
$5 x-25=14-7 y=35 z$
$\Rightarrow \frac{x-5}{\frac{1}{5}}=\frac{2-y}{\frac{1}{7}}=\frac{z-0}{\frac{1}{35}}$
$\Rightarrow \frac{x-5}{\frac{1}{5}}=\frac{y-2}{-\frac{1}{7}}=\frac{z-0}{\frac{1}{35}}$
$=\frac{x-5}{7}=\frac{y-2}{-5}=\frac{z-0}{1}$

Hence, parallel vector of given line i.e.,
$\vec{b}=7 \hat{i}-5 \hat{j}+\hat{k}$
Since required line is parallel to given line (i)
$\Rightarrow \quad \vec{b}=7 \hat{i}-5 \hat{j}+\hat{k}$ will also be parallel vector of required line which passes through $A(1,2,-1)$.
Therefore, required vector equation of line is

$$
\vec{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(7 \hat{i}-5 \hat{j}+\hat{k})
$$

Q.23. Find the co-ordinates of the point where the line
$\vec{r}=(-\hat{i}-2 \hat{j}-3 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+3 \hat{k})$ meets the plane which is
perpendicular to the vector $\vec{n}=\hat{i}+\hat{j}+3 \hat{k}$ and at a distance of $\frac{4}{\sqrt{11}}$ from origin.
Ans.
We know that the equation of plane is
$=\vec{r} \cdot \hat{n} d ; \quad$ where is normal unit vector and d is perpendicular distance from origin.
Here, $\quad \widehat{n}=\frac{\hat{i}+\hat{j}+3 \hat{k}}{\sqrt{1^{2}+1^{2}+3^{2}}}=\frac{1}{\sqrt{11}}(\hat{i}+\hat{j}+3 \hat{k})$ and $d=\frac{4}{\sqrt{11}}$
$\therefore \quad$ Equation of plane

$$
\begin{array}{ll}
\vec{r} \cdot \frac{1}{\sqrt{11}}(\hat{i}+\hat{j}+3 \hat{k})=\frac{4}{\sqrt{11}} \\
\Rightarrow & \vec{r} \cdot(\hat{i}+\hat{j}+3 \hat{k})=4 \\
\Rightarrow & x+y+3 z=4 \tag{i}
\end{array}
$$

Equation of given line

$$
\vec{r}=(-\hat{i}-2 \hat{j}-3 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+3 \hat{k})
$$

Its cartesian form is
$\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{3}$

Let $Q(\alpha, \beta, \gamma$,$) be the point of intersection of (i) \&(i i)$
$\because Q$ lies on (ii)
$\therefore \quad \frac{\alpha+1}{3}=\frac{\beta+2}{4}=\frac{\gamma+3}{3}=\lambda$
$\Rightarrow \mathrm{a}=3 \lambda-1, \mathrm{~b}=4 \lambda-2, \mathrm{~g}=3 \lambda-3$
Also, Q lies on (i)
$\therefore \alpha+\beta+3 \gamma=4$
$3 \lambda-1+4 \lambda-2+9 \lambda-9=4$
$\Rightarrow 16 \lambda=16 \Rightarrow \lambda=1$
$\therefore \alpha=2, \beta=2, \gamma=0$
\therefore Required point of intersection $\equiv(2,2,0)$
Q.24. A variable plane which remains at a constant distance $3 p$ from the origin cuts the coordinate axes at A, B, C. Show that the locus of the centroid of

Ans.

Let the given variable plane meets X, Y and Z axes at $A(a, 0,0), B(0, b, 0), C(0,0, c)$.
Therefore the equation of given plane is given by

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \tag{i}
\end{equation*}
$$

Let (α, β, γ) be the coordinates of the centroid of triangle $A B C$. Then
$\alpha=\frac{a \neq 0+0}{3}=\frac{a}{3} \quad \Rightarrow \quad a=3 \alpha$
$\beta=\frac{0+b+0}{3}=\frac{b}{3} \quad \Rightarrow \quad b=3 \beta$
$\gamma=\frac{0+0+c}{3}=\frac{c}{3} \quad \Rightarrow \quad c=3 \gamma$
$\because \quad 3 p$ is the distance from origin to the plane (i)
$\Rightarrow \quad 3 p=\frac{0 \cdot \frac{1}{a}+0 \cdot \frac{1}{b}+0 \cdot \frac{1}{c}-1}{\sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2}}}$
$\Rightarrow \sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2}}=-\frac{1}{3 p}$
Squaring both sides, we have

$$
\begin{aligned}
& \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{9 p^{2}} \\
& \Rightarrow \frac{1}{9 \alpha^{2}}+\frac{1}{9 \beta^{2}}+\frac{1}{9 \gamma^{2}}=\frac{1}{9 p^{2}} \quad[\text { Putting value of } a=3 \alpha, b=3 \beta, c=3 \gamma] \\
& \Rightarrow \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}=\frac{1}{p^{2}}
\end{aligned}
$$

Therefore, Locus of (α, β, γ) is $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{p^{2}}$ Hence proved.
Q.25. Find the image P^{\prime} of the point P having position vector $\hat{i}+3 \hat{j}+4 \hat{k}$ in the plane $\vec{r} .(2 \hat{i}-\hat{j}+\hat{k})+3=0$. Hence find the length of PP'.

Ans.

Let given point be $P(1,3,4)$ and the equation of given plane in cartisan form be

$$
\begin{equation*}
2 x-y+z+3=0 \tag{i}
\end{equation*}
$$

Let $R\left(x_{1}, y_{1}, z_{1}\right)$ of foot of perpendicular and $Q(\alpha, \beta, \gamma)$ be the image of P
Since, $R\left(x_{1}, y_{1}, z_{1}\right)$ lie on plane (i)
$2 x_{1}-y_{1}+z_{1}+3=0$
Also, normal vector \vec{n} of plane (i) is $\vec{n}=2 \hat{i}-\hat{j}+\hat{k}$
and $\quad \overrightarrow{\mathrm{PR}}=\left(x_{1}-1\right) \hat{i}+\left(y_{1}-3\right) \hat{j}+\left(z_{1}-4\right) \hat{k}$
$\therefore \overrightarrow{\mathrm{PR}} \| \vec{n}$

$$
\begin{array}{ll}
\Rightarrow & \frac{x_{1}-1}{2}=\frac{y_{1}-3}{-1}=\frac{z_{1}-4}{1}=\lambda \\
\Rightarrow & x_{1}=2 \lambda+1, y_{1}=-\lambda+3, z_{1}=\lambda+4
\end{array}
$$

Putting x_{1}, y_{1}, z_{1} in (ii)we get

$$
\begin{array}{ll}
\Rightarrow & 2(2 \lambda+1)-(-\lambda+3)+(\lambda+4)+3=0 \\
\Rightarrow & 4 \lambda+2+\lambda-3+\lambda+4+3=0 \\
\Rightarrow & 6 \lambda+6=0 \quad \lambda=-1 \\
\therefore & R \equiv\left(x_{1}, y_{1}, z_{1}\right) \equiv(-1,4,3) \\
& P P^{\prime}=\sqrt{(-3-1)^{2}+(5-3)^{2}+(2-4)^{2}} \\
& =\sqrt{16+4+4}=\sqrt{24} \\
& =2 \sqrt{6} \text { units }
\end{array}
$$

Long Answer Questions-I (OIQ)

[4 Mark]

Q.1. Find the equation of the plane passing through the point $(-1,2,1)$ and perpendicular to the line joining the points ($-3,1,2$) and ($2,3,4$). Also, find the perpendicular distance of the origin from this plane.
Ans.
Let the equation of plane passing through $(-1,2,1)$ be
$a(x+1)+b(y-2)+c(z-1)=0$
Now the equation of line joining point $(-3,1,2)$ and $(2,3,4)$ is

$$
\begin{equation*}
\frac{x+3}{2+3}=\frac{y-1}{3-1}=\frac{z-2}{4-2} \quad \Rightarrow \quad \frac{x+3}{5}=\frac{y-1}{2}=\frac{z-2}{2} \tag{ii}
\end{equation*}
$$

\because Plane (i) is perpendicular to line (ii)
$\Rightarrow \frac{a}{5}=\frac{b}{2}=\frac{c}{2}=\lambda$ (say) $[\because$ Normal vector of (i) is parallel to line (ii) $]$
$\Rightarrow a=5 \lambda, b=2 \lambda, c=2 \lambda$

Hence, equation of required plane is
$5 \lambda(x+1)+2 \lambda(y-2)+2 \lambda(z-1)=0$
$\Rightarrow 5 x+5+2 y-4+2 z-2=0$
$\Rightarrow 5 x+2 y+2 z-1=0$
If d is the distance from origin to plane then
$d=\left|\frac{0 . x+0 . y+0 . z-1}{\sqrt{5^{2}+2^{2}+2^{2}}}\right|=\frac{1}{\sqrt{33}}$.
Q.2. Show that the line $\vec{r}=(2 \hat{i}-2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-\hat{j}+4 \hat{k})$. is parallel to the plane $\vec{r} \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$ Also, find the distance between them.

Ans.
As we know that the line $\vec{r}=\vec{a}+\lambda \vec{b}$ is parallel to the plane $\vec{r} \cdot \vec{n}=q$ only when $\vec{b} \cdot \vec{n}=0$ and the distance between the line and the plane is given by $\frac{|\vec{a} \cdot \vec{n}-q|}{|\vec{n}|}$.

Here, $\vec{a}=2 \hat{i}-2 \hat{j}+3 \hat{k}, \quad \vec{b}=\hat{i}-\hat{j}+4 \hat{k}, \quad \vec{n}=\hat{i}+5 \hat{j}+\hat{k}$ and $q=5$.
Now, $\vec{b} \cdot \vec{n}=(\hat{i}-\hat{j}+4 \hat{k}) \cdot(\hat{i}+5 \hat{j}+\hat{k})$

$$
=\{1 \times 1+(-1) \times 5+4 \times 1\}=0
$$

Hence, the given line is parallel to the given plane.

Now, distance between the given line and the given plane
$=\frac{|\vec{a} \cdot \vec{n}-q|}{|\vec{n}|}=\frac{|(2 \hat{i}-2 \hat{j}+3 \hat{k}) \cdot(\hat{i}+5 \hat{j}+\hat{k})-5|}{|\hat{i}+5 \hat{j}+\hat{k}|}$
$=\frac{|2 \times 1+(-2) \times 5+3 \times 1-5|}{\sqrt{(1)^{2}+(5)^{2}+(1)^{2}}}=\frac{|2-10+3-5|}{\sqrt{27}}=\frac{10}{3 \sqrt{3}}$ units.

Q.3. Find the vector equation of a line passing through the point with position

 vector $(2 \hat{i}-3 \hat{j}-5 \hat{k})$ perpendicular to the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}+5 \hat{k})+2=0$.Also find the point of intersection of this line and the plane.
Ans.
As the required line is perpendicular to the plane

$$
\begin{equation*}
\vec{r} \cdot(6 \hat{i}-3 \hat{j}+5 \hat{k})+2=0 \tag{i}
\end{equation*}
$$

So, the required line is parallel to $\vec{n}=6 \hat{i}-3 \hat{j}+5 \hat{k}$
Thus, the required line passes through the point with position vector $\vec{a}=2 \hat{i}-3 \hat{j}-5 \hat{k}$ and is parallel to $\vec{n}=6 \hat{i}-3 \hat{j}+5 \hat{k}$.

Hence, the vector equation of the required line is $\vec{r}=\vec{a}+\lambda \vec{n}$
i.e., $\vec{r}=(2 \hat{i}-3 \hat{j}-5 \hat{k})+\lambda(6 \hat{i}-3 \hat{j}+5 \hat{k})$

If the line (ii) meets the plane (i, then

$$
\begin{aligned}
& {[(2 \hat{i}-3 \hat{j}-5 \hat{k})+\lambda(6 \hat{i}-3 \hat{j}+5 \hat{k})] \cdot(6 \hat{i}-3 \hat{j}+5 \hat{k})+2=0} \\
& \Rightarrow[(2+6 \lambda) \hat{i}-(3+3 \lambda) \hat{j}+(5 \lambda-5) \hat{k}] \cdot(6 \hat{i}-3 \hat{j}+5 \hat{k})+2=0 \\
& \Rightarrow 6(2+61)+3(3+31)+5(51-5)=-2 \\
& \Rightarrow 701=2 \Rightarrow \lambda=\frac{1}{35}
\end{aligned}
$$

Substituting $\lambda=\frac{1}{35}$ in (ii), we get
$\vec{r}=(2 \hat{i}-3 \hat{j}-5 \hat{k})+\frac{1}{35}(6 \hat{i}-3 \hat{j}+5 \hat{k})=\frac{1}{35}(76 \hat{i}-108 \hat{j}-170 \hat{k})$
Hence, the required point of intersection is $\left(\frac{76}{35}, \frac{-108}{35}, \frac{-170}{35}\right)$ i.e., $\left(\frac{76}{35}, \frac{-108}{35}, \frac{-34}{7}\right)$.
Q.4. Find the perpendicular distance of the point $(1,0,0)$ from the line $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$.

Ans.

Let L be the foot of perpendicular drawn from the point $P(1,0,0)$ on the given line.

Let $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}=\lambda$
The coordinates of general point on the line are
$x=2 \lambda+1, y=-(3 \lambda+1), z=8 \lambda-10$
Then the coordinates of L
becomes $[2 \lambda+1,-(3 \lambda+1), 8 \lambda-10]$
Therefore, direction ratios of $P L$ are
$2 \lambda,-(3 \lambda+1),(8 \lambda-10)$ respectively.

Direction ratios of the given line are $2,-3,8$.
Since $P L \perp$ given line, therefore,
2. $2 \lambda+3(3 \lambda+1)+8(8 \lambda-10)=0$
$\Rightarrow 4 \lambda+9 \lambda+3+64 \lambda-80=0 \Rightarrow \lambda=1$
Putting $\lambda=1$ in $[2 \lambda+1,-(3 \lambda+1), 8 \lambda-10]$, we find that required foot of perpendicular is $[3,-4,-2]$.
\therefore Length $P L=\sqrt{(3-1)^{2}+(-4-0)^{2}+(-2-0)^{2}}$
$=\sqrt{4+16+4}=\sqrt{24}$ units.
Q.5. The equation of motion of a point in space is $x=2 t, y=-4 t, z=$ $4 t$ where t measured in hour and the co-ordinates of moving point in kilometers. Find the distance of the point from the starting point $O(0,0,0)$ in 10 hours.

Ans.

Eliminating ' t ' from the given equations, we get the equation of the path as given point

$$
\frac{x}{2}=\frac{y}{4}=\frac{z}{4} \quad \Rightarrow \quad \frac{x}{1}=\frac{y}{-2}=\frac{z}{2}
$$

Obviously, the path of the point is a straight line passing through origin $(0,0,0)$
When $t=10$ hours the position of point is at $x=20, y=-40, z=40$.
i.e., After 10 hours the position of point will be at $(20,-40,40)$

Therefore, required distance $=$ distance between point $(0,0,0)$ and $(20,-40,40)$
$=\sqrt{(20-0)^{2}+(-40-0)^{2}+(40-0)^{2}}$
$=\sqrt{400+1600+1600}$
$=\sqrt{3600}=60 \mathrm{~km}$.

Long Answer Questions-II (PYQ)

[6 Mark]

Q.1. Find the coordinates of the foot of perpendicular and the length of the perpendicular drawn from the point $P(5,4,2)$ to the line $\vec{r}=-\hat{i}+3 \hat{j}+\hat{k}+\lambda(2 \hat{i}+3 \hat{j}-\hat{k})$. Also find the image of \boldsymbol{P} in this line.

Ans.
Given line is
$\vec{r}=-\hat{i}+3 \hat{j}+\hat{k}+\lambda(2 \hat{i}+3 \hat{j}-\hat{k})$
It can be written in cartesian form as
$\frac{x+1}{2}=\frac{y-3}{3}=\frac{z-1}{-1}$
Let $Q(\alpha, \beta, \gamma)$ be the foot of perpendicular drawn from $P(5,4,2)$ to the line (i) and $P^{\prime}\left(x_{1}, y_{1}, z_{1}\right)$ be the image of P on the line (i)

$\because Q(\alpha, \beta, \gamma)$ lie on line (i)
$\therefore \quad \frac{\alpha+1}{2}=\frac{\beta-3}{3}=\frac{\gamma-1}{-1}=\lambda \quad$ (say)
$\Rightarrow \alpha=2 \lambda-1 ; \beta=3 \lambda+3$ and $Y=-\lambda+1$
Now, $\overrightarrow{\mathrm{PQ}}=(\alpha-5) \hat{i}+(\beta-4) \hat{j}+(\gamma-2) \hat{k}$
Parallel vector of line (i) $\vec{b}=2 \hat{i}+3 \hat{j}-\hat{k}$.
Obviously $\overrightarrow{\mathrm{PQ}} \perp \vec{b} \quad \Rightarrow \quad \overrightarrow{\mathrm{PQ}} \cdot \vec{b}=0$
$2(\alpha-5)+3(\beta-4)+(-1)(Y-2)=0$
$\Rightarrow 2 \alpha-10+3 \beta-12-\gamma+2=0$
$\Rightarrow 2 \alpha+3 \beta-\gamma-20=0$
$\Rightarrow 2(2 \lambda-1)+3(3 \lambda+3)-(-\lambda+1)-20=0[$ Putting value of α, β, γ from (ii)]
$\Rightarrow 4 \lambda-2+9 \lambda+9+\lambda-1-20=0$
$\Rightarrow 14 \lambda-14=0 \Rightarrow \lambda=1$

Hence the coordinates of foot of perpendicular Q are $(2 \times 1-1,3 \times 1+3,-1+1)$, i.e., $(1,6,0)$
$\therefore \quad$ Length of perpendicular $=\sqrt{(5-1)^{2}+(4-6)^{2}+(2-0)^{2}}$
$=\sqrt{16+4+4}=\sqrt{24}=2 \sqrt{6}$ units.
Also, since Q is mid-point of PP'
$\therefore 1=\frac{x_{1}+5}{2} \Rightarrow x_{1}=-3$
$6=\frac{y_{1}+4}{2} \Rightarrow \quad y_{1}=8$
$0=\frac{z_{1}+2}{2} \Rightarrow \quad z_{1}=-2$
Therefore required image is $(-3,8,-2)$.
Q.2. Find the equation of the plane that contains the point $(1,-1,2)$ and is perpendicular to both the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$. Hence find the distance of point $P(-2,5,5)$ from the plane obtained above.

Ans.
Equation of plane containing the point $(1,-1,2)$ is given by
$a(x-1)+b(y+1)+c(z-2)=0$
\because (i) is perpendicular to plane $2 x+3 y-2 z=5$
$\therefore 2 a+3 b-2 c=0$
Also,(i) is perpendicular to plane $x+2 y-3 z=8$
$a+2 b-3 c=0$
From (ii) and (iii), we get

$$
\begin{aligned}
& \frac{a}{9+4}=\frac{b}{-2+6}=\frac{c}{4-3} \\
& \Rightarrow \frac{a}{5}=\frac{b}{4}=\frac{c}{1}=\lambda(\text { say }) \\
& \Rightarrow a=-5 \lambda, b=4 \lambda, c=1
\end{aligned}
$$

Putting these values in (i), we get
$-5 \lambda(x-1)+4 \lambda(y+1)+\lambda(z-2)=0$
$\Rightarrow-5(x-1)+4(y+1)+(z-2)=0$
$\Rightarrow-5 x+5+4 y+4+z-2=0 \Rightarrow-5 x+4 y+z+7=0$
$\Rightarrow 5 x-4 y-z-7=0 \ldots$ (iv) is the required equation of plane.

Again, if d be the distance of point $P(-2,5,5)$ to plane (iv), then
$d=\left|\frac{5 \times(-2)+(-4) \times 5+(-1) \times 5-7}{\sqrt{5^{2}+(-4)^{2}+(-1)^{2}}}\right|$
$=\left|\frac{-10-20-5-7}{\sqrt{25+16+1}}\right|=\frac{42}{\sqrt{42}}=\sqrt{42}$ units
Q.3. If the lines $\frac{x-1}{-3}=\frac{y-2}{-2 k}=\frac{z-3}{2}$ and $\frac{x-1}{k}=\frac{y-2}{1}=\frac{z-3}{5}$ are perpendicular, then find the value of k and hence find the equation of plane containing these lines.

Ans.
Given lines are
$\frac{x-1}{-3}=\frac{y-2}{-2 k}=\frac{z-3}{2}$
$\frac{x-1}{k}=\frac{y-2}{1}=\frac{z-3}{5}$
Obviously, parallel vectors $\overrightarrow{b_{1}}$ and $\overrightarrow{b_{2}}$ of line (i) and (ii) respectively are:
$\overrightarrow{b_{1}}=-3 \hat{i}-2 k \hat{j}+2 \hat{k}$ and $\overrightarrow{b_{2}}=k \hat{i}+\hat{j}+5 \hat{k}$
Lines $(i) \perp(i i) \Rightarrow \overrightarrow{b_{1}} \perp \overrightarrow{b_{2}}$
$\Rightarrow \overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}=0 \Rightarrow-3 k-2 k+10=0$
$\Rightarrow-5 k+10=0 \Rightarrow k=\frac{-10}{-5}=2$

Putting $k=2$ in (i) and (ii), we get

$$
\frac{x-1}{-3}=\frac{y-2}{-4}=\frac{z-3}{2} \text { and } \frac{x-1}{2}=\frac{y-2}{1}=\frac{z-3}{5}
$$

Now, the equation of plane containing above two lines is

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
x-1 & y-2 & z-3 \\
-3 & -4 & 2 \\
2 & 1 & 5
\end{array}\right]=0} \\
& \Rightarrow(x-1)(-20-2)-(y-2)(-15-4)+(z-3)(-3+8)=0 \\
& \Rightarrow-22(x-1)+19(y-2)+5(z-3)=0 \\
& \Rightarrow-22 x+22+19 y-38+5 z-15=0 \\
& \Rightarrow-22 x+19 y+5 z-31=0 \Rightarrow 22 x-19 y-5 z+31=0
\end{aligned}
$$

Note: Equation of plane containing lines $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and

$$
\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}} \text { is }\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=0, \quad \text { or }\left|\begin{array}{ccc}
x-x_{2} & y-y_{2} & z-z_{2} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=0
$$

Q.4. Find the vector equation of the plane passing through the points $(2,1,-1)$ and $(-1,3,4)$ and perpendicular to the plane $x-2 y+4 z=10$. Also show that the plane thus obtained contains the line $\vec{r}=-\hat{i}+3 \hat{j}+4 \hat{k}+\lambda(3 \hat{i}-2 \hat{j}-5 \hat{k})$.

Ans.
Let the equation of plane through $(2,1,-1)$ be
$a(x-2)+b(y-1)+c(z+1)=0$
$\because(i)$ passes through $(-1,3,4)$
$\therefore a(-1-2)+b(3-1)+c(4+1)=0$
$\Rightarrow \quad-3 a+2 b+5 c=0$

Also plane (i) is perpendicular to plane $x-2 y+4 z=10$

$$
\Rightarrow \overrightarrow{n_{1}} \perp \overrightarrow{n_{2}} \Rightarrow \overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}=0
$$

$\therefore 1 a-2 b+4 c=0 \ldots(i i i)$
From (ii) and (iii), we get

$$
\begin{aligned}
& \frac{a}{8+10}=\frac{b}{5+12}=\frac{c}{6-2} \quad \Rightarrow \quad \frac{a}{18}=\frac{b}{17}=\frac{c}{4}=\lambda \text { (say) } \\
& \Rightarrow a=18 \lambda, b=17 \lambda, c=4 \lambda
\end{aligned}
$$

Putting the value of a, b, c in (i), we get
$18 \lambda(x-2)+17 \lambda(y-1)+4 \lambda(z+1)=0$
$\Rightarrow 18 x-36+17 y-17+4 z+4=0$
$\Rightarrow 18 x+17 y+4 z=49$
$\therefore \quad$ Required vector equation of plane is
$\vec{r} \cdot(18 \hat{i}+17 \hat{j}+4 \hat{k})=49 \ldots(i v)$
Obviously plane (iv) contains the line

$$
\begin{equation*}
\vec{r}=(-\hat{i}+3 \hat{j}+4 \hat{k})+\lambda(3 \hat{i}-2 \hat{j}-5 \hat{k}) \tag{v}
\end{equation*}
$$

Since, point $(-\hat{i}+3 \hat{j}+4 \hat{k})$ satisfy equation (iv) and vector $(18 \hat{i}+17 \hat{j}+4 \hat{k})$ is perpendicular to, $(3 \hat{i}-2 \hat{j}+5 \hat{k})$, as $(-\hat{i}+3 \hat{j}+4 \hat{k}) \cdot(18 \hat{i}+17 \hat{j}+4 \hat{k})=-18+51+16=49$ and $(18 \hat{i}+17 \hat{j}+4 \hat{k}) \cdot(3 \hat{i}-2 \hat{j}-5 \hat{k})=54-34-20=0$

Therefore, (iv) contains line (v).

Q.5. Let $P(3,2,6)$ be a point in the space and Q be a point on the line

 $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$, then find the value of for which the vector μ is $\overrightarrow{\mathrm{PQ}}$ parallel to the plane $x-4 y+3 z=1$Ans.
Let $P(3,2,6)$ be a point in the space and $Q(\alpha, \beta, \gamma)$ be a point on the given line represented in cartesian form as
$\frac{x-1}{-3}=\frac{y+1}{1}=\frac{z-2}{5}=\mu$
$Q(\alpha, \beta, \gamma)$ lie on line (i)
$\frac{\alpha-1}{3}=\frac{\beta+1}{1}=\frac{\gamma-2}{5}=\mu$
$\alpha=-3 \mu+1, \beta=\mu-1, \gamma=5 \mu+2$
Now, $\overrightarrow{\mathrm{PQ}}=(\alpha-3) \hat{i}+(\beta-2) \hat{j}+(\gamma-6) \hat{k}$
Normal vector of plane, $\vec{n}=\hat{i}-4 \hat{j}+3 \hat{k}$

Obviously, $\overrightarrow{\mathrm{PQ}}$ is perpendicular to \vec{n}.
$\therefore \overrightarrow{\mathrm{PQ}} \vec{n}=0$
$(\alpha-3) \cdot 1+(\beta-2) \cdot(-4)+(\gamma-6) \cdot 3=0$
$\Rightarrow \alpha-3-4 \beta+8+3 \gamma-18=0 \quad \Rightarrow \quad \alpha-4 \beta+3 \gamma-13=0$

Putting the value of α, β, γ from (ii), we get
$-3 \mu+1-4(\mu-1)+3(5 \mu+2)-13=0$
$\Rightarrow-3 \mu+1-4 \mu+4+15 \mu+6-13=0$
$\Rightarrow 8 \mu-2=0 \quad \Rightarrow \quad \mu=\frac{2}{8}=\frac{1}{4}$
Q.6. Find the vector and cartesian equations of the plane which bisects the line joining the points $(3,-2,1)$ and $(1,4,-3)$ at right angles.

Ans.

Let $P(3,-2,1) ; Q(1,4,-3)$ be two points such that R (a point of plane) is mid point of $\overrightarrow{\mathrm{PQ}}$ and $\overrightarrow{\mathrm{PQ}}$ is perpendicular to required plane.

Now, coordinate of $R=\left(\frac{3+1}{2}, \frac{4-2}{2}, \frac{-3+1}{2}\right)=(2,1,-1)$
Also, $\overrightarrow{\mathrm{PQ}}=(1-3) \hat{i}+(4+2) \hat{j}+(-3-1) \hat{k}=-2 \hat{i}+6 \hat{j}-4 \hat{k}$
Now, we have a normal vector $\overrightarrow{\mathrm{PQ}}$ and a point $R(2,1,-1)$ of required plane.

Therefore, vector equation of required plane is

$$
\begin{aligned}
& (\vec{r}-(2 \hat{i}+\hat{j}-\hat{k})) \cdot(-2 \hat{i}+6 \hat{j}-4 \hat{k})=0 \\
& \{\vec{r}-(2 \hat{i}+\hat{j}-\hat{k})\} \cdot(\hat{i}-3 \hat{j}+2 \hat{k})=0 \\
& \Rightarrow \vec{r} \cdot(\hat{i}-3 \hat{j}+2 \hat{k})-(2-3-2)=0 \\
& \Rightarrow \vec{r} \cdot(\hat{i}-3 \hat{j}+2 \hat{k})+3=0 \\
& x-3 y+2 z+3=0
\end{aligned}
$$

Also, cartesian equation of required plane is

Q.7. Find the vector and Cartesian equations of a plane containing the two lines.

$$
\vec{r}=(2 \hat{i}+\hat{j}-3 \hat{k})+\lambda(\hat{i}+2 \hat{j}+5 \hat{k}) \text { and } \vec{r}=(3 \hat{i}+3 \hat{j}+2 \hat{k})+\mu(3 \hat{i}-2 \hat{j}+5 \hat{k})
$$

Ans.
Given lines are

$$
\begin{align*}
& \vec{r}=(2 \hat{i}+\hat{j}-3 \hat{k})+\lambda(\hat{i}+2 \hat{j}+5 \hat{k}) \tag{i}\\
& \vec{r}=(3 \hat{i}+3 \hat{j}+2 \hat{k})+\mu(3 \hat{i}-2 \hat{j}+5 \hat{k})
\end{align*}
$$

Here $\overrightarrow{a_{1}}=2 \hat{i}+\hat{j}+3 \hat{k} ; \quad \overrightarrow{a_{2}}=3 \hat{i}+3 \hat{j}+2 \hat{k}$

$$
\overrightarrow{b_{1}}=\hat{i}+2 \hat{j}+5 \hat{k} ; \quad \overrightarrow{b_{2}}=3 \hat{i}-2 \hat{j}+5 \hat{k}
$$

Now, $\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 5 \\ 3 & -2 & 5\end{array}\right|$
$=(10+10) \hat{i}-(5-15) \hat{j}+(-2-6) \hat{k}=20 \hat{i}+10 \hat{j}-8 \hat{k}$

Hence, vector equation of required plane is

$$
\begin{aligned}
& \left(\vec{r}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)=0 \\
& \Rightarrow \vec{r} \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)=\overrightarrow{a_{1}} \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \\
& \Rightarrow \vec{r} \cdot(20 \hat{i}+10 \hat{j}-8 \hat{k})=(2 \hat{i}+\hat{j}-3 \hat{k}) \cdot(20 \hat{i}+10 \hat{j}-8 \hat{k}) \\
& \Rightarrow \vec{r} \cdot(20 \hat{i}+10 \hat{j}-8 \hat{k})=40+10+24 \\
& \vec{r} \cdot(20 \hat{i}+10 \hat{j}-8 \hat{k})=74 \quad \Rightarrow \quad \vec{r} \cdot(20 \hat{i}+10 \hat{j}-8 \hat{k})=74 \quad \Rightarrow \quad \vec{r} \cdot(10 \hat{i}+5 \hat{j}-4 \hat{k})=37
\end{aligned}
$$

Therefore, Cartesian equation is $10 x+5 y-4 z=37$
Q.8. Find the distance of the point $(-2,3,-4)$ from the line ${ }^{\frac{x+2}{3}=\frac{2 y+3}{4}=\frac{3 z+4}{5}}$ measured parallel to the plane $4 x+12 y-3 z+1=0$.

Ans.

Let given point be $P(-2,3,-4)$ and given line and plane be
$\frac{x+2}{3}=\frac{2 y+3}{4}=\frac{3 z+4}{5}$
$4 x+12 y-3 z+1=0$
Let $Q(\alpha, \beta, \gamma)$ be the point on line (i), such that
$\overrightarrow{\mathrm{PQ}}$ parallel to plane (ii)
$\Rightarrow \overrightarrow{\mathrm{PQ}} \perp \vec{n} \quad[$ normal vector of $(i i)]$
Now, $\overrightarrow{\mathrm{PQ}}=(\alpha+2) \hat{i}+(\beta-3) \hat{j}+(\gamma+4) \hat{k}$
and $\vec{n}=4 \hat{i}+12 \hat{j}-3 \hat{k}$
$\therefore \overrightarrow{\mathrm{PQ}} \cdot \vec{n}=0$
$\Rightarrow 4(\alpha+2)+12(\beta-3)-3(Y+4)=0$
$\Rightarrow 4 \alpha+8+12 \beta-36-3 \gamma-12=0$
$\Rightarrow 4 \alpha+12 \beta-3 \gamma=40$

$$
\frac{x+2}{3}=\frac{2 y+3}{4}=\frac{3 z+4}{5}
$$

Also, $Q(\alpha, \beta, \gamma)$ lie on line (i)

$$
\begin{aligned}
& \frac{\alpha+2}{3}=\frac{2 \beta+3}{4}=\frac{3 \gamma+4}{5}=\lambda(\text { say }) \\
& \alpha=3 \lambda-2, \beta=\frac{4 \lambda-3}{2}, \gamma=\frac{5 \lambda-4}{3}
\end{aligned}
$$

Putting the value of α, β, γ in (iii), we get
$4(3 \lambda-2)+12\left(\frac{4 \lambda-3}{2}\right)-3\left(\frac{5 \lambda-4}{3}\right)=40$
$\Rightarrow 12 \lambda-8+24 \lambda-18-15 \lambda+4=40$
$\Rightarrow \quad 31 \lambda-22=40$
$\Rightarrow \quad 31 \lambda=62$
$\Rightarrow \lambda=2$
$\therefore \alpha=3 \times 2-2=4, \beta=\frac{4 \times 2-3}{2}=\frac{5}{2}, \quad \gamma=\frac{5 \times 2-4}{3}=2$

Hence $Q \equiv\left(4, \frac{5}{2}, 2\right)$
\therefore Distance, $P Q=\sqrt{\left.(4+2)^{2}+\left(\frac{5}{2}-3\right)\right)^{2}+(2+4)^{2}}=\sqrt{36+36+\frac{1}{4}}=\sqrt{\frac{289}{4}}=\frac{17}{2}$ units.
Q.9. Find the equation of the plane passing through the point $(-1,3,2)$ and perpendicular to each of the planes $x+2 y+3 z=5$ and $3 x+3 y+z=0$.

Ans.

The equation of plane through $(-1,3,2)$ can be expressed as

$$
A(x+1)+B(y-3)+C(z-2)=0
$$

As the required plane is perpendicular to $x+2 y+3 z=5$ and $3 x+3 y+z=0$, we get

$$
\begin{aligned}
& A+2 B+3 C=0 \text { and } 3 A+3 B+C=0 \\
& \Rightarrow \frac{A}{2-9}=\frac{B}{9-1}=\frac{C}{3-6} \quad \Rightarrow \quad \frac{A}{-7}=\frac{B}{8}=\frac{C}{-3}
\end{aligned}
$$

\therefore Direction ratios of normal to the required plane are $-7,8,-3$.

Hence, equation of the plane will be

$$
\begin{aligned}
& \quad-7(x+1)+8(y-3)-3(z-2)=0 \\
& \Rightarrow \quad-7 x-7+8 y-24-3 z+6=0 \\
& \text { or } \quad 7 x-8 y+3 z+25=0
\end{aligned}
$$

Q.10. Find the distance of the point $(2,12,5)$ from the point of intersection of the line

$$
\vec{r}=2 \hat{i}-4 \hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k}) \text { and the plane } \vec{r} \cdot(\hat{i}-2 \hat{j}+\hat{k})=0
$$

Ans.
Given line and plane are

$$
\begin{aligned}
& \vec{r}=(2 \hat{i}-4 \hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k}) \ldots(i) \\
& \text { and } \vec{r} \cdot(\hat{i}-2 \hat{j}+\hat{k})=0 \ldots(i i)
\end{aligned}
$$

For intersection point Q we solve equations (i) and (ii) by putting the value of \vec{r} from (i) in (ii)

$$
\begin{aligned}
& {[(2 \hat{i}-4 \hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})] \cdot(\hat{i}-2 \hat{j}+\hat{k})=0} \\
& \Rightarrow[(2+3 \lambda) \hat{i}-(4-4 \lambda) \hat{j}+(2+2 \lambda) \hat{k}] \cdot(\hat{i}-2 \hat{j}+\hat{k})=0 \\
& \Rightarrow(2+3 \lambda)+2(4-4 \lambda)+(2+2 \lambda)=0 \\
& \Rightarrow 2+3 \lambda+8-8 \lambda+2+2 \lambda=0 \Rightarrow 12-3 \lambda=0 \\
& \Rightarrow \lambda=4
\end{aligned}
$$

Hence position vector of intersecting point is $14 \hat{i}+12 \hat{i}+10 \hat{k}$.

Co-ordinate of intersecting point, $Q \equiv(14,12,10)$
Required distance $=\sqrt{(14-2)^{2}+(12-12)^{2}+(10-5)^{2}}$
$=\sqrt{144+25}=\sqrt{169}$ units
$=13$ units.
Q.11. The points $A(4,5,10), B(2,3,4)$ and $C(1,2,-1)$ are three vertices of a parallelogram $A B C D$. Find the vector equations of the sides $A B$ and $B C$ and also find the coordinates of point D.

Ans.

The points $A(4,5,10), B(2,3,4)$ and $C(1,2,-1)$ are three vertices of parallelogram $A B C D$. Let coordinates of D be (x, y, z)

Direction vector along $A B$ is

$$
\vec{a}=(2-4) \hat{i}+(3-5) \hat{j}+(4-10) \hat{k}=-2 \hat{i}-2 \hat{j}-6 \hat{k}
$$

\therefore Equation of line $A B$, is given by

$$
\vec{b}=(4 \hat{i}+5 \hat{j}+10 \hat{k})+\lambda(2 \hat{i}+2 \hat{j}+6 \hat{k})
$$

Direction vector along $B C$ is

$$
\vec{c}=(1-2) \hat{i}+(2-3) \hat{j}+(-1-4) \hat{k}=-\hat{i}-\hat{j}-5 \hat{k}
$$

\therefore Equation of a line $B C$, is given by .

$$
\vec{d}=(2 \hat{i}+3 \hat{j}+4 \hat{k})+\mu(\hat{i}+\hat{j}+5 \hat{k})
$$

Since $A B C D$ is a parallelogram $A C$ and $B D$ bisect each other

$$
\begin{aligned}
& \therefore\left[\frac{4+1}{2}, \frac{5+2}{2}, \frac{10-1}{2}\right]=\left[\frac{2+x}{2}, \frac{3+y}{2}, \frac{4+z}{2}\right] \\
& \Rightarrow 2+x=5,3+y=7,4+z=9 \\
& \Rightarrow x=3, y=4, z=5
\end{aligned}
$$

Coordinates of D are $(3,4,5)$.
Q.12. Find the coordinates of the foot of the perpendicular and the perpendicular distance of the point $P(3,2,1)$ from the plane $2 x-y+z+1=0$. Also find the image of the point in the plane.

Ans.

Let $O(\alpha, \beta, \gamma)$ be the image of the point $P(3,2,1)$ in the plane
$2 x-y+z+1=0$
$P O$ is perpendicular to the plane and S is the mid-point of $P O$ and the foot of the perpendicular.
Dr's of PS are 2, -1, 1 .
\therefore Equation of $P S$ are $\frac{x-3}{2}=\frac{y-2}{-1}=\frac{z-1}{1}=\mu$
\therefore General point on line is $S(2 \mu+3,-\mu+2, \mu+1)$
If this point lies on plane, then
$2(2 \mu+3)-(-\mu+2)+1(\mu+1)+1=0$
$\Rightarrow 6 \mu+6=0 \Rightarrow \mu=-1$
\therefore Coordinates of S are $(1,3,0)$.
As S is the mid point of $P O$,
\therefore The coordinate of $S=\left(\frac{3+\alpha}{2}, \frac{2+\beta}{2}, \frac{1+\gamma}{2}\right)=(1,3,0)$

By comparing both sides, we get

$$
\begin{array}{lll}
\frac{3+\alpha}{2}=1 & \Rightarrow & \alpha=-1 \\
\frac{2+\beta}{2}=3 & \Rightarrow & \beta=4 \\
\frac{1+\gamma}{2}=0 & \Rightarrow & \gamma=-1
\end{array}
$$

Image of point P is $(-1,4,-1)$.
Q.13. Find the coordinate of the point P where the line through $A(3,-4,-5)$ and $B(2,-3,1)$ crosses the plane passing through three points $L(2,2,1), M(3,0$, $1)$ and $N(4,-1,0)$. Also, find the ratio in which P divides the line segment $A B$.

Ans.
Let the coordinate of P be (α, β, γ).
Equation of plane passing through $L(2,2,1), M(3,0,1)$ and $N(4,-1,0)$ is given by

$$
\begin{align*}
& \left|\begin{array}{cccc}
x-2 & y-2 & z-1 \\
3-2 & 0 & -2 & 1-1 \\
4-2 & -1 & -2 & 0
\end{array}\right|=0 \\
& \Rightarrow\left|\begin{array}{rrr}
x-2 & y-2 & z-1 \\
1 & -2 & 0 \\
2 & -3 & -1
\end{array}\right|=0 \\
& \Rightarrow(x-2)(2-0)-(y-2)(-1-0)+(z-1)(-3+4)=0 \\
& \Rightarrow 2(x-2)+(y-2)+z-1=0 \\
& \Rightarrow 2 x-4+y-2+z-1=0 \\
& \Rightarrow 2 x+y+z-7=0 \ldots(i) \tag{i}
\end{align*}
$$

Now, the equation of line passing through $A(3,-4,-5)$ and $B(2,-3,1)$ is given by
$\Rightarrow \frac{x-3}{2-3}=\frac{y+4}{3+4}=\frac{z+5}{1+5} \quad \frac{x-3}{-1}=\frac{y+4}{1}=\frac{z+5}{6} \quad \ldots(i i)$
$\because \quad P(\alpha, \beta, \gamma)$ lie on line $A B$
$\Rightarrow \frac{\alpha-3}{-1}=\frac{\beta+4}{1}=\frac{\gamma+5}{6}=\lambda($ say $)$
$\Rightarrow \mathrm{a}=-\lambda+3, \mathrm{~b}=\lambda-4, \mathrm{~g}=6 \lambda-5$
Also $P(\alpha, \beta, \gamma)$ lie on plane (i)
$\Rightarrow 2 \alpha+\beta+\gamma-7=0$
$\Rightarrow 2(-\lambda+3)+(\lambda-4)+(6 \lambda-5)-7=0$
$\Rightarrow-2 \lambda+6+\lambda-4+6 \lambda-5-7=0$
$\Rightarrow 5 \lambda-10=0$
$\Rightarrow \lambda=2$
$\therefore \alpha=1, \beta=-2, \gamma=7$
\therefore Co-ordinate of $P \equiv(1,-2,7)$
Let P divides $A B$ in the ratio $K: 1$.
$\therefore 1=\frac{K \times 2+1 \times 3}{K+1}$
$\Rightarrow K+1=2 K+3 \Rightarrow K=-2$
$\Rightarrow P$ divides $A B$ externally in the ratio $2: 1$.
Q.14. Find the shortest distance between the lines $x+1=2 y=-12 z$ and $x=y+2$ $=6 z-6$.

Ans.

Given lines are
$x+1=2 y=-12 z$ and $x=y+2=6 z-6$
$\Rightarrow \quad \frac{x-(-1)}{1}=\frac{y-0}{\frac{1}{2}}=\frac{z-0}{-\frac{1}{12}}$ and $\frac{x-0}{1}=\frac{y-(-2)}{1}=\frac{z-1}{\frac{1}{6}}$
These lines may be written in vector form as
$\vec{r}=(-\hat{i}+0 \hat{j}+0 \hat{k})+\lambda\left(\hat{i}+\frac{1}{2} \hat{j}-\frac{1}{12} \hat{k}\right)$
and $\vec{r}=(0 \hat{i}-2 \hat{j}+\hat{k})+\lambda\left(\hat{i}+\hat{j}+\frac{1}{6} \hat{k}\right) .$.
We know that the shortest distance between
$\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\lambda \overrightarrow{b_{2}}$ is given by
$\mathrm{SD}=\left|\frac{\left(\overrightarrow{\left(a_{2}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)}\right.}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right|$
Here, $\overrightarrow{a_{1}}=-\hat{i}+0 \hat{j}+0 \hat{k}, \quad \overrightarrow{b_{1}}=\hat{i}+\frac{1}{2} \hat{j}-\frac{1}{12} \hat{k}$

$$
\overrightarrow{a_{2}}=0 \hat{i}-2 \hat{j}+\hat{k}, \quad \overrightarrow{b_{2}}=\hat{i}+\hat{j}+\frac{1}{6} \hat{k}
$$

Now, $\quad \overrightarrow{a_{2}}-\overrightarrow{a_{1}}=(0 \hat{i}-2 \hat{j}+\hat{k})-(-\hat{i}+0 \hat{j}+0 \hat{k})=\hat{i}-2 \hat{j}+\hat{k}$

$$
\begin{aligned}
\overrightarrow{b_{1}} \times \overrightarrow{b_{2}} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 1 / 2 & -1 / 12 \\
1 & 1 & 1 / 6
\end{array}\right|=\left(\frac{1}{12}+\frac{1}{12}\right) \hat{i}-\left(\frac{1}{6}+\frac{1}{12}\right) \hat{j}+\left(1-\frac{1}{2}\right) \hat{k} \\
& =\frac{1}{6} \hat{i}-\frac{1}{4} \hat{j}+\frac{1}{2} \hat{k}
\end{aligned}
$$

$$
\therefore \quad\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|=\sqrt{\left(\frac{1}{6}\right)^{2}+\left(-\frac{1}{4}\right)^{2}+\left(\frac{1}{2}\right)^{2}}
$$

$$
=\sqrt{\frac{1}{36}+\frac{1}{16}+\frac{1}{4}}=\sqrt{\frac{4+9+36}{144}}=\sqrt{\frac{49}{144}}=\frac{7}{12}
$$

\therefore Required $S . D .=\left|\frac{(\hat{i}-2 \hat{j}+\hat{k}) \cdot\left(\frac{1}{6} \hat{i}-\frac{1}{4} \hat{j}+\frac{1}{2} \hat{k}\right)}{\frac{7}{12}}\right|=\left|\frac{\frac{1}{6}+\frac{1}{2}+\frac{1}{2}}{\frac{7}{12}}\right|=\frac{\frac{7}{6}}{\frac{7}{12}}=\frac{7}{6} \times \frac{12}{7}=2$ units.
Q.15. From the point $P(a, b, c)$, perpendiculars $P L$ and $P M$ are drawn to $Y Z$ and $Z X$ planes respectively. Find the equation of the plane OLM.

Ans.
Obviously, the coordinates of O, L and M are $(0,0,0),(0, b, c)$ and $(a, 0, c)$.

Therefore, the equation of required plane is given by

$$
\begin{aligned}
& \left|\begin{array}{cccc}
x-0 & y-0 & z-0 \\
0-0 & b-0 & c-0 \\
a-0 & 0-0 & c-0
\end{array}\right|=0 \\
& \Rightarrow\left|\begin{array}{lll}
x & y & z \\
0 & b & c \\
a & 0 & c
\end{array}\right|=0 \\
& \Rightarrow x(b c-0)-y(0-a c)+z(0-a b)=0 \\
& \Rightarrow b c x+a c y-a b z=0
\end{aligned}
$$

Q.16. Find the equation of the plane passing through the point (1, $1,-1$) and perpendicular to the planes $x+2 y+3 z-7=0$ and $2 x-3 y+4 z=0$.

Ans.

Let the equation of plane passing through point $(1,1,-1)$ be
$a(x-1)+b(y-1)+c(z+1)=0$
Since (i) is perpendicular to the plane $x+2 y+3 z-7=0$
$\therefore \quad$ 1. $a+2 \cdot b+3 \cdot c=0 \quad \Rightarrow a+2 b+3 c=0$
Again plane (i) is perpendicular to the plane $2 x-3 y+4 z=0$
$\therefore \quad 2 \cdot a-3 \cdot b+4 \cdot c=0 \quad \Rightarrow 2 a-3 b+4 c=0$
From (ii) and (iii), we get
$\frac{a}{8+9}=\frac{b}{6-4}=\frac{c}{-3-4} \quad \Rightarrow \quad \frac{a}{17}=\frac{b}{2}=\frac{c}{-7}=\lambda$
$\Rightarrow a=17 \lambda, b=2 \lambda, c=-7 \lambda$
Putting the value of a, b, c in (i), we get
$17 \lambda(x-1)+2 \lambda(y-1)-7 \lambda(z+1)=0$
$\Rightarrow 17(x-1)+2(y-1)-7(z+1)=0$
$\Rightarrow \quad 17 x+2 y-7 z-17-2-7=0$
$\Rightarrow 17 x+2 y-7 z-26=0$ is the required equation.
[Note: The equation of plane passing through $\left(x_{1}, y_{1}, z_{1}\right)$ is given by $a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=$ 0 , where a, b, c are direction ratios of normal of plane.]
Q.17. Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$. Also find the distance of the plane obtained above, from the origin.

Ans.

The equation of a plane passing through the intersection of the given planes is

$$
\begin{aligned}
& (x+y+z-1)+\lambda(2 x+3 y+4 z-5)=0 \\
& \Rightarrow(1+2 \lambda) x+(1+3 \lambda) y+(1+4 \lambda) z-(1+5 \lambda)=0 \ldots(i)
\end{aligned}
$$

Since, (i) is perpendicular to $x-y+z=0$
$\Rightarrow(1+2 \lambda) 1+(1+3 \lambda)(-1)+(1+4 \lambda) 1=0$
$\Rightarrow 1+2 \lambda-1-3 \lambda+1+4 \lambda=0$
$\Rightarrow 3 \lambda+1=0$
$\Rightarrow \quad \lambda=-\frac{1}{3}$

Putting the value of 1 in (i), we get
$\left(1-\frac{2}{3}\right) x+(1-1) y+\left(1-\frac{4}{3}\right) z-\left(1-\frac{5}{3}\right)=0 \quad \Rightarrow \quad \frac{x}{3}-\frac{z}{3}+\frac{2}{3}=0$
$\Rightarrow x-z+2=0$, it is required plane.
Let d be the distance of this plane from origin.
$\therefore d=\left|\frac{0 . x+0 \cdot y+0 .(-z)+2}{\sqrt{1^{2}+0^{2}+(-1)^{2}}}\right|=\left|\frac{2}{\sqrt{2}}\right|=\sqrt{2}$ units.
[Note: The distance of the point (α, β, γ) to the plane $a x+b y+c z+d=0$ is given by $\left|\frac{a \alpha+b \beta+c \gamma+d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|$.
Q.18. Find the coordinates of the point where the line through the points $\boldsymbol{A}(3,4$, $1)$ and $B(5,1,6)$ crosses the $X Y$-plane.

Ans.

Let $P(\alpha, \beta, \gamma)$ be the point at which the given line crosses the $X Y$ plane

Now, the equation of given line is
$\frac{x-3}{2}=\frac{y-4}{-3}=\frac{z-1}{5}$
Since $P(\alpha, \beta, \gamma)$ lies on line (i)
$\therefore \quad \frac{\alpha-3}{2}=\frac{\beta-4}{-3}=\frac{\gamma-1}{5}=\lambda$ (say)
$\Rightarrow \alpha=2 \lambda+3 ; \quad \beta=-3 \lambda+4$ and $Y=5 \lambda+1$
Also $P(\alpha, \beta, \gamma)$ lie on given $X Y$ plane, i.e., $z=0$
$\therefore 0 . \alpha+0 . \beta+\gamma=0$
$\Rightarrow 5 \lambda+1=0$
$\Rightarrow \lambda=-\frac{1}{5}$.

Hence, the coordinates of required point is
$\alpha=2 \times\left(-\frac{1}{5}\right)+3=\frac{13}{5} ; \beta=-3 \times\left(-\frac{1}{5}\right)+4=\frac{23}{5} \quad$ and $\quad \gamma=5 \times\left(-\frac{1}{5}\right)+1=0$
i.e., required coordinates are $\left(\frac{13}{5}, \frac{23}{5}, 0\right)$.
Q.19. Find the vector equation of the plane passing through the points $(3,4,2)$ and $(7,0,6)$ and perpendicular to the plane $2 x-5 y-15=0$. Also show that the plane thus obtained contains the line $\vec{r}=\hat{i}+3 \hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}+\hat{k})$.

Ans.

Let the equation of plane through $(3,4,2)$ be
$a(x-3)+b(y-4)+c(z-2)=0$
\because (i) passes through $(7,0,6)$
$\therefore \quad a(7-3)+b(0-4)+c(6-2)=0 \Rightarrow 4 a-4 b+4 c=0$
$\Rightarrow a-b+c=0 \ldots(i i)$
Also, since plane (i) is perpendicular to plane $2 x-5 y-15=0$
$2 a-5 b+0 c=0 \ldots($ iii $)$
From (ii) and (iii), we get
$\frac{a}{5}=\frac{b}{2}=\frac{c}{-3}=\lambda \quad($ say $) \Rightarrow a=5 \lambda, b=2 \lambda, c=-3 \lambda$.
Putting the value of a, b, c in (i), we get
$5 \lambda(x-3)+2 \lambda(y-4)-3 \lambda(z-2)=0$
$\Rightarrow 5 x-15+2 y-8-3 z+6=0$
$\Rightarrow 5 x+2 y-3 z=17$
$\therefore \quad$ Required vector equation of plane is $\vec{r} \cdot(5 \hat{i}+2 \hat{j}-3 \hat{k})=17$
Obviously, plane (iv) contains the line
$\vec{r}=(\hat{i}+3 \hat{j}-2 \hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$
Since, point $(\hat{i}+3 \hat{j}-2 \hat{k})$ satisfy the equation (iv) and vector is perpendicular to $(5 \hat{i}+2 \hat{j}-3 \hat{k})$.
as $(\hat{i}+3 \hat{j}-2 \hat{k}) \cdot(5 \hat{i}+2 \hat{j}-3 \hat{k})=5+6+6=17$ and $(5 \hat{i}+2 \hat{j}-3 \hat{k}) \cdot(\hat{i}-\hat{j}+\hat{k})=5-2-3=0$
Therefore, (iv) contains line (v).

Q.20. Show that the lines

$$
\begin{aligned}
& \vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\boldsymbol{\lambda}(\hat{i}+2 \hat{j}+2 \hat{k}) \\
& \vec{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})
\end{aligned}
$$

are intersecting. Hence find their point of intersection.

Ans.

Given lines are

$$
\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k}) \text { and } \vec{r}=5 \hat{i}+2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})
$$

Its corresponding cartesian forms are
$\frac{x-3}{1}=\frac{y-2}{2}=\frac{z+4}{2}$
$\frac{x-5}{3}=\frac{y+2}{2}=\frac{z-0}{6}$
If two lines (i) and (ii) intersect, let interesting point be .
$\Rightarrow(\alpha, \beta, Y)$ satisfy line (i)
$\therefore \frac{\alpha-3}{1}=\frac{\beta-2}{2}=\frac{\gamma+4}{2}=\lambda=$ (say)
$\Rightarrow \alpha=\lambda+3, \beta=2 \lambda+2, \gamma=2 \lambda-4$

Also, (α, β, γ) will satisfy line (ii)

$$
\begin{aligned}
& \therefore \quad \frac{\alpha-5}{3}=\frac{\beta+2}{2}=\frac{\gamma}{6} \\
& \Rightarrow \quad \frac{\lambda+3-5}{3}=\frac{2 \lambda+2+2}{2}=\frac{2 \lambda-4}{6} \\
& \therefore \quad \frac{\lambda 2}{3}=\frac{\lambda+2}{1}=\frac{\lambda-2}{3}
\end{aligned}
$$

I II III
I and II $\quad \Rightarrow \quad \frac{\lambda-2}{3}=\frac{\lambda+2}{1} \quad \Rightarrow \quad \lambda-2=3 \lambda+6 \quad \Rightarrow \quad \lambda=-4$
II and III $\Rightarrow \frac{\lambda+2}{1}=\frac{\lambda-2}{3} \quad \Rightarrow \quad \lambda=-4$
\therefore The value of 1 is same in both cases.
Hence, both lines intersect each other at point
$(\alpha, \beta, \gamma) \equiv(-4+3,2 \times(-4)+2,2(-4)-4)(-1,-6,-12)$
Q.21. Find the vector equation of the plane passing through three points with position vectors $\hat{i}+\hat{j}-2 \hat{k}, 2 \hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$. Also find the coordinates of the point of intersection of this plane and the line

$$
\vec{r}=3 \hat{i}-\hat{j}-\hat{k}+\lambda(2 \hat{i}-2 \hat{j}+\hat{k}) .
$$

Ans.
The equation of plane passing through three points $\hat{i}+\hat{j}-2 \hat{k}, 2 \hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$
i.e., $(1,1,-2),(2,-1,1)$ and $(1,2,1)$ is
$\left|\begin{array}{ccc}x-1 & y-1 & z+2 \\ 2-1 & -1-1 & 1+2 \\ 1-1 & 2-1 & 1+2\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}x-1 & y-1 & z+2 \\ 1 & -2 & 3 \\ 0 & 1 & 3\end{array}\right|=0$

$$
\begin{aligned}
& \Rightarrow(x-1)(-6-3)-(y-1)(3-0)+(z+2)(1+0)=0 \\
& \Rightarrow-9 x+9-3 y+3+z+2=0 \\
& \Rightarrow 9 x+3 y-z=14 \ldots(i)
\end{aligned}
$$

Its vector form is $\vec{r} \cdot(9 \hat{j}+3 \hat{j}-\hat{k})=14$

The given line is $\vec{r}=(3 \hat{i}-\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$

Its cartesian form is

$$
\begin{equation*}
\frac{x-3}{2}=\frac{y+1}{-2}=\frac{z+1}{1} \tag{ii}
\end{equation*}
$$

Let the line (ii) intersect plane (i) at (α, β, γ)
$\because \quad(\alpha, \beta, \gamma)$ lie on (ii)
$\frac{\alpha-3}{2}=\frac{\beta+1}{-2}=\frac{\gamma+1}{1}=\lambda \quad($ say $)$
$\Rightarrow \alpha=2 \lambda+3 ; \beta=-2 \lambda-1 ; \gamma=\lambda-1$

Also, point (α, β, γ) lie on plane (i)
$\Rightarrow 9 \mathrm{a}+3 \mathrm{~b}-\mathrm{g}=14$
$\Rightarrow 9(2 \lambda+3)+3(-2 \lambda-1)-(\lambda-1)=14$
$\Rightarrow 18 \lambda+27-6 \lambda-3-\lambda+1=14$
$\Rightarrow 11 \lambda+25=14$
$\Rightarrow 11 \lambda=14-25$
$\Rightarrow 11 \lambda=-11$
$\Rightarrow \lambda=-1$

Therefore, point of intersection $\equiv(1,1,-2)$.
Q.22. Find the coordinates of the point where the line through the points $A(3,4$, 1) and $B(5,1,6)$ crosses the plane determined by the points $P(2,1,2), Q(3,1,0)$ and $R(4,-2,1)$.

Ans.
The line through $A(3,4,1)$ and $B(5,1,6)$ is given by
$\frac{x-3}{5-3}=\frac{y-4}{1-4}=\frac{z-1}{6-1} \quad \Rightarrow \quad \frac{x-3}{2}=\frac{y-4}{-3}=\frac{z-1}{5}$
The equation of plane determined by the points $P(2,1,2), Q(3,1,0)$ and $R(4,-2,1)$ is given by,

$$
\begin{align*}
& \left|\begin{array}{ccc}
x-2 & y-1 & z-2 \\
3-2 & 1-1 & 0-2 \\
4-2 & -2-1 & 1-2
\end{array}\right|=0 \quad\left|\begin{array}{ccc}
x-2 & y-1 & z-2 \\
1 & 0 & -2 \\
2 & -3 & -1
\end{array}\right|=0 \\
& \Rightarrow 2 x+y+z-7=0 \\
& \Rightarrow(0-6)(x-2)-(-1+4)(y-1)+(-3-0)(z-2)=0 \\
& \Rightarrow-6 x+12-3 y+3-3 z+6=0 \\
& \Rightarrow-6 x-3 y-3 z+21=0 \\
& \Rightarrow 2 x+y+z-7=0 \ldots(\text { ii }) \tag{ii}
\end{align*}
$$

Let $S(\alpha, \beta, \gamma)$ be intersecting point of line (I) and plane (II)
$\because S(\alpha, \beta, \gamma)$ lie on line (I)

$$
\frac{\alpha-3}{2}=\frac{\beta-4}{-3}=\frac{\gamma-1}{5}=\lambda
$$

$\therefore \alpha=2 \lambda+3, \beta=-3 \lambda+4, \gamma=5 \lambda+1$
$\because S(\alpha, \beta, \gamma)$ also lie on plane (II)
$2 a+b+g-7=0$
$\Rightarrow 2(2 \lambda+3)+(-3 \lambda+4)+(5 \lambda+1)-7=0$
$\Rightarrow 4 \lambda+6-3 \lambda+4+5 \lambda+1-7=0$
$\Rightarrow 6 \lambda+4=0 \quad \Rightarrow \quad \lambda=-\frac{4}{6}=-\frac{2}{3}$
$\therefore \alpha=2 \times\left(\frac{-2}{3}\right)+3=-\frac{4}{3}+3-\frac{5}{3}$
$\beta=-3 \times\left(-\frac{2}{3}\right)+4=2+4=6$ and $\gamma=5 \times\left(\frac{2}{3}\right)+1=\frac{-10}{3}+1=-\frac{7}{3}$
\therefore Required point of intersection $=\left(\frac{5}{3}, 6,-\frac{7}{3}\right)$.
Q.23. Find the direction ratios of the normal to the plane, which passes through the points $(1,0,0)$ and $(0,1,0)$ and makes angle $\frac{\pi}{4}$ with the plane $x+y=3$. Also find the equation of the plane.
Ans.

Let the equation of plane passing through the point $(1,0,0)$ be
$a(x-1)+b(y-0)+c(z-0)=0$
$\Rightarrow a x-a+b y+c z=0$
$\Rightarrow a x+b y+c z=a \ldots(i)$
Since, (i) also passes through ($0,1,0$)
$\Rightarrow 0+b+0=a$
$\Rightarrow b=a \ldots(i i)$

Given, the angle between plane (i) and plane $x+y=3$ is $\frac{\pi}{4}$.
$\therefore \quad \cos \frac{\pi}{4}=\left|\frac{a .1+b .1+c .0}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{1^{2}+1^{2}}}\right|$
$\Rightarrow \quad \frac{1}{\sqrt{2}}=\left|\frac{a+b}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{1+1}}\right|$
$\Rightarrow \frac{1}{\sqrt{2}}=\left|\frac{a+b}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{2}}\right| \quad \Rightarrow \quad 1=\left|\frac{a+b}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|$
$\Rightarrow \sqrt{a^{2}+b^{2}+c^{2}}= \pm(a+b) \quad \Rightarrow \quad a^{2}+b^{2}+c^{2}=(a+b)^{2}$
$\Rightarrow a^{2}+b^{2}+c^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow c^{2}=2 a b$
$\Rightarrow \quad c^{2}=2 a^{2}[$ From (ii) $]$
$\Rightarrow \sqrt{a^{2}+b^{2}+c^{2}}= \pm(a+b) \quad \Rightarrow \quad a^{2}+b^{2}+c^{2}=(a+b)^{2}$
Now, equation (i) becomes
$a \mathrm{ax}+\mathrm{ay} \pm \sqrt{2} \mathrm{az}=a$
$\Rightarrow x+y \pm \sqrt{2} z=1$, is the required equation of plane.

Therefore, required direction ratios are $1,1, \pm \sqrt{2}$.
Q.24. Find the equation of the plane which contains the line of intersection of the planes

$$
\vec{r} \cdot(\hat{i}-2 \hat{j}+3 \hat{k})-4=0 \text { and } \vec{r} \cdot(-2 \hat{i}+\hat{j}+\hat{k})+5=0
$$

and whose intercept on x-axis is equal to that of on y-axis.
Ans.
Given planes are $\vec{r} \cdot(\hat{i}-2 \hat{j}+3 \hat{k})-4=0$ and $\vec{r} \cdot(-2 \hat{i}+\hat{j}+\hat{k})+5=0$
These can be written in cartesian form as
$x-2 y+3 z-4=0$
and $-2 x+y+z+5=0$
Now the equation of plane containing the line of intersection of the planes (i) and (ii) is given by
$(x-2 y+3 z-4)+\lambda(-2 x+y+z+5)=0 \ldots($ iii $)$
$\Rightarrow(1-2 \lambda) x-(2-\lambda) y+(3+\lambda) z-4+5 \lambda=0$
$\Rightarrow(1-2 \lambda) x-(2-\lambda) y+(3+\lambda) z=4-5 \lambda$
$\Rightarrow \frac{x}{\frac{4-5 \lambda}{1-2 \lambda}}+\frac{y}{\frac{4-5 \lambda}{-2+\lambda}}+\frac{z}{\frac{4-5 \lambda}{3+\lambda}}=1$
According to question $\frac{4-5 \lambda}{1-2 \lambda}=\frac{4-5 \lambda}{2+\lambda}$
$\Rightarrow 1-2 \lambda=-2+\lambda$
$\Rightarrow 3 \lambda=3$
$\Rightarrow \lambda=1$

Putting the value of $\lambda=1$ in (iii), we get

$$
\begin{aligned}
& (x-2 y+3 z-4)+1(-2 x+y+z+5)=0 \\
& -x-y+4 z+1=0 \vec{r} \cdot(\hat{i}+\hat{j}-4 \hat{k})-1=0 \\
& \Rightarrow x+y-4 z-1=0 \\
& \Rightarrow \text { Its vector form is }
\end{aligned}
$$

Q.25. Find the distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the line whose direction cosines are proportional to 2, 3, $\mathbf{- 6}$.

Ans.

Let $Q(\alpha, \beta, \gamma)$ be the point on the given plane
$x-y+z=5$

Since $P Q$ is parallel to given line
$\frac{x-1}{2}=\frac{y-3}{3}=\frac{z+2}{-6}$
\ldots (ii) where $P(1,-2,3)$ is the given point.
$\because P Q$ is parallel to given line (ii).
$\therefore \overrightarrow{\mathrm{PQ}} \| \vec{b}$ (parallel vector of line).
$\Rightarrow \frac{\alpha-1}{2}=\frac{\beta+2}{3}=\frac{\gamma-3}{-6}=\lambda$
$\Rightarrow \alpha=2 \lambda+1, \beta=3 \lambda-2, \gamma=-6 \lambda+3$
Now, $\because Q(\alpha, \beta, \gamma)$ lie on plane (i)
$\alpha-\beta+\gamma=5$
$2 \lambda+1-3 \lambda+2-6 \lambda+3=5$
$-7 \lambda+6=5 \quad \Rightarrow-7 \lambda=-1$
$\lambda=\frac{1}{7}$
$\alpha=2 \times \frac{1}{7}+1=\frac{9}{7} ; \beta=3 \times \frac{1}{7}-2=-\frac{11}{7}$ and $\gamma=-6 \times \frac{1}{7}+3=\frac{15}{7}$

Therefore required distance

$$
\begin{aligned}
\mathrm{PQ} & =\sqrt{\left(\frac{9}{7}-1\right)^{2}+\left(-\frac{11}{7}+2\right)^{2}+\left(\frac{15}{7}-3\right)^{2}} \\
& =\sqrt{\frac{4}{49}+\frac{9}{49} \frac{36}{49}}=\sqrt{1}=1
\end{aligned}
$$

Q.26. Find the value of \boldsymbol{p}, so that the lines $l_{1}=\frac{1-x}{3}=\frac{7 y-14}{p}=\frac{z-3}{2}$ and $l_{2}: \frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are perpendicular to each other. Also find the equations of a line passing through a point $(3,2,-4)$ and parallel to line I_{1}.
Ans.
Given line I_{1} and l_{2} are
$l_{1} \equiv \frac{1-x}{3}=\frac{7 y-14}{p}=\frac{z-3}{2}$
$\Rightarrow \quad \frac{x-1}{-3}=\frac{y-2}{\frac{p}{7}}=\frac{z-3}{2}$
$l_{2} \equiv \frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$
$\Rightarrow \quad \frac{x-1}{\frac{-3 p}{7}}=\frac{y-5}{1}=\frac{z-6}{-5}$

Since $l_{1} \perp l_{2}$
$\Rightarrow(-3)\left(-\frac{3 p}{7}\right)+\frac{p}{7} \times 1+2 \times(-5)=0 \quad \Rightarrow \frac{9 p}{7}+\frac{p}{7}-10=0 \quad \Rightarrow \quad \frac{10 p}{7}=10$
$\Rightarrow p=\frac{7 \times 10}{10} \quad \Rightarrow \quad p=7$

The equation of line passing through $(3,2,-4)$ and parallel to I_{1} is given by
$\frac{x-3}{-3}=\frac{y-2}{\frac{p}{7}}=\frac{z+4}{2}$
i.e., $\frac{x-3}{-3}=\frac{y-2}{1}=\frac{z+4}{2} \quad(\because p=7)$

Long Answer Questions-II (OIQ)

[6 Mark]

Q.1. A mirror and source of light are situated at the origin O and at a point on OX respectively. A ray of light from the source strike the mirror and is reflected. If the Dr's of the normal to the plane are 1, $\mathbf{- 1}, 1$, then find dc's of reflected ray.

Ans.

$(0,0,0)$
Let the source of light be situated at $(a, 0,0)$ and $A O$ and $O B$ be incident and reflected rays. $O N$ is the normal to the mirror at O.

Now Dr's at $O A$ are $(a-0),(0-0),(0-0)$ i.e., a, 0,0
\therefore Dc's of $O A \frac{a}{\sqrt{a^{2}+0^{2}+0^{2}}}, \frac{0}{\sqrt{a^{2}+0^{2}+0^{2}}}, \frac{0}{\sqrt{a^{2}+0^{2}+0^{2}}}$
i.e., $1,0,0$.

Given, Dr's of $O N$ are $1,-1,1$
\therefore Dc's of $O N$ are $\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$

Again let $\angle A O N=\angle N O B=\mathrm{q}$ [Law of reflection]
$\therefore \cos \theta=1 \cdot \frac{1}{\sqrt{3}}+0+0 \quad\left[\because \cos \theta=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right]$
Let l, m, n be Dc's of reflected ray $O B$.
$\cos \theta=\frac{1}{\sqrt{3}} \cdot l+\left(-\frac{1}{\sqrt{3}}\right) m+\frac{1}{\sqrt{3}} n$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{l}{\sqrt{3}}-\frac{m}{\sqrt{3}}+\frac{n}{\sqrt{3}} \quad \Rightarrow \quad l-m+n=1$
Also, $\cos 2 \theta=1.1+0 . m+0 . n$
$\Rightarrow 2 \cos ^{2} \theta-1=1$
$\Rightarrow 2 \times \frac{1}{3}-1=l \quad \Rightarrow \quad l=\frac{2-3}{3}=-\frac{1}{3}$
Putting in (i), we get $m-n=-\frac{4}{3}$
Also $l^{2}+m^{2}+n^{2}=1$
$m^{2}+n^{2}=1-\left(-\frac{1}{3}\right)^{2}=\frac{8}{9}$
$($ ii $) \&($ iii $) \Rightarrow m=-\frac{2}{3}$ and $n=\frac{2}{3}$, Hence, direction cosines of reflected ray are $-\frac{1}{3},-\frac{2}{3}, \frac{2}{3}$.
Q.2. Find the cartesian as well as vector equations of the planes through the intersection of planes $\vec{r} \cdot(2 \hat{i}+6 \hat{j})+12=0$ and $\vec{r} \cdot(3 \hat{i}-\hat{j}+4 \hat{k})=0$, which are at a unit distance from the origin.

Ans.

The equation of the plane passing through the intersection of the planes
$\vec{r} \cdot(2 \hat{i}+6 \hat{j})+12=0$ and $\vec{r} \cdot(3 \hat{i}-\hat{j}+4 \hat{k})=0$ is
$\Rightarrow \vec{r} \cdot\{(2+3 \lambda) \hat{i}+(6-\lambda) \hat{j}+4 \lambda \hat{k}\}+12=0$

The planes are at a unit distance from origin. Therefore, length of the perpendicular from the origin to the plane $(i)=1$ unit.
$\therefore \frac{12}{\sqrt{(2+3 \lambda)^{2}+(6-\lambda)^{2}+16 \lambda^{2}}}=1$
$\Rightarrow 144=(2+3 \lambda)^{2}+(6-\lambda)^{2}+16 \lambda^{2} \quad \Rightarrow 144=40+26 \lambda^{2} \quad \Rightarrow 26 \lambda^{2}=104$
$\Rightarrow \lambda^{2}=4 \quad \Rightarrow \lambda= \pm 2$

Putting the values of λ in equation (i), we get
$\vec{r} \cdot(8 \hat{i}+4 \hat{j}+8 \hat{k})+12=0$ and $\vec{r} \cdot(-4 \hat{i}+8 \hat{j}-8 \hat{k})+12=0$
which are the equations of the required planes. These equations can also be written as
$\vec{r} \cdot(2 \hat{i}+\hat{j}+2 \hat{k})+3=0$ and $\vec{r} \cdot(-\hat{i}+2 \hat{j}-2 \hat{k})+3=0$.

The above equations can be written in cartesian form as follows:
$2 x+y+2 z+3=0$ and $\quad-x+2 y-2 z+3=0$
Q.3. A plane meets the coordinate axes in A, B, C, such that the centroid of the triangle $A B C$ is the point (α, β, γ). Show that the equation of the plane is
$\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=3$.
Ans.

Let the equation of required plane be
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
Then the coordinates of A, B, C are $(a, 0,0),(0, b, 0)$ and $(0,0, c)$ respectively. So, the centroid of triangle $\triangle A B C$ is $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$. But the coordinates of the centroid are (α, β, γ) as given in problem.
$\alpha=\frac{a}{3}, \beta=\frac{b}{3}$, and $\gamma=\frac{c}{3} \Rightarrow a=3 \alpha, b=3 \beta, c=3 \gamma$.
Substituting the values of a, b and c in equation (i), we get the required equation of the plane as follows $\frac{x}{3 \alpha}+\frac{y}{3 \beta}+\frac{z}{3 \gamma}=1 \quad \Rightarrow \quad \frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=3$.

Q.4. Find the distance of the point $(1,-2,3)$ from the plane $x-y+z=5$, measured parallel to the line.

$\frac{x-1}{2}=\frac{y-3}{3}=\frac{z+2}{-6}$
Ans.

Let $Q(\alpha, \beta, \gamma)$ be the point on the given plane
$x-y+z=5$

Since $P Q$ is parallel to given line
$\frac{x-1}{2}=\frac{y-3}{3}=\frac{z+2}{-6}$
\ldots (ii) where $P(1,-2,3)$ is the given point.
$\because P Q$ is parallel to given line (ii).
$\therefore \overrightarrow{\mathrm{PQ}} \| \vec{b}$ (parallel vector of line).
$\Rightarrow \frac{\alpha-1}{2}=\frac{\beta+2}{3}=\frac{\gamma-3}{-6}=\lambda$
$\Rightarrow \alpha=2 \lambda+1, \beta=3 \lambda-2, \gamma=-6 \lambda+3$
Now, $\because Q(\alpha, \beta, \gamma)$ lie on plane (i)
$\alpha-\beta+\gamma=5$
$2 \lambda+1-3 \lambda+2-6 \lambda+3=5$
$-7 \lambda+6=5 \quad \Rightarrow-7 \lambda=-1$
$\lambda=\frac{1}{7}$
$\alpha=2 \times \frac{1}{7}+1=\frac{9}{7} ; \beta=3 \times \frac{1}{7}-2=-\frac{11}{7}$ and $\gamma=-6 \times \frac{1}{7}+3=\frac{15}{7}$
Therefore required distance

$$
\begin{aligned}
P Q & =\sqrt{\left(\frac{9}{7}-1\right)^{2}+\left(-\frac{11}{7}+2\right)^{2}+\left(\frac{15}{7}-3\right)^{2}} \\
& =\sqrt{\frac{4}{49}+\frac{9}{49} \frac{36}{49}}=\sqrt{1}=1
\end{aligned}
$$

