$$
\begin{gathered}
\text { RD Sharma } \\
\text { Solutions } \\
\text { Class } 12 \text { Maths } \\
\text { Chapter } 1 \\
\text { Ex } 1.2
\end{gathered}
$$

Relations Ex 1.2 Q1

We have,
$R=\{(a, b): a-b$ is divisible by $3 ; a, b, \in Z\}$
To prove: R is an equivalence relation

Proff:
Reflexivity: Let $a \in Z$
$\Rightarrow \quad a-a=0$
$\Rightarrow \quad a-a$ is divisible by 3
$\Rightarrow \quad(a, a) \in R$
$\Rightarrow \quad R$ is reflexive

Symmetric: Let $a, b \in Z$ and $(a, b) \in R$
$\Rightarrow \quad a-b$ is divisible by 3
$\Rightarrow \quad a-b=3 p \quad$ For some $p \in Z$
$\Rightarrow \quad b-a=3 \times(-p)$
$\Rightarrow \quad b-a \in R$
$\Rightarrow \quad R$ is symmetric

Transitive: Let $a, b, c \in Z$ and such that $(a, b) \in R$ and $(b, c) \in R$
$\Rightarrow \quad a-b=3 p$ and $b-c=3 q$ For some $p, q \in Z$
$\Rightarrow \quad a-c=3(p+q)$
$\Rightarrow \quad a-c$ is divisible by 3
$\Rightarrow \quad(a, c) \in R$
$\Rightarrow \quad R$ is transitive

Since, R is reflexive, symmetric and transitive, so R is equivalence relation.

Relations Ex 1.2 Q2
We have,
$R=\{(a, b): a-b$ is divisible by $2 ; a, b, \in Z\}$
To prove: R is an equivalence relation

Proff:
Reflexivity: Let $a \in Z$
$\Rightarrow \quad a-a=0$
$\Rightarrow \quad a-a$ is divisible by 2
$\Rightarrow \quad(a, a) \in R$
$\Rightarrow \quad R$ is reflexive

Symmetric: Let $\mathrm{a}, \mathrm{b} \in \mathrm{Z}$ and $(\mathrm{a}, \mathrm{b}) \in R$
$\Rightarrow \quad a-b$ is divisible by 2
$\Rightarrow \quad a-b=3 p \quad$ For some $p \in Z$
$\Rightarrow \quad b-a=2 \times(-p)$
$\Rightarrow \quad b-a \in R$
$\Rightarrow \quad R$ is symmetric

Transitive: Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}$ and such that $(\mathrm{a}, \mathrm{b}) \in R$ and $(\mathrm{b}, \mathrm{c}) \in R$
$\Rightarrow \quad a-b=2 p$ and $b-c=q$ For some $p, q \in Z$
$\Rightarrow \quad a-c=2(p+q)$
$\Rightarrow \quad a-c$ is divisible by 2
$\Rightarrow \quad(a, c) \in R$
$\Rightarrow \quad R$ is transitive

Relations Ex 1.2 Q3

We have,
$R=\{(a, b):(a-b)$ is divisible by 5$\}$ on Z.
We want to prove that R is an equivalence relation on Z.

Now,
Reflexivity: Let $a \in Z$
$\Rightarrow \quad a-a=0$
$\Rightarrow \quad a-a$ is divisible by 5 .
$\therefore \quad(a, a) \in R$, so R is reflexive

Symmetric: Let $(a, b) \in R$
$\begin{array}{ll}\Rightarrow & a-b=5 P \quad \text { For some } P \in Z \\ \Rightarrow & b-a=5 \times(-P) \\ \Rightarrow & b-a \text { is divisible by } 5 \\ \Rightarrow & (b, a) \in R, \quad \text { so } R \text { is symmetric }\end{array}$

Transitive: Let $(a, b) \in R$ and $(b, c) \in R$
$\Rightarrow \quad a-b=5 p$ and $b-c=5 q$ For some $p, q \in Z$
$\Rightarrow \quad a-c=5(p+q)$
$\Rightarrow \quad a-c$ is divisible by 5 .
$\Rightarrow \quad R$ is transitive.

Thus, R being reflexive,symmetric and transitive on Z.

Hence, R is equivalence relation on Z

Relations Ex 1.2 Q4

$R=\{(a, b): \quad a-b$ is divisible by $n\}$ on Z.
Now,
Reflexivity: Let $a \in Z$
$\Rightarrow \quad a-a=0 \times n$
$\Rightarrow \quad a-a$ is divisible by n
$\Rightarrow \quad(a, a) \in R$
$\Rightarrow \quad R$ is reflexive

Symmetric: Let $(a, b) \in R$
$\Rightarrow \quad a-b=n p \quad$ For some $p \in Z$
$\Rightarrow \quad b-a=n(-p)$
$\Rightarrow \quad b-a$ is divisible by n
$\Rightarrow \quad(b, a) \in R$
$\Rightarrow \quad R$ is symmetric

Transitive: Let $(a, b) \in R$ and $(b, c) \in R$
$\Rightarrow \quad a-b=x p$ and $b-c=x q \quad$ For some $p, q \in Z$
$\Rightarrow \quad a-c=n(p+q)$
$\Rightarrow \quad a-c$ is divisible by n
$\Rightarrow \quad(a, c) \in R$
$\Rightarrow \quad R$ is transitive

Thus, R being reflexive, symmetric and transitive on Z.

Hence, R is an equivalence relation on Z

Relations Chapter 1 Ex 1.2 Q5

We have, z be set of integers and

$$
R=\{(a, b): a, b \in Z \text { and } a+b \text { is even }\} \text { be a relation on } Z .
$$

We want to prove that R is an equivalence relation on Z.

```
Now,
Reflexivity: Let a\inZ
=> a+a is even [ [ [if a is even }=>a+a\mathrm{ is even 
=>\quad(a,a)\inR
# R is reflexive
```

Symmetric: Let $a, b \in Z$ and $(a, b) \in R$
$\Rightarrow \quad a+b$ is even
$\Rightarrow \quad b+a$ is even
$\Rightarrow \quad(b, a) \in R$,
$\Rightarrow \quad R$ is symmetric
Transitivity: Let $(a, b) \in R$ and $(b, c) \in R$ For some $a, b, c \in Z$
$\Rightarrow \quad a+b$ is even and $b+c$ is even
$\Rightarrow \quad a+c$ is even
$\left[\begin{array}{l}\text { if } b \text { is odd, then } a \text { and } c \text { must be odd } \Rightarrow a+c \text { is even, } \\ \text { If } b \text { is even, then } a \text { and } c \text { must be even } \Rightarrow a+c \text { is even }\end{array}\right]$
$\Rightarrow \quad(a, c) \in R$
$\Rightarrow \quad R$ is transitive

Hence, R is an equivalence relation on Z

Relations Ex 1.2 Q6

Let Z be set of integers
$R=\{(m, n): m-n$ is divisible by 13$\}$ be a relation on Z.

Now,
Reflexivity: Let $m \in Z$

```
\(\Rightarrow \quad m-m=0\)
\(\Rightarrow \quad m-m\) is divisible by 13
\(\Rightarrow \quad(m, m) \in R\),
\(\Rightarrow \quad R\) is reflexive
```

Symmetric: Let $m, n \in Z$ and $(m, n) \in R$
$\Rightarrow \quad m-n=13 . p$ For some $p \in Z$
$\Rightarrow \quad n-m=13 \times(-p)$
$\Rightarrow \quad n-m$ is divisible by 13
$\Rightarrow \quad(n-m) \in R$,
so
$\Rightarrow \quad R$ is symmetric
Transitivity: Let $(m, n) \in R$ and $(n, q) \in R$ For some $m, n, q \in Z$
$\Rightarrow \quad m-n=13 p$ and $n-q=13 s$ For some $p, s \in Z$
$\Rightarrow \quad m-q=13(p+s)$
$\Rightarrow \quad m-q$ is divisible by 13
$\Rightarrow \quad(m, q) \in R$
$\Rightarrow \quad R$ is transitive

Hence, R is an equivalence relation on Z

Relations Ex 1.2 Q7
$(\mathrm{x}, \mathrm{y}) \mathrm{R}(\mathrm{u}, \mathrm{v}) \Leftrightarrow \mathrm{xv}=\mathrm{yu}$
TPT Reflexive $\because x y=y x$

$$
\therefore \quad(\mathrm{x}, \mathrm{y}) \mathrm{R}(\mathrm{x}, \mathrm{y})
$$

TPT Symmetric Let ($\mathrm{x}, \mathrm{y}) \mathrm{R}(\mathrm{u}, \mathrm{v})$
TPT (u, v) R (x, y)
Given $x v=y u$
$\Rightarrow \mathrm{yl}=\mathrm{xv}$
$\Rightarrow \mathrm{uy}=\mathrm{vx}$
$\therefore \quad(\mathrm{u}, \mathrm{v}) \mathrm{R}(\mathrm{x}, \mathrm{y})$
Transitive $\operatorname{Let}(\mathrm{x}, \mathrm{y}) \mathrm{R}(\mathrm{u}, \mathrm{v})$ and $(\mathrm{u}, \mathrm{v}) \mathrm{R}(\mathrm{p}, \mathrm{q})$
TPT (x, y) R (p, q)
TPT $x q=y p$
from (1) $\mathrm{xv}=\mathrm{yu} \& \mathrm{uq}=\mathrm{vp}$
$\mathrm{xvuq}=\mathrm{yuvp}$
$x q=y p$
$\therefore \quad \mathrm{R}$ is transitive
since R is reflexive symmetric \& transitive all means it is an equivalence relation

Relations Ex 1.2 Q8

We have, $A=\{x \in z: 0 \leq x \leq 12\}$ be a set and
$R=\{(a, b): a=b\}$ be a relation on A
Now,
Reflexivity: Let $a \in A$
$\Rightarrow \quad a=a$
$\Rightarrow \quad(a, a) \in R$
$\Rightarrow \quad R$ is reflexive

Symmetric: Let $a, b \in A$ and $(a, b) \in R$
$\Rightarrow \quad a=b$
$\Rightarrow \quad b=a$
$\Rightarrow \quad(b, a) \in R$
$\Rightarrow \quad R$ is symmetric

Transitive: Let a, b \& $c \in A$
and Let $(a, b) \in R$ and $(b, c) \in R$
$\Rightarrow \quad a=b$ and $b=c$
$\Rightarrow \quad a=c$
$\Rightarrow \quad(a, c) \in R$
$\Rightarrow \quad R$ is transitive

Since R is being relfexive, symmetric and transitive, so R is an equivalance relation.
Also, we need to find the set of all elements related to 1.
Since the relation is given by, $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a}=\mathrm{b}\}$, and 1 is an element of A ,
$\mathrm{R}=\{(1,1): 1=1\}$
Thus, the set of all elements related to 1 is 1 .

Relations Ex 1.2 Q9

(i) We have, L is the set of lines.
$R=\left\{\left(L_{1}, L_{2}\right): L_{1}\right.$ is parallel to $\left.L_{2}\right\}$ be a relation on L

Now,
Reflexivity: Let $L_{1} \in L$
Since a line is always parallel to itself.

```
\(\therefore \quad\left(L_{1}, L_{2}\right) \in R\)
\(\Rightarrow \quad R\) is reflexive
```

Symmetric: Let $L_{1}, L_{2} \in L$ and $\left(L_{1}, L_{2}\right) \in R$
$\Rightarrow \quad L_{1}$ is parallel to L_{2}
$\Rightarrow \quad L_{2}$ is parallel to L_{1}
$\Rightarrow \quad\left(L_{1}, L_{2}\right) \in R$
$\Rightarrow \quad R$ is symmetric
Transitive: Let L_{1}, L_{2} and $L_{3} \in L \quad$ such that $\left(L_{1}, L_{2}\right) \in R$ and $\left(L_{2}, L_{3}\right) \in R$
$\Rightarrow \quad L_{1}$ is parallel to L_{2} and L_{2} is parallel to L_{3}
$\Rightarrow \quad L_{1}$ is parallel to L_{3}
$\Rightarrow \quad\left(L_{1}, L_{3}\right) \in R$
$\Rightarrow \quad R$ is transitive

Since, R is reflexive, symmetric and transitive, so R is an equivalence relation.
(ii) The set of lines parallel to the line $y=2 x+4$ is
$y=2 x+c$ For all $c \in R$

Where R is the set of real numbers.

elations Ex 1.2 Q10

$R=\left\{\left(P_{1}, P_{2}\right): P_{1}\right.$ and $P 2$ have same the number of sides $\}$
R is reflexive since $\left(P_{1}, P_{1}\right) \in R$ as the same polygon has the same number of sides with itself.

Let $\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right) \in \mathrm{R}$.
$\Rightarrow P_{1}$ and P_{2} have the same number of sides.
$\Rightarrow P_{2}$ and P_{1} have the same number of sides.
$\Rightarrow\left(P_{2} P_{1}\right) \in R$
$\therefore \mathrm{R}$ is symmetric.
Now,
Let $\left(P_{1}, P_{2}\right),\left(P_{2}, P_{3}\right) \in R$.
$\Rightarrow P_{1}$ and P_{2} have the same number of sides. $A \operatorname{so}, P_{2}$ and $P 3$ have the same number of sides.
$\Rightarrow P_{1}$ and $P 3$ have the same number of sides.
$\Rightarrow\left(P_{1}, P 3\right) \in R$
$\therefore \mathrm{R}$ is transitive.
Hence, R is an equivalence relation.
The elements in A. related to the right-anged triange (T) with sides 3,4 , and 5 are those polygons which have 3 sides (since T is a polygon with 3 sides).
Hence, the set of all elements in A related to triange T is the set of all trianges.

Relations Ex 1.2 Q11

Let A be set of points on plane.
Let $R=\{(P, Q): O P=O Q\}$ be a relation on A where O is the origin.

To prove R is an equivalence relation, we need to show that R is reflexive, symmetric and transitive on A.

Now,
Reflexivity: Let $p \in A$

Since $O P=O P \Rightarrow \quad(P, P) \in R$
$\Rightarrow \quad R$ is reflexive

Symmetric: Let $(P, Q) \in R \quad$ for $P, Q \in A$

Then
$O P=O Q$
$\Rightarrow \quad O Q=O P$
$\Rightarrow \quad(Q, P) \in R$
$\Rightarrow \quad R$ is symmetric

Transitive: Let $(P, Q) \in R$ and $(Q, S) \in R$
$\Rightarrow \quad O P=O Q$ and $O Q=O S$
$\Rightarrow \quad O P=O S$
$\Rightarrow \quad(P, S) \in R$
$\Rightarrow \quad R$ is transitive

Thus, R is an equivalence relation on A

elations Ex 1.2 Q12

Given $A=\{1,2,3,4,5,6,7\}$ and $R=\{(a, b)$:both a and b are either odd or even number $\}$
Therefore,

$$
\begin{gathered}
R=\{(1,1),(1,3),(1,5),(1,6),(3,3),(3,5),(3,7),(5,5),(5,7),(7,7),(7,5),(7,3),(5,3),(6,1),(5,1),(3,1), \\
(2,2),(2,4),(2,6),(4,4),(4,6),(6,6),(6,4),(6,2),(4,2)\}
\end{gathered}
$$

Form the relation R it is seen that R is symmetric, reflecive and transitive also. Therefore R is an equivalent relation.
From the relation R it is seen that $\{1,3,5,7\}$ are related with each other only and $\{2,4,6\}$ are related with each other

Relations Ex 1.2 Q13

$s=\left\{(a, b): a^{2}+b^{2}=1\right\}$

Now,
Reflexivity: Let $a=\frac{1}{2} \in R$
Then, $a^{2}+a^{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \neq 1$
$\Rightarrow \quad(a, a) \notin S$
$\Rightarrow \quad s$ is not reflexive

Hence, S in not an equivalenve relation on R

Relations Ex 1.2 Q14

We have, Z be set of integers and Z_{0} be the set of non-zero integers.
$R=\{(a, b)(c, d): a d=b c\}$ be a relation on $2 \times z_{0}$

Vow,
2eflexivity: $(a, b) \in Z \times Z_{0}$
$\begin{array}{ll}\Rightarrow & a b=b a \\ \Rightarrow & ((a, b),(a, b)) \in R\end{array}$
$\Rightarrow \quad R$ is reflexive

Symmetric: Let $((a, b),(c, d)) \in R$
$\Rightarrow \quad a d^{\prime}=b c$
$\Rightarrow \quad c d=d a$
$\Rightarrow \quad((c, d),(a, b)) \in R$
$\Rightarrow \quad R$ is symmetric
Transitive: Let $(a, b),(c, d) \in R$ and $(c, d),(e, f) \in R$
$\Rightarrow \quad a d^{\prime}=b c$ and $\quad c f=d e$
$\Rightarrow \quad \frac{a}{b}=\frac{c}{d}$ and $\frac{c}{d}=\frac{e}{f}$
$\Rightarrow \quad \frac{a}{b}=\frac{e}{f}$
$\Rightarrow \quad a f=b e$

We have, Z be set of integers and Z_{0} be the set of non-zero integers.
$R=\{(a, b)(c, d): a d=b c\}$ be a relation on Z and Z_{0}.

Now,
Reflexivity: $(\mathrm{a}, \mathrm{b}) \in Z \times Z_{0}$
$\Rightarrow \quad a b=b a$
$\Rightarrow \quad((a, b),(a, b)) \in R$
$\Rightarrow \quad R$ is reflexive

Symmetric: Let $((a, b),(c, a)) \in R$
$\Rightarrow \quad a d=b c$
$\Rightarrow \quad c d^{\prime}=d^{\prime}$
$\Rightarrow \quad((c, a),(a, b)) \in R$

Transitive: Let $(a, b),(c, d) \in R$ and $(c, d),(e, f) \in R$
$\Rightarrow \quad a d^{\prime}=b c$ and $c f=d e$
$\Rightarrow \quad \frac{a}{b}=\frac{c}{d}$ and $\frac{c}{d}=\frac{e}{f}$
$\Rightarrow \quad \frac{a}{b}=\frac{e}{f}$
$\Rightarrow \quad a f=b e$
$\Rightarrow \quad(a, b)(e, f) \in R$
$\Rightarrow \quad R$ is transitive

Hence, R is an equivalence relation on $Z \times Z_{0}$

Relations Ex 1.2 Q15.

R and S are two symmetric relations on set A
(i) To prove: $R \cap S$ is symmetric

Let $(a, b) \in R \cap S$
$\Rightarrow \quad(a, b) \in R$ and $(a, b) \in S$
$\Rightarrow \quad(b, a) \in R$ and $(b, a) \in S \quad[\because R$ and S are symmetric]
$\Rightarrow \quad(b, a) \in R \cap S$
$\Rightarrow \quad R \cap S$ is symmetric
To prove: $R \cup S$ is symmetric.
Let $(a, b) \in R \cup S$
$\Rightarrow \quad(a, b) \in R \quad$ or $(a, b) \in S$
$\Rightarrow \quad(b, a) \in R$ or $(b, a) \in S \quad[\because R$ and s are symmetric $]$
$\Rightarrow \quad(b, a) \in R \cup S$
$\Rightarrow \quad R \cup S$ is symmetric
(ii) R and S are two relations on A such that R is reflexive.

To prove: $R \cup S$ is reflexive

Suppose $R \cup S$ is not reflexive.
This means that there is an $a \in R \cup S$ such that $(a, a) \notin R \cup S$

Since $a \in R \cup S$,
$\therefore \quad a \in R$ or $a \in S$

If $a \in R$, then $(a, a) \in R \quad[\because R$ is reflexive $]$
$\Rightarrow \quad(a, a) \in R \cup S$
Hence, $R \cup S$ is reflexive

Relations Ex 1.2 Q16.

We will prove this by means of an example.
Let $A=\{a, b, c\}$ be a set and
$R=\{(a, a)(b, b)(c, c)(a, b)(b, a)\}$ and
$S=\{(a, a)(b, b)(c, c)(b, c)(c, b)\}$ are two relations on A

Clearly R and S are transitive relation on A

Now, $R \cup S=\{(a, a)(b, b)(c, c)(a, b)(b, a)(b, c)(c, b)\}$
Here, $(a, b) \in R \cup S$ and $(b, c) \in R \cup S$
but $(a, c) \notin R \cup S$
$\therefore \quad R \cup S$ is not transitive

