RD Sharma
Solutions
Class 12 Maths
Chapter 2
Ex 2.1

Functions Ex 2.1 Q1(i)

Example of a function which is one-one but not only.

let
$$f: N \to N$$
 given by $f(x) = x^2$

Check for injectivity:
let
$$x, y \in N$$
 such that

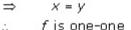
$$f(x) = f(y)$$

$$\Rightarrow$$
 $x^2 = y^2$

$$\Rightarrow x^- = y^-$$

$$\Rightarrow (x - y)(x + y) = 0$$

$$\Rightarrow x - y = 0$$

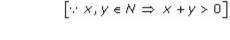


Surjectivity: let
$$f(x) = y$$

$$\Rightarrow x^2 = y$$

∴ No non-perfect square value of y has a pre image in domain N.
∴
$$f: N \to N$$
 given by $f(x) = x^2$ is one-one but not onto.

 \Rightarrow $x = \sqrt{y} \notin N$ for non-perfect square value of y.



Functions Ex 2.1 Q1(ii)

Example of a function which is onto but not one-one.

let $f: R \to R$ defined by $f(x) = x^3 - x$

Check for injectivity:

let $x, y \in R$ such that

$$f(x) = f(y)$$

$$\Rightarrow$$
 $x^3 - x = y^3 - y$

$$\Rightarrow x^3 - y^3 - (x - y) = 0$$

$$\Rightarrow (x-y)(x^2+xy+y^2-1)=0$$

$$x^2 + xy + y^2 \ge 0 \implies x^2 + xy + y^2 - 1 \ge -1$$

- $x \neq y$ for some $x, y \in R$
- ∴ f is not one-one.

Surjectivity: let $y \in R$ be arbitrary

then,
$$f(x) = y$$

$$\Rightarrow x^3 - x = y$$

$$\Rightarrow x^3 - x - y = 0$$

we know that a degree 3 equation has a real root.

 $let x = \alpha be that root$

$$\therefore \qquad \alpha^3 - \alpha = V$$

$$\Rightarrow$$
 $f(\alpha) = y$

Thus for clearly $y \in R$, there exist $\alpha \in R$ such that f(x) = y

- ∴ f is onto
- \therefore Hence $f: R \to R$ defined by $f(x) = x^3 x$ is not one-one but onto.

Functions Ex 2.1 Q1(iii)

Example of a function which is neither one-one nor onto.

let
$$f: R \to R$$
 defined by $f(x) = 2$

We know that a constant function in neither one-one nor onto Here f(x) = 2 is a constant function

 $f: R \to R \text{ defined by } f(x) = 2 \text{ is neither one-one nor onto.}$

Functions Ex 2.1 Q2

We can earily observe that in
$$f_1$$
 every element of A has different image from B . $\therefore \qquad f_1$ in one-one

also, each element of
$$B$$
 is the image of some element of A .

$$:= f_1$$
 in onto.

$$A = \{2, 3, 4\}$$
 $B = \{a, b, c\}$

It in clear that different elements of A have different images in B
$$f_2$$
 in one-one

Again, each element of B is the image of some element of A.
$$f_2$$
 in onto

iii)
$$f_3 = \{(a, x), (b, x), (c, z)(d, z)\}$$

 $A = \{a, b, c, d\}$ $B = \{x, y, z\}$

 $f_2 = \{(2, a), (3, b), (4, c)\}$

i) $f_1 = \{(1,3), (2,5), (3,7)\}$

 $A = \{1, 2, 3\}, B = \{3, 5, 7\}$

Since,
$$f_3(a) = x = f_3(b)$$
 and $f_3(c) = z = f_3(d)$

$$f_3$$
 in not one-one

Again,
$$y \in B$$
 in not the image of any of the element of A f_{\circ} in not onto

 f_3 in not onto



We have, $f: N \to N$ defined by $f(x) = x^2 + x + 1$

Check for injectivity:

Let $x, y \in N$ such that

$$f(x) = f(y)$$

$$\Rightarrow x^2 + x + 1 = y^2 + y + 1$$

$$\Rightarrow x^2 - y^2 + x - y = 0$$

$$\Rightarrow (x - y)(x + y + 1) = 0$$

$$\Rightarrow x - y = 0 \quad [\because x, y \in \mathbb{N} \Rightarrow x + y + 1 > 0]$$

$$\Rightarrow x = y$$

f is one-one.

Surjectivity:

Let $y \in N$, then

$$f(x) = y$$

$$\Rightarrow x^2 + x + 1 - y = 0$$

$$\Rightarrow x = \frac{-1 \pm \sqrt{1 - 4(1 - y)}}{2} \notin N \text{ for } y > 1$$

 \therefore for y > 1, we do not have any pre-image in domain N.

 \therefore f is not onto.

Functions Ex 2.1 Q4.

We have, $A = \{-1, 0, 1\}$ and $f: A \to A$ defined by $f = \{(x, x^2) : x \in A\}$

clearly
$$f(1) = 1$$
 and $f(-1) = 1$
:: $f(1) = f(-1)$

 \therefore f is not one-one

Again $y = -1 \in A$ in the co-domain does not have any pre image in domain A.

f is not onto.

Functions Ex 2.1 Q5(i)

$$f: N \to N$$
 given by $f(x) = x^2$

let
$$x_1 = x_2$$
 for $x_1, x_2 \in N$
 $\Rightarrow x_1^2 = x_2^2 \Rightarrow f(x_1) = f(x_2)$

f in one-one.

Surjectivity: Since f takes only square value like 1,4,9,16..... so, non-perfect square values in N (∞ -domain) do not have pre image in domain N. Thus, f is not onto.

Functions Ex 2.1 Q5(ii)

$$f: Z \to Z$$
 given by $f(x) = x^2$

Injectivity: let $x_1 \& -x_1 \in Z$

$$\Rightarrow$$
 $x_1 \neq -x_1$

$$\Rightarrow \qquad x_1^2 = \left(-x_1\right)^2 \quad \Rightarrow \ f\left(x_1\right) = f\left(-x_1\right)$$

 \Rightarrow f is not one-one.

Surjective: Again, f takes only square values 1,4,9,16,...

So, no non-perfect square values in Z have a pre image in domain Z.

 \therefore f is not onto.

Functions Ex 2.1 Q5(iii)

$$f: N \to N$$
, given by $f(x) = x^3$

Injectivity: let $y, x \in N$ such that

$$x = y$$

$$\Rightarrow x^3 = y^3$$

$$\Rightarrow$$
 $f(x) = f(y)$

f is one-one

Surjective:

arphi f attain only cubic number like 1,8,27,64,...

So, no non-cubic values of N (co-domain) have pre image in N (Domain)

f is not onto.

Functions Ex 2.1 Q5(iv)

$$f: Z \to Z$$
 given by $f(x) = x^3$

Injectivity: let $x, y \in Z$ such that

$$X = Y$$

$$\Rightarrow \chi^3 = \gamma^3$$

$$\Rightarrow f(x) = f(y)$$

$$\Rightarrow f(x) = f(y)$$

 \Rightarrow f is one-one.

Surjective: Since f attains only cubic values like $\pm 1, \pm 8, \pm 27, \ldots$ so, no non-cubic values of Z (co-domain) have pre image in Z (domain)

 \therefore f is not onto.

Functions Ex 2.1 Q5(v)

$$f: R \to R$$
 given by $f(x) = |x|$

Injectivity: let $x, y \in R$ such that

$$x = y$$
 but if $y = -x$

$$\Rightarrow |x| = |y| \Rightarrow |y| = |-x| = x$$

f is not one-one.

Surjective: Since f attains only positive values, for negative real numbers in R, there is no pre-image in domain R.

f is not onto.

Functions Ex 2.1 Q5(vi)

$$f: Z \to Z$$
 given by $f(x) = x^2 + x$

Injective: let $x, y \in Z$ such that

$$f(x) = f(y)$$

$$\Rightarrow x^2 + x = y^2 + y$$

$$\Rightarrow$$
 $x^2 - y^2 + x - y = 0$

$$\Rightarrow$$
 $(x-y)(x+y+1)=0$

$$\Rightarrow x^2 - y^2 + x - y = 0$$

$$\Rightarrow (x - y)(x + y + 1) = 0$$

$$\Rightarrow \text{ either } x - y = 0 \text{ or } x + y + 1 = 0$$

Case I: if
$$x - y = 0$$

$$\Rightarrow x = y$$

Case II if x+y+1=0

$$\Rightarrow x + y = -1$$

$$\Rightarrow x \neq y$$

$$f$$
 is not one to one

Thus, in general, f is not one-one

Surjective:

Since
$$1 \in Z$$
 (∞ -domain)

Now, we wish to find if there is any pre-image in domain Z.

let $x \in \mathbb{Z}$ such that f(x) = 1

$$\Rightarrow x^2 + x = 1 \Rightarrow x^2 + x - 1 = 0$$
$$\Rightarrow x = \frac{-1 \pm \sqrt{1 + 4}}{2} \notin Z.$$

So, f is not onto.

Injective: let $x, y \in Z$ such that f(x) = f(y) $\Rightarrow x - 5 = y - 5$ $\Rightarrow x = y$ $\therefore f$ is one-one. Surjective: let $y \in Z$ be an arbitrary element then f(x) = y $\Rightarrow x - 5 = y$ $\Rightarrow x = y + 5 \in Z$ (domain) Thus, for each element in co-domain Z there exists an element in domain Z such that f(x) = y $\therefore f$ in onto. Since, f in one-one and onto, $\therefore f$ in bijective.

Functions Ex 2.1 Q5(viI)

Functions Ex 2.1 Q5(viii)

 $f: R \to R$ given by $f(x) = \sin x$

Injective: let $x, y \in R$ such that

f is not one-one.

Now, for y > 1 $x \notin R$ (domain) f is not onto.

Surjective: let $y \in R$ be arbitrary such that

f(x) = f(y)

 $\Rightarrow \sin x = \sin y$ $\Rightarrow x = n\pi + (-1)^n y$

f(x) = y

 $\Rightarrow \sin x = y$ $\Rightarrow x = \sin^{-1} y$

 $\Rightarrow X \neq V$

 $f: Z \to Z$ given by f(x) = x - 5

Functions Ex 2.1 Q5(ix)

$$f: R \to R$$
 diffined by $f(x): x^3+1$

$$f(x) = f(y)$$

$$\Rightarrow x^3 + 1 = y^3 + 1$$

$$\Rightarrow x^3 = y^3$$

$$\Rightarrow$$
 $x = y$

$$f$$
 is one-one.

$$f(x) = y$$

$$\Rightarrow x^3 + 1 = y \Rightarrow x^3 + 1 - y = 0$$

We know that degree 3 equation has atleast one real root.

$$\therefore \qquad \text{let } x = \alpha \text{ be the real root.}$$

$$\therefore \quad \text{let } x = \alpha \text{ be the real root}$$

$$\therefore \qquad \alpha^3 + 1 = y$$
$$\Rightarrow \qquad f(\alpha) = y$$

Thus, for each
$$y \in R$$
, there exist $\alpha \in R$ such that $f(\alpha) = y$

$$f$$
 is onto.

Since f is one-one and onto, f is bijective.

Functions Ex 2.1 Q5(x)

$$f: R \to R$$
 defined by $f(x) = x^3 - x$

$$\Rightarrow x^3 - x = y^3 - y$$
$$\Rightarrow x^3 - y^3 - (x - y) = 0$$

$$\Rightarrow (x-y)(x^2+xy+y^2-1)=0$$

$$x^{2} + xy + y^{2} \ge 0 \Rightarrow x^{2} + xy + y^{2} - 1 \ge -1$$

$$\therefore \qquad x^2 + xy + y^2 - 1 \neq 0$$

f(x) = f(y)

$$\Rightarrow x - y = 0 \Rightarrow x = y$$
f is one-one

$$\therefore$$
 f is one-one.

Surjective: let $y \in R$, then

f(x) = y

$$\Rightarrow x^3 - x - y = 0$$
We know that a degree 3 equation has atleast one real solution.

$let x = \alpha$ be that real solution

$$\alpha^3 - \alpha = y$$

$$\begin{array}{ll} \therefore & \alpha^3 - \alpha = y \\ \Rightarrow & f(\alpha) = y \end{array}$$

$$\therefore \quad \text{For each } y \in R, \text{ there exist } x = \alpha \in R$$

such that
$$f(\alpha) = y$$

such that
$$f(\alpha)$$
 =

f is onto.

Functions Ex 2.1 Q5(xi) defined by $f(x) = \sin^2 x + \cos^2 x$. $f: R \to R$

Injective: since
$$f(x) = sin^2x + cos^2x = 1$$

f(x) = 1 which is a constant function we know that a constant function in neither

$$\therefore$$
 f is not one-one and not onto.

Functions Ex 2.1 Q5(xii)

$$f: Q - [3] \rightarrow Q$$
 defined by $f(x) = \frac{2x+3}{x-3}$

Injective:
$$let x, y \in Q - [3]$$
 such that

$$f(x) = f(y)$$

$$\Rightarrow \frac{2x+3}{x-3} = \frac{2y+3}{y-3}$$

$$\Rightarrow 2xy - 6x + 3y - 9 = 2xy + 3x - 6y - 9$$

$$\Rightarrow -6x + 3y - 3x + 6y = 0$$

$$\Rightarrow -9(x - y) = 0$$

$$\Rightarrow -9(x-y)=0$$

$$\Rightarrow x=y$$

$$\Rightarrow x = y$$

$$\Rightarrow f \text{ is one-one.}$$

$$\Rightarrow x = y$$
$$\Rightarrow f \text{ is one-one.}$$

let
$$y \in Q$$
 be arbitrary, then $f(x) = y$

$$f(x) = y$$

$$\Rightarrow \frac{2x+3}{x-3} = y$$

$$\Rightarrow \frac{2x+3}{x-3} = y$$

$$\Rightarrow \frac{1}{x-3} = y$$

$$x - 3$$

$$\Rightarrow 2x + 3 = xy - 3y$$

 $\Rightarrow \qquad x(2-y) = -3(y+1)$

$$\Rightarrow \frac{}{x-3} = y$$

∴ f is not onto

 $x = \frac{-3(y+1)}{2-y} \notin Q - [3] \text{ for } y = 2$

Functions Ex 2.1 Q5(xiii)

$$f: Q \to Q$$
 defined by $f(x) = x^3 + 1$

Injective: let
$$x, y \in Q$$
 such that

$$f(x) = f(y)$$

$$\Rightarrow x^3 + 1 = y^3 + 1$$

$$\Rightarrow (x^3 - y^3) = 0$$

$$\Rightarrow (x - y)(x^2 + xy + y^2) = 0$$

but
$$x^2 + xy + y^2 \ge 0$$

Surjective: let $y \in Q$ be arbitrary, then

$$\therefore x - y = 0$$

$$\Rightarrow x = y$$

f(x) = y $x^3 + 1 - y = 0$

let
$$x = \alpha$$
 be that solution

$$\alpha^3 + 1 = y$$

$$f(\alpha) = y$$

.

Functions Ex 2.1 Q5(xiv)

$$f: R \to R$$
 defined by $f(x) = 5x^3 + 4$

Injective: let $x, y \in R$ such that

$$f(x) = f(y)$$

$$\Rightarrow 5x^3 + 4 = 5y^3 + 4$$

$$\Rightarrow 5(x^3 - y^3) = 0$$

$$\Rightarrow 5(x-y)(x^2+xy+y^2)=0$$

but
$$5(x^2 + xy + y^2) \ge 0$$

$$\Rightarrow$$
 $x-y=0 \Rightarrow x=y$

∴ f is one-one

Surjective: let $y \in R$ be arbitrary, then

$$f(x) = y$$

$$\Rightarrow$$
 $5x^3 + 4 = y$

$$\Rightarrow 5x^3 + 4 - y = 0$$

we know that a degree 3 equation has alteast one real solution.

let $x = \alpha$ be that real solution

$$\therefore 5\alpha^3 + 4 = \gamma$$

$$f(\alpha) = y$$

∴ For each
$$y \in Q$$
, there $\alpha \in R$ such that $f(\alpha) = y$

$$f$$
 is onto

Since f in one-one and onto

f in bijective.

Functions Ex 2.1 Q5(xv)

$$f: R \to R$$
 defined by $f(x) = 3 - 4x$

Injective: let $x, y \in R$ such that

$$f(x) = f(y)$$

$$\Rightarrow 3 - 4x = 3 - 4y$$

$$\Rightarrow -4(x-y)=0$$

$$\Rightarrow$$
 $x = y$

f is one-one.

Surjective: let $y \in R$ be arbitrary, such that

$$f(x) = y$$

$$\Rightarrow$$
 3 - 4x = y

$$\Rightarrow \qquad x = \frac{3 - y}{4} \in R$$

Thus for each $y \in R$, there exist $x \in R$ such that

$$f(x) = y$$

f is onto.

Hence, f is one-one and onto and therefore bijective.

Functions Ex 2.1 Q5(xvi)

$$f: R \to R$$
 defined by $f(x) = 1 + x^2$

Injective: let
$$x, y \in R$$
 such that $f(y) = f(y)$

$$f(x) = f(y)$$

$$\Rightarrow 1 + x^2 = 1 + y^2$$

$$\Rightarrow \qquad x^2 - y^2 = 0$$

$$\Rightarrow (x-y)(x+y) = 0$$

either $x = y$ or $x = -y$ or $x \neq y$

f(x) = y

Surjective: let
$$y \in R$$
 be arbitrary, then

$$\Rightarrow$$
 1+ $x^2 = y$

$$\Rightarrow x^2 + 1 - y = 0$$

$$\therefore x = \pm \sqrt{y - 1} \notin R \text{ for } y < 1$$

$$f$$
 is not onto.

Functions Ex 2.1 Q6 Given, $f: A \to B$ is injective such that range $(f) = \{a\}$

We know that in injective map different elements have different images.

A has only one element.

A = R - {3}, B = R - {1}
f: A \to B is defined as
$$f(x) = \left(\frac{x-2}{x-3}\right)$$
.

Let $x, y \in A$ such that f(x) = f(y)

$$\Rightarrow \frac{x-2}{x-3} = \frac{y-2}{y-3}$$

$$\Rightarrow (x-2)(y-3) = (y-2)(x-3)$$

$$\Rightarrow xy - 3x - 2y + 6 = xy - 3y - 2x + 6$$

$$\Rightarrow -3x - 2y = -3y - 2x$$

$$\Rightarrow 3x - 2x = 3y - 2y$$

$$\Rightarrow x = y$$

Therefore, f is one-one.

Then, $y \neq 1$.

 $\Rightarrow \frac{x-2}{x-3} = y$

 $\therefore f$ is onto.

Now.

Functions Ex 2.1 Q8

check for injectivity:

 \therefore Range of $f = [0,1] \neq R$

Again, Range of $f = [0,1] \neq R$

∴ f is an into function **Functions Ex 2.1 Q9**

 $\Rightarrow x-2=xy-3y$

Now, f(x) = y

Let $y \in B = \mathbf{R} - \{1\}.$

The function f is onto if there exists $x \in A$ such that f(x) = y.

 $\Rightarrow x(1-y) = -3y + 2$

 $\Rightarrow x = \frac{2 - 3y}{1 - y} \in A \qquad [y \neq 1]$

Hence, function f is one-one and onto.

We have $f: R \to R$ given by f(x) = x - [x]

 $\forall f(x) = x - [x] \Rightarrow f(x) = 0 \text{ for } x \in Z$

∴ f is not one-one, where as many-one

Thus, for any $y \in B$, there exists $\frac{2-3y}{1-y} \in A$ such that

 $f\left(\frac{2-3y}{1-y}\right) = \frac{\left(\frac{2-3y}{1-y}\right) - 2}{\left(\frac{2-3y}{1-y}\right) - 3} = \frac{2-3y-2+2y}{2-3y-3+3y} = \frac{-y}{-1} = y.$

Suppose
$$f(n_1) = f(n_2)$$

If n_1 is odd and n_2 is even, then we have

$$n_1 + 1 = n_2 - 1 \Rightarrow n_2 - n_1 = 2$$
, not possible

If n_1 is even and n_2 is odd, then we have

$$n_1 - 1 = n_2 + 1 \Rightarrow n_1 - n_2 = 2$$
, not possible

Therefore, both n_1 and n_2 must be either odd or even.

Suppose both n₁ and n₂ are odd.

Then,
$$f(n_1) = f(n_2) \Rightarrow n_1 + 1 = n_2 + 1 \Rightarrow n_1 = n_2$$

Suppose both n₁ and n₂ are even.

Then,
$$f(n_1) = f(n_2) \Rightarrow n_1 - 1 = n_2 - 1 \Rightarrow n_1 = n_2$$

Thus, f is one - one.

Also, any odd number 2r+1 in the $co-domain\ N$ will have an even number as image in domain N which is

$$f(n) = 2r + 1 \Rightarrow n - 1 = 2r + 1 \Rightarrow n = 2r + 2$$

any even number 2r in the $co-domain\ N$ will have an odd number as image in domain N which is

$$f(n) = 2r \Rightarrow n+1 = 2r \Rightarrow n = 2r-1$$

Thus, f is onto.

Functions Ex 2.1 Q10

We have $A = \{1, 2, 3\}$

All one-one functions from $A = \{1, 2, 3\}$ to itself are obtained by re-arranging elements of A.

Thus all possible one-one functions are:

$$i \rangle f(1) = 1, f(2) = 2, f(3) = 3$$

ii)
$$f(1) = 2$$
, $f(2) = 3$, $f(3) = 1$

iii)
$$f(1) = 3$$
, $f(2) = 1$, $f(3) = 2$

$$|v| f(1) = 1, f(2) = 3, f(3) = 2$$

$$v \rangle f(1) = 3, f(2) = 2, f(3) = 1$$

$$\forall i \rangle f(1) = 2, f(2) = 1, f(3) = 3$$

Functions Ex 2.1 Q11

We have $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = 4x^3 + 7$

Let $x, y \in R$ such that

$$f(a) = f(b)$$

$$4a^3 + 7 = 4b^3 + 7$$

$$a = b$$

f is one-one.

Now let $y \in R$ be arbitrary, then

$$f(x) = y$$

$$4x^3 + 7 = y$$

$$x = (v-7)^{\frac{1}{3}} \in \mathbb{R}$$

f is onto.

Hence the function is a bijection

Functions Ex 2.1 Q12

We have $f: R \to R$ given by $f(x) = e^x$ let $x, y \in R$, such that f(x) = f(y) $\Rightarrow e^x = e^y$ $\Rightarrow e^{x-y} = 1 = e^0$ $\Rightarrow x-y = 0$

clearly range of $f = (0, \infty) \neq R$

∴ f is not onto

 \Rightarrow x = y \therefore f is one-one

When co-domain in replaced by R_0^+ i.e., $\left(0,\infty\right)$ then f becomes an onto function.

We have $f: R_0^+ \to R$ given by $f(x) = log_a x : a > 0$

let $x, y \in R_0^+$, such that

$$f\left(X\right) =f\left(Y\right)$$

 $\Rightarrow log_a x = log_a y$

$$\Rightarrow log_s^{\times} \left(\frac{x}{y} \right) = 0$$

$$\Rightarrow \frac{x}{v} = 1$$

$$\Rightarrow x = y$$

f is one-one

Now, let $y \in R$ be arbitrany, then

$$f(x) = y$$

$$\Rightarrow log_a x = y \Rightarrow x = a^y \in R_0^+ \qquad \left[v \mid a > 0 \Rightarrow a^y > 0 \right]$$

Thus, for all $y \in R$, there exist $x = a^y$ such that f(x) = y

∴ f is onto

 $\psi(f)$ is one-one and onto $\psi(f)$ is bijective

Functions Ex 2.1 Q14

Since f is one-one, three elements of {1, 2, 3} must be taken to 3 different elements of the co-domain {1, 2, 3} under f.

Hence, f has to be onto.

Functions Ex 2.1 Q15

Suppose f is not one-one.

Then, there exists two elements, say 1 and 2 in the domain whose image in the co-domain is same.

Also, the image of 3 under f can be only one element.

Therefore, the range set can have at most two elements of the co-domain {1, 2, 3}

i.e f is not an onto function, a contradiction.

Hence, f must be one-one.

Functions Ex 2.1 Q16

Onto functions from the set $\{1, 2, 3, ..., n\}$ to itself is simply a permutation on n symbols 1, 2, ..., n.

Thus, the total number of onto maps from $\{1, 2, ..., n\}$ to itself is the same as the total number of permutations on n symbols 1, 2, ..., n, which is n!.

Functions Ex 2.1 Q17

$$f_1(x) = x$$

$$f_2(x) = -x$$

Let $f_1: R \to R$ and $f_2: R \to R$ be two functions given by:

We can earily verify that f_1 and f_2 are one-one functions.

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) = x - x = 0$$

$$\therefore f_1 + f_2 : R \to R \text{ is a function given by}$$

$$(f_1 + f_2)(x) = 0$$

Now,

Since $f_1 + f_2$ is a constant function, it is not one-one.

Functions Ex 2.1 Q18
Let
$$f_1: Z \to Z$$
 defined by $f_1(x) = x$ and

 $f_2:Z\to Z$ defined by $f_2(x)=-x$

Then
$$f_*$$
 and f_* are surjective functions.

Then $f_1 and \ f_2$ are surjective functions.

Now,
$$f_1 + f_2 : Z \rightarrow Z$$
 is given by

$$f_1 + f_2 : Z \to Z$$
 is given by $(f_1 + f_2)(x) = f_1(x) + f_2(x) = x - x = 0$

Since
$$f_1 + f_2$$
 is a constant function, it is not surjective. Functions Ex 2.1 Q19

Let $f_1: R \to R$ be defined by $f_1(x) = x$ and $f_2: R \to R$ be defined by $f_2(x) = x$

clearly f_1 and f_2 are one-one functions.

Now,

$$F = f_1 \times f_2 : R \to R$$
 is defined by $F(X) = (f_1 \times f_2)(X) = f_1(X) \times f_2(X) = X^2 \dots (i)$

Clearly, F(-1) = 1 = F(1)

∴ F is not one-one

Hence, $f_1 \times f_2 : R \to R$ is not one-one.

Functions Ex 2.1 Q20

Let $f_1: R \to R$ and $f_2: R \to R$ are two functions defined by $f_1(x) = x^3$ and $f_2(x) = x$

clearly $f_1 \& f_2$ are one-one functions.

Now,

$$\frac{f_1}{f_2}: R \to R$$
 given by

$$\left(\frac{f_1}{f_2}\right)(x) = \frac{f_1(x)}{f_2(x)} = x^2 \text{ for all } x \in \mathbb{R}.$$

$$let \qquad \frac{f_1}{f_2} = f$$

 $\therefore F = R \to R \text{ defined by } f(x) = x^2$

now, F(1) = 1 = F(-1)

.. F is not one-one

$$\therefore \quad \frac{f_1}{f_2} = R \to R \text{ is not one-one.}$$

Functions Ex 2.1 Q22

We have $f: R \to R$ given by f(x) = x - [x]Now,

check for injectivity:

$$\forall f(x) = x - \lceil x \rceil \implies f(x) = 0 \text{ for } x \in Z$$

 \therefore Range of $f = [0,1] \neq R$

 \therefore f is not one-one, where as many-one

Again, Range of $f = [0,1] \neq R$

f is an into function

Functions Ex 2.1 23

Suppose $f(n_1) = f(n_2)$

If n_1 is odd and n_2 is even, then we have

 $n_1 + 1 = n_2 - 1 \Rightarrow n_2 - n_1 = 2$, not possible

If n_1 is even and n_2 is odd, then we have

 $n_1 - 1 = n_2 + 1 \Rightarrow n_1 - n_2 = 2$, not possible

Therefore, both n_1 and n_2 must be either odd or even.

Suppose both n₁ and n₂ are odd.

Then, $f(n_1) = f(n_2) \Rightarrow n_1 + 1 = n_2 + 1 \Rightarrow n_1 = n_2$

Suppose both n₁ and n₂ are even.

Then,
$$f(n_1) = f(n_2) \Rightarrow n_1 - 1 = n_2 - 1 \Rightarrow n_1 = n_2$$

Thus, f is one - one.

Also, any odd number 2r+1 in the $co-domain\ N$ will have an even number as image in domain N which is

$$f(n) = 2r + 1 \Rightarrow n - 1 = 2r + 1 \Rightarrow n = 2r + 2$$

any even number 2r in the $co-domain\ N$ will have an odd number as image in domain N which is

$$f(n) = 2r \Rightarrow n+1 = 2r \Rightarrow n = 2r-1$$

Thus, f is onto.