RD Sharma Solutions
 Class 12 Maths
 Chapter 8
 Ex 8.1

We have,

$$
\begin{aligned}
& 5 x+7 y=-2 \\
& 4 x+6 y=-3
\end{aligned}
$$

The above system of equations can be written in the matrix form as

$$
\left[\begin{array}{ll}
5 & 7 \\
4 & 6
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-3
\end{array}\right]
$$

or $\quad A X=B$
where $A=\left[\begin{array}{ll}5 & 7 \\ 4 & 6\end{array}\right] X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}-2 \\ -3\end{array}\right]$

Now, $|A|=30-28=+2 \neq 0$

So the above system has a unique solution, given by

$$
X=A^{-1} B
$$

Let $C_{i j}$ be the co-factor of $a_{i j}$ in A, then

$$
\begin{aligned}
& C_{11}=6 \\
& C_{12}=-4 \\
& C_{21}=-7 \\
& C_{22}=5
\end{aligned}
$$

Also,

$$
\therefore \quad X=A^{-1} B
$$

$$
\begin{aligned}
& \operatorname{adj} A=\left[\begin{array}{cc}
6 & -4 \\
-7 & 5
\end{array}\right]^{T}=\left[\begin{array}{cc}
6 & -7 \\
-4 & 5
\end{array}\right] \\
& \therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{+2}\left[\begin{array}{cc}
6 & -7 \\
-4 & 5
\end{array}\right] \\
& X=A^{-1} B \\
& \Rightarrow\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{+1}{2}\left[\begin{array}{cc}
6 & -7 \\
-4 & 5
\end{array}\right]\left[\begin{array}{c}
-2 \\
-3
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{+1}{2}\left[\begin{array}{cc}
-12 & +21 \\
8 & -15
\end{array}\right]=\left[\begin{array}{c}
\frac{9}{2} \\
\frac{-7}{2}
\end{array}\right]
\end{aligned}
$$

Hence, $x=\frac{9}{2}, y=\frac{-7}{2}$

Solution of Simultaneous Linear Equations Ex 8.1 Q1(ii)
The above system can be written in matrix form as

$$
\left[\begin{array}{ll}
5 & 2 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

or $\quad A X=B$

Where,
$A=\left[\begin{array}{ll}5 & 2 \\ 3 & 2\end{array}\right], \quad X=\left[\begin{array}{l}x \\ y\end{array}\right], \quad B=\left[\begin{array}{l}3 \\ 5\end{array}\right]$

Now, $|A|=10-6=4 \neq 0$

So the above system has a unique solution, given by

$$
X=A^{-1} B
$$

Let $C_{i j}$ be the co-factor of $a_{i j}$ in A, then

$$
\begin{aligned}
& C_{11}=2 \\
& C_{12}=-3 \\
& C_{21}=-2 \\
& C_{22}=5
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \text { Adj } A=\left[\begin{array}{cc}
2 & -3 \\
-2 & 5
\end{array}\right]^{T}=\left[\begin{array}{cc}
2 & -2 \\
-3 & 5
\end{array}\right] \\
& \therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{4}\left[\begin{array}{cc}
2 & -2 \\
-3 & 5
\end{array}\right]
\end{aligned}
$$

Now, $\quad X=A^{-1} B$

$$
\begin{aligned}
&= \frac{1}{4}\left[\begin{array}{cc}
2 & -2 \\
-3 & 5
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right] \\
&= \frac{1}{4}\left[\begin{array}{l}
-4 \\
16
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-1 \\
4
\end{array}\right] }
\end{aligned}
$$

Hence, $\begin{aligned} x & =-1 \\ y & =4\end{aligned}$

Solution of Simultaneous Linear Equations Ex 8.1 Q1(iii)
The above system can be written in matrix form as:

$$
\left[\begin{array}{cc}
3 & 4 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
5 \\
-3
\end{array}\right]
$$

or $\quad A X=B$

Where,
$A=\left[\begin{array}{cc}3 & 4 \\ 1 & -1\end{array}\right], \quad X=\left[\begin{array}{l}x \\ y\end{array}\right], \quad B=\left[\begin{array}{c}5 \\ -3\end{array}\right]$

Now, $|A|=-7 \neq 0$

So the above system has a unique solution, given by

$$
X=A^{-1} B
$$

Let $C_{i j}$ be the co-factor of $a_{i j}$ in A, then

$$
\begin{aligned}
& C_{11}=-1 \\
& C_{12}=-1 \\
& C_{21}=-4 \\
& C_{22}=3
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{Adj} A=\left[\begin{array}{cc}
-1 & -1 \\
-4 & 3
\end{array}\right]^{T}=\left[\begin{array}{cc}
-1 & -4 \\
-1 & 3
\end{array}\right] \\
& \therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{-7}\left[\begin{array}{cc}
-1 & -4 \\
-1 & 3
\end{array}\right]
\end{aligned}
$$

Now, $\quad X=A^{-1} B$

$$
\begin{aligned}
\Rightarrow\left[\begin{array}{l}
x \\
y
\end{array}\right] & =\frac{-1}{7}\left[\begin{array}{ll}
-1 & -4 \\
-1 & 3
\end{array}\right]\left[\begin{array}{c}
5 \\
-3
\end{array}\right] \\
& =\frac{-1}{7}\left[\begin{array}{c}
7 \\
-14
\end{array}\right] \\
\Rightarrow\left[\begin{array}{l}
x \\
y
\end{array}\right] & =\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
\end{aligned}
$$

Hence, $x=-1$

$$
y=2
$$

Solution of Simultaneous Linear Equations Ex 8.1 Q1(iv)

The above system can be written in matrix form as:

$$
\left[\begin{array}{cc}
3 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
19 \\
23
\end{array}\right]
$$

or $\quad A X=B$

Where,
$A=\left[\begin{array}{cc}3 & 1 \\ 3 & -1\end{array}\right], \quad X=\left[\begin{array}{l}x \\ y\end{array}\right], \quad B=\left[\begin{array}{l}19 \\ 23\end{array}\right]$

Now, $|A|=-6 \neq 0$

So, the above system has a unique solution, given by

$$
X=A^{-1} B
$$

Let $C_{i j}$ be the co-factor of $a_{i j}$ in A, then

$$
\begin{aligned}
& C_{11}=-1 \\
& C_{12}=-3 \\
& C_{21}=-1 \\
& C_{22}=3
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{Adj} A=\left[\begin{array}{cc}
-1 & -3 \\
-1 & 3
\end{array}\right]^{T}=\left[\begin{array}{cc}
-1 & -1 \\
-3 & 3
\end{array}\right] \\
& A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{-6}\left[\begin{array}{cc}
-1 & -1 \\
-3 & 3
\end{array}\right]
\end{aligned}
$$

Now, $\quad X=A^{-1} B$

$$
\begin{aligned}
\Rightarrow\left[\begin{array}{l}
x \\
y
\end{array}\right] & =\frac{-1}{6}\left[\begin{array}{ll}
-1 & -1 \\
-3 & 3
\end{array}\right]\left[\begin{array}{l}
19 \\
23
\end{array}\right] \\
& =\frac{-1}{6}\left[\begin{array}{ll}
-19 & -23 \\
-57 & +69
\end{array}\right] \\
\Rightarrow\left[\begin{array}{l}
x \\
y
\end{array}\right] & =\left[\begin{array}{c}
7 \\
-2
\end{array}\right]
\end{aligned}
$$

Hence, $x=7$

$$
y=-2
$$

Solution of Simultaneous Linear Equations Ex 8.1 Q1(v)

The above system can be written in matrix form as:

$$
\left[\begin{array}{ll}
3 & 7 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1
\end{array}\right]
$$

or $\quad A X=B$
where $A=\left[\begin{array}{ll}3 & 7 \\ 1 & 2\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{c}4 \\ -1\end{array}\right]$

Now,

$$
|A|=-1 \neq 0
$$

So the above system has a unique solution, given by

$$
X=A^{-1} B
$$

Now, let $C_{i j}$ be the co-factor of $a_{i j}$ in A

$$
\begin{aligned}
& C_{11}=2 \\
& C_{12}=-1 \\
& C_{21}=-7 \\
& C_{22}=3
\end{aligned}
$$

$$
\text { Adj } A=\left[\begin{array}{cc}
2 & -1 \\
-7 & 3
\end{array}\right]^{T}=\left[\begin{array}{cc}
2 & -7 \\
-1 & 3
\end{array}\right]
$$

$$
\therefore A^{-1}=\frac{1}{|A|} \cdot \operatorname{adj} A=\frac{1}{(-1)}\left[\begin{array}{cc}
2 & -7 \\
-1 & 3
\end{array}\right]
$$

Now, $\quad X=A^{-1} B$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{-1}\left[\begin{array}{cc}2 & -7 \\ -1 & 3\end{array}\right]\left[\begin{array}{c}4 \\ -1\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{-1}\left[\begin{array}{l}15 \\ -7\end{array}\right]=\left[\begin{array}{c}-15 \\ 7\end{array}\right]$

Hence, $x=-15$

$$
y=7
$$

Solution of Simultaneous Linear Equations Ex 8.1 Q1(vi)
The given system can be written in matrix form as:

$$
\left[\begin{array}{ll}
3 & 1 \\
5 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
7 \\
12
\end{array}\right]
$$

or $\quad A X=B$

Where,

$$
A=\left[\begin{array}{ll}
3 & 1 \\
5 & 3
\end{array}\right], X=\left[\begin{array}{l}
x \\
y
\end{array}\right], B=\left[\begin{array}{c}
7 \\
12
\end{array}\right]
$$

Since, $|A|=4 \neq 0$, the above system has a unique solution, given by

$$
X=A^{-1} B
$$

Let $C_{i j}$ be the co-factor of $a_{i j}$ in A

$$
\begin{aligned}
& C_{11}=3 \\
& C_{12}=-5 \\
& C_{21}=-1 \\
& C_{22}=3
\end{aligned}
$$

$$
\operatorname{adj} A=\left[\begin{array}{cc}
3 & -5 \\
-1 & 3
\end{array}\right]^{T}=\left[\begin{array}{cc}
3 & -1 \\
-5 & 3
\end{array}\right]
$$

$$
\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{4}\left[\begin{array}{cc}
3 & -1 \\
-5 & 3
\end{array}\right]
$$

Now, $\quad X=A^{-1} B$

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
3 & -1 \\
-5 & 3
\end{array}\right]\left[\begin{array}{c}
7 \\
12
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{4}\left[\begin{array}{l}
9 \\
1
\end{array}\right]=\left[\begin{array}{l}
\frac{9}{4} \\
\frac{1}{4}
\end{array}\right]
\end{aligned}
$$

$$
\text { Hence, } \begin{array}{r}
x=\frac{9}{4} \\
y=\frac{1}{4}
\end{array}
$$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(i)
The given system can be written in matrix form as:

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 3 & 1 \\
3 & -1 & -7
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
3 \\
10 \\
1
\end{array}\right]
$$

or $\quad A X=B$
Where,

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 3 & 1 \\
3 & -1 & -7
\end{array}\right], \quad X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad B=\left[\begin{array}{c}
3 \\
10 \\
1
\end{array}\right]
$$

Now, $|A|=1\left[\begin{array}{cc}3 & 1 \\ -1 & -7\end{array}\right]-1\left[\begin{array}{cc}2 & 1 \\ 3 & -7\end{array}\right]-1\left[\begin{array}{cc}2 & 3 \\ 3 & -1\end{array}\right]$

$$
\begin{aligned}
& =(-20)-1(-17)-1(-11) \\
& =-20+17+11=8 \neq 0
\end{aligned}
$$

So, the above system has a unique solution, given by

$$
X=A^{-1} B
$$

Let $C_{i j}$ be the co-factor of $a_{i j}$ in A

$$
\begin{array}{lll}
C_{11}=-20 & C_{21}=8 & C_{31}=4 \\
C_{12}=-(-17)=17 & C_{22}=-4 & C_{32}=-3 \\
C_{13}=-11 & C_{23}=-(-4)=4 & C_{33}=1
\end{array}
$$

$$
\operatorname{adj} A=\left[\begin{array}{ccc}
-20 & 17 & -11 \\
8 & -4 & 4 \\
4 & -3 & 1
\end{array}\right]^{T}=\left[\begin{array}{ccc}
-20 & 8 & 4 \\
17 & -4 & -3 \\
-11 & 4 & 1
\end{array}\right]
$$

Now, $X=A^{-1} B=\frac{1}{8}\left[\begin{array}{ccc}-20 & 8 & 4 \\ 17 & -4 & -3 \\ -11 & 4 & 1\end{array}\right]\left[\begin{array}{c}3 \\ 10 \\ 1\end{array}\right]$

$$
\Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{8}\left[\begin{array}{c}
24 \\
8 \\
8
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]
$$

Hence, $x=3$

$$
\begin{aligned}
& y=1 \\
& z=1
\end{aligned}
$$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(ii)

The above system can be written in matrix form as:

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & -1 & 1 \\
2 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1 \\
-9
\end{array}\right]
$$

or $\quad A X=B$
Where,

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & -1 & 1 \\
2 & 1 & -3
\end{array}\right], \quad X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad B=\left[\begin{array}{c}
3 \\
-1 \\
-9
\end{array}\right]
$$

Since, $|A|=14 \neq 0$, the above system has a unique solution, given by

$$
X=A^{-1} B
$$

Let $C_{i j}$ be the co-factor of $a_{i j}$ in A

$$
\begin{array}{lll}
C_{11}=2 & C_{21}=4 & C_{31}=2 \\
C_{12}=8 & C_{22}=-5 & C_{32}=1 \\
C_{13}=4 & C_{23}=1 & C_{33}=-3
\end{array}{ }_{\text {Adj } A=\left[\begin{array}{ccc}
2 & 8 & 4 \\
4 & -5 & 1 \\
2 & 1 & -3
\end{array}\right]^{T}=\left[\begin{array}{ccc}
2 & 4 & 2 \\
8 & -5 & 1 \\
4 & 1 & -3
\end{array}\right]} .
$$

Now, $\quad X=A^{-1} B=\frac{1}{|A|} \times \operatorname{Adj} A \times B$

$$
\begin{aligned}
& =\frac{1}{14}\left[\begin{array}{ccc}
2 & 4 & 2 \\
8 & -5 & 1 \\
4 & 1 & -3
\end{array}\right]\left[\begin{array}{c}
3 \\
-1 \\
-9
\end{array}\right] \\
& =\frac{1}{14}\left[\begin{array}{c}
-16 \\
20 \\
38
\end{array}\right] \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{c}
\frac{-8}{7} \\
\frac{10}{7} \\
\frac{19}{7}
\end{array}\right]
\end{aligned}
$$

Hence, $x=\frac{-8}{7}, y=\frac{10}{7}, z=\frac{19}{7}$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(iii)
The above system can be written in matrix form as:

$$
\left[\begin{array}{ccc}
6 & -12 & 25 \\
4 & 15 & -20 \\
2 & 18 & 15
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4 \\
3 \\
10
\end{array}\right]
$$

or $\quad A X=B$
Where,

$$
A=\left[\begin{array}{ccc}
6 & -12 & 25 \\
4 & 15 & -20 \\
2 & 18 & 15
\end{array}\right], \quad X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad B=\left[\begin{array}{c}
4 \\
3 \\
10
\end{array}\right]
$$

Now,

$$
\begin{aligned}
|A| & =6(225+360)+12(60+40)+25(72-30) \\
& =6(585)+1200+25(42) \\
& =3510+1200+1050 \\
& =5760 \neq 0
\end{aligned}
$$

So, the above system will have a unique solution, given by

$$
X=A^{-1} B
$$

$$
\begin{array}{lll}
C_{11}=585 & C_{21}=-(-180-450)=630 & C_{31}=-135 \\
C_{12}=-100 & C_{22}=40 & C_{32}=220 \\
C_{13}=42 & C_{23}=-132 & C_{33}=138
\end{array}
$$

$$
\begin{aligned}
& X=A^{-1} B=\frac{1}{|A|}(\operatorname{Adj} A) \times B=\frac{1}{5760}\left[\begin{array}{ccc}
585 & 630 & -135 \\
-100 & 40 & 220 \\
42 & -132 & 138
\end{array}\right]\left[\begin{array}{l}
2880 \\
1920 \\
1152
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{5760}\left[\begin{array}{l}
2880 \\
1920 \\
1152
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2} \\
\frac{1}{3} \\
\frac{1}{5}
\end{array}\right]
$$

Hence, $x=\frac{1}{2}$

$$
\begin{aligned}
& y=\frac{1}{3} \\
& z=\frac{1}{5}
\end{aligned}
$$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(iv)

The above system can be written as

$$
\left[\begin{array}{ccc}
3 & 4 & 7 \\
2 & -1 & 3 \\
1 & 2 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
14 \\
4 \\
0
\end{array}\right]
$$

or $\quad A X=B$

$$
\begin{aligned}
|A| & =3(-3)-4(-9)+7(5) \\
& =-9+36+35 \\
& =62 \neq 0
\end{aligned}
$$

So, the above system will have a unique solution, given by

$$
X=A^{-1} B
$$

Now,

$$
\begin{array}{lll}
C_{11}=-3 & C_{21}=26 & C_{31}=19 \\
C_{12}=9 & C_{22}=-16 & C_{32}=5 \\
C_{13}=5 & C_{23}=-2 & C_{33}=-11
\end{array}
$$

$$
\operatorname{adj} A=\left[\begin{array}{ccc}
-3 & 26 & 19 \\
9 & -16 & 5 \\
5 & -2 & -11
\end{array}\right]
$$

$$
X=A^{-1} B=\frac{1}{|A|}(\operatorname{Adj} A) B
$$

$$
=\frac{1}{62}\left[\begin{array}{ccc}
-3 & 26 & 19 \\
9 & -16 & 5 \\
5 & -2 & -11
\end{array}\right]\left[\begin{array}{c}
14 \\
4 \\
0
\end{array}\right]
$$

$$
=\frac{1}{62}\left[\begin{array}{c}
-42+104+0 \\
126-64+0 \\
70-8+0
\end{array}\right]=\frac{1}{62}\left[\begin{array}{l}
62 \\
62 \\
62
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Hence, $x=1, y=1, z=1$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(v)

The above system can be witten as

$$
\left[\begin{array}{ccc}
2 & 6 & 0 \\
3 & 0 & -1 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 \\
-8 \\
-3
\end{array}\right]
$$

Or

$$
A X=B
$$

$$
|A|=2(-1)-6(5)+0(-3)=-32 \neq 0
$$

So, the above system has a unique solution, given by

$$
X=A^{-1} B
$$

Let $C_{i j}$ be the co-factor of $a_{i j}$ in A

$$
\begin{aligned}
& C_{11}=-1
\end{aligned} C_{21}=-6 \quad C_{31}=-6 ~\left(\begin{array}{lll}
C_{32}=2 \\
C_{12}=-5 & C_{22}=2 & C_{33}=-18 \\
C_{13}=-3 & C_{23}=14 & \left.\begin{array}{ccc}
-1 & -5 & -3 \\
-6 & 2 & 14 \\
-6 & 2 & -18
\end{array}\right]^{T}=\left[\begin{array}{ccc}
-1 & -6 & -6 \\
-5 & 2 & 2 \\
-3 & 14 & -18
\end{array}\right]
\end{array}\right.
$$

Now,

$$
\begin{aligned}
& X=A^{-1} B=\frac{1}{|A|}(\operatorname{Adj} A) \times B \\
&=\frac{1}{-32}\left[\begin{array}{ccc}
-1 & -6 & -6 \\
-5 & 2 & 2 \\
-3 & 14 & -18
\end{array}\right]\left[\begin{array}{c}
2 \\
-8 \\
-3
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{-32}\left[\begin{array}{c}
64 \\
-32 \\
-64
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right] }
\end{aligned}
$$

Hence, $x=-2, y=1, z=2$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(v)

Let $\frac{1}{x}=u, \frac{1}{y}=v, \frac{1}{z}=w$

$$
\begin{aligned}
& 2 u-3 v+3 w=10 \\
& u+v+w=10 \\
& 3 u-v+2 w=13
\end{aligned}
$$

Which can be written as

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & -3 & 3 \\
1 & 1 & 1 \\
3 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
10 \\
10 \\
13
\end{array}\right]} \\
& |A|=2(3)+3(-1)+3(-4) \\
& =6-3-12=-9 \neq 0
\end{aligned}
$$

Hence, the system has a unique solution, given by

$$
\begin{array}{lll}
X=A^{-1} \times B & & \\
& & \\
C_{11}=3 & C_{21}=3 & C_{31}=-6 \\
C_{12}=1 & C_{22}=-5 & C_{32}=1 \\
C_{13}=-4 & C_{23}=-7 & C_{33}=5
\end{array}
$$

$$
X=\frac{1}{|A|}(\operatorname{Adj} A) \times(B)
$$

$$
=\frac{1}{-9}\left[\begin{array}{ccc}
3 & 3 & -6 \\
1 & -5 & 1 \\
-4 & -7 & 5
\end{array}\right]\left[\begin{array}{l}
10 \\
10 \\
13
\end{array}\right]
$$

$$
=\frac{-1}{9}\left[\begin{array}{c}
30+30-78 \\
10-50+13 \\
-40-70+65
\end{array}\right]
$$

$$
\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=\frac{-1}{9}\left[\begin{array}{l}
-18 \\
-27 \\
-45
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right]
$$

Hence, $x=\frac{1}{2}, y=\frac{1}{3}, z=\frac{1}{5}$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(vi)

$$
\left[\begin{array}{lll}
5 & 3 & 1 \\
2 & 1 & 3 \\
1 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
16 \\
19 \\
25
\end{array}\right]
$$

or $\quad A X=B$

$$
\begin{aligned}
|A| & =\left[\begin{array}{lll}
5 & 3 & 1 \\
2 & 1 & 3 \\
1 & 2 & 4
\end{array}\right] \\
& =5(-2)-3(5)+1(3) \\
& =-10-15+3=-22 \neq 0
\end{aligned}
$$

Hence, it has a unique solution, given by

$$
X=A^{-1} \times B
$$

$$
\begin{array}{lll}
C_{11}=-2 & C_{21}=-10 & C_{31}=8 \\
C_{12}=-5 & C_{22}=19 & C_{32}=-13 \\
C_{13}=3 & C_{23}=-7 & C_{33}=-1
\end{array}
$$

$$
X=A^{-1} \times B=\frac{1}{|A|}(\operatorname{Adj} A) \times B
$$

$$
=\frac{1}{-22}\left[\begin{array}{ccc}
-2 & -10 & 8 \\
-5 & 19 & -13 \\
3 & -7 & -1
\end{array}\right]\left[\begin{array}{c}
16 \\
19 \\
25
\end{array}\right]
$$

$$
=\frac{-1}{22}\left[\begin{array}{c}
-32-190+200 \\
-80+361-325 \\
48-133-25
\end{array}\right]
$$

$$
=\frac{-1}{22}\left[\begin{array}{c}
-22 \\
-44 \\
-110
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right]
$$

Hence, $x=1, y=2, z=5$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(vii)

$$
\left[\begin{array}{ccc}
3 & 4 & 2 \\
0 & 2 & -3 \\
1 & -2 & 6
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
8 \\
3 \\
-2
\end{array}\right]
$$

or

$$
\begin{aligned}
A X & =B \\
|A| & =3(6)-4(3)+2(-2) \\
& =18-12-4 \\
& =2 \neq 0
\end{aligned}
$$

Hence, the system has a unique solution, given by

$$
X=A^{-1} B
$$

$$
\begin{array}{lll}
C_{11}=6 & C_{21}=-28 & C_{31}=-16 \\
C_{12}=-3 & C_{22}=16 & C_{32}=9 \\
C_{13}=-2 & C_{23}=10 & C_{33}=6
\end{array}
$$

Next, $\quad X=A^{-1} B=\frac{1}{|A|}($ Adj $A) \times B$

$$
\begin{aligned}
&=\frac{1}{2}\left[\begin{array}{ccc}
6 & -28 & -16 \\
-3 & 16 & 9 \\
2 & 10 & 6
\end{array}\right]\left[\begin{array}{c}
8 \\
3 \\
-2
\end{array}\right] \\
&=\frac{1}{2}\left[\begin{array}{c}
48-84+32 \\
-24+48-18 \\
-16+30-12
\end{array}\right] \\
&=\frac{1}{2}\left[\begin{array}{c}
-4 \\
6 \\
2
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-2 \\
3 \\
1
\end{array}\right] } \\
& \text { Hence, } x=-2, y=3, z=1
\end{aligned}
$$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(viii)

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 3 & -1 \\
3 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right] } \\
&|A|=2(-5)-1(1)+1(-8) \\
&=-10-1-8=-19 \neq 0
\end{aligned}
$$

Hence, the unique solution, given by

$$
\begin{array}{lll}
X=A^{-1} \times B & \\
C_{11}=-5 & C_{21}=3 & C_{31}=-4 \\
C_{12}=-1 & C_{22}=-7 & C_{32}=3 \\
C_{13}=-8 & C_{23}=1 & C_{33}=5
\end{array}
$$

$$
\text { Next, } X=A^{-1} \times B=\frac{1}{|A|}\left[\begin{array}{ccc}
-5 & 3 & -4 \\
-1 & -7 & 3 \\
-8 & 1 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]
$$

$$
=\frac{1}{-19}\left[\begin{array}{l}
-10+15-24 \\
-2-35+18 \\
-16+5+30
\end{array}\right]
$$

$$
=\frac{-1}{19}\left[\begin{array}{c}
-19 \\
-19 \\
19
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

Hence, $x=1, y=1, z=-1$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(x)
The above system of equations can be written as

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -1 & 0 \\
0 & 2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

or $\quad A X=B$

$$
|A|=1(1)+1(-2)+1(4)=1-2+4=3 \neq 0
$$

So, the above system has a unique solution, given by

$$
X=A^{-1} B
$$

Let $C_{i j}$ be the co-factor of $a_{i j}$ in A

$$
\begin{aligned}
& \begin{array}{l}
C_{11}=1 \\
C_{12}=2 \\
C_{13}=4
\end{array} \quad \begin{array}{cc}
C_{21}=1 & C_{31}=+1 \\
C_{23}=-1 & C_{32}=2 \\
C_{33}=1
\end{array} \\
& \operatorname{adj} A=\left[\begin{array}{ccc}
1 & 2 & 4 \\
1 & -1 & -2 \\
+1 & 2 & 1
\end{array}\right]^{T}=\left[\begin{array}{ccc}
1 & 1 & +1 \\
2 & -1 & 2 \\
4 & -2 & 1
\end{array}\right] \\
& X=A^{-1} B=\frac{1}{|A|}(\text { Adj } A) \times B \\
& =\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & +1 \\
2 & -1 & 2 \\
4 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]}
\end{aligned}
$$

Hence, $x=1, y=2, z=3$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(xi)

The above system can be written as

$$
\left[\begin{array}{lll}
8 & 4 & 3 \\
2 & 1 & 1 \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
18 \\
5 \\
5
\end{array}\right]
$$

or

$$
\begin{aligned}
& A X=B \\
& |A|=8(-1)-4(1)+3(3)=-8-4+9=-3 \neq 0
\end{aligned}
$$

So, the above system has a unique solution, given by

$$
x=A^{-1} B
$$

Let $C_{i j}$ be the co-factor of $a_{i j}$ in A

$$
\begin{array}{lll}
C_{11}=-1 & C_{21}=2 & C_{31}=1 \\
C_{12}=-1 & C_{22}=5 & C_{32}=-2 \\
C_{13}=3 & C_{23}=-12 & C_{33}=0
\end{array}
$$

Now, $\quad x=A^{-1} B=\frac{1}{|A|}(\operatorname{Adj} A) \times B$

$$
=\frac{-1}{3}\left[\begin{array}{ccc}
-1 & 2 & 1 \\
-1 & 5 & -2 \\
3 & -12 & 0
\end{array}\right]\left[\begin{array}{c}
18 \\
5 \\
5
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{-1}{3}\left[\begin{array}{l}
-3 \\
-3 \\
-6
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

Hence, $x=1, y=1, z=2$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(xii)

This system can be written as

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 2 \\
3 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
6 \\
7 \\
12
\end{array}\right]
$$

or

$$
\begin{aligned}
& A X=B \\
& |A|=1(-2)-1(-5)+1(1)=-2+5+1=4 \neq 0
\end{aligned}
$$

So, $A X=B$ has a unique solution, given by

$$
X=A^{-1} B
$$

Let $C_{i j}$ be the co-factor of $a_{i j}$ in A

$$
\begin{aligned}
& C_{11}=-2 \\
& C_{21}=0 \\
& C_{31}=2 \\
& C_{12}=+5 \\
& C_{22}=-2 \\
& C_{32}=-1 \\
& C_{13}=1 \\
& C_{23}=2 \\
& C_{33}=-1 \\
& \operatorname{adj} A=\left[\begin{array}{ccc}
-2 & 5 & 1 \\
0 & -2 & 2 \\
2 & -1 & -1
\end{array}\right]^{T}=\left[\begin{array}{ccc}
-2 & 0 & 2 \\
5 & -2 & -1 \\
1 & 2 & -1
\end{array}\right] \\
& X=A^{-1} \times B=\frac{1}{|A|}(\operatorname{Adj} A) \times B \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{4}\left[\begin{array}{ccc}
-2 & 0 & 2 \\
5 & -2 & -1 \\
1 & 2 & -1
\end{array}\right]\left[\begin{array}{c}
6 \\
7 \\
12
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{4}\left[\begin{array}{c}
-12 \\
4 \\
8
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]}
\end{aligned}
$$

Hence, $x=-3, y=1, z=2$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(xiii)

Let

$$
\frac{1}{x}=u, \frac{1}{y}=v, \frac{1}{z}=w
$$

The above system can be written as

$$
\left[\begin{array}{ccc}
2 & 3 & 10 \\
4 & -6 & 5 \\
6 & 9 & -20
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right]
$$

Or

$$
\begin{aligned}
& A X=B \\
& |A|=2(75)-3(-110)+10(72)=1200 \neq 0
\end{aligned}
$$

So, the above system has a unique solution, given by

$$
X=A^{-1} B
$$

Let $C_{i j}$ be the co-factor of $a_{i j}$ in A

$$
\begin{array}{lll}
C_{11}=75 & C_{21}=150 & C_{31}=75 \\
C_{12}=110 & C_{22}=-100 & C_{32}=30 \\
C_{13}=72 & C_{23}=0 & C_{33}=-24
\end{array}
$$

$$
\operatorname{adj} A=\left[\begin{array}{ccc}
75 & 110 & 72 \\
150 & -100 & 0 \\
75 & 30 & -24
\end{array}\right]^{T}=\left[\begin{array}{ccc}
75 & 150 & 75 \\
110 & -100 & 30 \\
72 & 0 & -24
\end{array}\right]
$$

Now,

$$
\begin{aligned}
X=A^{-1} B & =\frac{1}{|A|}(\operatorname{Adj} A) \times B \\
& =\frac{1}{1200}\left[\begin{array}{ccc}
75 & 150 & 75 \\
110 & -100 & 30 \\
72 & 0 & -24
\end{array}\right]\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right] \\
{\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right] } & =\frac{1}{1200}\left[\begin{array}{l}
600 \\
400 \\
240
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2} \\
\frac{1}{3} \\
\frac{1}{5}
\end{array}\right]
\end{aligned}
$$

Hence, $x=2, y=3, z=5$

Solution of Simultaneous Linear Equations Ex 8.1 Q2(xiv)
The above system can be written as

$$
\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & 4 & -5 \\
2 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
7 \\
-5 \\
12
\end{array}\right]
$$

Or $\quad A X=B$

$$
|A|=1(7)+1(19)+2(-11)=4 \neq 0
$$

So, the above system has a unique solution, given by

$$
X=A^{-1} B
$$

Let $C_{i j}$ be the co-factor of $a_{i j}$ in A

$$
\begin{array}{lll}
C_{11}=7 & C_{21}=1 & C_{31}=-3 \\
C_{12}=-19 & C_{22}=-1 & C_{32}=11 \\
C_{13}=-11 & C_{23}=-1 & C_{33}=7
\end{array}
$$

$$
\operatorname{adj} A=\left[\begin{array}{ccc}
7 & -19 & -11 \\
1 & -1 & -1 \\
-3 & 11 & 7
\end{array}\right]^{T}=\left[\begin{array}{ccc}
7 & 1 & -3 \\
-19 & -1 & 11 \\
-11 & -1 & 7
\end{array}\right]
$$

Now,

$$
\begin{aligned}
& X=A^{-1} B=\frac{1}{|A|}(\operatorname{Adj} A) \times B \\
&=\frac{1}{4}\left[\begin{array}{ccc}
7 & 1 & -3 \\
-19 & -1 & 11 \\
-11 & -1 & 7
\end{array}\right]\left[\begin{array}{c}
7 \\
-5 \\
12
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{4}\left[\begin{array}{c}
8 \\
4 \\
12
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right] }
\end{aligned}
$$

Hence, $x=2, y=1, z=3$

Solution of Simultaneous Linear Equations Ex 8.1 Q3(i)

The above system can be written as

$$
\begin{aligned}
& {\left[\begin{array}{ll}
6 & 4 \\
9 & 6
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]} \\
& A X=B \\
& |A|=36-36=0
\end{aligned}
$$

or $\quad A X=B$

So, A is singular. Now, X will be consistent if $(\operatorname{adj} A) \times B=0$

$$
\begin{aligned}
& C_{11}=6 \\
& C_{12}=-9 \\
& C_{21}=-4 \\
& C_{22}=6
\end{aligned}
$$

$$
\operatorname{adj} A=\left[\begin{array}{cc}
6 & -9 \\
-4 & 6
\end{array}\right]^{T}=\left[\begin{array}{cc}
6 & -4 \\
-9 & 6
\end{array}\right]
$$

$$
(A d j A) \times B=\left[\begin{array}{cc}
6 & -4 \\
-9 & 6
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
12-12 \\
-18+18
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Thus, $A X=B$ will have infinite solutions.
Let $y=k$

$$
\begin{array}{rll}
\text { Hence, } 6 x=2-4 k & \text { or } & 9 x=3-6 k \\
x=\frac{1-2 k}{3} & \text { or } & x=\frac{1-2 k}{3}
\end{array}
$$

Hence, $x=\frac{1-2 k}{3}, y=k$

Solution of Simultaneous Linear Equations Ex 8.1 Q3(ii)

The system can be written as

$$
\left[\begin{array}{ll}
2 & 3 \\
6 & 9
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
5 \\
15
\end{array}\right]
$$

or

$$
\begin{aligned}
& A X=B \\
& |A|=18-18=0
\end{aligned}
$$

So, A is singular. Now the system will be inconsistent if $(\operatorname{adj} A) \times B \neq 0$

$$
\begin{aligned}
& C_{11}=9 \\
& C_{12}=-6
\end{aligned} \quad C_{21}=-3 ~\left(\begin{array}{cc}
C_{22}=2 \\
\operatorname{adj} A=\left[\begin{array}{cc}
9 & -6 \\
-3 & 2
\end{array}\right]^{T}=\left[\begin{array}{cc}
9 & -3 \\
-6 & 2
\end{array}\right] \\
(\text { Adj } A) \times B & =\left[\begin{array}{cc}
9 & -3 \\
-6 & 2
\end{array}\right]\left[\begin{array}{c}
5 \\
15
\end{array}\right] \\
& =\left[\begin{array}{c}
45-45 \\
-30+30
\end{array}\right]=[0]
\end{array}\right.
$$

Since, $(\operatorname{Adj} A \times B)=0$, the system will have infinite solutions. Now,

$$
\text { Let } y=k
$$

$$
\begin{array}{lll}
2 x=5-3 k & \text { or } & x=\frac{5-3 k}{2} \\
x=15-9 k & \text { or } & x=\frac{5-3 k}{2}
\end{array}
$$

Hence, $x=\frac{5-3 k}{2}, y=k$

Solution of Simultaneous Linear Equations Ex 8.1 Q3(iii)
This can be written as

$$
\left[\begin{array}{ccc}
5 & 3 & 7 \\
3 & 26 & 2 \\
7 & 2 & 10
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
9 \\
5
\end{array}\right]
$$

or $\quad A X=B$

$$
\begin{aligned}
|A| & =5(256)-3(16)+7(6-182) \\
& =0
\end{aligned}
$$

So, A is singular. Thus, the given system is either inconsistent or it is consistent with infinitely many solutions acoording as

$$
(\operatorname{Adj} A) \times B \neq 0 \text { or }(\operatorname{Adj} A) \times B=0
$$

Let $C_{i j}$ be the co-factor of $a_{i j}$ in A

Thus, $A X=B$ has infinite many solutions.

Now, let $z=k$
then, $\quad 5 x+3 y=4-7 k$
$3 x+26 y=9-2 k$

Which can be written as

$$
\left[\begin{array}{cc}
5 & 3 \\
3 & 26
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
4-7 k \\
9-2 k
\end{array}\right]
$$

or

$$
A X=B
$$

$$
|A|=2
$$

$\operatorname{adj} A=\left[\begin{array}{cc}26 & -3 \\ -3 & 5\end{array}\right]$

Now, $\quad X=A^{-1} B=\frac{1}{|A|} \times \operatorname{adj} A \times B$

$$
\begin{aligned}
& =\frac{1}{121}\left[\begin{array}{cc}
26 & -3 \\
-3 & 5
\end{array}\right]\left[\begin{array}{l}
4-7 k \\
9-2 k
\end{array}\right] \\
& =\frac{1}{121}\left[\begin{array}{c}
77-176 k \\
11 k+33
\end{array}\right]
\end{aligned}
$$

$$
\text { г..7 }\lceil\underline{7-16 k}\rceil
$$

$$
\begin{aligned}
& C_{11}=256 \quad C_{21}=-16 \quad C_{31}=-176 \\
& C_{12}=-16 \quad C_{22}=1 \quad C_{32}=11 \\
& C_{13}=-176 \quad C_{23}=11 \quad C_{33}=121 \\
& \operatorname{adj} A=\left[\begin{array}{ccc}
256 & -16 & -176 \\
-16 & 1 & 11 \\
-176 & 11 & 121
\end{array}\right]^{T}=\left[\begin{array}{ccc}
256 & -16 & -176 \\
-16 & 1 & 11 \\
-176 & 11 & 121
\end{array}\right] \\
& \operatorname{adj} A \times B=\left[\begin{array}{ccc}
256 & -16 & -176 \\
-16 & 1 & 11 \\
-176 & 11 & 121
\end{array}\right]\left[\begin{array}{l}
4 \\
9 \\
5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\left\lfloor\begin{array}{l}
x \\
y
\end{array}\right\rfloor=\left\lfloor\begin{array}{c}
11 \\
\frac{k+3}{11}
\end{array}\right\rfloor
$$

There values of x, y, z satisfies the third eq. Hence, $x=\frac{7-16 k}{11}, y=\frac{k+3}{11}, z=k$

Solution of Simultaneous Linear Equations Ex 8.1 Q3(iv)

This above system can be written as

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & 1 & -1 \\
-1 & -2 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

or

$$
A X=B
$$

$$
\begin{aligned}
|A| & =1(2-2)+1(4-1)+1(-3) \\
& =0+3-3 \\
& =0
\end{aligned}
$$

So, A is singular. Thus, the given system is either inconsistent or consistent with infinitely many solutions according as

$$
(\operatorname{Adj} A) \times(B) \neq 0 \text { or }(\operatorname{Adj} A) \times B=0
$$

Let $C_{i j}$ be the co-factor of $a_{i j}$ in A

$$
\begin{array}{lll}
C_{11}=0 & C_{21}=0 & C_{31}=0 \\
C_{12}=-3 & C_{22}=3 & C_{32}=3 \\
C_{13}=-3 & C_{23}=-3 & C_{33}=3
\end{array}
$$

$$
\operatorname{adj} A=\left[\begin{array}{ccc}
0 & -3 & -3 \\
0 & 3 & 3 \\
0 & 3 & 3
\end{array}\right]^{T}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
-3 & 3 & 3 \\
-3 & 3 & 3
\end{array}\right]
$$

$$
(\operatorname{adj} A) \times B=\left[\begin{array}{ccc}
0 & 0 & 0 \\
-3 & 3 & 3 \\
-3 & 3 & 3
\end{array}\right]\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Thus, $A X=B$ has infinite m any solutions.

Now, let $z=k$
So, $\quad x-y=3-k$

$$
2 x+y=2+k
$$

Which can be written as

$$
\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3-k \\
2+k
\end{array}\right]
$$

or

$$
A X=B
$$

$$
|A|=1+2=3 \neq 0
$$

$\operatorname{adj} A=\left[\begin{array}{cc}1 & -2 \\ 1 & 1\end{array}\right]^{T}=\left[\begin{array}{cc}1 & 1 \\ -2 & 1\end{array}\right]$
and, $\quad X=A^{-1} B$

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\frac{1}{|A|}\left[\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
3-5 \\
2+k
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{c}
3-k+2+k \\
-6+2 k+2+k
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left\lfloor\begin{array}{c}
\overline{3} \\
\frac{3 k-4}{3}
\end{array}\right\rfloor
$$

Hence, $x=\frac{5}{3}, y=k-\frac{4}{3}, z=k$

Solution of Simultaneous Linear Equations Ex 8.1 Q3(v)

This system can be written as

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 7
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
6 \\
14 \\
30
\end{array}\right]
$$

or $\quad A X=B$

$$
\begin{aligned}
|A| & =1(2)-1(4)+1(2) \\
& =2-4+2 \\
& =0
\end{aligned}
$$

So, A is singular. Thus, the given system has either no solution or infinite solutions depending on as

$$
(\operatorname{Adj} A) \times(B) \neq 0 \text { or }(\operatorname{Adj} A) \times(B)=0
$$

Let $C_{i j}$ be the co-factor of $a_{i j}$ in A

$$
\left.\begin{array}{lll}
C_{11}=2 & c_{21}=-3 & C_{31}=1 \\
c_{12}=-4 & c_{22}=6 & C_{32}=-2 \\
c_{13}=2 & c_{23}=-3 & C_{33}=1
\end{array}\right] \begin{array}{ccc}
\operatorname{adj} A=\left[\begin{array}{ccc}
2 & -4 & 2 \\
-3 & 6 & -3 \\
1 & -2 & 1
\end{array}\right]^{T}=\left[\begin{array}{ccc}
2 & -3 & 1 \\
-4 & 6 & -2 \\
2 & -3 & 1
\end{array}\right] \\
(\operatorname{adj} A) \times B=\left[\begin{array}{ccc}
2 & -3 & 1 \\
-4 & 6 & -2 \\
2 & -3 & 1
\end{array}\right]\left[\begin{array}{c}
6 \\
14 \\
30
\end{array}\right]=\left[\begin{array}{c}
12-42+30 \\
-24+84-60 \\
12-42+30
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{array}
$$

So, $A X=B$ has infinite solutions.

Now, let $z=k$
So, $\quad x+y=6-k$

$$
x+2 y=14-3 k
$$

Which can be written as

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
6-k \\
14-3 k
\end{array}\right]
$$

or

$$
A X=B
$$

$$
|A|=1 \neq 0
$$

$\operatorname{adj} A=\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]^{T}=\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]$

$$
X=A^{-1} B=\frac{1}{|A|} \operatorname{adj} A \times B
$$

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\frac{1}{1}\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
6-k \\
14-3 k
\end{array}\right] \\
& =\left[\begin{array}{c}
12-2 k-14+3 k \\
-6+k+14-3 k
\end{array}\right]
\end{aligned}
$$

$$
\lceil x\rceil _\lceil-2+k\rceil
$$

Hence, $x=k-2$

$$
\begin{aligned}
y & =8-2 k \\
z & =k
\end{aligned}
$$

Solution of Simultaneous Linear Equations Ex 8.1 Q3(vi)

This system can be written as

$$
\left[\begin{array}{ccc}
2 & 2 & -2 \\
4 & 4 & -1 \\
6 & 6 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

or

$$
\begin{aligned}
& A X=B \\
& |A|=2(14)-2(14)-2(0)=0
\end{aligned}
$$

So, A is singular and the system has either no solution or infinite solutions according as
$(\operatorname{Adj} A) \times(B) \neq 0$ or $(\operatorname{Adj} A) \times(B)=0$
Let $C_{i j}$ be the co-factor of $a_{i j}$ in A

$$
\begin{aligned}
& \begin{array}{lll}
C_{11}=14 & C_{21}=-16 & C_{31}=6 \\
C_{12}=-14 & C_{22}=16 & C_{32}=-6 \\
C_{13}=0 & C_{23}=0 & C_{33}=0
\end{array} \\
& \operatorname{adj} A=\left[\begin{array}{ccc}
14 & -14 & 0 \\
-16 & 16 & 0 \\
6 & -6 & 0
\end{array}\right]^{T}=\left[\begin{array}{ccc}
14 & -16 & 6 \\
-14 & 16 & -6 \\
0 & 0 & 0
\end{array}\right] \\
& (\operatorname{adj} A) \times B=\left[\begin{array}{ccc}
14 & -16 & 6 \\
-14 & 16 & -6 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
14-32+18 \\
-14+32-18 \\
0+0+0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

So, $A X=B$ has infinite solutions.

Now, let $z=k$
So, $\quad 2 x+2 y=1+2 k$

$$
4 x+4 y=2+k
$$

Which can be written as

$$
\left[\begin{array}{ll}
2 & 2 \\
4 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
1+2 k \\
2+k
\end{array}\right]
$$

or $\quad A X=B$

$$
|A|=0, z=0
$$

Again,

$$
\begin{aligned}
& 2 x+2 y=1 \\
& 4 x+4 y=2
\end{aligned}
$$

Solution of Simultaneous Linear Equations Ex 8.1 Q4(i)

The above system can be written as

$$
\left[\begin{array}{cc}
2 & 5 \\
6 & 15
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
7 \\
13
\end{array}\right]
$$

or $\quad A X=B$

$$
|A|=0
$$

So, A is singular, and the above system will be inconsistent if $(\operatorname{adj} A) \times B \neq 0$

Now, $\quad C_{11}=15$

$$
C_{12}=-6
$$

$$
C_{21}=-5
$$

$$
C_{22}=2
$$

$$
\operatorname{adj} A=\left[\begin{array}{cc}
15 & -6 \\
-5 & 2
\end{array}\right]^{T}=\left[\begin{array}{cc}
15 & -5 \\
-6 & 2
\end{array}\right]
$$

$$
(\operatorname{adj} A) \times(B)=\left[\begin{array}{cc}
15 & -5 \\
-6 & 2
\end{array}\right]\left[\begin{array}{c}
7 \\
13
\end{array}\right]
$$

$$
=\left[\begin{array}{l}
105-65 \\
-42+26
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
40 \\
-16
\end{array}\right]
$$

$$
\neq 0
$$

Hence, the above system is inconsistent

Solution of Simultaneous Linear Equations Ex 8.1 Q4(ii)

This system can be written as

$$
\left[\begin{array}{ll}
2 & 3 \\
6 & 9
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
5 \\
10
\end{array}\right]
$$

or

$$
\begin{aligned}
& A X=B \\
& |A|=0
\end{aligned}
$$

So, the above system will be inconsistent, if

$$
(\operatorname{adj} A) \times B \neq 0
$$

$$
C_{11}=9
$$

$$
C_{12}=-6
$$

$$
C_{21}=-3
$$

$$
C_{22}=2
$$

$$
\operatorname{adj} A=\left[\begin{array}{cc}
9 & -6 \\
-3 & 2
\end{array}\right]^{T}=\left[\begin{array}{cc}
9 & -3 \\
-6 & 2
\end{array}\right]
$$

$$
(\operatorname{adj} A) \times B=\left[\begin{array}{cc}
9 & -3 \\
-6 & 2
\end{array}\right]\left[\begin{array}{c}
5 \\
10
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
45-30 \\
-30+20
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
15 \\
-10
\end{array}\right]
$$

$$
\neq 0
$$

Hence, the above system is inconsistent

Solution of Simultaneous Linear Equations Ex 8.1 Q4(iii)
This system can be written as

$$
\left[\begin{array}{ll}
4 & -2 \\
6 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

or $\quad A X=B$

$$
|A|=-12+12=0
$$

So, A is singular. Now system will be inconsistent, if

$$
\left.\begin{array}{l}
(\operatorname{adj} A) \times B \neq 0 \\
C_{11}=-3 \\
C_{12}=-6 \\
C_{21}=2 \\
C_{22}=4
\end{array} \quad \begin{array}{rl}
\operatorname{adj} A=\left[\begin{array}{cc}
-3 & -6 \\
2 & 4
\end{array}\right]^{T}=\left[\begin{array}{ll}
-3 & 2 \\
-6 & 4
\end{array}\right] \\
(\operatorname{adj} A) \times(B) & =\left[\begin{array}{ll}
-3 & 2 \\
-6 & 4
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right] \\
& =\left[\begin{array}{c}
-9+10 \\
-18+20
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& \neq 0
\end{array}\right] .
$$

Hence, the above system is inconsistent

Solution of Simultaneous Linear Equations Ex 8.1 Q4(iv)

The above system can be written as

$$
\left[\begin{array}{ccc}
4 & -5 & -2 \\
5 & -4 & 2 \\
2 & 2 & 8
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2 \\
-1
\end{array}\right]
$$

or $\quad A X=B$

$$
\begin{aligned}
|A| & =4(-36)+5(36)-2(18) \\
& =-144+180-36 \\
& =0
\end{aligned}
$$

So, A is singular and the above system will be inconsistent, if

$$
\begin{array}{lll}
(\operatorname{adj} A) \times B \neq 0 & \\
C_{11}=-36 & C_{21}=36 & C_{31}=-18 \\
C_{12}=-36 & C_{22}=36 & C_{32}=-18 \\
C_{13}=18 & C_{23}=-18 & C_{33}=9
\end{array}
$$

$$
(\operatorname{adj} A)=\left[\begin{array}{ccc}
-36 & -36 & 18 \\
36 & 36 & -18 \\
-18 & -18 & 9
\end{array}\right]^{\top}=\left[\begin{array}{ccc}
-36 & 36 & -18 \\
-36 & 36 & -18 \\
18 & -18 & 9
\end{array}\right]
$$

$$
(\operatorname{adj} A) \times(B)=\left[\begin{array}{ccc}
-36 & 36 & -18 \\
-36 & 36 & -18 \\
18 & -18 & 9
\end{array}\right]\left[\begin{array}{c}
2 \\
-2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-72-72+18 \\
-72-72+18 \\
+36+36-9
\end{array}\right] \neq 0
$$

Hence, the above system is inconsistent.

Solution of Simultaneous Linear Equations Ex 8.1 Q4(v)

The above system can be written as

$$
\left[\begin{array}{ccc}
3 & -1 & -2 \\
0 & 2 & -1 \\
3 & -5 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right]
$$

or $\quad A X=B$

$$
|A|=3(-5)+1(3)-2(-6)=-15+3+12=0
$$

So, A is singular and the above system of equations will be inconsistent, if

$$
(\operatorname{adj} A) \times B \neq 0
$$

$$
\begin{array}{lll}
C_{11}=-5 & C_{21}=+10 & C_{31}=5 \\
C_{12}=3 & C_{22}=6 & \\
C_{13}=-6 & C_{23}=12 & C_{33}=6
\end{array}
$$

$$
(\operatorname{adj} A)=\left[\begin{array}{ccc}
-5 & 3 & -6 \\
10 & 6 & 12 \\
5 & 3 & 6
\end{array}\right]^{T}=\left[\begin{array}{ccc}
-5 & 10 & 5 \\
3 & 6 & 3 \\
-6 & 12 & 6
\end{array}\right]
$$

$$
(\operatorname{adj} A) \times(B)=\left[\begin{array}{ccc}
-5 & 10 & 5 \\
3 & 6 & 3 \\
-6 & 12 & 6
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-10-10+15 \\
6-6+9 \\
-12-12+18
\end{array}\right] \neq 0
$$

Hence, the given system of equations is inconsistent.

Solution of Simultaneous Linear Equations Ex 8.1 Q4(vi)

The above system can be written as

$$
\left[\begin{array}{ccc}
1 & 1 & -2 \\
1 & -2 & 1 \\
-2 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2 \\
4
\end{array}\right]
$$

or

$$
\begin{aligned}
& A X=B \\
& |A|=1(-3)-1(3)-2(-3)=-3-3+6=0
\end{aligned}
$$

So, A is singular. Now the system can be inconsistent, if

$$
(\operatorname{adj} A) \times B \neq 0
$$

$$
\begin{array}{lll}
C_{11}=-3 & C_{21}=-3 & C_{31}=-3 \\
C_{12}=-3 & C_{22}=-3 & C_{32}=-3 \\
C_{13}=-3 & C_{23}=-3 & C_{33}=-3
\end{array}
$$

$$
(\operatorname{adj} A)=\left[\begin{array}{lll}
-3 & -3 & -3 \\
-3 & -3 & -3 \\
-3 & -3 & -3
\end{array}\right]^{T}=\left[\begin{array}{lll}
-3 & -3 & -3 \\
-3 & -3 & -3 \\
-3 & -3 & -3
\end{array}\right]
$$

$$
(\operatorname{adj} A) \times(B)=\left[\begin{array}{lll}
-3 & -3 & -3 \\
-3 & -3 & -3 \\
-3 & -3 & -3
\end{array}\right]\left[\begin{array}{c}
5 \\
-2 \\
4
\end{array}\right]=\left[\begin{array}{l}
-15+6-12 \\
-15+6-12 \\
-15+6-12
\end{array}\right]
$$

$$
=\left[\begin{array}{l}
-21 \\
-21 \\
-21
\end{array}\right]
$$

$$
\neq 0
$$

Hence, the given system is inconsistent.

Solution of Simultaneous Linear Equations Ex 8.1 Q5

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
2 & 2 & -4 \\
-4 & 2 & -4 \\
2 & -1 & 5
\end{array}\right] \\
& A \times B=\left[\begin{array}{ccc}
2+4+0 & 2-2+0 & -4+4+0 \\
4-12+8 & 4+6-4 & -8-12+20 \\
0-4+4 & 0+2-2 & 0-4+10
\end{array}\right] \\
& A B=\left[\begin{array}{lll}
6 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 6
\end{array}\right]
\end{aligned}
$$

$A B=6 I$, where I is a 3×3 unit matrix

$$
\begin{array}{rlr}
\text { or } \begin{aligned}
A^{-1} & = \\
& \frac{1}{6} B \\
& =\frac{1}{6}\left[\begin{array}{ccc}
2 & 2 & -4 \\
-4 & 2 & -4 \\
2 & -1 & 5
\end{array}\right]
\end{aligned} \quad \text { [By def. of inverse] }
\end{array}
$$

Now, the ginven system of equations can be written as

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
3 \\
17 \\
7
\end{array}\right]
$$

or $\quad A X=B$
or $\quad X=A^{-1} B$
$=\frac{1}{6}\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right]\left[\begin{array}{c}3 \\ 17 \\ 7\end{array}\right]$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}
6+34-28 \\
-12+34-28 \\
6-17+35
\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}
12 \\
-6 \\
24
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right]
$$

Hence, $x=2, y=-1, z=4$

Solution of Simultaneous Linear Equations Ex 8.1 Q6

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right] \\
& |A|=2(0)+3(-2)+5(1)=-1 \neq 0
\end{aligned}
$$

Also,

$$
\begin{array}{lll}
C_{11}=0 & C_{21}=-1 & C_{31}=2 \\
C_{12}=2 & C_{22}=-9 & C_{32}=23 \\
C_{13}=1 & C_{23}=-5 & C_{33}=13
\end{array}
$$

$$
(\operatorname{adj} A)=\left[\begin{array}{ccc}
0 & 2 & 1 \\
-1 & -9 & -5 \\
2 & 23 & 13
\end{array}\right]^{T}=\left[\begin{array}{ccc}
0 & -1 & 2 \\
2 & -9 & 23 \\
1 & -5 & 13
\end{array}\right]
$$

$$
A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{-1}\left[\begin{array}{ccc}
0 & -1 & 2 \\
2 & -9 & 23 \\
1 & -5 & 13
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & -2 \\
-2 & 9 & -23 \\
-1 & 5 & -13
\end{array}\right]
$$

The given system of equations can be written as

$$
\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
-1 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
11 \\
-5 \\
-3
\end{array}\right]
$$

or

$$
\begin{aligned}
& A X=B \\
& X=A^{-1} B \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & -2 \\
-2 & 9 & -23 \\
-1 & 5 & -13
\end{array}\right]\left[\begin{array}{l}
11 \\
-5 \\
-3
\end{array}\right]} \\
& =\left[\begin{array}{c}
-5+6 \\
-22+45+69 \\
-11-25+39
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]}
\end{aligned}
$$

Hence, $x=1, y=2, z=3$

Solution of Simultaneous Linear Equations Ex 8.1 Q7

Now, the given set of equations can be represented as

$$
x+2 y+5 z=10
$$

$$
x-y-z=-2
$$

$$
2 x+3 y-z=-11
$$

or $\left[\begin{array}{ccc}1 & 2 & 5 \\ 1 & -1 & -1 \\ 2 & 3 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}10 \\ -2 \\ -11\end{array}\right]$
or

$$
\begin{aligned}
X & =A^{-1} \times B \\
& =\frac{1}{27}\left[\begin{array}{ccc}
4 & 17 & 3 \\
-1 & -11 & 6 \\
5 & 1 & -3
\end{array}\right]\left[\begin{array}{c}
10 \\
-2 \\
-11
\end{array}\right] \\
& =\frac{1}{27}\left[\begin{array}{c}
40-34-33 \\
-10+22-66 \\
50-2+33
\end{array}\right]=\frac{1}{27}\left[\begin{array}{c}
-27 \\
-54 \\
81
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-2 \\
3
\end{array}\right]
\end{aligned}
$$

Hence, $x=-1, y=-2, z=3$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 2 & 5 \\
1 & -1 & -1 \\
2 & 3 & -1
\end{array}\right] \\
& |A|=1(1+3)-2(-1+2)+5(5)=4-2+25=27 \neq 0 \\
& C_{11}=4 \quad C_{21}=17 \quad C_{31}=3 \\
& C_{12}=-1 \quad C_{22}=-11 \quad C_{32}=6 \\
& C_{13}=5 \quad C_{23}=1 \quad C_{33}=-3 \\
& A^{-1}=\frac{1}{|A|} \times \operatorname{adj} A=\frac{1}{27}\left[\begin{array}{ccc}
4 & 17 & 3 \\
-1 & -11 & 6 \\
5 & 1 & -3
\end{array}\right]
\end{aligned}
$$

Solution of Simultaneous Linear Equations Ex 8.1 Q8

Now, $x-2 y=10$

$$
2 x+y+3 z=8
$$

$$
-2 y+z=7
$$

or $\quad\left[\begin{array}{ccc}1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1\end{array}\right]=\left[\begin{array}{c}10 \\ 8 \\ 7\end{array}\right]$
or $\quad X=A^{-1} \times B$

$$
=\frac{1}{11}\left[\begin{array}{ccc}
7 & 2 & -6 \\
-2 & 1 & -3 \\
-4 & 2 & 5
\end{array}\right]\left[\begin{array}{c}
10 \\
8 \\
7
\end{array}\right]
$$

$$
=\frac{1}{11}\left[\begin{array}{c}
70+16-42 \\
-20+8-21 \\
-40+16+35
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}
44 \\
-33 \\
11
\end{array}\right]=\left[\begin{array}{c}
4 \\
-3 \\
1
\end{array}\right]
$$

$$
\text { Hence, } x=4, y=-3, z=1
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & 1 & 3 \\
0 & -2 & 1
\end{array}\right] \\
& |A|=1(7)+2(2)=11 \\
& \begin{array}{lll}
C_{11}=7 & C_{21}=2 & C_{31}=-6 \\
C_{12}=-2 & C_{22}=1 & C_{32}=-3 \\
C_{13}=-4 & C_{23}=2 & C_{33}=5
\end{array} \\
& A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{11}\left[\begin{array}{ccc}
7 & 2 & -6 \\
-2 & 1 & -3 \\
-4 & 2 & 5
\end{array}\right]
\end{aligned}
$$

Solution of Simultaneous Linear Equations Ex 8.1 Q8(ii)

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
3 & -4 & 2 \\
2 & 3 & 5 \\
1 & 0 & 1
\end{array}\right] \\
& |A|=3(3)+4(-3)+2(-3)=-9 \\
& \begin{array}{lll}
C_{12}=3 & C_{21}=4 & C_{31}=-26 \\
C_{12}=3 & C_{22}=1 & C_{32}=-11 \\
C_{13}=-3 & C_{23}=-4 & C_{31}=17
\end{array} \\
& A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{-9}\left[\begin{array}{ccc}
3 & 4 & -26 \\
3 & 1 & -11 \\
-3 & -4 & 17
\end{array}\right]
\end{aligned}
$$

Now,

$$
\begin{aligned}
3 x-4 y+2 z & =-1 \\
2 x+3 y+5 z & =7 \\
x+z & =2
\end{aligned}
$$

Or $\quad\left[\begin{array}{ccc}3 & -4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1\end{array}\right]=\left[\begin{array}{c}-1 \\ 7 \\ 2\end{array}\right]$
$\begin{aligned} X & =A^{-1} \times B \\ \text { Or } \quad & =\frac{1}{-9}\left[\begin{array}{ccc}3 & 4 & -26 \\ 3 & 1 & -11 \\ -3 & -4 & 17\end{array}\right]\left[\begin{array}{c}-1 \\ 7 \\ 2\end{array}\right]\end{aligned}$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{-9}\left[\begin{array}{c}
-27 \\
-18 \\
9
\end{array}\right]
$$

Hence $x=3, y=2, z=-1$

Solution of Simultaneous Linear Equations Ex 8.1 Q8(iii)

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & 1 & 3 \\
0 & -2 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
7 & 2 & -6 \\
-2 & 1 & -3 \\
-4 & 2 & 5
\end{array}\right] \\
A \times B=\left[\begin{array}{ccc}
11 & 0 & 0 \\
0 & 11 & 0 \\
0 & 0 & 11
\end{array}\right]
\end{gathered}
$$

$A B=11 I$, where I is a 3×3 unit matrix

$$
A^{-t}=\frac{1}{11} B \quad \text { [Bydef. of inverse] }
$$

Or

$$
=\frac{1}{11}\left[\begin{array}{ccc}
7 & 2 & -6 \\
-2 & 1 & -3 \\
-4 & 2 & 5
\end{array}\right]
$$

Now, the given system of equations can be written as

$$
\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & 1 & 3 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
10 \\
8 \\
7
\end{array}\right]
$$

Or $A X=B$

$$
X=A^{-1} B
$$

Or $\quad=\frac{1}{11}\left[\begin{array}{ccc}7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5\end{array}\right]\left[\begin{array}{c}10 \\ 8 \\ 7\end{array}\right]$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}
44 \\
-33 \\
11
\end{array}\right]=\left[\begin{array}{c}
4 \\
-3 \\
1
\end{array}\right]
$$

Hence, $x=4, y=-3, z=1$

Solution of Simultaneous Linear Equations Ex 8.1 Q9

Let the numbers are x, y, z.

$$
\begin{equation*}
x+y+z=2 \tag{1}
\end{equation*}
$$

Also, $\quad 2 y+(x+z)=1$

$$
\begin{equation*}
x+2 y+z=1 \tag{2}
\end{equation*}
$$

Again,

$$
\begin{align*}
& x+z+5(x)=6 \\
& 5 x+y+z=6 \tag{3}
\end{align*}
$$

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 1 \\
5 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
6
\end{array}\right]
$$

or $\quad A X=B$

$$
\begin{aligned}
|A| & =1(1)-1(-4)+1(-9) \\
& =1+4-9=-4 \neq 0
\end{aligned}
$$

Hence, the unique solutions given by $x=A^{-1} B$

$$
\begin{array}{lll}
C_{11}=1 & C_{21}=0 & C_{31}=-1 \\
C_{12}=4 & C_{22}=-4 & C_{32}=0 \\
C_{13}=-9 & C_{23}=4 & \quad C_{33}=1
\end{array}
$$

or

$$
\begin{aligned}
& X=A^{-1} B=\frac{1}{|A|}(\operatorname{adj} A) \times B=\frac{1}{-4}\left[\begin{array}{ccc}
1 & 0 & -1 \\
4 & -4 & 0 \\
-9 & 4 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
6
\end{array}\right] \\
& =\frac{-1}{4}\left[\begin{array}{c}
2-6 \\
8-4 \\
-18+4+6
\end{array}\right]=\frac{-1}{4}\left[\begin{array}{c}
-4 \\
4 \\
-8
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]}
\end{aligned}
$$

Hence, $x=1, y=-1, z=2$

Solution of Simultaneous Linear Equations Ex 8.1 Q10
Let the three investments are x, y, z

$$
\begin{equation*}
x+y+z=10,000 \tag{1}
\end{equation*}
$$

Also

$$
\begin{align*}
& \frac{10}{100} x+\frac{12}{100} y+\frac{15}{100} z=1310 \\
& 0.1 x+0.12 y+0.15 z=1310 \tag{2}
\end{align*}
$$

Also

$$
\begin{align*}
& \frac{10}{100} x+\frac{12}{100} y=\frac{15}{100} z-190 \\
& 0.1 x+0.12 y-0.15 z=-190 \tag{3}
\end{align*}
$$

The above system can be written as

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
0.1 & 0.12 & 0.15 \\
0.1 & 0.12 & -0.15
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
10000 \\
1310 \\
-190
\end{array}\right]
$$

Or $\quad A X=B$

$$
|A|=1(-0.036)-1(-0.03)+1(0)=-0.006 \neq 0
$$

So, the above system has a unique solution, given by

$$
X=A^{-1} B
$$

Let $C_{i j}$ be the co-factor of $a_{i j}$ in A

$$
\begin{array}{lll}
C_{11}=-0.036 & C_{21}=0.27 & C_{31}=0.03 \\
C_{12}=0.03 & C_{22}=-0.25 & C_{32}=-0.05 \\
C_{13}=0 & C_{23}=-0.02 & C_{33}=0.02
\end{array}
$$

$$
\operatorname{adj} A=\left[\begin{array}{ccc}
-0.036 & 0.03 & 0 \\
0.27 & -0.25 & -0.02 \\
0.03 & -0.05 & 0.02
\end{array}\right]^{T}=\left[\begin{array}{ccc}
-0.036 & 0.27 & 0.03 \\
0.03 & -0.25 & -0.05 \\
0 & -0.02 & 0.02
\end{array}\right]
$$

Now,

$$
\begin{aligned}
& X=A^{-1} B=\frac{1}{|A|}(\operatorname{Adj} A) \times B \\
&=\frac{1}{-0.006}\left[\begin{array}{ccc}
-0.036 & 0.27 & 0.03 \\
0.03 & -0.25 & -0.05 \\
0 & -0.02 & 0.02
\end{array}\right]\left[\begin{array}{c}
10000 \\
1310 \\
-190
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{-0.006}\left[\begin{array}{l}
-12 \\
-18 \\
-30
\end{array}\right]=\left[\begin{array}{c}
2000 \\
3000 \\
5000
\end{array}\right] }
\end{aligned}
$$

Hence, $x=\operatorname{Rs} 2000, y=\operatorname{Rs} 3000, z=\operatorname{Rs} 5000$

Solution of Simultaneous Linear Equations Ex 8.1 Q11

$$
\begin{align*}
& x+y+z=45 \\
& \text { - - - (1) } \\
& z=x+8 \tag{2}\\
& x+z=2 y \tag{3}\\
& \text { or }\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
45 \\
8 \\
0
\end{array}\right] \\
& |A|=1(2)-1(-2)+1(2) \\
& =2+2+2=6 \neq 0 \\
& \begin{array}{lll}
C_{11}=2 & C_{21}=-3 & C_{31}=1 \\
C_{12}=2 & C_{22}=0 & C_{32}=-2 \\
C_{13}=2 & C_{23}=+3 & C_{33}=1
\end{array} \\
& X=A^{-1} \times B=\frac{1}{|A|}(\operatorname{adj} A) \times B \\
& =\frac{1}{6}\left[\begin{array}{ccc}
2 & -3 & 1 \\
2 & 0 & -2 \\
2 & 3 & 1
\end{array}\right]\left[\begin{array}{c}
45 \\
8 \\
0
\end{array}\right] \\
& =\frac{1}{6}\left[\begin{array}{c}
90-24 \\
90 \\
90+24
\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}
66 \\
90 \\
114
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
11 \\
15 \\
19
\end{array}\right]}
\end{align*}
$$

Hence, $x=11, y=15, z=19$

Solution of Simultaneous Linear Equations Ex 8.1 Q12

The given problem can be modelled using the following system of equations

$$
\begin{aligned}
& 3 x+5 y-4 z=6000 \\
& 2 x-3 y+z=5000 \\
& -x+4 y+6 z=13000
\end{aligned}
$$

Which can write as $A X=B$,
Where

$$
A=\left[\begin{array}{ccc}
3 & 5 & -4 \\
2 & -3 & 1 \\
-1 & 4 & 6
\end{array}\right], x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad B=\left[\begin{array}{c}
6000 \\
5000 \\
13000
\end{array}\right]
$$

Now

$$
\begin{aligned}
& |A|=3(-18-4)-2(30+16)-1(5-12) \\
& =3(-22)-2(46)+7 \\
& =-66-92+7 \\
& =-151 \neq 0
\end{aligned}
$$

$\therefore \quad A^{-1}$ exists.
Now $A x=B \Rightarrow \quad x=A^{-1} \mathrm{~B}$

$$
A^{-1}=\frac{\operatorname{adj}(A)}{|A|}
$$

Cofators of A are

Hence,

$$
\begin{aligned}
& x=\frac{1}{|A|} \operatorname{adj}(A)(B) \\
& =\frac{1}{-151}\left[\begin{array}{ccc}
-22 & -46 & -7 \\
-13 & +14 & -11 \\
5 & -17 & -19
\end{array}\right]\left[\begin{array}{c}
6000 \\
5000 \\
13000
\end{array}\right] \\
& =\frac{1}{-151}\left[\begin{array}{ccc}
-132000 & -23000 & -91000 \\
-78000 & +70000 & -143000 \\
-3000 & -85000 & -247000
\end{array}\right] \\
& =\left[\begin{array}{l}
3000 \\
1000 \\
2000
\end{array}\right]
\end{aligned}
$$

$$
\therefore \quad x=3000, y=1000 \text { and } z=2000
$$

$$
\begin{aligned}
& C_{11}=-22 \\
& C_{21}=-13 \\
& C_{31}=5 \\
& C_{12}=-46 \\
& C_{22}=14 \\
& C_{32}=-17 \\
& C_{13}=-7 \\
& C_{23}=-11 \\
& C_{33}=-19 \\
& \therefore \quad \operatorname{adj}(A)=\left[\begin{array}{ccc}
-22 & -46 & -7 \\
-13 & +14 & -11 \\
5 & -17 & -19
\end{array}\right]
\end{aligned}
$$

From the given data, we get
the following three equations:
$x+y+z=12$
$2 x+3 y+3 z=33$
$x-2 y+z=0$
This system of equations can be written
in the matrix form as
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & -2 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}12 \\ 33 \\ 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & -2 & 1\end{array}\right]^{-1}\left[\begin{array}{c}12 \\ 33 \\ 0\end{array}\right]$.
$A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & -2 & 1\end{array}\right]$
$|A|=1(9)-1(-1)+1(-7)=3$
$\operatorname{cof} A=\left[\begin{array}{ccc}9 & 1 & -7 \\ -3 & 0 & 3 \\ 0 & -1 & 1\end{array}\right]$
$\operatorname{adj} A=[\operatorname{cof} A]=\left[\begin{array}{ccc}9 & -3 & 0 \\ 1 & 0 & -1 \\ -7 & 3 & 1\end{array}\right]$
$A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{1}{3}\left[\begin{array}{ccc}9 & -3 & 0 \\ 1 & 0 & -1 \\ -7 & 3 & 1\end{array}\right]$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}9 & -3 & 0 \\ 1 & 0 & -1 \\ -7 & 3 & 1\end{array}\right]\left[\begin{array}{c}12 \\ 33 \\ 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{ccc}9 & -3 & 0 \\ 1 & 0 & -1 \\ -7 & 3 & 1\end{array}\right]\left[\begin{array}{c}4 \\ 11 \\ 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}36-33+0 \\ 4+0+0 \\ -28+33+0\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$
An award for organising different festivals in the colony can be induded by the management.

Solution of Simultaneous Linear Equations Ex 8.1 Q14

Let X, Y and Z be the cash awards for Honesty, Regularity and Hard work respectively.
As per the data in the question, we get
$X+Y+Z=6000$
$X+3 Z=11000$
$X-2 Y+Z=0$
The above three simulataneous equations
can be written in the matrix form as
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & 3 \\ 1 & -2 & 1\end{array}\right]\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{c}6000 \\ 11000 \\ 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & 3 \\ 1 & -2 & 1\end{array}\right]^{-1}\left[\begin{array}{c}6000 \\ 11000 \\ 0\end{array}\right] \ldots(1)$
$A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & 3 \\ 1 & -2 & 1\end{array}\right]$
$|A|=1(6)-1(-2)+1(-2)=6$
$\operatorname{cof} A=\left[\begin{array}{ccc}6 & 2 & -2 \\ -3 & 0 & 3 \\ 3 & -2 & -1\end{array}\right]$

Solution of Simultaneous Linear Equations Ex 8.1 Q15

Let x, y and z be teh prize amount per person for
Resourcefulness, Competence and Determination respectively.
As per the data in the question, we get
$4 x+3 y+2 z=37000$
$5 x+3 y+4 z=47000$
$x+y+z=12000$
The above three simulataneous equations
can be written in matrix form as

$$
\begin{align*}
& {\left[\begin{array}{lll}
4 & 3 & 2 \\
5 & 3 & 4 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
37000 \\
47000 \\
12000
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
4 & 3 & 2 \\
5 & 3 & 4 \\
1 & 1 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
37000 \\
47000 \\
12000
\end{array}\right] . \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
4 & 3 & 2 \\
5 & 3 & 4 \\
1 & 1 & 1
\end{array}\right] \\
& |A|=4(-1)-3(1)+2(2)=-3 \\
& \operatorname{cof} A=\left[\begin{array}{ccc}
-1 & -1 & 2 \\
-1 & 2 & -1 \\
6 & -6 & -3
\end{array}\right]
\end{aligned}
$$

$$
\operatorname{adj} A=(\operatorname{cof} A)^{T}=\left[\begin{array}{ccc}
-1 & -1 & 6 \\
-1 & 2 & -6 \\
2 & -1 & -3
\end{array}\right]
$$

$$
A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{1}{-3}\left[\begin{array}{ccc}
-1 & -1 & 6 \\
-1 & 2 & -6 \\
2 & -1 & -3
\end{array}\right]
$$

From (1)
$\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\frac{1}{-3}\left[\begin{array}{ccc}-1 & -1 & 6 \\ -1 & 2 & -6 \\ 2 & -1 & -3\end{array}\right]\left[\begin{array}{l}37000 \\ 47000 \\ 12000\end{array}\right]$
$\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\frac{1}{-3}\left[\begin{array}{c}-12000 \\ -15000 \\ -9000\end{array}\right]=\left[\begin{array}{l}4000 \\ 5000 \\ 3000\end{array}\right]$
The values x, y and z describe the amount of prizes per person for resourcefulness, competence and determination.

Solution of Simultaneous Linear Equations Ex 8.1 Q16

Let x, y and z be the prize amount per person for adaptibility, carefulness and calmness respectively.
As per the given data, we get
$2 x+4 y+3 z=29000$
$5 x+2 y+3 z=30500$
$x+y+z=9500$
The above three simulataneous equations
can be written in the matrix form as
$\left[\begin{array}{lll}2 & 4 & 3 \\ 5 & 2 & 3 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}29000 \\ 30500 \\ 9500\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{lll}2 & 4 & 3 \\ 5 & 2 & 3 \\ 1 & 1 & 1\end{array}\right]^{-1}\left[\begin{array}{c}29000 \\ 30500 \\ 9500\end{array}\right] \ldots$
$A=\left[\begin{array}{lll}2 & 4 & 3 \\ 5 & 2 & 3 \\ 1 & 1 & 1\end{array}\right]$
$|A|=2(-1)-4(2)+3(3)=-1$
$\operatorname{cof} A=\left[\begin{array}{ccc}-1 & -2 & 3 \\ -1 & -1 & 2 \\ 6 & 9 & -16\end{array}\right]$
$\operatorname{adj} A=(\operatorname{cof} A)^{T}=\left[\begin{array}{ccc}-1 & -1 & 6 \\ -2 & -1 & 9 \\ 3 & 2 & -16\end{array}\right]$
$A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{\left[\begin{array}{ccc}-1 & -1 & 6 \\ -2 & -1 & 9 \\ 3 & 2 & -16\end{array}\right]}{-1}=\left[\begin{array}{ccc}1 & 1 & -6 \\ 2 & 1 & -9 \\ -3 & -2 & 16\end{array}\right]$
From (1)
$\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & -6 \\ 2 & 1 & -9 \\ -3 & -2 & 16\end{array}\right]\left[\begin{array}{c}29000 \\ 30500 \\ 9500\end{array}\right] \ldots(1)$
$\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{l}2500 \\ 3000 \\ 4000\end{array}\right]$

Solution of Simultaneous Linear Equations Ex 8.1 Q17
Let x, y and z be the prize amount per student for sincerity, truthfulness and helpfulness respectively.
As per the data in the question, we get
$3 x+2 y+z=1600$
$4 x+y+3 z=2300$
$x+y+z=900$
The above three simulataneous equations
can be written in matrix form as
$\left[\begin{array}{lll}3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1600 \\ 2300 \\ 900\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{lll}3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1\end{array}\right]^{-1}\left[\begin{array}{c}1600 \\ 2300 \\ 900\end{array}\right]$.
$A=\left[\begin{array}{lll}3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1\end{array}\right]$
$|A|=3(-2)-2(1)+1(3)=-5$
$\operatorname{cof} A=\left[\begin{array}{ccc}-2 & -1 & 3 \\ -1 & 2 & -1 \\ 5 & -5 & -5\end{array}\right]$
$\operatorname{adj} A=(\operatorname{cof} A)^{T}=\left[\begin{array}{ccc}-2 & -1 & 5 \\ -1 & 2 & -5 \\ 3 & -1 & -5\end{array}\right]$
$A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{\left[\begin{array}{ccc}-2 & -1 & 5 \\ -1 & 2 & -5 \\ 3 & -1 & -5\end{array}\right]}{-5}$
From (1)
$\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\frac{\left[\begin{array}{ccc}-2 & -1 & 5 \\ -1 & 2 & -5 \\ 3 & -1 & -5\end{array}\right]}{-5}\left[\begin{array}{c}1600 \\ 2300 \\ 900\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{ccc}-2 & -1 & 5 \\ -1 & 2 & -5 \\ 3 & -1 & -5\end{array}\right]\left[\begin{array}{l}-320 \\ -460 \\ -180\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{l}200 \\ 300 \\ 400\end{array}\right]$
Excellence in extra-durricular activities should be another value considered for an award.

Solution of Simultaneous Linear Equations Ex 8.1 Q18

x, y and z be prize amount per student for
Discipline, Politeness and Punctuality respectively.
As per the data in the question, we get
$3 x+2 y+z=1000$
$4 x+y+3 z=1500$
$x+y+z=600$
The above three simulataneous equations
can be written in matrix form as
$\left[\begin{array}{lll}3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1000 \\ 1500 \\ 600\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{lll}3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1\end{array}\right]^{-1}\left[\begin{array}{c}1000 \\ 1500 \\ 600\end{array}\right]$.
$A=\left[\begin{array}{lll}3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1\end{array}\right]$
$|A|=3(-2)-2(1)+1(3)=-5$
$\operatorname{cof} A=\left[\begin{array}{ccc}-2 & -1 & 3 \\ -1 & 2 & -1 \\ 5 & -5 & -5\end{array}\right]$
$\operatorname{adj} A=(\operatorname{cof} A)^{T}=\left[\begin{array}{ccc}-2 & -1 & 5 \\ -1 & 2 & -5 \\ 3 & -1 & -5\end{array}\right]$
$A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{\left[\begin{array}{ccc}-2 & -1 & 5 \\ -1 & 2 & -5 \\ 3 & -1 & -5\end{array}\right]}{-5}$
From (1)

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\frac{\left[\begin{array}{ccc}
-2 & -1 & 5 \\
-1 & 2 & -5 \\
3 & -1 & -5
\end{array}\right]}{-5}\left[\begin{array}{c}
1000 \\
1500 \\
600
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{ccc}
-2 & -1 & 5 \\
-1 & 2 & -5 \\
3 & -1 & -5
\end{array}\right]\left[\begin{array}{l}
-200 \\
-300 \\
-120
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{l}
100 \\
200 \\
300
\end{array}\right]
$$

Solution of Simultaneous Linear Equations Ex 8.1 Q19

x, y and z be prize amount per student for
Toleranoe, Kindness and Leadership respectively.
As per the data in the question, we get
$3 x+2 y+z=2200$
$4 x+y+3 z=3100$
$x+y+z=1200$
The above three simulataneous equations
can be written in matrix form as
$\left[\begin{array}{lll}3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}2200 \\ 3100 \\ 1200\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{lll}3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1\end{array}\right]^{-1}\left[\begin{array}{l}2200 \\ 3100 \\ 1200\end{array}\right]$.
$A=\left[\begin{array}{lll}3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1\end{array}\right]$
$|A|=3(-2)-2(1)+1(3)=-5$
$\operatorname{cof} A=\left[\begin{array}{ccc}-2 & -1 & 3 \\ -1 & 2 & -1 \\ 5 & -5 & -5\end{array}\right]$
$\operatorname{adj} A=(\operatorname{cof} A)^{T}=\left[\begin{array}{ccc}-2 & -1 & 5 \\ -1 & 2 & -5 \\ 3 & -1 & -5\end{array}\right]$
$A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{\left[\begin{array}{ccc}-2 & -1 & 5 \\ -1 & 2 & -5 \\ 3 & -1 & -5\end{array}\right]}{-5}$
From (1)
$\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\frac{\left[\begin{array}{ccc}-2 & -1 & 5 \\ -1 & 2 & -5 \\ 3 & -1 & -5\end{array}\right]}{-5}\left[\begin{array}{l}2200 \\ 3100 \\ 1200\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{ccc}-2 & -1 & 5 \\ -1 & 2 & -5 \\ 3 & -1 & -5\end{array}\right]\left[\begin{array}{l}-440 \\ -620 \\ -240\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{l}300 \\ 400 \\ 500\end{array}\right]$

Let the amount deposited be x, y and z respectively.
As per the data in the question, we get
$x+y+z=7000$
$5 \% x+8 \% y+8.5 \% z=550$
$\Rightarrow 5 x+8 y+8.5 z=55000$
$x-y=0$
The above equations can be written in matrix form as
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 5 & 8 & 8.5 \\ 1 & -1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}7000 \\ 55000 \\ 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & 1 \\ 5 & 8 & 8.5 \\ 1 & -1 & 0\end{array}\right]^{-1}\left[\begin{array}{c}7000 \\ 55000 \\ 0\end{array}\right] \ldots(1)$
$A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 5 & 8 & 8.5 \\ 1 & -1 & 0\end{array}\right]$
$|A|=1(8.5)-1(-8.5)+1(-13)=4$
$\operatorname{cof} A=\left[\begin{array}{ccc}8.5 & 8.5 & -13 \\ -1 & -1 & 2 \\ 0.5 & -3.5 & 3\end{array}\right]$
$\operatorname{adj} A=(\operatorname{cof} A)^{T}=\left[\begin{array}{ccc}8.5 & 8.5 & -13 \\ -1 & -1 & 2 \\ 0.5 & -3.5 & 3\end{array}\right]^{T}$
$\operatorname{adj} A=(\operatorname{cof} A)^{T}=\left[\begin{array}{ccc}8.5 & 8.5 & -13 \\ -1 & -1 & 2 \\ 0.5 & -3.5 & 3\end{array}\right]^{T}$
$=\left[\begin{array}{ccc}8.5 & -1 & 0.5 \\ 8.5 & -1 & -3.5 \\ -13 & 2 & 3\end{array}\right]$
$A^{-1}=\frac{a d j A}{|A|}=\frac{1}{4}\left[\begin{array}{ccc}8.5 & -1 & 0.5 \\ 8.5 & -1 & -3.5 \\ -13 & 2 & 3\end{array}\right]$
From (1)
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{4}\left[\begin{array}{ccc}8.5 & -1 & 0.5 \\ 8.5 & -1 & -3.5 \\ -13 & 2 & 3\end{array}\right]\left[\begin{array}{c}7000 \\ 55000 \\ 0\end{array}\right]$
$=\frac{1}{4}\left[\begin{array}{c}4500 \\ 4500 \\ 19000\end{array}\right]=\left[\begin{array}{l}1125 \\ 1125 \\ 4750\end{array}\right]$
Hence, the amounts deposited in the three accounts are 1125,1125 and 4750 respectively.

