$$
\begin{aligned}
& \text { RD Sharma } \\
& \text { Solutions } \\
& \text { Class } 12 \text { Maths } \\
& \text { Chapter } 11 \\
& \text { Ex } 11.2
\end{aligned}
$$

Chapter: Differentiation

Exercise: 11.2

Page Number: 11.37

Q. 1

Solution:

Consider $y=\sin (3 x+5)$
Differentiate y with the respect to x,
$\frac{d y}{d x}=\frac{d}{d x}(\sin (3 x+5))$
$=\cos (3 x+5) \frac{d}{d x}(3 x+5)$
[using chain rule]
$=\cos (3 x+5) \times[3(1)+0]$
$=3 \cos (3 x+5)$
Hence the solution is $\frac{d}{d x}(\sin (3 x+5))=3 \cos (3 x+5)$

Q. 2

Solution:

Consider $y=\tan ^{2} x$
Differentiate it with the repect to x,
$\frac{d y}{d x}=2 \tan x \frac{d}{d x}(\tan x)$
[using chain rule]
$=2 \tan x \times \sec ^{2} x$
Hence the solution is $\frac{d}{d x}=\left(\tan ^{2} x\right) \times \sec ^{2} x$
Q. 3

Solution:

Consider
$y=\tan \left(x^{\circ}+45^{\circ}\right)$
$y=\tan \left\{\left(x^{\circ}+45^{\circ}\right) \frac{\pi}{180^{\circ}}\right\}$

Differentiate it with respect to x,
$\frac{d y}{d x}=\frac{d}{d x} \tan \left\{\left(x^{\circ}+45^{\circ}\right) \frac{\pi}{180^{\circ}}\right\}$
$=\sec ^{2}\left\{\left(x^{\circ}+45^{\circ}\right) \frac{\pi}{180^{\circ}}\right\} \times \frac{d}{d x}\left(x^{\circ}+45^{\circ}\right) \frac{\pi}{180^{\circ}}$
[using chain rule]
$=\frac{\pi}{180^{\circ}} \sec ^{2}\left(x^{\circ}+45^{\circ}\right)$
Hence the solution is $\frac{d}{d x}=\left(\tan \left(x^{\circ}+45^{\circ}\right)\right)=\frac{\pi}{180^{\circ}} \sec ^{2}\left(x^{\circ}+45^{\circ}\right)$

Q. 4

Solution:

Consider $y=\sin (\log x)$
Differentiate it with respect to x,
$\frac{d y}{d x}=\frac{d}{d x} \sin (\log x)$
$=\cos (\log x) \frac{d}{d x}(\log x)$
[using chain rule]
$=\frac{1}{x} \cos (\log x)$
Hence the solution is $\frac{d}{d x}=(\sin (\log x))=\frac{1}{x} \cos (\log x)$
Q. 5

Solution:

Consider $y=e^{\sin \sqrt{x}}$
Differentiate it with respect to x ,
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{\sin \sqrt{x}}\right)$
$=e^{\sin \sqrt{x}} \frac{d}{d x}(\sin \sqrt{x})$
[using chain rule]
$=e^{\sin \sqrt{x}} \times \cos \sqrt{x} \frac{d}{d x} \sqrt{x}$
[using chain rule]
$=e^{\sin \sqrt{x}} \times \cos \sqrt{x} \times \frac{1}{2 \sqrt{x}}$
$=\frac{1}{2 \sqrt{x}} \cos \sqrt{x} \times e^{\sin \sqrt{x}}$
Hence the solution is $\frac{d}{d x}=\left(e^{\sin \sqrt{x}}\right)=\frac{1}{2 \sqrt{x}} \cos \sqrt{x} \times e^{\sin \sqrt{x}}$
Q. 6

Solution:

Consider $y=e^{\tan x}$
Differentiate it with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}(\tan x)$
[usnig chain rule]
$=e^{\tan x} \times \sec ^{2} x$
Hence the solution is $\frac{d}{d x}=\left(e^{\tan x}\right)=\sec ^{2} \times e^{\tan x}$

Q. 7

Solution:

Consider $y=\sin ^{2}(2 x+1)$
Differentiate it with respect to x,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left[\sin ^{2}(2 x+1)\right] \\
& =2 \sin (2 x+1) \frac{d}{d x} \sin (2 x+1)
\end{aligned}
$$

[using chain rule]
$=2 \sin (2 x+1) \cos (2 x+1) \frac{d}{d x}(2 x+1)$
[using chain rule]
$=4 \sin (2 x+1) \cos (2 x+1)$
$=2 \sin 2(2 x+1)$
$\left[\right.$ Since, $\left.\sin ^{2} A=2 \sin A \cos A\right]$
$2 \sin (4 x+2)$
Hence the solution is $\frac{d}{d x}\left(\sin ^{2}(2 x+1)\right)=2 \sin (4 x+2)$

Q. 8

Solution:

Consider
$\log _{7}(2 x-3)$
$\Rightarrow y=\frac{\log (2 x-3)}{\log 7}$
$\left[\right.$ Since, $\left.\log _{a}^{b}=\frac{\log b}{\log a}\right]$
Differentiate it with respect to x,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{\log 7} \frac{d}{d x}(\log (2 x-3)) \\
& =\frac{1}{\log 7} \times \frac{1}{(2 x-3)} \frac{d}{d x}(2 x-3)
\end{aligned}
$$

[usnig chain rule]
$=\frac{2}{(2 x 3) \log 7}$
Hence the solution is $\frac{d}{d x}\left(\log _{7}(2 x-3)\right)=\frac{2}{(2 x-3) \log 7}$
Q. 9

Solution:

Consider $y=\tan 5 x^{\circ}$

$$
\begin{aligned}
\Rightarrow y & =\tan \left(5 x^{\circ} \times \frac{\pi}{180^{\circ}}\right) \\
& =\sec ^{2} \times\left(5 x^{\circ} \times \frac{\pi}{180 \circ}\right) \frac{d}{d x}\left(5 x^{\circ} \frac{\pi}{180^{\circ}}\right)
\end{aligned}
$$

[usnig chain rule]

$$
=\left(\frac{5 \pi}{180^{\circ}}\right) \sec ^{2}\left(5 x^{\circ} \frac{\pi}{180^{\circ}}\right)
$$

$=\left(\frac{5 \pi}{180^{\circ}}\right) \sec ^{2}\left(5 x^{\circ} \frac{\pi}{180^{\circ}}\right)$
$=\frac{5 \pi}{180^{\circ}} \sec ^{2}\left(5 x^{\circ}\right)$
Hence the solution is, $\frac{d}{d x}(\tan (5 x \circ))=\frac{5 \pi}{180^{\circ}} \sec ^{2}\left(5 x^{\circ}\right)$
Q. 10

Solution:

Consider $y=2^{x^{3}}$
Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left(2^{x^{3}}\right)$
$=2^{x^{3}} \times \log _{2} \frac{d}{d x}\left(x^{3}\right)$
[usnig chain rule]
$=3 x^{2} \times 2^{x^{3}} \times \log _{2}$
Hence the solution is $\frac{d}{d x}\left(2^{x^{3}}\right)=3 x^{2} \times 2^{x^{3}} \log _{2}$
Q. 11

Solution:

Differentiate it with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left(3^{e^{x}}\right)$
$=3^{e^{x}} \log 3 \frac{d}{d x}\left(e^{x}\right)$
[using chain rule]
$=e^{x} \times 3^{e^{x}} \log 3$
Hence the sollution is $\frac{d}{d x}\left(3^{e^{x}}\right)=e^{x} \times 3^{e^{x}} \log 3$
Q12

Solution:

Consider $y=\log _{x} 3$
$\Rightarrow y=\frac{\log 3}{\log x}$
$\left[\right.$ Since, $\left.\log _{a}^{b}=\frac{\log b}{\log a}\right]$

Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{\log 3}{\log x}\right)$
$=\log 3 \frac{d}{d x}(\log x)^{-1}$
$=\log 3 \times\left[-1(\log x)^{-2}\right] \frac{d}{d x}(\log x)$
[using chain rule]
$=-\frac{\log 3}{(\log x)^{2}} \times \frac{1}{x}$
$=-\left(\frac{\log 3}{\log x}\right)^{2} \times \frac{1}{x} \times \frac{1}{\log 3}$
$\left[\right.$ Since, $\left.\frac{\log b}{\log a}=10 a_{a}^{b}\right]$
$=-\frac{1}{x \log 3\left(\log _{3} x\right)^{2}}$
Hence the solution is, $\frac{d}{d x}\left(\log _{x} 3\right)=-\frac{1}{x \log 3\left(\log _{3} x\right)^{2}}$
Q. 13

Solution:

Consider $y=3^{x^{2}+2 x}$
Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left(3^{x^{2}+2 x}\right)$
$=3^{x^{2}+2 x} \times \log 3 \frac{d}{d x}\left(x^{2}+2 x\right)$
[using chain rule]

$$
=(2 x+2) \log 3 \times 3^{x^{2}+2 x}
$$

Hence the sollution is, $\frac{d}{d x}\left(3^{x^{2}+2 x}\right)=(2 x+2) \log 3 \times 3^{x^{2}+2 x}$
Q. 15

Solution:

Consider $y=3^{x \log x}$
Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left(3^{x \log x}\right)$
$=3^{x \log x} \times \log 3 \frac{d}{d x}(x \log x)$
[using chain rule]
$=3^{x \log x} \times \log 3\left[x \frac{d}{d x}(\log x)+\log x \frac{d}{d x}(x)\right]$
[using chain rule]
$=3^{\operatorname{reog}^{x} x} \times \log 3\left[\frac{x}{x}+\log x\right]$
$=3^{x \log x}(1+\log x) \times \log 3$
Hence the sollution is, $\frac{d}{d x}\left(3^{x} \log x\right)=\log 3 \times 3^{x \log x}(1+\log x)$
Q. 17

Solution:

Consider $y=\sqrt{\frac{1-x^{2}}{1+x^{2}}}$
Q. 18

Solution:

Consider $y=(\log \sin x)^{2}$
Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}(\log \sin x)^{2}$
$=2(\log \sin x) \times \frac{d}{d x}(\log \sin x)$
[using chain rule]
$=2(\log \sin x) \times \frac{1}{\sin x} \frac{d}{d x}(\log x)$
$=2(\log \sin x) \times \frac{1}{\sin x} \times \frac{1}{x}$
$=\frac{2 \log \sin x}{x \sin x}$
Hence the sollution is, $\frac{d}{d x}(\log \sin x)^{2}=\frac{2 \log \sin x}{x \sin x}$
$y=\left(\frac{1-x^{2}}{1+x^{2}}\right)^{\frac{1}{2}}$
Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{\frac{1}{2}}$
$=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
[using chain rule]
$=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{\frac{-1}{2}}\left[\frac{\left(1+x^{2}\right) \frac{d}{d x}\left(1-x^{2}\right) \frac{d}{d x}\left(1+x^{2}\right)}{\left(1+x^{2}\right)}\right]$
[using quotient rule]
$=\frac{1}{2}\left(\frac{1+x^{2}}{1-x^{2}}\right)^{\frac{1}{2}}\left[\frac{\left(1+x^{2}\right)(-2 x)-\left(1-x^{2}\right)(2 x)}{\left(1+x^{2}\right)^{2}}\right]$
$=\frac{1}{2}\left(\frac{1+x^{2}}{1-x^{2}}\right)^{\frac{1}{2}}\left[\frac{-2 x-2 x^{3}-2 x+2 x^{3}}{\left(1+x^{2}\right) 2}\right]$
$=\frac{1}{2} \frac{-4 x}{\sqrt{1-x^{2}}\left(1+x^{2}\right)^{\frac{3}{2}}}$
Hence the sollution is, $\frac{d}{d x}\left(\sqrt{\frac{1-x^{2}}{1+x^{2}}}\right)=\frac{-2 x}{\sqrt{1-x^{2}\left(1+x^{2}\right)^{\frac{3}{2}}}}$
Q. 21

Solution:

Consider $y=e^{3 x} \cos 2 x$
Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{3 x} \cos 2 x\right)$
$=e^{3 x} \times \frac{d}{d x}(\cos 2 x)+\cos 2 x \frac{d}{d x}\left(e^{3 x}\right)$
[using product rule]
$=e^{3 x} \times(-\sin 2 x) \frac{d}{d x}(2 x)+\cos 2 x e^{3 x} \frac{d}{d x}(3 x)$
[using chain rule]
$=-2 e^{3 x} \sin 2 x+3 e^{3 x} \cos 2 x$
$=e^{3 x}(3 \cos 2 x-2 \sin 2 x)$
Hence the sollution is, $\frac{d}{d x}\left(e^{3 x} c p s 2 x\right)=e^{3 x}(3 \cos 2 x-2 \sin 2 x)$
Q. 22

Solution:

Consider $y=\sin (\log \sin x)$
Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x} \sin (\log \sin x)$
$=\cos (\log \sin x) \frac{d}{d x}(\log \sin x)$
[using chain rule]
$=\cos (\log \sin x) \times \frac{1}{\sin x} \frac{d}{d x} 0 \sin x$
$=\cos (\log \sin x) \frac{\cos x}{\sin x}$
$=\cos (\log \sin x) \times \cot x$
Hence the sollution is, $\frac{d}{d x}(\sin (\log \sin x))=\cos (\log \sin x) x \cot x$
Q. 23

Solution:

Consider $y=e^{\tan 3 x}$
Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{\tan 3 x}\right)$
$=e^{\tan 3 x} \frac{d}{d x}(\tan 3 x)$
[using chain rule]
$=e^{\tan 3 x} \times \sec ^{2} 3 x \times \frac{d}{d x}(3 x)$
Hence the sollution is, $\frac{d}{d x}\left(e^{\tan 3 x}\right)=3 e^{\tan 3 x} \times \sec ^{2} 3 x$
Q. 24

Solution:

Consider $y=e^{\sqrt{\cot x}}$
Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{(\cot x)^{\frac{1}{2}}}\right)$
$=e^{(\cot x)^{\frac{1}{2}}} \times \frac{d}{d x}(\cot x)^{\frac{1}{2}}$
[using chain rule]
$=e^{\sqrt{\cot x}} \times \frac{1}{2}(\cot x)^{\frac{1}{2}-1} \frac{d}{d x}(\cot x)$
$=-\frac{e^{\sqrt{\cot x}} \times \operatorname{cosec}^{2} x}{2 \sqrt{\cot x}}$
Hence the sollution is $\frac{d}{d x}\left(e^{\sqrt{\cot x}}\right)=-\frac{e^{\sqrt{\cot x}} \times \operatorname{cosec}{ }^{2} x}{2 \sqrt{\cot x}}$
Q. 27

Solution:
Consider $y=\tan \left(e^{\sin x}\right)$
Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left[\tan e^{\sin x}\right]$
$=\sec ^{2}\left(e^{\sin x}\right) \frac{d}{d x}\left(e^{\sin x}\right)$
[using chain rule]
$=\sec ^{2}\left(e^{\sin x}\right) \times e^{\sin x} \times \frac{d}{d x}(\sin x)$
$=\cos x \sec ^{2}\left(e^{\sin x}\right) \times e^{\sin x}$
Hence the sollution is, $\frac{d}{d x}\left(\tan e^{\sin x}\right)=\sec ^{2}\left(e^{\sin x}\right) \times \cos x$
Q. 30

Solution:

Consider $y=\log (\operatorname{cosec} x-\cot x)$
Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x} \log (\operatorname{cosec} x-\cot x)$
$=\frac{1}{(\operatorname{cosec} x-\cot x)} \times\left(-\operatorname{cosec} x \cot x+\operatorname{cosec}^{2} x\right)$
[using chain rule]
$=\frac{1}{(\operatorname{cosec} x-\cot x)} \times\left(-\operatorname{cosec} x \cot x+\operatorname{cosec}^{2} x\right)$
$=\frac{\operatorname{cosec} x(\operatorname{cosec} x-\cot x)}{(\operatorname{cosec} x-\cot x)}$
$=\operatorname{cosec} x$
Hence the sollution is, $\frac{d}{d x}(\log (\operatorname{cosec} x-\cot x))=\operatorname{cosec} x$
Q. 33

Solution:

Consider $y=\tan ^{-1}\left(e^{x}\right)$
Differentiate with respect to x,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1} e^{x}\right) \\
& =\frac{1}{1+\left(e^{2 x}\right)^{2}} \frac{d}{d x}\left(e^{x}\right)
\end{aligned}
$$

[using chain rule]

$$
\begin{aligned}
& =\frac{1}{1+e^{2 x}} \times e^{x} \\
& =\frac{e^{x}}{1+e^{2 x}}
\end{aligned}
$$

Hence the sollution is, $\frac{d}{d x}\left(\tan ^{-1} e^{x}\right)=\frac{e^{x}}{1+e^{2 x}}$

Solution:

Consider $y=e^{\sin ^{-1} 2 x}$
Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{\sin ^{-1} 2 x}\right)$
$=e^{\sin ^{-1} 2 x} \times \frac{d}{d x}\left(\sin ^{-1} 2 x\right)$
[using chain rule]
$=e^{\sin ^{-1} 2 x} \times \frac{1}{\sqrt{1-(2 x)^{2}}} \frac{d}{d x}(2 x)$
$=\frac{2 e^{\sin -1} 2 x}{\sqrt{1-4 x^{2}}}$
Hence the sollution is, $\frac{d}{d x}\left(e^{\sin -1} 2 x\right)=\frac{2 e \sin ^{-1} 2 x}{\sqrt{1-4 x^{2}}}$

Q. 35

Solution:

Consider $y=\left(2 \sin ^{-1} x\right)$
Differentiate with respect to x,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\sin \left(2 \sin ^{-1} x\right)\right) \\
& =\cos \left(2 \sin ^{-1} x\right) \frac{d}{d x}\left(2 \sin ^{-1} x\right)
\end{aligned}
$$

[using chain rule]

$$
\begin{aligned}
& =\cos \left(2 \sin ^{-1} x\right) \times 2 \frac{1}{\sqrt{1-x^{2}}} \\
& =\frac{2 \cos \left(2 \sin ^{-1} x\right)}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Hence the sollution is $\frac{d}{d x\left(\sin \left(2 \sin ^{-1} x\right)\right)=\frac{2 \cos \left(2 \sin ^{-1} x\right)}{\sqrt{1-x^{2}}}}$
Q. 36

Solution:

Consider $y=e^{\tan ^{-1} \sqrt{x}}$

Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{\tan ^{-1}} \sqrt{x}\right)$
$=e^{\tan ^{-1} \sqrt{x}} \frac{d}{d x}\left(\tan ^{-1} \sqrt{x}\right)$
[using chain rule]
$=e^{\tan ^{-1} \sqrt{x}} \times \frac{1}{1+(\sqrt{x})^{2}} \frac{d}{d x}(\sqrt{x})$
$=\frac{e^{\tan ^{-1} \sqrt{x}}}{1+x} \times \frac{1}{2 \sqrt{x}}$
$=\frac{e^{\tan ^{-1}} \sqrt{x}}{2 \sqrt{x}(1+x)}$
Hence the sollution is, $\frac{d}{d x}\left(e^{\tan -1} \sqrt{x}\right)=\frac{e^{\tan ^{-1} \sqrt{x}}}{2 \sqrt{x}(1+x)}$.

Q. 38

Solution:

Consider $y=\log \left(\tan ^{-1} x\right)$
Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x} \log \left(\tan ^{-1} x\right)$
$=\frac{1}{\tan ^{-1} x} \times \frac{d}{d x}\left(\tan ^{-1} x\right)$
[using chain rule]
$=\frac{1}{\left(1+x^{2}\right) \tan ^{-1} x}$
Hence the sollution is, $\frac{d}{d x}\left(\log \tan ^{-1} x\right)=\frac{1}{\left(1+x^{2}\right) \tan ^{-1} x}$
Q. 43

Solution:

Consider $y=\sin ^{2}[\log (2 x+3)]$
Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left[\sin ^{2}(\log (2 x+3))\right]$
$=2 \sin (\log (2 x+3)) \frac{d}{d x} \sin (\log (2 x+3))$
[using chain rule]
$=2 \sin (\log (2 x+3)) \cos (\log (2 x+3)) \frac{d}{d x} \log (2 x+3)$
$=\sin (2 \log (2 x+3)) \times \frac{1}{(2 x+3)} \frac{d}{d x}(2 x+3)$
$\left[\right.$ Since, $\left.2 \sin A \cos A=\sin ^{2} A\right]$
$=\sin (2 \log (2 x+3)) \times \frac{2}{(2 x+3)}$
Hence the sollution is $\frac{d}{d x}\left(\sin ^{2} \log (2 x+3)\right)=\sin (2 \log (2 x+3)) \times \frac{2}{(2 x+3)}$
Q. 44

Solution:

Consider $y=e^{x} \log \sin 2 x$
Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left[e^{x} \log \sin 2 x\right]$
$=e^{2} \frac{d}{d x} \log \sin 2 x+\log \sin 2 x \frac{d}{d x}\left(e^{x}\right)$
[using product rule and chain rule]
$=e^{x} \frac{1}{\sin 2 x} \frac{d}{d x}(\sin 2 x)+\log \sin 2 x\left(e^{x}\right)$
$=\frac{e^{x}}{\sin 2 x} \cos 2 x \frac{d}{d x}(2 x)+e^{=} \log \sin 2 x$
$=\frac{2 \cos 2 x e^{x}}{\sin 2 x}+e^{x} \log \sin 2 x$
$=e^{x}(2 \cot 2 x+\log \sin 2 x)$
Hence the sollution is, $\frac{d}{d x}\left(e^{x} \log \sin 2 x\right)=e^{x}(2 \cot 2 x+\log \sin 2 x)$
Q. 47

Solution:

Consider $y=\left(\sin ^{-1} x^{4}\right)^{4}$

Differentiate with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left(\sin ^{-1} x^{4}\right)^{4}$
$=4\left(\sin ^{-1} x^{4}\right) \frac{d}{d x}\left(\sin ^{-1} x^{4}\right)$
[using chain rule]
$=4\left(\sin ^{-1} x^{4}\right)^{3} \frac{1}{\sqrt{1-\left(x^{4}\right)^{2}}} \frac{d}{d x}\left(x^{4}\right)$
$=4\left(\sin ^{-1} x^{4}\right)^{3} \frac{4 x^{3}}{\sqrt{1-x^{8}}}$
$=\frac{16 x^{3}\left(\sin ^{-1} x^{4}\right)^{3}}{\sqrt{1-x^{8}}}$
Hence the sollution is, $\frac{d}{d x}\left(\sin ^{-1} x^{4}\right)=\frac{16 x^{3}\left(\sin ^{-1} x^{4}\right)^{3}}{\sqrt{1-x^{8}}}$
Q. 50

Solution:

Consider $y=3 e^{-3 x} \log (1+x)$
Differentiating it with respect to x and applying the chain and the product rule, we get
$\frac{d y}{d x}=3 \frac{d}{d x}\left[e^{-3 x} \log (1+x)\right]$
$\frac{d y}{d x}=3\left(e^{-3 x} \frac{1}{1+x}+\log (1+x)\left(-3 e^{-3 x}\right)\right)$
$=3\left(\frac{e^{-3 x}}{1+x}-3 \log (1+x)\right)$
The sollution is,
$=3 e^{-3 c}\left(\frac{1}{1+x}-3 \log (1+x)\right)$
Q. 56

Solution:

Consider $y=\cos (\log x)^{2}$
Differentiating it with respect to x and applying the chain and the product rule, we get
$\frac{d y}{d x}=\frac{d}{d x} \cos (\log x)^{2}$
$=-\sin (\log x)^{2} \frac{d}{d x}(\log x)^{2}$
$=-\sin (\log x)^{2} \frac{2 \log x}{x}$
$\frac{d y}{d x}=\frac{-2 \log x \sin (\log x)^{2}}{x}$
So The sollution is $\frac{d y}{d x}=\frac{-2 \log x \sin (\log x)^{2}}{x}$
Q. 59

Solution:

Consider $y=\cos (\log x)^{2}$
Differentiating it with respect to x and applying the chain and the product rule, we get

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x} \sqrt{x+1}+\frac{d}{d x} \sqrt{x-1} \\
& =\frac{1}{2}(x+1)^{\frac{-1}{2}}+\frac{1}{2}(x-1)^{\frac{-1}{2}} \\
& =\frac{1}{2}\left(\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{x-1}}\right) \\
& =\frac{1}{2}\left(\frac{\sqrt{x-1}+\sqrt{x+1}}{(\sqrt{x+1})(\sqrt{x-1})}\right) \\
& \frac{d y}{d x}=\frac{1}{2}\left(\frac{y}{\sqrt{x^{2}-1}}\right) \\
& \text { So, } \sqrt{x^{2}}-\frac{d y}{d x}=\frac{1}{2} y
\end{aligned}
$$

Q. 63

Solution:

$y=\sqrt{x+} \frac{1}{\sqrt{x}}$
Differentiate with respect to x,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) \\
& =\frac{d}{d x}(\sqrt{x})+\frac{d}{d x}\left(x^{-1 \frac{1}{2}}\right) \\
& =\frac{1}{2 \sqrt{x}}+\left(-\frac{1}{2} \times x^{-\frac{1}{2}-1}\right) \\
& =\frac{1}{2 \sqrt{x}}-\frac{1}{2 \sqrt[x]{x}} \\
& \frac{d y}{d x}=\frac{x-1}{2 x \sqrt{x}} \\
& \Rightarrow 2 x \frac{d y}{d x}=\frac{x}{\sqrt{x}}-\frac{1}{\sqrt{x}}
\end{aligned}
$$

Hence the sollution is, $2 x \frac{d y}{d x}=\sqrt{x}-\frac{1}{\sqrt{x}}$
Q. 71

Solution:

Differentiate with respect to x,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(e^{x}+e^{-x}\right) \\
& =\frac{d}{d x} e^{x}+\frac{d}{d x} e^{-x} \\
& =e^{x}+e^{-x} \frac{d}{d x}(-x)
\end{aligned}
$$

[using chian rule]

$$
\begin{aligned}
& =e^{x}+e^{-x}(-1) \\
& =\left(e^{x}-e^{-x}\right) \\
& =\sqrt{\left(e^{x}+e^{-x}\right)^{2}-4 e^{x} \times e^{-x}}
\end{aligned}
$$

$$
\left[\text { Since, }(a-b)=\sqrt{(a+b)^{2}-4 a b}\right]
$$

$$
=\sqrt{y^{2}-4}
$$

$\left[\right.$ Since $\left.e^{x}+e^{-x}=y\right]$

Hence the sollution is, $\frac{d y}{d x}=\sqrt{y^{2}-4 s}$
Q. 72

Solution:

Differentiating with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{a^{2}-x^{2}}\right)$
$=\frac{1}{2 \sqrt{a^{2}-x^{2}}} \frac{d}{d x}\left(a^{2}-x^{2}\right)$
[using chain rule]
$=\frac{1}{2 \sqrt{a^{2}-x^{2}}}(-2 x)$
$=\frac{-x}{\sqrt{a^{2}-x^{2}}}$
$\Rightarrow \frac{d y}{d x}=\frac{-x}{y}$
$\left[\right.$ Since,$\left.\sqrt{a^{2}-x^{2}=y}\right]$
$\Rightarrow y \frac{d y}{d x}=-x$
Hence the sollution is, $y \frac{d y}{d x}+x=0$

