RD Sharma
Solutions
Class 12 Maths
Chapter 17
Ex 17.1

Increasing and Decreasing Functions Ex 17.1 Q1

Let
$$x_1, x_2 \in (0, \infty)$$

We have,

$$\begin{array}{ll} & x_1 < x_2 \\ \Rightarrow & \log_{\rm e} x_1 < \log_{\rm e} x_2 \\ \Rightarrow & f(x_1) < f(x_2) \end{array}$$

So, f(x) is increasing in $(0,\infty)$.

Increasing and Decreasing Functions Ex 17.1 Q2

Case I

When
$$a > 1$$

Let
$$x_1, x_2 \in (0, \infty)$$

We have

$$x_1 < x_2$$

$$\Rightarrow \log_{\mathfrak{p}} x_1 < \log_{\mathfrak{p}} x_2$$

$$\Rightarrow$$
 $f(x_1) < f(x_2)$

Thus, f(x) is increasing on $(0,\infty)$

Case II

$$f(x) = \log_a x = \frac{\log x}{\log a}$$

When $a < 1 \Rightarrow \log a < 0$

Let $x_1 < x_2$

$$\Rightarrow \log x_1 < \log x_2$$

$$\Rightarrow \qquad \frac{\log x_1}{\log a} > \frac{\log x_2}{\log a}$$

$$\Rightarrow f(x_1) > f(x_2)$$

So, f(x) is decreasing on $(0, \infty)$.

Increasing and Decreasing Functions Ex 17.1 Q3

[∵loga < 0]

We have,

$$f(x) = ax + b, \ a > 0$$

Let
$$x_1, x_2 \in R$$
 and $x_1 > x_2$

$$\Rightarrow ax_1 > ax_2 \text{ for some } a > 0$$

$$\Rightarrow$$
 $ax_1 + b > ax_2 + b$ for some b

$$\Rightarrow$$
 $f(x_1) > f(x_2)$

 \therefore f(x) is increasing function of R.

Increasing and Decreasing Functions Ex 17.1 Q4

We have,

$$f(x) = ax + b, \ a < 0$$

Let $x_1, x_2 \in R$ and $x_1 > x_2$

 $ax_1 < ax_2$ for some a < 0

 $ax_1 + b < ax_2 + b$ for some b ⇒

$$\Rightarrow$$
 $f(x_1) < f(x_2)$

Hence,
$$x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$$

f(x) is decreasing function of R.

Increasing and Decreasing Functions Ex 17.1 Q5

We have,

$$f(x) = \frac{1}{x}$$

Let $x_1, x_2 \in (0, \infty)$ and $x_1 > x_2$

$$\Rightarrow \frac{1}{x_1} < \frac{1}{x_2}$$

$$\Rightarrow$$
 $f(x_1) < f(x_2)$

Thus,
$$x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$$

So, f(x) is decreasing function.

Increasing and Decreasing Functions Ex 17.1 Q6

We have,

$$f(x) = \frac{1}{1+x^2}$$

Case I

When
$$x \in [0, \infty)$$

Let $x_1, x_2 \in (0, \infty]$ and $x_1 > x_2$

$$\Rightarrow x_1^2 > x_2^2$$

$$\Rightarrow 1 + x_1^2 > 1 + x_2^2$$

$$\Rightarrow \frac{1}{1+x_1^2} < \frac{1}{1+x_2^2}$$

$$\Rightarrow$$
 $f(x_1) < f(x_2)$

So, f(x) is decreasing on $[0,\infty)$

Case II

When
$$x \in (-\infty, 0]$$

Let
$$x_1 > x_2$$

$$\Rightarrow x_1^2 < x_2^2 \qquad [\because -2 > -3 \Rightarrow 4 < 9]$$

$$\Rightarrow 1 + x_1^2 < 1 + x_2^2$$

$$\Rightarrow \frac{1}{1+x_1^2} > \frac{1}{1+x_2^2}$$

$$\Rightarrow f(x_1) > f(x_2)$$

So, f(x) is increasing on $(-\infty, 0]$

Increasing and Decreasing Functions Ex 17.1 Q7

We have,

$$f(X) = \frac{1}{1 + X^2}$$

Case I

When
$$x \in [0, \infty)$$

Let $x_1 > x_2$

$$\Rightarrow x_1^2 > x_2^2$$

$$\Rightarrow x_1^2 > x_2^2$$

$$\Rightarrow 1 + x_1^2 > 1 + x_2^2$$

$$\Rightarrow \frac{1}{1+x_1^2} < \frac{1}{1+x_2^2}$$

$$\Rightarrow$$
 $f(x_1) < f(x_2)$

∴ f(x) is decreasing on $[0,\infty)$.

Case II

When
$$x \in (-\infty, 0]$$

Let $x_1 > x_2$

$$\Rightarrow x_1^2 < x_2^2$$

$$\Rightarrow 1 + x_1^2 < 1 + x_2^2$$

$$\Rightarrow \frac{1}{1+x_1^2} > \frac{1}{1+x_2^2}$$

$$\Rightarrow$$
 $f(x_1) > f(x_2)$

So, f(x) is increasing on $(-\infty,0]$

Thus, f(x) is neither increasing nor decreasing on R.

Increasing and Decreasing Functions Ex 17.1 Q8

We have,

$$f(x) = |x| = \begin{cases} x, & x > 0 \\ -x, & x < 0 \end{cases}$$

(a)

Let
$$x_1, x_2 \in (0, \infty)$$
 and $x_1 > x_2$

$$\Rightarrow f(x_1) > f(x_2)$$

So, f(x) is increasing in $(0, \infty)$

(b)

Let
$$x_1$$
, $x_2 \in (-\infty, 0)$ and $x_1 > x_2$

$$\Rightarrow$$
 $-x_1 < -x_2$

$$\Rightarrow \qquad -x_1 < -x_2 \\ \Rightarrow \qquad f(x_1) < f(x_2)$$

∴ f(x) is strictly decreasing on $(-\infty,0)$.

Increasing and Decreasing Functions Ex 17.1 Q9

$$f(x) = 7x - 3$$

Let
$$x_1$$
, $x_2 \in R$ and $x_1 > x_2$

$$\Rightarrow 7x_1 > 7x_2$$

$$3 > 7x_2$$

 $\therefore f(x)$ is strictly increasing on R.

$$3 > 7x_2$$

 \Rightarrow $f(x_1) > f(x_2)$

 \Rightarrow $7x_1 - 3 > 7x_2 - 3$

