$$
\begin{gathered}
\text { RD Sharma } \\
\text { Solutions } \\
\text { Class } 12 \text { Maths } \\
\text { Chapter } 17 \\
\text { Ex } 17.1
\end{gathered}
$$

Increasing and Decreasing Functions Ex 17.1 Q1

Let $x_{1}, x_{2} \in(0, \infty)$

We have,

$$
\begin{array}{ll}
& x_{1}<x_{2} \\
\Rightarrow \quad & \log _{\mathrm{e}} x_{1}<\log _{\mathrm{e}} x_{2} \\
\Rightarrow \quad & f\left(x_{1}\right)<f\left(x_{2}\right)
\end{array}
$$

So, $f(x)$ is increasing in $(0, \infty)$.

Increasing and Decreasing Functions Ex 17.1 Q2

Case I

When $a>1$
Let $x_{1}, x_{2} \in(0, \infty)$

We have

$$
\begin{array}{ll}
& x_{1}<x_{2} \\
\Rightarrow \quad & \log _{2} x_{1}<\log _{2} x_{2} \\
\Rightarrow \quad & f\left(x_{1}\right)<f\left(x_{2}\right)
\end{array}
$$

Thus, $f(x)$ is increasing on $(0, \infty)$

Case II
When $0<a<1$
$f(x)=\log _{z} x=\frac{\log x}{\log a}$
When $a<1 \Rightarrow \log a<0$
Let $x_{1}<x_{2}$
$\Rightarrow \quad \log x_{1}<\log x_{2}$
$\Rightarrow \quad \frac{\log x_{1}}{\log a}>\frac{\log x_{2}}{\log a}$
$[\because \log a<0]$
$\Rightarrow \quad f\left(x_{1}\right)>f\left(x_{2}\right)$

So, $f(x)$ is decreasing on $(0, \infty)$.
Increasing and Decreasing Functions Ex 17.1 Q3
We have,

$$
f(x)=a x+b, a>0
$$

Let $x_{1}, x_{2} \in R$ and $x_{1}>x_{2}$
$\Rightarrow \quad a x_{1}>a x_{2}$ for some $a>0$
$\Rightarrow \quad a x_{1}+b>a x_{2}+b$ for some b
$\Rightarrow \quad f\left(x_{1}\right)>f\left(x_{2}\right)$
$\therefore f(x)$ is increasing function of R.
Increasing and Decreasing Functions Ex 17.1 Q4

We have,

$$
f(x)=a x+b, a<0
$$

Let $x_{1}, x_{2} \in R$ and $x_{1}>x_{2}$
$\Rightarrow \quad a x_{1}<a x_{2}$ for some $a<0$
$\Rightarrow \quad a x_{1}+b<a x_{2}+b$ for some b
$\Rightarrow \quad f\left(x_{1}\right)<f\left(x_{2}\right)$

Hence, $x_{1}>x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$
$\therefore f(x)$ is decreasing function of R.

Increasing and Decreasing Functions Ex 17.1 Q5

We have,

$$
f(x)=\frac{1}{x}
$$

Let $x_{1}, x_{2} \in(0, \infty)$ and $x_{1}>x_{2}$
$\Rightarrow \quad \frac{1}{x_{1}}<\frac{1}{x_{2}}$
$\Rightarrow \quad f\left(x_{1}\right)<f\left(x_{2}\right)$

Thus, $x_{1}>x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$

So, $f(x)$ is decreasing function.

Increasing and Decreasing Functions Ex 17.1 Q6

We have,

$$
f(x)=\frac{1}{1+x^{2}}
$$

Case I
When $x \in[0, \infty)$
Let $x_{1}, x_{2} \in(0, \infty]$ and $x_{1}>x_{2}$
$\Rightarrow \quad x_{1}{ }^{2}>x_{2}{ }^{2}$
$\Rightarrow \quad 1+x_{1}^{2}>1+x_{2}^{2}$
$\Rightarrow \quad \frac{1}{1+x_{1}{ }^{2}}<\frac{1}{1+x_{2}^{2}}$
$\Rightarrow \quad f\left(x_{1}\right)<f\left(x_{2}\right)$

So, $f(x)$ is decreasing on $[0, \infty)$

Case II
When $x \in(-\infty, 0]$
Let $x_{1}>x_{2}$
$\Rightarrow \quad x_{1}{ }^{2}<x_{2}{ }^{2}$
$[\because-2>-3 \Rightarrow 4<9]$
$\Rightarrow \quad 1+x_{1}^{2}<1+x_{2}^{2}$
$\Rightarrow \quad \frac{1}{1+x_{1}{ }^{2}}>\frac{1}{1+x_{2}^{2}}$
$\Rightarrow \quad f\left(x_{1}\right)>f\left(x_{2}\right)$

So, $f(x)$ is increasing on $(-\infty, 0]$

We have,

$$
f(x)=\frac{1}{1+x^{2}}
$$

Case I

$$
\begin{aligned}
& \text { Let } x_{1}>x_{2} \\
& \Rightarrow \quad x_{1}^{2}>x_{2}^{2} \\
& \Rightarrow \quad 1+x_{1}^{2}>1+x_{2}^{2} \\
& \Rightarrow \quad \frac{1}{1+x_{1}^{2}}<\frac{1}{1+x_{2}^{2}} \\
& \Rightarrow \quad f\left(x_{1}\right)<f\left(x_{2}\right)
\end{aligned}
$$

$\therefore f(x)$ is decreasing on $[0, \infty)$.

Case II

$$
\text { When } x \in(-\infty, 0]
$$

Let $x_{1}>x_{2}$
$\Rightarrow \quad x_{1}{ }^{2}<x_{2}^{2}$
$\Rightarrow \quad 1+x_{1}^{2}<1+x_{2}^{2}$
$\Rightarrow \quad \frac{1}{1+x_{1}{ }^{2}}>\frac{1}{1+x_{2}^{2}}$
$\Rightarrow \quad f\left(x_{1}\right)>f\left(x_{2}\right)$
So, $f(x)$ is increasing on $(-\infty, 0]$

Thus, $f(x)$ is neither increasing nor decreasing on R.

Increasing and Decreasing Functions Ex 17.1 Q8

We have,

$$
f(x)=|x|=\left\{\begin{array}{l}
x, x>0 \\
-x, x<0
\end{array}\right.
$$

(a)

$$
\begin{aligned}
& \quad \text { Let } x_{1}, x_{2} \in(0, \infty) \text { and } x_{1}>x_{2} \\
& \Rightarrow \quad f\left(x_{1}\right)>f\left(x_{2}\right)
\end{aligned}
$$

So, $f(x)$ is increasing in $(0, \infty)$
(b)

$$
\begin{array}{ll}
& \text { Let } x_{1}, x_{2} \in(-\infty, 0) \text { and } x_{1}>x_{2} \\
\Rightarrow & -x_{1}<-x_{2} \\
\Rightarrow & f\left(x_{1}\right)<f\left(x_{2}\right)
\end{array}
$$

$\therefore f(x)$ is strictly decreasing on $(-\infty, 0)$.

Increasing and Decreasing Functions Ex 17.1 Q9

$$
f(x)=7 x-3
$$

Let $x_{1}, x_{2} \in R$ and $x_{1}>x_{2}$
$\Rightarrow \quad 7 x_{1}>7 x_{2}$
$\Rightarrow \quad 7 x_{1}-3>7 x_{2}-3$
$\Rightarrow \quad f\left(x_{1}\right)>f\left(x_{2}\right)$
$\therefore f(x)$ is strictly increasing on R.

