$$
\begin{gathered}
\text { RD Sharma } \\
\text { Solutions } \\
\text { Class } 12 \text { Maths } \\
\text { Chapter } \\
\text { Ex } 17.2
\end{gathered}
$$

Increasing and Decreasing Functions Ex 17.2 Q1(i)

We have,
$f(x)=10-6 x-2 x^{2}$
$\therefore f^{\prime}(x)=-6-4 x$
Now,
$f^{\prime}(x)=0 \Rightarrow x=-\frac{3}{2}$

The point $x=-\frac{3}{2}$ divides the real line into two disjoint intervals i.e., $\left(-\infty,-\frac{3}{2}\right)$ and $\left(-\frac{3}{2}, \infty\right)$.

In interval $\left(-\infty,-\frac{3}{2}\right)$ i.e., when $x<-\frac{3}{2}, f^{\prime}(x)=-6-4 x<0$.
$\therefore f$ is strictly increasing for $x<-\frac{3}{2}$.

In interval $\left(-\frac{3}{2}, \infty\right)$ i.e., when $x>-\frac{3}{2}, f^{\prime}(x)=-6-4 x<0$.
$\therefore f$ is strictly decreasing for $x>-\frac{3}{2}$.

Increasing and Decreasing Functions Ex 17.2 Q1(ii)

We have,
$f(x)=x^{2}+2 x-5$
$\therefore f^{\prime}(x)=2 x+2$

Now,
$f^{\prime}(x)=0 \Rightarrow x=-1$
Point $x=-1$ divides the real line into two disjoint intervals i.e., $(-\infty,-1)$ and $(-1, \infty)$.
In interval $(-\infty,-1), f^{\prime}(x)=2 x+2<0$.
\therefore fis strictly decreasing in interval $(-\infty,-1)$.

Thus, f is strictly decreasing for $x<-1$.
In interval $(-1, \infty), f^{\prime}(x)=2 x+2>0$.
$\therefore f$ is strictly increasing in interval $(-1, \infty)$.

Thus, f is strictly increasing for $x>-1$.
Increasing and Decreasing Functions Ex 17.2 Q1(iii)
$f(x)=6-9 x-x^{2}$
$\therefore f^{\prime}(x)=-9-2 x$
Now,

$$
f^{\prime}(x)=0 \text { gives } x=-\frac{9}{2}
$$

The point $x=-\frac{9}{2}$ divides the real line into two disjoint intervals i.e., $\left(-\infty,-\frac{9}{2}\right)$ and $\left(-\frac{9}{2}, \infty\right)$.
In interval $\left(-\infty,-\frac{9}{2}\right)$ i.e., for $x<-\frac{9}{2}, f^{\prime}(x)=-9-2 x>0$.
$\therefore f$ is strictly increasing for $x<-\frac{9}{2}$.
In interval $\left(-\frac{9}{2}, \infty\right)$ i.e., for $x>-\frac{9}{2}, f^{\prime}(x)=-9-2 x<0$.
$\therefore f$ is strictly decreasing for $x>-\frac{9}{2}$.

Increasing and Decreasing Functions Ex 17.2 Q1(iv)

$$
\begin{aligned}
& f(x)=2 x^{3}-12 x^{2}+18 x+15 \\
& \therefore \quad f^{\prime}(x)= \\
& =6 x^{2}-24 x+18 \\
& \\
& =6\left(x^{2}-4 x+3\right) \\
& \\
& =6(x-3)(x-1)
\end{aligned}
$$

Critical point

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
\Rightarrow & 6(x-3)(x-1)=0 \\
\Rightarrow \quad & x=3,1
\end{aligned}
$$

Clearly, $f(x)>0$ if $x<1$ and $x>3$ and $f(x)<0$ if $1<x<3$

Thus, $f(x)$ increases on $(-\infty, 1) \cup(3, \infty)$, decreases on $(1,3)$.

Increasing and Decreasing Functions Ex 17.2 Q1(v)

We have,

$$
\begin{aligned}
& f(x)=5+36 x+3 x^{2}-2 x^{3} \\
& f^{\prime}(x)=36+6 x-6 x^{2}
\end{aligned}
$$

Critical point

$$
\begin{array}{ll}
& f^{\prime}(x)=0 \\
\Rightarrow & 36+6 x-6 x^{2}=0 \\
\Rightarrow & -6\left(x^{2}-x-6\right)=0 \\
\Rightarrow & (x-3)(x+2)=0 \\
\therefore & x=3,-2
\end{array}
$$

Clearly, $f^{\prime}(x)>0$ if $-2<x<3$ Also $f^{\prime}(x)<0$ if $x<-2$ and $x>3$

Thus, increases if $x \in(-2,3)$, decreases if $x \in(-\infty,-2) \cup(3, \infty)$

Increasing and Decreasing Functions Ex 17.2 Q1(vi)

We have,

$$
\begin{aligned}
& f(x)=8+36 x+3 x^{2}-2 x^{3} \\
& f^{\prime}(x)=36+6 x-6 x^{2}
\end{aligned}
$$

Critical points

$$
f^{\prime}(x)=0
$$

$\Rightarrow \quad 6\left(6+x-x^{2}\right)=0$
$\Rightarrow \quad(3-x)(2+x)=0$
$\Rightarrow \quad x=3,-2$

Clearly, $f^{\prime}(x)>0$ if $-2<x<3$ and $f^{\prime}(x)<0$ if $-\infty<x<-2$ and $3<x<\infty$

Thus, increases in $(-2,3)$, decreases in $(-\infty,-2) \cup(3, \infty)$

Increasing and Decreasing Functions Ex 17.2 Q1(vii)

We have,

$$
\begin{aligned}
& f(x)=5 x^{3}-15 x^{2}-120 x+3 \\
& f^{\prime}(x)=15 x^{2}-30 x-120
\end{aligned}
$$

Critical points

$$
f^{\prime}(x)=0
$$

$\Rightarrow \quad 15\left(x^{2}-2 x-8\right)=0$
$\Rightarrow \quad(x-4)(x+2)=0$
$\Rightarrow \quad x=4,-2$

Clearly, $f^{\prime}(x)>0$ if $x<-2$ and $x>4$ and $f^{\prime}(x)<0$ if $-2<x<4$

Thus, increases in $(-\infty,-2) \cup(4, \infty)$, decreases in $(-2,4)$

$$
\begin{aligned}
& f(x)=x^{3}-6 x^{2}-36 x+2 \\
& \therefore \quad f^{\prime}(x)=3 x^{2}-12 x-36
\end{aligned}
$$

Critical point

$$
f^{\prime}(x)=0
$$

$$
\Rightarrow \quad 3\left(x^{2}-4 x-12\right)=0
$$

$$
\Rightarrow \quad(x-6)(x+2)=0
$$

$$
\Rightarrow \quad x=6,-2
$$

Clearly, $f^{\prime}(x)>0$ if $x<-2$ and $x>6$

$$
f^{\prime}(x)<0 \text { if }-2 x<x<6
$$

Thus, increases in $(-\infty,-2) \cup(6, \infty)$, decreases in $(-2,6)$.

Increasing and Decreasing Functions Ex 17.2 Q1(ix)

We have,

$$
\begin{aligned}
& f(x)=2 x^{3}-15 x^{2}+36 x+1 \\
& f^{\prime}(x)=6 x^{2}-30 x+36
\end{aligned}
$$

Critical points

$$
\begin{array}{ll}
\Rightarrow & 6\left(x^{2}-5 x+6\right)=0 \\
\Rightarrow & (x-3)(x-2)=0 \\
\Rightarrow & x=3,2
\end{array}
$$

Clearly, $f^{\prime}(x)>0$ if $x<2$ and $x>3$

$$
f^{\prime}(x)<0 \text { if } 2<x<3
$$

Thus, $f(x)$ increases in $(-\infty, 2) \cup(3, \infty)$, decreases in $(2,3)$.

Increasing and Decreasing Functions Ex 17.2 Q1(x)

We have,

$$
\begin{aligned}
& f(x)=2 x^{3}+9 x^{2}+12 x-1 \\
& f^{\prime}(x)=6 x^{2}+18 x+12
\end{aligned}
$$

Critical ponts

$$
f^{\prime}(x)=0
$$

$\Rightarrow \quad 6\left(x^{2}+3 x+2\right)=0$
$\Rightarrow \quad(x+2)(x+1)=0$
$\Rightarrow \quad x=-2,-1$
Increasing and Decreasing Functions Ex 17.2 Q1(xi)

We have,

$$
\begin{aligned}
& f(x)=2 x^{3}-9 x^{2}+12 x-5 \\
\therefore \quad & f^{\prime}(x)=6 x^{2}-18 x+12
\end{aligned}
$$

Critical points

$$
f^{\prime}(x)=0
$$

$\Rightarrow \quad 6\left(x^{2}-3 x+2\right)=0$
$\Rightarrow \quad(x-2)(x-1)=0$
$\Rightarrow \quad x=2,1$

Clearly, $f^{\prime}(x)>0$ if $x<1$ and $x>2$
$f^{\prime}(x)<0$ if $1<x<2$

Thus, $f(x)$ increases in $(-\infty, 1) \cup(2, \infty)$, decreases in $(1,2)$.
Increasing and Decreasing Functions Ex 17.2 Q1(xii)
We have,

$$
\begin{aligned}
& f(x)=6+12 x+3 x^{2}-2 x^{3} \\
\therefore \quad & f^{\prime}(x)=12+6 x-6 x^{2}
\end{aligned}
$$

Critical points

$$
\begin{array}{ll}
& f^{\prime}(x)=0 \\
\Rightarrow & 6\left(2+x-x^{2}\right)=0 \\
\Rightarrow & (2-x)(1+x)=0 \\
\Rightarrow & x=2,-1
\end{array}
$$

Clearly, $f^{\prime}(x)>0$ if $-1<x<2$

$$
f^{\prime}(x)<0 \text { if } x<-1 \text { and } x>2 .
$$

Thus, $f(x)$ increases in $(-1,2)$, decreases in $(-\infty,-1) \cup(2, \infty)$.

Increasing and Decreasing Functions Ex 17.2 Q1(xiii)

We have,

$$
\begin{aligned}
& f(x)=2 x^{3}-24 x+107 \\
\therefore \quad & f^{\prime}(x)=6 x^{2}-24
\end{aligned}
$$

Critical points

$$
f^{\prime}(x)=0
$$

$\Rightarrow \quad 6\left(x^{2}-4\right)=0$
$\Rightarrow \quad(x-2)(x+2)=0$
$\Rightarrow \quad x=2,-2$

Clearly, $f^{\prime}(x)>0$ if $x<-2$ and $x>2$
$f^{\prime}(x)<0$ if $-2<x<2$

Thus, $f(x)$ increases in $(-\infty,-2) \cup(2, \infty)$, decreases in $(-2,2)$.

We have

$$
\begin{aligned}
f(x) & =-2 x^{3}-9 x^{2}-12 x+1 \\
f^{\prime}(x) & =-6 x^{2}-18 x-12
\end{aligned}
$$

Critical points

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
-6 x^{2}-18 x-12 & =0 \\
x^{2}+3 x+2 & =0 \\
(x+2)(x+1) & =0 \\
x & =-2,-1
\end{aligned}
$$

Clearly, $f^{\prime}(x)>0$ if $x<-1$ and $x<-2$

$$
f^{\prime}(x)<0 \text { if }-2<x<-1
$$

Thus, $f(x)$ is increasing in $(-2,-1)$, decreasing in $(-\infty,-2) \cup(-1, \infty)$.

Increasing and Decreasing Functions Ex 17.2 Q1(xv)

We have,

$$
\begin{array}{ll}
& f(x)=(x-1)(x-2)^{2} \\
\therefore \quad & f^{\prime}(x)=(x-2)^{2}+2(x-1)(x-2) \\
& f^{\prime}(x)=(x-2)(x-2+2 x-2) \\
\Rightarrow \quad & f^{\prime}(x)=(x-2)(3 x-4)
\end{array}
$$

Critical points

$$
f^{\prime}(x)=0
$$

$\Rightarrow \quad(x-2)(3 x-4)=0$
$\Rightarrow \quad x=2, \frac{4}{3}$

Clearly, $f^{\prime}(x)>0$ if $x<\frac{4}{3}$ and $x>2$

$$
f^{\prime}(x)<0 \text { if } \frac{4}{3}<x<2
$$

Thus, $f(x)$ increases in $\left(-\infty, \frac{4}{3}\right) \cup(2, \infty)$, decreases in $\left(\frac{4}{3}, 2\right)$.
Increasing and Decreasing Functions Ex 17.2 Q1(xvi)
We have,

$$
\begin{aligned}
& f(x)=x^{3}-12 x^{2}+36 x+17 \\
\therefore \quad & f^{\prime}(x)=3 x^{2}-24 x+36
\end{aligned}
$$

Critical points

$$
f^{\prime}(x)=0
$$

$\Rightarrow \quad 3\left(x^{2}-8 x+12\right)=0$
$\Rightarrow \quad(x-6)(x-2)=0$
$\Rightarrow \quad x=6,2$

Clearly, $f^{\prime}(x)>0$ if $x<2$ and $x>6$

$$
f^{\prime}(x)<0 \text { if } 2<x<6
$$

Thus, $f(x)$ increases in $(-\infty, 2) \cup(6, \infty)$, decreases in $(2,6)$.
Increasing and Decreasing Functions Ex 17.2 Q1(xvii)

We have

$$
\begin{aligned}
f(x) & =2 x^{3}-24 x+7 \\
f^{\prime}(x) & =6 x^{2}-24
\end{aligned}
$$

Critical points

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
6 x^{2}-24 & =0 \\
6 x^{2} & =24 \\
x^{2} & =4 \\
x & =2,-2
\end{aligned}
$$

Clearly, $f^{\prime}(x)>0$ if $x>2$ and $x<-2$

$$
f^{\prime}(x)<0 \text { if }-2 \leq x \leq 2
$$

Thus, $f(x)$ is increasing in $(-\infty,-2) \cup(2, \infty)$, decreasing in $(-2,2)$.

Increasing and Decreasing Functions Ex 17.2 Q1(xviii)

We have $f(x)=\frac{3}{10} x^{4}-\frac{4}{5} x^{3}-3 x^{2}+\frac{36}{5} x+11$
$\therefore \quad f^{\prime}(x)=\frac{3}{10}\left(4 x^{3}\right)-\frac{4}{5}\left(3 x^{2}\right)-3(2 x)+\frac{36}{5}$

$$
=\frac{6}{5}(x-1)(x+2)(x-3)
$$

Now $f^{\prime}(x)=0$
$\Rightarrow \frac{6}{5}(x-1)(x+2)(x-3)=0$
$\Rightarrow x=1,-2$ or 3
The points $x=1,-2$ and 3 divide the number line into four disjoint int ervals namely, $(-\infty,-2),(-2,1),(1,3)$ and $(3, \infty)$.
Consider the interval $(-\infty,-2)$, i.e $-\infty<x<-2$
In this case, we have $x-1<0, x+2<0$ and $x-3<0$
$\therefore f^{\prime}(x)<0$ when $-\infty<x<-2$
Thus, the function f is strictly decreasing in $(-\infty,-2)$
Consider the interval $(-2,1)$, i.e $-2<x<1$
In this case, we have $x-1<0, x+2>0$ and $x-3<0$
$\therefore \quad f^{\prime}(x)>0$ when $-2<x<1$
Thus, the function f is strictly increasing in $(-2,1)$
Now, consider the int erval $(1,3)$, i.e $1<x<3$
In this case, we have $x-1>0, x+2>0$ and $x-3<0$
$\therefore f^{\prime}(x)<0$ when $1<x<3$
Thus, the function f is strictly decreasing in $(1,3)$
Finally consider the int erval $(3, \infty)$, i.e $3<x<\infty$
In this case, we have $x-1>0, x+2>0$ and $x-3>0$
$\therefore f^{\prime}(x)>0$ when $x>3$
Thus, the function f is strictly increasing in $(3, \infty)$
Increasing and Decreasing Functions Ex 17.2 Q1(xix)

We have,

$$
\begin{aligned}
& f(x)=x^{4}-4 x \\
\therefore \quad & f^{\prime}(x)=4 x^{3}-4
\end{aligned}
$$

Critical points,

$$
\begin{array}{ll}
& f^{\prime}(x)=0 \\
\Rightarrow \quad & 4\left(x^{3}-1\right)=0 \\
\Rightarrow \quad & x=1
\end{array}
$$

Clearly, $f^{\prime}(x)>0$ if $x>1$

$$
f^{\prime}(x)<0 \text { if } x<1
$$

Thus, $f(x)$ increases in $(1, \infty)$, decreases in $(-\infty, 1)$.
Increasing and Decreasing Functions Ex 17.2 Q1(xx)

$$
\begin{aligned}
& f(x)=\frac{x^{4}}{4}+\frac{2}{3} x^{3}-\frac{5}{2} x^{2}-6 x+7 \\
& \therefore \quad f^{\prime}(x)=x^{3}+2 x^{2}-5 x-6
\end{aligned}
$$

Critical points

$$
\begin{array}{ll}
& f^{\prime}(x)=0 \\
\Rightarrow & x^{3}+2 x^{2}-5 x-6=0 \\
\Rightarrow & (x+1)(x+3)(x-2)=0 \\
\Rightarrow & x=-1,-3,2
\end{array}
$$

Clearly, $f^{\prime}(x)>0$ if $-3<x<-1$ and $x>2$

$$
f^{\prime}(x)<0 \text { if } x<-3 \text { and }-1<x<2
$$

Thus, $f(x)$ increases in $(-3,-1) \cup(2, \infty)$, decreases in $(-\infty,-3) \cup(-1,2)$.

Increasing and Decreasing Functions Ex 17.2 Q1(xxi)

$f(x)=x^{4}-4 x^{3}+4 x^{2}+15$
$\therefore \quad f^{\prime}(x)=4 x^{3}-12 x^{2}+8 x$
Critical points

$$
\begin{array}{ll}
& f^{\prime}(x)=0 \\
\Rightarrow & 4 x\left(x^{2}-3 x+2\right)=0 \\
\Rightarrow & 4 x(x-2)(x-1)=0 \\
\Rightarrow \quad & x=0,2,1
\end{array}
$$

Clealry, $f^{\prime}(x)>0$ if $0<x<1$ and $x>2$

$$
f^{\prime}(x)<0 \text { if } x<0 \text { and } 1<x<2
$$

Thus, $f(x)$ increases in $(0,1) \cup(2, \infty)$, decreases in $(-\infty, 0) \cup(1,2)$.

We have,

$$
\begin{aligned}
& f(x)=5 x^{\frac{3}{2}}-3 x^{\frac{5}{2}} ; x>0 \\
& f^{\prime}(x)=\frac{15}{2} x^{\frac{1}{2}}-\frac{15}{2} x^{\frac{3}{2}}
\end{aligned}
$$

Critical points

$$
\begin{array}{ll}
& f^{\prime}(x)=0 \\
\Rightarrow & \frac{15}{2} x^{\frac{1}{2}}-\frac{15}{2} x^{\frac{3}{2}}=0 \\
\Rightarrow & \frac{15}{2} x^{\frac{1}{2}}(1-x)=0 \\
\Rightarrow & x=0,1
\end{array}
$$

Clearly, $f^{\prime}(x)>0$ if $0<x<1$ and $f^{\prime}(x)<0$ if $x>1$

Thus, $f(x)$ increases in $(0,1)$, decreases in $(1, \infty)$.

Increasing and Decreasing Functions Ex 17.2 Q1(xxiii)

We have,

$$
\begin{aligned}
& f(x)=x^{8}+6 x^{2} \\
\therefore \quad & f^{\prime}(x)=8 x^{7}+12 x
\end{aligned}
$$

Critical points

$$
f^{\prime}(x)=0
$$

$$
\Rightarrow \quad 8 x^{7}+12 x=0
$$

$$
\Rightarrow \quad 4 x\left(2 x^{6}+3\right)=0
$$

$$
\Rightarrow \quad x=0
$$

Clearly, $f^{\prime}(x)>0$ if $x>0$

$$
f^{\prime}(x)<0 \text { if } x<0
$$

Thus, $f(x)$ increases in $(0, \infty)$, decreases in $(-\infty, 0)$.

Increasing and Decreasing Functions Ex 17.2 Q1(xxiv)

We have,

$$
\begin{aligned}
& f(x)=x^{3}-6 x^{2}+9 x+15 \\
& f^{\prime}(x)=3 x^{2}-12 x+9
\end{aligned}
$$

Critical points

$$
f^{\prime}(x)=0
$$

$$
\Rightarrow \quad 3\left(x^{2}-4 x+3\right)=0
$$

$$
\Rightarrow \quad(x-3)(x-1)=0
$$

$$
\Rightarrow \quad x=3,1
$$

Clearly, $f^{\prime}(x)>0$ if $x<1$ and $x>3$

$$
f^{\prime}(x)<0 \text { if } 1<x<3
$$

Thus, $f(x)$ increases in $(-\infty, 1) \cup(3, \infty)$, decreases in $(1,3)$.

We have,
$y=[x(x-2)]^{2}=\left[x^{2}-2 x\right]^{2}$
$\therefore \frac{d y}{d x}=y^{\prime}=2\left(x^{2}-2 x\right)(2 x-2)=4 x(x-2)(x-1)$
$\therefore \frac{d y}{d x}=0 \Rightarrow x=0, x=2, x=1$.
The points $x=0, x=1$, and $x=2$ divide the real line into four disjoint intervals i.e., $(-\infty, 0)$, $(0,1)(1,2)$, and $(2, \infty)$.

In intervals $(-\infty, 0)$ and $(1,2), \frac{d y}{d x}<0$.
$\therefore y$ is strictly decreasing in intervals $(-\infty, 0)$ and $(1,2)$.
However, in intervals $(0,1)$ and $(2, \infty), \frac{d y}{d x}>0$.
$\therefore y$ is strictly increasing in intervals $(0,1)$ and $(2, \infty)$.
$\therefore y$ is strictly increasing for $0<x<1$ and $x>2$.

Increasing and Decreasing Functions Ex 17.2 Q1(xxvi)

Consider the given function

$$
\begin{aligned}
& f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5 \\
& \Rightarrow f^{\prime}(x)=12 x^{3}-12 x^{2}-24 x \\
& \Rightarrow f^{\prime}(x)=12 x\left(x^{2}-x-2\right) \\
& \Rightarrow f^{\prime}(x)=12 x(x+1)(x-2)
\end{aligned}
$$

For $f(x)$ to be increasing, we must have,
$f^{\prime}(x)>0$
$\Rightarrow 12 x(x+1)(x-2)>0$
$\Rightarrow x(x+1)(x-2)>0$
$\Rightarrow-1<x<0$ or $2<x<\infty$
$\Rightarrow x \in(-1,0) \cup(2, \infty)$
So, $f(x)$ is increasing in $(-1,0) \cup(2, \infty)$
For $f(x)$ to be decreasing, we must have,
$f^{\prime}(x)<0$
$\Rightarrow 12 x(x+1)(x-2)<0$
$\Rightarrow x(x+1)(x-2)<0$
$\Rightarrow-\infty<x<-1$ or $0<x<2$
$\Rightarrow x \in(-\infty,-1) \cup(0,2)$
So, $f(x)$ is decreasing in $(-\infty,-1) \cup(0,2)$

Increasing and Decreasing Functions Ex 17.2 Q1(xxvii)

Consider the given function

$$
\begin{aligned}
& f(x)=\frac{3}{2} x^{4}-4 x^{3}-45 x^{2}+51 \\
& \Rightarrow f^{\prime}(x)=4 \times \frac{3}{2} x^{3}-12 x^{2}-90 x \\
& \Rightarrow f^{\prime}(x)=6 x^{3}-12 x^{2}-90 x \\
& \Rightarrow f^{\prime}(x)=6 x\left(x^{2}-2 x-15\right) \\
& \Rightarrow f^{\prime}(x)=6 x(x+3)(x-5)
\end{aligned}
$$

For $f(x)$ to be increasing, we must have,

$$
f^{\prime}(x)>0
$$

$$
\Rightarrow 6 x(x+3)(x-5)>0
$$

$$
\Rightarrow x(x+3)(x-5)>0
$$

$$
\Rightarrow-3<x<0 \text { or } 5<x<\infty
$$

$$
\Rightarrow x \in(-3,0) \cup(5, \infty)
$$

So, $f(x)$ is increasing in $(-3,0) \cup(5, \infty)$
For $f(x)$ to be decreasing, we must have,
$f^{\prime}(x)<0$
$\Rightarrow 6 x(x+3)(x-5)<0$
$\Rightarrow x(x+3)(x-5)<0$
$\Rightarrow-c<x<-3$ or $0<x<5$
$\Rightarrow x \in(-\infty,-3) \cup(0,5)$
So, $f(x)$ is decrea sing in $(-\infty,-3) \cup(0,5)$
Increasing and Decreasing Functions Ex 17.2 Q1(xxviii)

Consider the given function

$$
\begin{aligned}
& f(x)=\log (2+x)-\frac{2 x}{2+x}, x \in R \\
& \Rightarrow f^{\prime}(x)=\frac{1}{2+x}-\frac{(2+x) 2-2 x \times 1}{(2+x)^{2}} \\
& \Rightarrow f^{\prime}(x)=\frac{1}{2+x}-\frac{4+2 x-2 x}{(2+x)^{2}} \\
& \Rightarrow f^{\prime}(x)=\frac{1}{2+x}-\frac{4}{(2+x)^{2}} \\
& \Rightarrow f^{\prime}(x)=\frac{2+x-4}{(2+x)^{2}} \\
& \Rightarrow f^{\prime}(x)=\frac{x-2}{(2+x)^{2}}
\end{aligned}
$$

For $f(x)$ to be increasing, we must have,

$$
\begin{aligned}
& f^{\prime}(x)>0 \\
& \Rightarrow x-2>0 \\
& \Rightarrow 2<x<\infty \\
& \Rightarrow x \in(2, \infty)
\end{aligned}
$$

So, $f(x)$ i sincreasing in $(2, \infty)$
For $f(x)$ to be decreasing, we must have,

$$
\begin{aligned}
& f^{\prime}(x)<0 \\
& \Rightarrow x-2<0 \\
& \Rightarrow-\infty<x<2 \\
& \Rightarrow x \in(-\infty, 2)
\end{aligned}
$$

So, $f(x)$ is decreasing in $(-\infty, 2)$
Increasing and Decreasing Functions Ex 17.2 Q2

We have,

$$
\begin{aligned}
& f(x)=x^{2}-6 x+9 \\
\therefore \quad & f^{\prime}(x)=2 x-6
\end{aligned}
$$

Critical points

$$
\begin{array}{ll}
& f^{\prime}(x)=0 \\
\Rightarrow & 2(x-3)=0 \\
\Rightarrow & x=3
\end{array}
$$

Clearly, $f^{\prime}(x)>0$ if $x>3$

$$
f^{\prime}(x)<0 \text { if } x<3
$$

Thus, $f(x)$ increases in $(3, \infty)$, decreases in $(-\infty, 3)$

IInd part
The given equation of ourves

$$
\begin{align*}
& y=x^{2}-6 x+9 \tag{i}\\
& y=x+5 \tag{ii}
\end{align*}
$$

Slope of (i)

$$
m_{1}=\frac{d y}{d x}=2 x-6
$$

Slope of (ii)

$$
m_{2}=1
$$

Given that slope of normal to (i) is parallelt to (ii)
$\therefore \quad \frac{-1}{2 x-6}=1$
$\Rightarrow \quad 2 x-6=-1$
$\Rightarrow \quad x=\frac{5}{2}$

From (i)

$$
\begin{aligned}
y & =\frac{25}{4}-15+9 \\
& =\frac{25}{4}-6 \\
& =\frac{1}{4}
\end{aligned}
$$

Thus, the required point is $\left(\frac{5}{2}, \frac{1}{4}\right)$.

We have,

$$
\begin{aligned}
& f(x)=\sin x-\cos x, \quad 0<x<2 \pi \\
& f^{\prime}(x)=\cos x+\sin x
\end{aligned}
$$

Critical points

$$
\begin{array}{ll}
& f^{\prime}(x)=0 \\
\Rightarrow \quad & \cos x+\sin x=0 \\
\Rightarrow \quad & \tan x=-1 \\
\Rightarrow \quad & x=\frac{3 \pi}{4}, \frac{7 \pi}{4}
\end{array}
$$

Clearly, $f^{\prime}(x)>0$ if $0<x<\frac{3 \pi}{4}$ and $\frac{7 \pi}{4}<x<2 \pi$

$$
f^{\prime}(x)<0 \text { if } \frac{3 \pi}{4}<x<\frac{7 \pi}{4}
$$

Thus, $f(x)$ increases in $\left(0, \frac{3 \pi}{4}\right) \cup\left(\frac{7 \pi}{4}, 2 \pi\right)$, decreases in $\left(\frac{3 \pi}{4}, \frac{7 \pi}{4}\right)$.

Increasing and Decreasing Functions Ex 17.2 Q4

We have,

$$
\begin{aligned}
& f(x)=e^{2 x} \\
& f^{\prime}(x)=2 e^{2 x}
\end{aligned}
$$

We know that

$$
\begin{array}{ll}
& f(x) \text { is increasing if } f^{\prime}(x)>0 \\
\Rightarrow \quad & 2 e^{2 x}>0 \\
\Rightarrow \quad & e^{2 x}>0
\end{array}
$$

Since, the value of e lies between 2 and 3
So, any power ofe will be greater than zero.

Thus, $f(x)$ is increasing on R.
Increasing and Decreasing Functions Ex 17.2 Q5

We have,

$$
\begin{aligned}
& f(x)=e^{\frac{1}{x}}, \quad x \neq 0 \\
& f^{\prime}(x)=e^{\frac{1}{x}} \times\left(\frac{-1}{x^{2}}\right) \\
& f^{\prime}(x)=-\frac{e^{\frac{1}{x}}}{x^{2}}
\end{aligned}
$$

Now,

$$
x \in R, x \neq 0
$$

$\Rightarrow \quad \frac{1}{x^{2}}>0$ and $e^{\frac{1}{x}}>0$
$\Rightarrow \quad \frac{e^{\frac{1}{x}}}{x^{2}}>0$
$\Rightarrow \quad-\frac{e^{\frac{1}{x}}}{x^{2}}<0$
$\Rightarrow \quad f^{\prime}(x)<0$

Hence, $f(x)$ is a decreasing function for all $x \neq 0$.

Increasing and Decreasing Functions Ex 17.2 Q6

We have,

$$
\begin{array}{ll}
& f(x)=\log _{8} x, 0<a<1 \\
\Rightarrow \quad & f^{\prime}(x)=\frac{1}{x \log a} \\
\therefore \quad & 0<a<1 \\
\Rightarrow \quad & \log a<0
\end{array}
$$

Now,

$$
\begin{aligned}
& x>0 \\
\Rightarrow \quad & \frac{1}{x}>0 \\
\Rightarrow & \frac{1}{x \log a}<0 \\
\Rightarrow \quad & f^{\prime}(x)<0
\end{aligned}
$$

Thus, $f(x)$ is a degreasing function for $x>0$.

The given function is $f(x)=\sin x$.
$\therefore f^{\prime}(x)=\cos x$
(a) Since for each $x \in\left(0, \frac{\pi}{2}\right), \cos x>0$, we have $f^{\prime}(x)>0$.

Hence, f is strictly increasing in $\left(0, \frac{\pi}{2}\right)$.
(b) Since for each $x \in\left(\frac{\pi}{2}, \pi\right), \cos x<0$, we have $f^{\prime}(x)<0$.

Hence, f is strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$.
(c) From the results obtained in (a) and (b), it is clear that f is neither increasing nor decreasing in $(0, \pi)$.

Increasing and Decreasing Functions Ex 17.2 Q8

We have,
$f(x)=\log \sin x$
$\therefore f^{\prime}(x)=\frac{1}{\sin x} \cos x=\cot x$
In interval $\left(0, \frac{\pi}{2}\right), f^{\prime}(x)=\cot x>0$.
$\therefore f$ is strictly increasing in $\left(0, \frac{\pi}{2}\right)$.
In interval $\left(\frac{\pi}{2}, \pi\right), f^{\prime}(x)=\cot x<0$.
$\therefore f$ is strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$.

We have,

$$
\begin{aligned}
& f(x)=x-\sin x \\
\therefore \quad & f^{\prime}(x)=1-\cos x
\end{aligned}
$$

Now,

$$
\begin{array}{ll}
& x \in R \\
\Rightarrow & -1<\cos x<1 \\
\Rightarrow & -1>\cos x>0 \\
\Rightarrow & f^{\prime}(x)>0
\end{array}
$$

Hence, $f(x)$ is increasing for all $x \in R$.
Increasing and Decreasing Functions Ex 17.2 Q10
We have,

$$
\begin{aligned}
f(x) & =x^{3}-15 x^{2}+75 x-50 \\
\therefore \quad f^{\prime}(x) & =3 x^{2}-30 x+75 \\
\Rightarrow \quad f^{\prime}(x) & =3\left(x^{2}-10 x+25\right) \\
& =3(x-5)^{2}
\end{aligned}
$$

Now,

$$
\begin{array}{ll}
& x \in R \\
\Rightarrow & (x-5)^{2}>0 \\
\Rightarrow & 3(x-5)^{2}>0 \\
\Rightarrow \quad & f^{\prime}(x)>0
\end{array}
$$

Hence, $f(x)$ is an increasing function for all $x \in R$.
Increasing and Decreasing Functions Ex 17.2 Q11
We have,

$$
\begin{array}{ll}
& f(x)=\cos ^{2} x \\
\therefore & f^{\prime}(x)=2 \cos x(-\sin x) \\
\Rightarrow & f^{\prime}(x)=-2 \sin x \cos x \\
\Rightarrow & f^{\prime}(x)=-\sin 2 x
\end{array}
$$

Now,

$$
\begin{array}{ll}
& x \in\left(0, \frac{\pi}{2}\right) \\
\Rightarrow & 2 x \in(0, \pi) \\
\Rightarrow & \sin 2 x>0 \text { when } 2 x \in(0, \pi) \\
\Rightarrow & -\sin 2 x<0 \\
\Rightarrow & f^{\prime}(x)<0
\end{array}
$$

Hence, $f(x)$ is a decreasing function on $\left(0, \frac{\pi}{2}\right)$.

We have

$$
\begin{aligned}
f(x) & =\sin x \\
f^{\prime}(x) & =\cos x
\end{aligned}
$$

Now,

$$
\begin{aligned}
& x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\
\Rightarrow & \cos x>0 \\
\Rightarrow & f^{\prime}(x)>0
\end{aligned}
$$

Therefore, $f(x)=\sin x$ is an increasing function on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Increasing and Decreasing Functions Ex 17.2 Q13

We have,

$$
\begin{aligned}
& f(x)=\cos x \\
& f^{\prime}(x)=-\sin x
\end{aligned}
$$

Now,

$$
\begin{array}{ll}
& \text { If } x \in(0, \pi) \\
\Rightarrow \quad & \sin x>0 \\
\Rightarrow \quad & -\sin x<0
\end{array}
$$

Hence, $f(x)$ is decreasing function on $(0, \pi)$
If $x \in(-\pi, 0)$
$\Rightarrow \quad \sin x<0 \quad[\because \sin (-\theta)=-\sin \theta]$
$\Rightarrow \quad-\sin x>0$

Hence, $f(x)$ is increasing function on ($-\pi, 0$)
If $x \in(-\pi, \pi)$
Thus, $\sin x>0$ for $x \in(0, \pi)$
and $\sin x<0$ for $x \in(-\pi, 0)$
$\Rightarrow \quad-\sin x<0$ for $x \in(0, \pi)$
and $\quad-\sin x>0$ for $x \in(-\pi, 0)$
Hence, $f(x)$ is neither increasing nor decreasing on ($-\pi, \pi$).

Increasing and Decreasing Functions Ex 17.2 Q14

We have,

$$
\begin{aligned}
& f(x)=\tan x \\
\therefore \quad & f^{\prime}(x)=\sec ^{2} x
\end{aligned}
$$

Now,

$$
\begin{array}{ll}
& x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \\
\Rightarrow \quad & \sec ^{2} x>0 \\
\Rightarrow \quad & f^{\prime}(x)>0
\end{array}
$$

Hence, $f(x)$ is increasing function on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.

We have,

$$
\begin{aligned}
f(x) & =\tan ^{-1}(\sin x+\cos x) \\
\therefore \quad f^{\prime}(x) & =\frac{1}{1+(\sin x+\cos x)^{2}} \times(\cos x-\sin x) \\
& =\frac{\cos x-\sin x}{1+\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x} \\
& =\frac{\cos x-\sin x}{2(1+\sin x \cos x)}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& x \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right) \\
\Rightarrow \quad & \cos x-\sin x<0 \\
\Rightarrow \quad & \frac{\cos x-\sin x}{2(1+\sin x \cos x)}<0 \quad[\because 2(1+\sin x \cos x)>0] \\
\Rightarrow \quad & f^{\prime}(x)<0
\end{aligned}
$$

Hence, $f(x)$ is decreasing function on $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$.

Increasing and Decreasing Functions Ex 17.2 Q16

We have,

$$
\begin{array}{ll}
& f(x)=\sin \left(2 x+\frac{\pi}{4}\right) \\
\therefore & f^{\prime}(x)=\cos \left(2 x+\frac{\pi}{4}\right) \times 2 \\
\therefore & f^{\prime}(x)=2 \cos \left(2 x+\frac{\pi}{4}\right)
\end{array}
$$

Now,

$$
\begin{array}{ll}
& x \in\left(\frac{3 \pi}{8}, \frac{5 \pi}{8}\right) \\
\Rightarrow & \frac{3 \pi}{8}<x<\frac{5 \pi}{8} \\
\Rightarrow & \frac{3 \pi}{4}<2 x<\frac{5 \pi}{4} \\
\Rightarrow \quad & \pi<2 x<\frac{\pi}{4}<\frac{3 \pi}{2} \\
\Rightarrow \quad & 2 x+\frac{\pi}{4} \text { lies in IIIrd quadrant } \\
\Rightarrow \quad & \cos \left(2 x+\frac{\pi}{4}\right)<0 \\
\Rightarrow \quad & 2 \cos \left(2 x+\frac{\pi}{4}\right)<0 \\
\Rightarrow & f^{\prime}(x)<0
\end{array}
$$

Hence, $f(x)$ is decreasing on $\left(\frac{3 \pi}{8}, \frac{5 \pi}{8}\right)$.

We have,

$$
\begin{aligned}
f(x) & =\tan x-4 x \\
f^{\prime}(x) & =\sec ^{2} x-4 \\
& =\frac{1-4 \cos ^{2} x}{\cos ^{2} x} \\
& =\frac{(1+2 \cos x)(1-2 \cos x)}{\cos ^{2} x} \\
& =4 \sec ^{2} x\left(\frac{1}{2}+\cos x\right)\left(\frac{1}{2}-\cos x\right)
\end{aligned}
$$

Now,

$$
\begin{array}{ll}
& x \in\left(-\frac{\pi}{3}, \frac{\pi}{3}\right) \\
\Rightarrow & -\frac{\pi}{3}<x<\frac{\pi}{3} \\
\Rightarrow \quad & \cos x>\frac{1}{2} \\
\Rightarrow \quad & \left(\frac{1}{2}-\cos x\right)<0 \\
\Rightarrow \quad & 4 \sec ^{2} x\left(\frac{1}{2}+\cos x\right)\left(\frac{1}{2}-\cos x\right)<0 \\
\Rightarrow \quad & f^{\prime}(x)<0
\end{array}
$$

Hence, $f(x)$ is decreasing function on $\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$.

Increasing and Decreasing Functions Ex 17.2 Q18

We have,

$$
\begin{array}{ll}
& f(x)=(x-1) e^{x}+1 \\
\therefore \quad & f^{\prime}(x)=e^{x}+(x-1) e^{x} \\
\Rightarrow \quad & f^{\prime}(x)=e^{x}(1+x-1)=x e^{x}
\end{array}
$$

Now,

$$
\begin{array}{ll}
& x>0 \\
\Rightarrow & e^{x}>0 \\
\Rightarrow & x e^{x}>0 \\
\Rightarrow & f^{\prime}(x)>0
\end{array}
$$

Hence, $f(x)$ is an increasing function for all $x>0$.

Increasing and Decreasing Functions Ex 17.2 Q19

We have,

$$
\begin{array}{ll}
& f(x)=x^{2}-x+1 \\
\therefore \quad & f^{\prime} x=2 x-1
\end{array}
$$

Now,
$\begin{array}{ll} & x \in(0,1) \\ \Rightarrow \quad & 2 x-1>0 \text { if } x>\frac{1}{2}\end{array}$
and $\quad 2 x-1<0$ if $x<\frac{1}{2}$
$\Rightarrow \quad f^{\prime}(x)>0$ if $x>\frac{1}{2}$
and $\quad f^{\prime}(x)<0$ if $x<\frac{1}{2}$

Thus, $f(x)$ is neither increasing nor decreasing on $(0,1)$.

Increasing and Decreasing Functions Ex 17.2 Q20

We have,

$$
\begin{aligned}
f(x) & =x^{9}+4 x^{7}+11 \\
f^{\prime}(x) & =9 x^{8}+28 x^{6} \\
& =x^{6}\left(9 x^{2}+28\right)
\end{aligned}
$$

Now,

$$
x \in R
$$

$\Rightarrow \quad x^{6}>0$ and $9 x^{2}+28>0$
$\Rightarrow \quad x^{6}\left(9 x^{2}+28\right)>0$
$\Rightarrow \quad f^{\prime}(x)>0$

Thus, $f(x)$ is an increasing function for $x \in R$.

Increasing and Decreasing Functions Ex 17.2 Q21

We have,

$$
\begin{aligned}
f(x) & =x^{3}-6 x^{2}+12 x-18 \\
\therefore \quad f^{\prime}(x) & =3 x^{2}-12 x+12 \\
& =3\left(x^{2}-4 x+4\right) \\
& =3(x-2)^{2}
\end{aligned}
$$

Now,

$$
\begin{array}{ll}
& x \in R \\
\Rightarrow & (x-2)^{2}>0 \\
\Rightarrow & 3(x-2)^{2}>0 \\
\Rightarrow \quad & f^{\prime}(x)>0
\end{array}
$$

Thus, $f(x)$ is on increasing function for $x \in R$.

A function $f(x)$ is said to be increasing on $[a, b]$ if $f(x)>0$

Now, we have,

$$
\begin{aligned}
& f(x)=x^{2}-6 x+3 \\
& \therefore \quad f^{\prime}(x)=2 x-6 \\
& =2(x-3)
\end{aligned}
$$

Again,

$$
\begin{array}{ll}
& x \in[4,6] \\
\Rightarrow & 4 \leq x \leq 6 \\
\Rightarrow & 1 \leq x-3 \leq 3 \\
\Rightarrow & (x-3)>0 \\
\Rightarrow & 2(x-3)>0 \\
\Rightarrow & f^{\prime}(x)>0
\end{array}
$$

Hence, $f(x)$ is an increasing function for $x \in[4,6]$.

Increasing and Decreasing Functions Ex 17.2 Q23

We have,

$$
\begin{aligned}
f(x) & =\sin x-\cos x \\
\therefore \quad f^{\prime}(x) & =\cos x+\sin x \\
& =\sqrt{2}\left(\frac{1}{\sqrt{2}} \cos x+\frac{1}{\sqrt{2}} \sin x\right) \\
& =\sqrt{2}\left(\frac{\sin \pi}{4} \cos x+\frac{\cos \pi}{4} \sin x\right) \\
& =\sqrt{2} \sin \left(\frac{\pi}{4}+x\right)
\end{aligned}
$$

Now,

$$
\begin{array}{ll}
& x \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \\
\Rightarrow & -\frac{\pi}{4}<x<\frac{\pi}{4} \\
\Rightarrow & 0<\frac{\pi}{4}+x<\frac{\pi}{2} \\
\Rightarrow & \sin 0^{\circ}<\sin \left(\frac{\pi}{4}+x\right)<\sin \frac{\pi}{2} \\
\Rightarrow & 0<\sin \left(\frac{\pi}{4}+x\right)<1 \\
\Rightarrow & \sqrt{2} \sin \left(\frac{\pi}{4}+x\right)>0 \\
\Rightarrow & f^{\prime}(x)>0
\end{array}
$$

Hence, $f(x)$ is an increasing function on $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$.

We have,

$$
\begin{aligned}
f(x) & =\tan ^{-1} x-x \\
f^{\prime}(x) & =\frac{1}{1+x^{2}}-1 \\
& =\frac{-x^{2}}{1+x^{2}}
\end{aligned}
$$

Now,

$$
\begin{array}{ll}
& x \in R \\
\Rightarrow & x^{2}>0 \text { and } 1+x^{2}>0 \\
\Rightarrow & \frac{x^{2}}{1+x^{2}}>0 \\
\Rightarrow & \frac{-x^{2}}{1+x^{2}}<0 \\
\Rightarrow \quad & f^{\prime}(x)<0
\end{array}
$$

Hence, $f(x)$ is a decreasing function for $x \in R$.

Increasing and Decreasing Functions Ex 17.2 Q25

We have,

$$
\begin{aligned}
& f(x)=-\frac{x}{2}+\sin x \\
\therefore \quad & f^{\prime}(x)=-\frac{1}{2}+\cos x
\end{aligned}
$$

Now,

$$
\begin{array}{ll}
& x \in\left(-\frac{\pi}{3}, \frac{\pi}{3}\right) \\
\Rightarrow & -\frac{\pi}{3}<x<\frac{\pi}{3} \\
\Rightarrow & \cos \left(-\frac{\pi}{3}\right)<\cos x<\cos \frac{\pi}{3} \\
\Rightarrow & \cos \frac{\pi}{3}<\cos x<\cos \frac{\pi}{3} \\
\Rightarrow & \frac{1}{2}<\cos x<\frac{1}{2} \\
\Rightarrow & -\frac{1}{2}+\cos x+0 \\
\Rightarrow & f^{\prime}(x)>0
\end{array}
$$

Hence, $f(x)$ is an increasing function on $\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$.

We have,

$$
\begin{aligned}
f(x) & =\log (1+x)-\frac{x}{1+x} \\
f^{\prime}(x) & =\frac{1}{1+x}-\left(\frac{(1+x)-x}{(1+x)^{2}}\right) \\
& =\frac{1}{1+x}-\frac{1}{(1+x)^{2}} \\
& =\frac{x}{(1+x)^{2}}
\end{aligned}
$$

Critical points

$$
\begin{array}{ll}
& f^{\prime}(x)=0 \\
\Rightarrow \quad & \frac{x}{(1+x)^{2}}=0 \\
\Rightarrow \quad & x=0,-1
\end{array}
$$

Clearly, $f^{\prime}(x)>0$ if $x>0$
and $\quad f^{\prime}(x)<0$ if $-1<x<0$ or $x<-1$

Hence, $f(x)$ increases in $(0, \infty)$, decreases in $(-\infty,-1) \cup(-1,0)$.

Increasing and Decreasing Functions Ex 17.2 Q27

We have,

$$
\begin{aligned}
f(x) & =(x+2) e^{-x} \\
\therefore \quad f^{\prime}(x) & =e^{-x}-e^{-x}(x+2) \\
& =e^{-x}(1-x-2) \\
& =-e^{-x}(x+1)
\end{aligned}
$$

Critical points

$$
\begin{array}{ll}
& f^{\prime}(x)=0 \\
\Rightarrow \quad & -e^{-x}(x+1)=0 \\
\Rightarrow \quad & x=-1
\end{array}
$$

Clearly, $f^{\prime}(x)>0$ if $x<-1$

$$
f^{\prime}(x)<0 \text { if } x>-1
$$

Hence, $f(x)$ increases in $(-\infty,-1)$, decreases in $(-1, \infty)$

We have,

$$
\begin{aligned}
& f(x)=10^{x} \\
& f^{\prime}(x)=10^{x} \times \log 10
\end{aligned}
$$

Now,

$$
\begin{array}{ll}
& x \in R \\
\Rightarrow & 10^{x}>0 \\
\Rightarrow & 10^{x} \log 10>0 \\
\Rightarrow & f^{\prime}(x)>0
\end{array}
$$

Hence, $f(x)$ in an increasing function for all x.

Increasing and Decreasing Functions Ex 17.2 Q29

We have,

$$
\begin{aligned}
& f(x)=x-[x] \\
\therefore \quad & f^{\prime}(x)=1>0
\end{aligned}
$$

$\therefore f(x)$ in an increasing function on $(0,1)$.

Increasing and Decreasing Functions Ex 17.2 Q30

We have,

$$
\begin{aligned}
f(x) & =3 x^{5}+40 x^{3}+240 x \\
f^{\prime}(x) & =15 x^{4}+120 x^{2}+240 \\
& =15\left(x^{4}+8 x^{2}+16\right) \\
& =15\left(x^{2}+4\right)^{2}
\end{aligned}
$$

Now,

$$
x \in R
$$

$\Rightarrow \quad\left(x^{2}+4\right)^{2}>0$
$\Rightarrow \quad 15\left(x^{2}+4\right)^{2}>0$
$\Rightarrow \quad f^{\prime}(x)>0$

Hence, $f(x)$ is an increasing function for all x.

Increasing and Decreasing Functions Ex 17.2 Q31

We have,
$f(x)=\log \cos x$
$\therefore f^{\prime}(x)=\frac{1}{\cos x}(-\sin x)=-\tan x$
In interval $\left(0, \frac{\pi}{2}\right), \tan x>0 \Rightarrow-\tan x<0$.
$\therefore f^{\prime}(x)<0$ on $\left(0, \frac{\pi}{2}\right)$
$\therefore f$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$.
In interval $\left(\frac{\pi}{2}, \pi\right), \tan x<0 \Rightarrow-\tan x>0$.
$\therefore f^{\prime}(x)>0$ on $\left(\frac{\pi}{2}, \pi\right)$

Increasing and Decreasing Functions Ex 17.2 Q32

$$
\begin{aligned}
\text { Given } f(x)= & x^{3}-3 x^{2}+4 x \\
\therefore \quad f^{\prime}(x) & =3 x^{2}-6 x+4 \\
& =3\left(x^{2}-2 x+1\right)+1 \\
& =3(x-1)^{2}+1>0, \text { for all } x \in \mathbf{R}
\end{aligned}
$$

Hence, f is strictly increasing on \mathbf{R}.

Increasing and Decreasing Functions Ex 17.2 Q33

Given $f(x)=\cos x$

$$
\therefore \quad f^{\prime}(x)=-\sin x
$$

(i) Since for each $x \in(0, \pi), \sin x>0$

$$
\Rightarrow \quad f^{\prime}(x)<0
$$

So f is strictly decreasing in $(0, \pi)$
(ii) Since for each $x \in(\pi, 2 \pi), \sin x<0$

$$
\Rightarrow \quad f^{\prime}(x)>0
$$

So f is strictly increasingin $(\pi, 2 \pi)$
(iii) Clearly from (i) \& (ii) above, f is neither increasing nor decreasing in $(0,2 \pi)$
Increasing and Decreasing Functions Ex 17.2 Q34

We have,

$$
\begin{aligned}
& f(x)=x^{2}-x \sin x \\
\therefore \quad & f^{\prime}(x)=2 x-\sin x-x \cos x
\end{aligned}
$$

Now,

$$
\begin{array}{ll}
& x \in\left(0, \frac{\pi}{2}\right) \\
\Rightarrow & 0 \leq \sin x \leq 1, \quad 0 \leq \cos x \leq 1 \\
\Rightarrow & 2 x-\sin x-x \cos x>0 \\
\Rightarrow & f^{\prime}(x) \geq 0
\end{array}
$$

Hence, $f(x)$ is an increasing function on $\left(0, \frac{\pi}{2}\right)$.

Increasing and Decreasing Functions Ex 17.2 Q35

We have,

$$
\begin{aligned}
& f(x)=x^{3}-a x \\
\therefore \quad & f^{\prime}(x)=3 x^{2}-a
\end{aligned}
$$

Given that $f(x)$ is on increasing function

$$
\begin{array}{lll}
\therefore & f^{\prime}(x)>0 & \text { for all } x \in R \\
\Rightarrow & 3 x^{2}-a>0 & \text { for all } x \in R \\
\Rightarrow & a<3 x^{2} & \text { for all } x \in R
\end{array}
$$

But the last value of $3 x^{2}=0$ for $x=0$
$\therefore \quad a \leq 0$

Increasing and Decreasing Functions Ex 17.2 Q36

We have,

$$
\begin{aligned}
& f(x)=\sin x-b x+c \\
\therefore \quad & f^{\prime}(x)=\cos x-b
\end{aligned}
$$

Given that $f(x)$ is a decreasing function on R

$$
\begin{array}{lll}
\therefore & f^{\prime}(x)<0 & \text { for all } x \in R \\
\Rightarrow & \cos x-b<0 & \text { for all } x \in R \\
\Rightarrow & b>\cos x & \text { for all } x \in R
\end{array}
$$

But man value of $\cos x$ in 1
$\therefore \quad b \geq 1$
Increasing and Decreasing Functions Ex 17.2 Q37

We have,

$$
\begin{aligned}
& f(x)=x+\cos x-a \\
& f^{\prime}(x)=1-\sin x=\frac{2 \cos ^{2} x}{2}
\end{aligned}
$$

Now,

$$
x \in R
$$

$\Rightarrow \quad \frac{\cos ^{2} x}{2}>0$
$\Rightarrow \quad \frac{2 \cos ^{2} x}{2}>0$
$\Rightarrow \quad f^{\prime}(x)>0$

Hence, $f(x)$ is an increasing function for $x \in R$.

Increasing and Decreasing Functions Ex 17.2 Q38

As $f(0)=f(1)$ and f is differentiable, henoe by Rolles theorem:
$f(c)=0$ for some $c \in[0,1]$

Let us now apply LMVT (as function is twice differentiable) for point c and $x \in[0,1]$, henœe

$$
\begin{aligned}
& \frac{\left|f^{\prime}(x)-f(c)\right|}{x-c}=f^{\prime \prime}(d) \\
& \Rightarrow \frac{\left|f^{\prime}(x)-0\right|}{x-c}=f^{\prime \prime}(d) \\
& \Rightarrow \frac{\left|f^{\prime}(x)\right|}{x-c}=f^{\prime \prime}(d)
\end{aligned}
$$

As given that $\left|\rho^{\prime}(d)\right| \leq 1$ for $x \in[0,1]$
$\Rightarrow \frac{\left|f^{\prime}(x)\right|}{x-c} \leq 1$
$\Rightarrow\left|f^{\prime}(x)\right| \leq x-c$
Now as both x and c lie in $[0,1]$, hence $x-c \in(0,1)$
$\Rightarrow\left|f^{\prime}(x)\right|<1$ for all $x \in[0,1]$
Increasing and Decreasing Functions Ex 17.2 Q39(i)
Consider the given function,
$f(x)=x|x|, x \in R$
$\Rightarrow f(x)= \begin{cases}-x^{2}, & x<0 \\ x^{2}, & x>0\end{cases}$
$\Rightarrow f^{\prime}(x)= \begin{cases}-2 x, & x<0 \\ 2 x, & x>0\end{cases}$
$\Rightarrow f^{\prime}(x)>0$, for values of x
Therefore, $f(x)$ is an increasing function for all real values.

Consider the function
$f(x)=\sin x+|\sin x|, 0<x \leq 2 \pi$
$\Rightarrow f(x)= \begin{cases}2 \sin x, & 0<x<\pi \\ 0, & \pi<x<2 \pi\end{cases}$
$\Rightarrow f^{\prime}(x)= \begin{cases}2 \cos x, & 0<x<\pi \\ 0, & \pi<x<2 \pi\end{cases}$
The function $2 \cos x$ will be positive between $\left(0, \frac{\pi}{2}\right)$.
Hence the function $f(x)$ is increasing in the interval $\left(0, \frac{\pi}{2}\right)$.
The function $2 \cos x$ will be negative between $\left(\frac{\pi}{2}, \pi\right)$.
Hence the function $f(x)$ is decreasing in the interval $\left(\frac{\pi}{2}, \pi\right)$.
The value of $f^{\prime}(x)=0$, when $\pi \leq x<2 \pi$.
Therefore, the function $f(x)$ is neither increasing
nor decreasing in the interval ($\pi, 2 \pi$)
Increasing and Decreasing Functions Ex 17.2 Q39(iii)

Consider the function,

$$
\begin{aligned}
& f(x)=\sin x(1+\cos x), 0<x<\frac{\pi}{2} \\
& \Rightarrow f^{\prime}(x)=\cos x+\sin x(-\sin x)+\cos x(\cos x) \\
& \Rightarrow f^{\prime}(x)=\cos x-\sin ^{2} x+\cos ^{2} x \\
& \Rightarrow f^{\prime}(x)=\cos x+\left(\cos ^{2} x-1\right)+\cos ^{2} x \\
& \Rightarrow f^{\prime}(x)=\cos x+2 \cos ^{2} x-1 \\
& \Rightarrow f^{\prime}(x)=2 \cos ^{2} x+\cos x-1 \\
& \Rightarrow f^{\prime}(x)=2 \cos ^{2} x+2 \cos x-\cos x-1 \\
& \Rightarrow f^{\prime}(x)=2 \cos x(\operatorname{coc} x+1)-1(\cos x+1) \\
& \Rightarrow f^{\prime}(x)=(2 \cos x-1)(\cos x+1)
\end{aligned}
$$

For $f(x)$ to be increasing, we must have,

$$
\begin{aligned}
& f^{\prime}(x)>0 \\
& \Rightarrow f^{\prime}(x)=(2 \cos x-1)(\cos x+1)>0 \\
& \Rightarrow 0<x<\frac{\pi}{3} \\
& \Rightarrow x \in\left(0, \frac{\pi}{3}\right)
\end{aligned}
$$

So, $f(x)$ isincreasing in $\left(0, \frac{\pi}{3}\right)$
For $f(x)$ to be deareasing, we must have,

$$
\begin{aligned}
& f^{\prime}(x)<0 \\
& \Rightarrow f^{\prime}(x)=(2 \cos x-1)(\cos x+1)<0 \\
& \Rightarrow \frac{\pi}{3}<x<\frac{\pi}{2} \\
& \Rightarrow x \in\left(\frac{\pi}{3}, \frac{\pi}{2}\right)
\end{aligned}
$$

So, $f(x)$ is decreasing in $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$

