$$
\begin{gathered}
\text { RD Sharma } \\
\text { Solutions } \\
\text { Class } 12 \text { Maths } \\
\text { Chapter } 18 \\
\text { Ex } 18.4
\end{gathered}
$$

Maxima and Minima 18.4 Q1(i)

The given function is $f(x)=4 x-\frac{1}{2} x^{2}$.
$\therefore f^{\prime}(x)=4-\frac{1}{2}(2 x)=4-x$
Now,
$f^{\prime}(x)=0 \Rightarrow x=4$
Then, we evaluate the value of f at critical point $x=4$ and at the end points of the interval $\left[-2, \frac{9}{2}\right]$
$f(4)=16-\frac{1}{2}(16)=16-8=8$
$f(-2)=-8-\frac{1}{2}(4)=-8-2=-10$
$f\left(\frac{9}{2}\right)=4\left(\frac{9}{2}\right)-\frac{1}{2}\left(\frac{9}{2}\right)^{2}=18-\frac{81}{8}=18-10.125=7.875$
Hence, we can conclude that the absolute maximum value of f on $\left[-2, \frac{9}{2}\right]$ is 8 occurning at $x=4$ and the absolute minimum value of f on $\left[-2, \frac{9}{2}\right]$ is -10 occurring at $x=-2$.

Maxima and Minima 18.4 Q1(ii)

The given function is $f(x)=(x-1)^{2}+3$.
$\therefore f^{\prime}(x)=2(x-1)$

Now,

$$
f^{\prime}(x)=0 \Rightarrow 2(x-1)=0 \Rightarrow x=1
$$

Then, we evaluate the value of f at critical point $x=1$ and at the end points of the interval $[-3,1]$.

$$
\begin{aligned}
& f(1)=(1-1)^{2}+3=0+3=3 \\
& f(-3)=(-3-1)^{2}+3=16+3=19
\end{aligned}
$$

Hence, we can conclude that the absolute maximum value of f on $[-3,1]$ is 19 occuring at $x=$ -3 and the minimum value of f on $[-3,1]$ is 3 occurring at $x=1$.

Maxima and Minima 18.4 Q1(iii)

Let $f(x)=3 x^{4}-8 x^{3}+12 x^{2}-48 x+25$.

$$
\begin{aligned}
\therefore f^{\prime}(x) & =12 x^{3}-24 x^{2}+24 x-48 \\
& =12\left(x^{3}-2 x^{2}+2 x-4\right) \\
& =12\left[x^{2}(x-2)+2(x-2)\right] \\
& =12(x-2)\left(x^{2}+2\right)
\end{aligned}
$$

Now, $f^{\prime}(x)=0$ gives $x=2$ or $x^{2}+2=0$ for which there are no real roots.

Therefore, we consider only $x=2 \in[0,3]$.
Now, we evaluate the value of f at critical point $x=2$ and at the end points of the interval $[0,3]$.

$$
\begin{aligned}
f(2) & =3(16)-8(8)+12(4)-48(2)+25 \\
& =48-64+48-96+25 \\
& =-39 \\
f(0) & =3(0)-8(0)+12(0)-48(0)+25 \\
& =25
\end{aligned}
$$

$$
f(3)=3(81)-8(27)+12(9)-48(3)+25
$$

$$
=243-216+108-144+25=16
$$

Hence, we can conclude that the absolute maximum value of f on $[0,3]$ is 25 occurring at $x=0$ and the absolute minimum value of f at $[0,3]$ is -39 occurring at $x=2$.

Maxima and Minima 18.4 Q1(iv)

$$
\begin{aligned}
& f(x)=(x-2) \sqrt{x-1} \\
& \Rightarrow \quad f^{\prime}(x)=\sqrt{x-1}+(x-2) \frac{1}{2 \sqrt{x-1}}
\end{aligned}
$$

Put $f^{\prime}(x)=0$

$$
\begin{aligned}
& \Rightarrow \quad \sqrt{x-1}+\frac{x-2}{2 \sqrt{x-1}}=0 \\
& \Rightarrow \quad \frac{2(x-1)+(x-2)}{2 \sqrt{x-1}}=0 \\
& \Rightarrow \quad \frac{3 x-4}{2 \sqrt{x-1}}=0 \\
& \Rightarrow \quad x=\frac{4}{3}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& f(1)=0 \\
& f\left(\frac{4}{3}\right)=\left(\frac{4}{3}-2\right) \sqrt{\frac{4}{3}-1}=\frac{4-6}{3 \sqrt{3}}=\frac{-2}{3 \sqrt{3}}=\frac{-2 \sqrt{3}}{9} \\
& f(9)=(9-2) \sqrt{9-1}=7 \sqrt{8}=14 \sqrt{2}
\end{aligned}
$$

The absolute maximum value of $f(x)$ is $14 \sqrt{2}$ at $x=9$ and the absolute minimum value is $\frac{-2 \sqrt{3}}{9}$ at $x=\frac{4}{3}$.

Let $f(x)=2 x^{3}-24 x+107$.
$\therefore f^{\prime}(x)=6 x^{2}-24=6\left(x^{2}-4\right)$
Now,
$f^{\prime}(x)=0 \Rightarrow 6\left(x^{2}-4\right)=0 \Rightarrow x^{2}=4 \Rightarrow x= \pm 2$

We first consider the interval $[1,3]$.

Then, we evaluate the value of f at the critical point $x=2 \in[1,3]$ and at the end points of the interval [1,3].
$f(2)=2(8)-24(2)+107=16-48+107=75$
$f(1)=2(1)-24(1)+107=2-24+107=85$
$f(3)=2(27)-24(3)+107=54-72+107=89$
Hence, the absolute maximum value of $f(x)$ in the interval $[1,3]$ is 89 occuring at $x=3$.

Next, we consider the interval $[-3,-1]$.
Evaluate the value of f at the critical point $x=-2 \in[-3,-1]$ and at the end points of the interval [1,3].
$f(-3)=2(-27)-24(-3)+107=-54+72+107=125$
Maxima and Minima 18.4 Q3
$f(x)=\cos ^{2} x+\sin x$
$f^{\prime}(x)=2 \cos x(-\sin x)+\cos x$
$=-2 \sin x \cos x+\cos x$
Now, $f^{\prime}(x)=0$
$\Rightarrow 2 \sin x \cos x=\cos x \Rightarrow \cos x(2 \sin x-1)=0$
$\Rightarrow \sin x=\frac{1}{2}$ or $\cos x=0$
$\Rightarrow x=\frac{\pi}{6}$, or $\frac{\pi}{2}$ as $x \in[0, \pi]$

Now, evaluating the value of f at critical points $x=\frac{\pi}{2}$ and $x=\frac{\pi}{6}$ and at the end points of the interval $[0, \pi]$ (i.e., at $x=0$ and $x=\pi$), we have:

$$
\begin{aligned}
& f\left(\frac{\pi}{6}\right)=\cos ^{2} \frac{\pi}{6}+\sin \frac{\pi}{6}=\left(\frac{\sqrt{3}}{2}\right)^{2}+\frac{1}{2}=\frac{5}{4} \\
& f(0)=\cos ^{2} 0+\sin 0=1+0=1 \\
& f(\pi)=\cos ^{2} \pi+\sin \pi=(-1)^{2}+0=1 \\
& f\left(\frac{\pi}{2}\right)=\cos ^{2} \frac{\pi}{2}+\sin \frac{\pi}{2}=0+1=1
\end{aligned}
$$

Hence, the absolute maximum value of f is $\frac{5}{4}$ occurring at $x=\frac{\pi}{6}$ and the absolute minimum value of f is 1 occurning at $x=0, \frac{\pi}{2}$, and π.

Maxima and Minima 18.4 Q4

We have

$$
\begin{aligned}
& f(x)=12 x^{\frac{4}{3}}-6 x^{\frac{1}{3}} \\
& f^{\prime}(x)=16 x^{\frac{1}{3}}-\frac{2}{x^{\frac{2}{3}}}=\frac{2(8 x-1)}{x^{\frac{2}{3}}}
\end{aligned}
$$

Thus, $f^{\prime}(x)=0$
$\Rightarrow \quad x=\frac{1}{8}$
Further note that $f^{\prime}(x)$ is not defined at $x=0$.
So, the critical points are $x=0$ and $x=\frac{1}{8}$.
Evaluating the value of f at critical points $x=0, \frac{1}{8}$ and at end points of the int erval $x=-1$ and $x=1$
$f(-1)=12(-1)^{4 / 3}-6(-1)^{1 / 3}=18$
$f(0)=12(0)-6(0)=0$
$f\left(\frac{1}{8}\right)=12\left(\frac{1}{8}\right)^{4 / 3}-6\left(\frac{1}{8}\right)^{1 / 3}=\frac{-9}{4}$
$f(1)=12(1)^{4 / 3}-6(1)^{1 / 3}=6$
Hence we conclude that absolute maximum value of f is 18 at $x=-1$
and absolute minimum value of f is $\frac{-9}{4}$ at $x=\frac{1}{8}$.

Maxima and Minima 18.4 Q5

Given,

$$
\begin{aligned}
f(x) & =2 x^{3}-15 x^{2}+36 x+1 \\
\therefore \quad f^{\prime}(x) & =6 x^{2}-30 x+36=6\left(x^{2}-5 x+6\right)=6(x-2)(x-3)
\end{aligned}
$$

Note that $f^{\prime}(x)=0$ gives $x=2$ and $x=3$
We shall now evaluate the value of f at these points
and at the end points of the interval $[1,5]$,
i.e at $x=1,2,3$ and 5

At $x=1, f(1)=2\left(1^{3}\right)-15\left(1^{2}\right)+36(1)+1=24$
At $x=2, f(2)=2\left(2^{3}\right)-15\left(2^{2}\right)+36(2)+1=29$
$A t x=3, f(3)=2\left(3^{3}\right)-15\left(3^{2}\right)+36(3)+1=28$
At $x=5, f(5)=2\left(5^{3}\right)-15\left(5^{2}\right)+36(5)+1=56$
Thus we conclude that the absolute maximum value of f on $[1,5]$ is 56 , occurring at $x=5$, and absolute minimum value of f on $[1,5]$ is 24 which occurs at $x=1$.

