$$
\begin{gathered}
\text { RD Sharma } \\
\text { Solutions } \\
\text { Class } 12 \text { Maths } \\
\text { Chapter } 21 \\
\text { Ex } 21.2
\end{gathered}
$$

Areas of Bounded Regions Ex-21-2 Q2

To find region in first quadrant bounded by $y=1, y=4$ and y-axis and $x^{2}=16 y$

Equation (1) represents a parabola with vertex (0,0) and axes as y-axis.

A rough sketch of the curves is as under:-

Shaded region is required area it is sliced in rectangles of area $x \Delta y$ which slides from $y=1$ to $y=4$, so

Required area $=$ Region $A B C D A$
$A=\int_{1}^{4} x d y$
$=\int_{1}^{4} 4 \sqrt{y} d y$
$=4 \cdot\left[\frac{2}{3} y \sqrt{y}\right]_{1}^{4}$
$=4 \cdot\left[\left(\frac{2}{3} \cdot 4 \sqrt{4}\right)-\left(\frac{2}{3} \cdot 1 \cdot \sqrt{1}\right)\right]$
$=4\left[\frac{16}{3}-\frac{2}{3}\right]$
$A=\frac{56}{3}$ sq. units

Areas of Bounded Regions Ex-21-2 Q3

Area of the region $=2 x \int_{0}^{\frac{-1}{2 a}}\left(a-\frac{x^{2}}{4 a}\right) d x$
$=2 x\left[a x-\frac{x^{3}}{12 a}\right]_{0}^{2 a}$
$=2\left[a(2 a-0)-\frac{(2 a)^{3}-0^{3}}{12 a}\right]$
$=2\left[2 a^{2}-\frac{8 a^{3}}{12 a}\right]$
$=2\left[\frac{16 a^{3}}{12 a}\right]$
$=\frac{8}{3} a^{2}$ sq. units

Areas of Bounded Regions Ex-21-2 Q4

Area of the region $=2 \times \int_{0}^{8}\left[-\frac{x^{2}}{16}-(-4)\right] d x$
$=2 x\left[-\frac{x^{3}}{48}+4 x\right]_{0}^{8}$
$=2 x\left[4 x-\frac{x^{3}}{48}\right]_{0}^{8}$
$=2 \times\left[4(8-0)-\frac{(8)^{3}-0^{3}}{48}\right]$
$=2 \times\left[32-\frac{512}{48}\right]$
$=2 \times\left[32-\frac{32}{3}\right]$
$=2 \times\left[\frac{96-32}{3}\right]$
$=2 \times \frac{64}{3}=\frac{128}{3}$ sq. uni ts

Areas of Bounded Regions Ex-21-2 Q5

Area of the bounded region
$=\int_{a}^{2}\left(a y^{2}\right)^{\frac{1}{3}} d y$
$=a^{\frac{1}{3}} \int_{\partial}^{2} y^{\frac{2}{3}} d y$
$=a^{\frac{1}{3}}\left[\frac{3}{5} y^{\frac{5}{3}}\right]_{0}^{2}$
$=\frac{3}{5}\left(2^{\frac{5}{3}}-1\right) a^{2}$ sq units

