RD Sharma
Solutions Class
12 Maths
Chapter 22
Ex 22.2

Differential Equations Ex 22.2 Q1

$$y^2 = (x - c)^3 \qquad --(i)$$

Differentiating it with respect to x,

$$2y\frac{dy}{dx} = 3(x-c)^2$$
$$(x-c)^2 = \frac{2y}{3}\frac{dy}{dx}$$

$$(x-c)^2 = \left(\frac{2y}{3}\frac{dy}{dx}\right)^{\frac{1}{2}}$$

Put the value of (x-c) in equation (i),

$$y^2 = \left\{ \left(\frac{2y}{3} \frac{dy}{dx} \right)^{\frac{1}{2}} \right\}^3$$

$$y^2 = \left(\frac{2y}{3}\frac{dy}{dx}\right)^{\frac{3}{2}}$$

Squaring both the sides,

$$y^4 = \left(\frac{2y}{3} \frac{dy}{dx}\right)^3$$
$$y^4 = \frac{8y^3}{27} \left(\frac{dy}{dx}\right)^3$$

 $27y = 8\left(\frac{dy}{dx}\right)^3.$

$$y = e^{mx}$$
 —(i)

$$\frac{dy}{dx} = me^{mx} \qquad \qquad --(ii)$$

From equation (i), $y = e^{mx}$

$$\log y = mx$$

$$m = \frac{\log y}{x}$$

Put the value of m and e^{mx} in equation (i),

$$\frac{dy}{dx} = \frac{\log y}{x} y$$
$$x \frac{dy}{dx} = y \log y$$

Differential Equations Ex 22.2 Q3(i)

$$y^2 = 4ax$$

Differentiating it with respect to x, $2y\frac{dy}{dx} = 4a$ —(ii)

$$2y\frac{dy}{dx} = 4a$$
Put the value of a from equation (i) in (ii),

 $2y\frac{dy}{dx} = 4\left(\frac{y^2}{4x}\right)$

$$2y\frac{dy}{dx} = 4\left(\frac{1}{4}\right)$$
$$2y\frac{dy}{dx} = \frac{y^2}{x}$$
$$2x\frac{dy}{dy} = y$$

$$y = cx + 2c^2 + c^3 \qquad --(i)$$

$$\frac{dy}{dx} = C \qquad \qquad --(ii)$$

Put the value of c from equation (ii) in (i),

$$y = \left(\frac{dy}{dx}\right)x + 2\left(\frac{dy}{dx}\right)^2 + \left(\frac{dy}{dx}\right)^3$$

Differential Equations Ex 22.2 Q3(iii)

Differentiating it with respect to x,

$$x\frac{dy}{dx} + y(1) = 0$$
$$x\frac{dy}{dx} + y = 0$$

Differential Equations Ex 22.2 Q3(iv)

$$y = ax^2 + bx + c$$

Differentiating it with respect to x,

$$\frac{dy}{dx} = 2ax + b$$

Again, differentiating it with respect to x,

$$\frac{d^2y}{dx^2} = 2a$$

Again, differentiating it with respect to x,

$$\frac{d^3y}{dx^3}=0$$

Differential Equations Ex 22.2 Q4

$$y = Ae^{2x} + Be^{-2x}$$

Differentiating it with respect to x,

$$\frac{dy}{dx} = 2Ae^{2x} - 2Be^{-2x}$$

Again, differentiating it with respect to x,

$$\frac{d^2y}{dx^2} = 4Ae^{2x} + 4Be^{-2x}$$
$$= 4\left(Ae^{2x} + Be^{-2x}\right)$$

$$\frac{d^2y}{dx^2} = 4y$$

[Using equation (i)]

—(i)

Differential Equations Ex 22.2 Q5

$$x = A \cos nt + B \sin nt$$

Differentiating with respect to t,

$$\frac{dx}{dt} = -An\sin nt + nB\cos nt$$

Again, differentiating with respect to t,

$$\frac{d^2x}{dt^2} = -An^2 \cos nt - n^2B \sin t$$
$$= -n^2(A \cos nt + B \sin nt)$$

$$\frac{d^2x}{dt^2} = -n^2x$$

 $\frac{d^2x}{dt^2} + n^2x = 0$

[Vsing equation (i)]

Differential Equations Ex 22.2 Q6

$$y^2 = a(b - x^2)$$

Differentiating it with respect to x,

$$2y\frac{dy}{dx} = a(-2x) --(i)$$

Again, differentiating it with respect to x,

$$2\left[y\frac{d^2y}{dx^2} + \frac{dy}{dx} \times \frac{dy}{dx}\right] = -2a$$
$$y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = -\left(\frac{2y}{-2x}\frac{dy}{dx}\right)$$

Using equatoin (i)

$$y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = \frac{y}{x} \frac{dy}{dx}$$
$$x \left\{ y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 \right\} = y \frac{dy}{dx}$$

Differential Equations Ex 22.2 Q7

$$y^2 - 2ay + x^2 = a^2$$
 —(i)

Differentiating it with respect to x,

$$2y\frac{dy}{dx} - 2a\frac{dy}{dx} + 2x = 0$$
$$y\frac{dy}{dx} + x = a\frac{dy}{dx}$$
$$a = \frac{y\frac{dy}{dx} + x}{\frac{dy}{dx}}$$

Put the value of a in equation (i),

$$y^{2}-2\left[\frac{y\frac{dy}{dx}+x}{\frac{dy}{dx}}\right]y+x^{2}=\left[\frac{y\frac{dy}{dx}+x}{\frac{dy}{dx}}\right]^{2}$$

Put $\frac{dy}{dy} = y'$

$$y^{2}-2\left(\frac{yy'+x}{y'}\right)y+x^{2} = \left(\frac{yy'+x}{y'}\right)^{2}$$

$$\frac{y'y^{2}-2y'y^{2}-2xy+y'x^{2}}{y'} = \frac{y^{2}y^{2}+x^{2}+2xyy'}{y'^{2}}$$

$$y'^{2}y^{2}-2y'^{2}y^{2}-2xyy'+y'^{2}x^{2}-y^{2}y^{2}-x^{2}-2xyy'=0$$

$$-4xyy'+y'^{2}x^{2}-x^{2}-2y'^{2}y^{2}=0$$

$$y'^{2}(x^{2}-2y^{2})-4xyy'-x^{2}=0$$

$$(x-a)^2+(y-b)^2=r^2$$
 —(i)

$$2(x-a)+2(y-b)\frac{dy}{dx}=0$$

$$(x-a)+(y-b)\frac{dy}{dx}=0$$
—(ii)

Differentiating with respect to x,

$$1 + (y - b) \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right) \left(\frac{dy}{dx}\right) = 0$$

$$1 + (y - b) \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$$

$$(y - b) = -\left\{\frac{\left(\frac{dy}{dx}\right)^2 + 1}{\frac{d^2y}{dx^2}}\right\}$$
—(iii)

Put (y - b) in equation (i),

$$(x-a) - \left\{ \frac{\left(\frac{dy}{dx}\right)^2 + 1}{\frac{d^2y}{dx^2}} \right\} \frac{dy}{dx} =$$

$$(x-a) \left(\frac{d^2y}{dx^2}\right) - \left(\frac{dy}{dx}\right)^3 - \left(\frac{dy}{dx}\right) = 0$$

$$(x-a) \frac{d^2y}{dx^2} = \frac{dy}{dx} + \left(\frac{dy}{dx}\right)^3$$

$$(x-a) = \frac{\frac{dy}{dx} + \left(\frac{dy}{dx}\right)^3}{\frac{d^2y}{dx^2}} \qquad --(iv)$$

Put the value of (x-a) and (y-b) from equation (iii) and (iv) in equation (i),

$$\left\{ \frac{\frac{dy}{dx} + \left(\frac{dy}{dx}\right)^{3}}{\frac{d^{2}y}{dx^{2}}} \right\}^{2} + \left\{ \frac{\left(\frac{dy}{dx}\right)^{2} + 1}{\frac{d^{2}y}{dx^{2}}} \right\}^{2} = r^{2}$$

Put
$$\frac{dy}{dx} = y'$$
 and $\frac{d^2y}{dx^2} = y''$
 $(y' + y'^3)^2 + (y'^2 + 1)^2 = r^2y'^2$
 $y'^2(1 + y'^2)^2 + (1 + y'^2)^2 = r^2y'^2$

We know that, equation of a circle with centre at (h, k) and radius r is given by,

—(i)

$$(x-h^2)+(y-k)^2=r^2 \qquad \qquad --(i)$$

Here, centre lies, on y-axis, so h = 0

$$\Rightarrow x^2 + (y - k)^2 = r^2 \qquad \qquad --(\bar{\mathbf{n}})$$

Also, given that, circle is passing through origin, so
$$0 + k^2 = r^2$$

 $k^2 = r^2$

So, equation (ii) becomes,

$$x^2 + (y - k)^2 = k^2$$

$$x^2 + y^2 - 2yk = 0$$
$$2yk = x^2 + y^2$$

$$k = \frac{x^2 + y^2}{2x}$$

Differentiating with respect to
$$x$$
,

$$0 = \frac{2y \left(2x + 2y \frac{dy}{dx}\right) - \left(x^2 + y^2\right) 2 \frac{dy}{dx}}{\left(2y\right)^2}$$

$$(2y)^{2}$$

$$0 = 4xy + 4y^{2} \frac{dy}{dx} - 2x^{2} \frac{dy}{dx} - 2y^{2} \frac{dy}{dx}$$

$$0 = 2y^{2} \frac{dy}{dx} - 2x^{2} \frac{dy}{dx} + 4xy$$

$$(x^2 - y^2) \frac{dy}{dx} = 2xy$$
Differential Equations Ex 22.2 Q10

 $x^2 \frac{dy}{dy} - y^2 \frac{dy}{dy} = 2xy$

Equation of circle with centre (h, k) and radius r is given by

$$(x-h)^2 + (y-k)^2 = r^2$$
 —(i)

Here, centre lie on x-axis, so

$$k = 0$$

$$\Rightarrow (x-h)^2 + y^2 = r^2 \qquad --(ii)$$

Also, given that, circle is passing through (0,0), so,

$$h^2 = r^2$$

So, equation (ii) becomes,

$$(x-h)^2+y^2=h^2$$

$$x^2 + h^2 - 2xh + y^2 = h^2$$

$$x^2 - 2xh + y^2 = 0$$

$$2xh = x^2 + y^2$$

$$h = \frac{x^2 + y^2}{2x}$$

Differentiating it with respect to x,

$$0 = \frac{\left(2x + 2y\frac{dy}{dx}\right)2x - \left(x^2 + y^2\right)2}{\left(2x\right)^2}$$

$$\left[2x + 2y \frac{dy}{dx}\right] 2x - \left(x^2 + y^2\right)^2 = 0$$

$$2x^2 + 2yx \frac{dy}{dx} - x^2 - y^2 = 0$$

$$\left(x^2 - y^2\right) + 2xy \frac{dy}{dx} = 0$$

Differential Equations Ex 22.2 Q11

Let A be the surface area of rain drain, V be its volume, and r be the radius of rain drop. Given,

$$\frac{dV}{dt} \propto A$$

$$\frac{dV}{dt} = -kA$$
 [negative because V decreases with increase in t]

where k is the constant of proportionality.

So,

$$\frac{d}{dt} \left(\frac{4\pi}{3} r^3 \right) = -k \left(4\pi r^2 \right)$$

$$4\pi r^2 \frac{dr}{dt} = -k \left(4\pi r^2 \right)$$

$$\frac{d\mathbf{r}}{dt} = -\mathbf{k}$$

Equation of parabolas with lotus rectum '(4a)' and whose area is parallel to x axes and vertex at (h,k) is given by,

$$(y-k)^2 = 4a(x-h)$$

Differentiating with respect to x,

$$2(y-k)y_1 = 4a(1)$$

 $(y-k)y_1 = 2a$ —(i)

Differentiating with respect to x,

$$(y-k)y_2 + (y_1)(y_1) = 0$$
$$(y-k)y_2 + (y_1)^2 = 0$$
$$\left(\frac{2a}{y_1}\right)^{y_2} + (y_1)^2 = 0$$

Using equation (i)

$$2ay_2 + (y_1)^3 = 0$$

Differential Equations Ex 22.2 Q13

$$y = 2(x^2 - 1) + ce^{-x^2}$$
 —(i)

Differentiating it in equation (i),

$$\frac{dy}{dx} = 4x - 2cxe^{-x^2} \qquad \qquad --(ii)$$

Now,

$$\frac{dy}{dx} + 2xy$$
= $4x - 2\alpha e^{-x^2} + 2x \left[2(x^2 - 1) + \alpha e^{-x^2} \right]$
= $4x - 2\alpha e^{-x^2} + 4x^3 - 4x + 2\alpha e^{-x^2}$
= $4x^3$

So,

$$\frac{dy}{dx} + 2xy = 4x^3$$

Which is given equation, so

$$y = 2(x^2 + 1) + ce^{-x^2}$$
 is the solution of the equation.

Differential Equations Ex 22.2 Q14

$$y = (\sin^{-1} x)^{2} + A \cos^{-1} x + B$$

$$\frac{dy}{dx} = 2 \sin^{-1} x \times \left(\frac{1}{\sqrt{1 - x^{2}}}\right) + A \times \left(\frac{-1}{\sqrt{1 - x^{2}}}\right) + 0$$

$$\sqrt{1 - x^{2}} \frac{dy}{dx} = 2 \sin^{-1} x - A$$

$$\sqrt{1 - x^{2}} \frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} \left(\frac{1}{\sqrt{1 - x^{2}}}\right) (-2x) = 2 \times \left(\frac{1}{\sqrt{1 - x^{2}}}\right) - 0$$

$$(1 - x^{2}) \frac{d^{2}y}{dx^{2}} - 2x \frac{dy}{dx} - 2 = 0$$

Note: Answer given in the book is incorrect.

Consider the given equation.,

$$(2x + a)^2 + y^2 = a^2$$
....(1)

Differentiating the above equation with respect to x, we have,

$$2(2x+a)+2y\frac{dy}{dx}=0$$

$$\Rightarrow (2x + a) + y \frac{dy}{dx} = 0$$

$$\Rightarrow 2x + a = -y \frac{dy}{dx}$$

$$\Rightarrow a = -2x - y \frac{dy}{dx}$$

Substituting the value of a in equation (1), we have

$$\left(2x - 2x - y\frac{dy}{dx}\right)^2 + y^2 = \left(-2x - y\frac{dy}{dx}\right)^2$$

$$\Rightarrow \left(y \frac{dy}{dx}\right)^2 + y^2 = \left(4x^2 + y^2 \left(\frac{dy}{dx}\right)^2 + 4xy \frac{dy}{dx}\right)$$

$$\Rightarrow y^2 = 4x^2 + 4xy \frac{dy}{dx}$$

$$\Rightarrow y^2 - 4x^2 - 4xy \frac{dy}{dx} = 0$$

Differential Equations Ex 22.2 Q15(ii)

$$(2x-a)^2-y^2=a^2$$

$$4x^2 + a^2 - ax - y^2 = a^2$$

$$4x^2 - 4ax - y^2 = 0$$

$$4ax = 4x^2 - y^2$$

$$a = \frac{4x^2 - y^2}{4x}$$

Differentiating it with respect to x,

$$0 = \left[\frac{4x \left(8x - 2y \frac{dy}{dx} \right) - 4 \left(4x^2 - y^2 \right)}{\left(4x \right)^2} \right]$$

$$32x^2 - 8xy \frac{dy}{dx} - 16x^2 + 4y^2 = 0$$

$$16x^2 - 8xy \frac{dy}{dy} + 4y^2 = 0$$

$$4x^2 + y^2 = 2xy \frac{dy}{dx}$$

Consider the given equation,

$$(x-a)^2 + 2y^2 = a^2$$
...(1)

Differentiating the above equation with respect to x, we have

$$2(x-a) + 4y \frac{dy}{dx} = 0$$

$$\Rightarrow (x - a) + 2y \frac{dy}{dx} = 0$$

$$\Rightarrow (x-a) = -2y \frac{dy}{dx}$$

$$\Rightarrow a = x + 2y \frac{dy}{dx}$$

Substituting the value of a in equation (1), we have

$$\left(x - x + 2y \frac{dy}{dx}\right)^2 + 2y^2 = \left(x + 2y \frac{dy}{dx}\right)^2$$

$$\Rightarrow 4y^2 \left(\frac{dy}{dx}\right)^2 + 2y^2 = x^2 + 4y^2 \left(\frac{dy}{dx}\right)^2 + 4xy \frac{dy}{dx}$$

$$\Rightarrow 2y^2 - x^2 = 4xy \frac{dy}{dx}$$

Differential Equations Ex 22.2 Q16(i)

$$x^2 + y^2 = a^2$$

Differentiating it with respect to x,

$$2x + 2y \frac{dy}{dx} = 0$$

$$x + y \frac{dy}{dx} = 0$$

Differential Equations Ex 22.2 Q16(ii)

$$x^2 - y^2 = a^2$$

Differentiating it with respect to x,

$$2x - 2y \frac{dy}{dx} = 0$$

$$x - y \frac{dy}{dx} = 0$$

Differential Equations Ex 22.2 Q16(iii)

$$y^2 = 4ax$$

$$\frac{y^2}{z} = 4a$$

Differentiating it with respect to x,

$$\left[\frac{x \times 2y \frac{dy}{dx} - y^2(1)}{x^2}\right] = 0$$

$$2xy\frac{dy}{dx}-y^2=0$$

$$2x\frac{dy}{dx} - y = 0$$

$$x^2 + (y-b)^2 = 1 \qquad \qquad --(i)$$

$$2x + 2(y - b)\frac{dy}{dx} = 0$$
$$x + (y - b)\frac{dy}{dx} = 0$$
$$(y - b)\frac{dy}{dx} = -x$$

 $(y-b) = \frac{-x}{\frac{dy}{dx}}$

Put the value of (y - b) is equation (i)

$$x^{2} \left(\frac{-x}{\frac{dy}{dx}} \right)^{2} = 1$$

$$x^{2} \left(\frac{dy}{dx} \right)^{2} + x^{2} = \left(\frac{dy}{dx} \right)^{2}$$

$$x^{2} \left\{ \left(\frac{dy}{dx} \right)^{2} + 1 \right\} = \left(\frac{dy}{dx} \right)^{2}$$

Differential Equations Ex 22.2 Q16(v)

$$(x-a)^2-y^2=1$$
 —(i)

Differentiating it with respect to x,

$$2(x-a)-2y\frac{dy}{dx}=0$$
$$(x-a)-y\frac{dy}{dx}=0$$
$$(x-a)=y\frac{dy}{dx}$$

Put the value of (x - a) is equation (i)

$$\left(y\frac{dy}{dx}\right)^2 - y^2 = 1$$
$$y^2 \left(\frac{dy}{dx}\right)^2 - y^2 = 1$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$\frac{b^2 x^2 - a^2 y^2}{a^2 b^2} = 1$$

$$b^2 x^2 - a^2 y^2 = a^2 b^2$$

$$2xb^2 - 2a^2y\frac{dy}{dx} = 0$$

$$xb^2 - ya^2\frac{dy}{dx} = 0$$
--(i)

Again, differentiating it with respect to x,

$$b^{2} - a^{2} \left(y \frac{d^{2}y}{dx^{2}} + \left(\frac{dy}{dx} \right) \left(\frac{dy}{dx} \right) \right) = 0$$

$$b^{2} = a^{2} \left(y \frac{d^{2}y}{dx^{2}} + \left(\frac{dy}{dx} \right)^{2} \right)$$

Put the value of b^2 in equation (i)

$$xb^{2} - ya^{2}\frac{dy}{dx} = 0$$

$$xa^{2}\left(y\frac{d^{2}y}{dx^{2}} + \left(\frac{dy}{dx}\right)^{2}\right) - ya^{2}\frac{dy}{dx} = 0$$

$$xy\frac{d^{2}y}{dx^{2}} + x\left(\frac{dy}{dx}\right)^{2} - y\frac{dy}{dx} = 0$$

$$x\left\{y\frac{d^{2}y}{dx^{2}} + \left(\frac{dy}{dx}\right)^{2}\right\} = y\frac{dy}{dx}$$

Differential Equations Ex 22.2 Q16(vii)

$$y^2 = 4a(x - b)$$

Differentiating it with respect to x,

$$2y\frac{dy}{dx}=4a$$

Again, differentiating it with respect to x,

$$2\left[y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)\left(\frac{dy}{dx}\right)\right] = 0$$
$$y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$$

Differential Equations Ex 22.2 Q16(viii)

$$y = ax^3$$

Differentiating it with respect to x,

$$\frac{dy}{dx} = 3ax^2$$
$$= 3\left(\frac{y}{x^3}\right)x^2$$

Using equation (i)

$$\frac{dy}{dx} = \frac{3y}{x}$$
$$x\frac{dy}{dx} = 3y$$

$$x^2 + y^2 = ax^3$$
$$\frac{x^2 + y^2}{x^3} = a$$

$$\left[\frac{\left(x^3\right)\left(2x + 2y\frac{dy}{dx}\right) - \left(x^2 + y^2\right)\left(3x^2\right)}{\left(x^3\right)^2} \right] = 0$$

$$2x^4 + 2x^3y\frac{dy}{dx} - 3x^4 - 3x^2y^2 = 0$$

$$2x^3y\frac{dy}{dx} - x^4 - 3x^2y^2 = 0$$

$$2x^3y\frac{dy}{dx} = x^4 + 3x^2y^2$$

$$2x^3y\frac{dy}{dx} = x^2\left(x^2 + 3y^2\right)$$

$$2xy\frac{dy}{dx} = \left(x^2 + 3y^2\right)$$

Differential Equations Ex 22.2 Q16(x)

Differentiating it with respect to x,

$$\frac{dy}{dx} = ae^{ax}$$

$$\frac{dy}{dx} = ay$$
---(ii)

From equation (i),

$$y = e^{ax}$$

$$\log y = ax$$

$$a = \frac{\log y}{x}$$

Put the value of a in equation (ii),

$$\frac{dy}{dx} = \left(\frac{\log y}{x}\right)y$$
$$x\frac{dy}{dx} = y\log y$$

Differential Equations Ex 22.2 Q17

We know that the equation of said family of ellipses is

DIfferentiating (i) $wr.t. \times$, we get

$$\frac{2x}{a^2} + \frac{2y}{b^2} \cdot \frac{dy}{dx} = 0$$

$$\frac{y}{x} \left(\frac{dy}{dx} \right) = \frac{-b^2}{a^2}$$
-----(ii)

Differentiating (ii) w.r.t. x , we get

$$\frac{y}{x} \left(\frac{d^2 y}{dx^2} \right) + \left(\frac{x \frac{dy}{dx} - y}{x^2} \right) \frac{dy}{dx} = 0$$

$$xy \frac{d^2 y}{dx^2} + x \left(\frac{dy}{dx} \right)^2 - y \frac{dy}{dx} = 0$$

which is the required differential equation.

The equation of the family of hyperbolas with the centre at origin and foci along the x-axis is:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \qquad ...(1)$$

Differentiating both sides of equation (1) with respect to x, we get:

$$\frac{2x}{a^2} - \frac{2yy'}{b^2} = 0$$

$$\Rightarrow \frac{x}{a^2} - \frac{yy'}{b^2} = 0 \qquad \dots(2)$$

Again, differentiating both sides with respect to x, we get:

$$\frac{1}{a^2} - \frac{y' \cdot y' + yy''}{b^2} = 0$$
$$\Rightarrow \frac{1}{a^2} = \frac{1}{b^2} \left(\left(y' \right)^2 + yy'' \right)$$

Substituting the value of $\frac{1}{a^2}$ in equation (2), we get:

$$\frac{x}{b^2} \left(\left(y' \right)^2 + yy'' \right) - \frac{yy'}{b^2} = 0$$

$$\Rightarrow x \left(y' \right)^2 + xyy'' - yy' = 0$$

$$\Rightarrow xyy'' + x \left(y' \right)^2 - yy' = 0$$

This is the required differential equation.

Differential Equations Ex 22.2 Q19

Let C denote the family of circles in the second quadrant and touching the coordinate axes.

Let (-a,a) be the coordinate of the centre of any member of this family.

Equation representing the family C is

$$(x+a)^2 + (y-a)^2 = a^2$$
 -----(i)

Differentiating eqn (ii) w.r.t. x, we get

$$2x + 2y \frac{dy}{dx} + 2a - 2a \frac{dy}{dx} = 0$$

$$\Rightarrow x + y \frac{dy}{dx} = a \left(\frac{dy}{dx} - 1 \right)$$

$$\Rightarrow \qquad a = \frac{x + yy}{y - 1}$$

Substituting the value of a in (ii), we get

$$\left[x + \frac{x + yy}{y - 1} \right]^2 + \left[y - \frac{x + yy}{y - 1} \right]^2 = \left[\frac{x + yy}{y - 1} \right]^2$$

$$\Rightarrow \left[xy' - x + x + yy' \right]^2 + \left[yy' - y - x - yy' \right]^2 = \left[x + yy' \right]^2$$

$$\Rightarrow (x + y)^{2} y'' + (x + y)^{2} = [x + yy']^{2}$$

$$\Rightarrow (x+y)^2 \left[(y')^2 + 1 \right] = \left[x + yy' \right]^2$$

which is the differential equation representing the given family of circles.