Very Short Answer Type Questions

[1 Mark]

Que 1. Two sides and the perimeter of one triangle are respectively three times the corresponding sides and the perimeter of the other triangle. Are the two triangles similar? Why?

Sol. Since the perimeter and two sides are proportional
\therefore The third side is proportional to the corresponding third side.
i.e., The two triangles will be similar by SSS criterion.

Que 2. A and B are respectively the points on the sides $P Q$ and $P R$ of a $\triangle P Q R$ such that $P Q=12.5 \mathrm{~cm}, P A=5 \mathrm{~cm}, B R=6 \mathrm{~cm}$ and $P B=4 \mathrm{~cm}$. Is $A B|\mid Q R$? Give reason.

Fig. 7.4
Sol. Yes, $\frac{P A}{A Q}=\frac{5}{12.5-5}=\frac{5}{7.5}=\frac{2}{3}$

$$
\frac{P B}{B R}=\frac{4}{6}=\frac{2}{3}
$$

Since $\frac{P A}{A Q}=\frac{P B}{B R}=\frac{2}{3}$
$\therefore \quad \mathrm{AB} \| \mathrm{QR}$
Que 3. If $\triangle A B C \sim \triangle Q R P, \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{9}{4}, A B=18 \mathrm{~cm}$ and $B C=15 \mathrm{~cm}$, then find the length of PR.
Sol. $\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle Q R P}=\frac{B C^{2}}{R P^{2}} \quad \Rightarrow \quad \frac{9}{4}=\frac{(15)^{2}}{R P^{2}}$
$\therefore \quad \mathrm{RP}^{2}=\frac{225 \times 4}{9}=\frac{9000}{9}=100 \Rightarrow R P=10 \mathrm{~cm}$
Que 4. If it is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ with $\frac{B C}{Q R}=\frac{1}{3}$, then find $\frac{\operatorname{ar}(\triangle P Q R)}{\operatorname{ar}(\triangle A B C)}$.
Sol. $\frac{B C}{Q R}=\frac{1}{3}$
(Given)
$\frac{\operatorname{ar}(\triangle P Q R)}{\operatorname{ar}(\triangle A B C)}=\frac{(Q R)^{2}}{(B C)^{2}}$
[\because Ratio of area of similar triangles in equal to the ratio of square of its corresponding side]
$=\left(\frac{Q R}{B C}\right)^{2}=\left(\frac{3}{1}\right)^{2}=\frac{9}{1}=9: 1$
Que 5. $\triangle D E F \sim \triangle A B C$, if $D E: A B=2: 3$ and ar ($\triangle D E F$) is equal to 44 square units. Find the area ($\triangle A B C$).

Sol. $\frac{\operatorname{ar}(\triangle D E F)}{\operatorname{ar}(\triangle A B C}=\frac{(D E)^{2}}{(A B)^{2}}$
[\because Ratio of area of similar triangles in equal to the ratio of square of its corresponding side] Since $\triangle D E F \sim \Delta A B C$
$\frac{44}{\operatorname{ar}(\triangle A B C)}=\left(\frac{2}{3}\right)^{2} \Rightarrow \operatorname{ar}(\triangle A B C)=\frac{44 \times 9}{4}$
So, ar $(\triangle A B C)=99 \mathrm{~cm}^{2}$
Que 6. Is the triangle with sides $12 \mathrm{~cm}, 16 \mathrm{~cm}$ and 18 cm a right triangle? Give reason.

Sol. Here, $12^{2}+16^{2}=144+256=400 \neq 18^{2}$
\therefore The given triangle is not a right triangle.

Short Answer Type Questions - I
 [2 marks]

Que 1. In triangle PQR and TSM, $\angle P=55^{\circ}, \angle Q=25^{\circ}, \angle M=100^{\circ}$ and $\angle S=25^{\circ}$. Is Δ QPR ~ Δ TSM? Why?

Sol. Since, $\angle R=180^{\circ}-(\angle P+\angle Q)$

$$
=180^{\circ}-\left(55^{\circ}+25\right)=100^{\circ}=\angle M
$$

$$
\begin{equation*}
\angle \mathrm{Q}=\angle \mathrm{S}=25^{\circ} \tag{Given}
\end{equation*}
$$

$\Delta \mathrm{QPR} \sim \Delta \mathrm{STM}$
i.e., \triangle QPR is not similar to $\Delta T S M$.

Que 2. If ABC and DEF are similar triangles such that $\angle A=47^{\circ}$ and $\angle E=63^{\circ}$, then the measures of $\angle C=\mathbf{7 0}^{\circ}$. Is it true? Give reason.

Sol. Since $\triangle A B C \sim \triangle D E F$

$$
\begin{array}{ll}
\therefore & \angle A=\angle D=47^{\circ} \\
& \angle B=\angle E=63^{\circ} \\
\therefore \quad \angle C=180^{\circ}-(\angle A+\angle B)=180^{\circ}-\left(47^{\circ}+63^{\circ}\right)=70^{\circ}
\end{array}
$$

\therefore Given statement is true.
Que 3. Let $\triangle A B C \sim \triangle D E F$ and their areas be respectively $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $E F=15.4 \mathrm{~cm}$, find $B C$.

Sol. We have, $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}=\frac{B C^{2}}{E F^{2}} \quad$ (as $\triangle A B C \sim \triangle D E F$)

Fig. 7.5
$\Rightarrow \frac{64}{121}=\frac{B C^{2}}{E F^{2}} \Rightarrow \frac{64}{121}=\frac{B C^{2}}{(15.4)^{2}}$
$\Rightarrow \quad \frac{B C}{15.4}=\frac{8}{11}$
$\therefore \quad \mathrm{BC}=\frac{8}{11} \times 15.4=11.2 \mathrm{~cm}$
Que 4. $A B C$ is an isosceles triangle right-angled at C. Prove that $A B^{2}=2 A C^{2}$.

Sol. $\triangle A B C$ is right-angled at C.

$$
\begin{array}{lll}
\therefore & A B^{2}=A C^{2}+B C^{2} & {[B y \text { Pythagoras theorem }]} \\
\Rightarrow & A B^{2}=A C^{2}+A C^{2} & {[\because A C=B C]} \\
\Rightarrow & A B^{2}=2 A C^{2} &
\end{array}
$$

Que 5. Sides of triangle are given below. Determine which of them are right triangles. In case of a right triangle, write the lenght of its hypotenuse.
(i) $\mathbf{7 c m}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$
(ii) $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$

Fig. 7.6

Sol. (i) Let $\mathrm{a}=7 \mathrm{~cm}, \mathrm{~b}=24 \mathrm{~cm}$ and $\mathrm{c}=25 \mathrm{~cm}$.
Here, largest side, $c=25 \mathrm{~cm}$
We have, $\mathrm{a}^{2}+\mathrm{b}^{2}=(7)^{2}+(24)^{2}=49+5769=625=\mathrm{c}^{2} \quad[\because c=25]$
So, the triangle is a right triangle.
Hence, c is the hypotenuse of right triangle.
(ii) Let $\mathrm{a}=3 \mathrm{~cm}, \mathrm{~b}=8 \mathrm{~cm}$ and $\mathrm{c}=6 \mathrm{~cm}$

Here, largest side, $b=8 \mathrm{~cm}$
We have, $\quad a^{2}+c^{2}=(3)^{2}+(6)^{2}=9+36=45 \neq b^{2}$
So, the triangle is not a right triangle.
Que 6. If triangle $A B C$ is similar to triangle $D E F$ such that $2 A B=D E$ and $B C=8$ cm . Then find the length of EF.

Fig. 7.7
Sol. $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$ (Given)
$\therefore \quad \frac{A B}{D E}=\frac{B C}{E F}$

$$
\begin{aligned}
& \frac{A B}{2 A B}=\frac{8}{E F} \quad(\because D E=2 A B) \\
& \frac{1}{2}=\frac{8}{E F}
\end{aligned}
$$

$\therefore E F=16 \mathrm{~cm}$
Que 7. If the ratio of the perimeter of two similar triangles is $4: 25$, then find the ratio of the similar triangles.

Sol. \because Ratio of perimeter of $2 \Delta^{\prime} s=4: 25$
Ratio of corresponding sides of the two $\Delta^{\prime} s=4: 25$
Now, The ratio of area of $2 \Delta^{\prime} s=$ Ratio of square of its corresponding sides.

$$
=\frac{(4)^{2}}{(25)^{2}}=\frac{16}{625}
$$

Que 8. In an isosceles $\triangle A B C$, if $A C=B C$ and $A B^{2}=2 A C^{2}$ then find $\angle C$.

Fig. 7.8
Sol. $A B^{2}=2 A C^{2}$ (Given)

$$
A B^{2}=A C^{2}+A C^{2}
$$

$$
A B^{2}=A C^{2}+B C^{2} \quad(\because A C=B C)
$$

Hence AB is the hypotenuse and $\triangle A B C$ is a right angle \triangle.
So, $\angle C=90^{\circ}$
Que 9. The length of the diagonals of a rhombus are 16 cm and. Find the length of side of the rhombus.

Fig. 7.9

Sol. \because The diagonals of rhombus bisect each other at 90°.
\therefore In the right angle $\triangle B O C$

$$
\begin{aligned}
& \mathrm{BO}=8 \mathrm{~cm} \\
& \mathrm{CO}=6 \mathrm{~cm}
\end{aligned}
$$

\therefore By Pythagoras Theorem

$$
\begin{aligned}
& \mathrm{BC}^{2}=\mathrm{BO}^{2}+\mathrm{CO}^{2}=64+36 \\
& \mathrm{BC}^{2}=100 \\
& \mathrm{BC}=10 \mathrm{~cm}
\end{aligned}
$$

Que 10. A man goes 24 m towards West and then 10 m towards North. How far is he from the starting point?

Fig. 7.10
Sol. By Pythagoras Theorem

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2}=(24)^{2}+(10)^{2} \\
& A C^{2}=676 \\
& A C=26 m
\end{aligned}
$$

\therefore The man is 26 m away from the starting point.
Que 11. $\triangle A B C \sim \triangle D E F$ such that $A B=9.1 \mathrm{~cm}$ and $D E=6.5 \mathrm{~cm}$. If the perimeter of $\triangle D E F$ is 25 cm , what is the perimeter of $\triangle A B C$?

Sol. Since $\triangle A B C \sim \triangle D E F$

$$
\begin{aligned}
& \frac{\text { Perimeter of } \triangle D E F}{\text { Perimeter of } \triangle A B C}=\frac{D E}{A E} \\
& \frac{25}{\text { Perimeter of } \triangle A B C}=\frac{6.5}{9.1}
\end{aligned}
$$

Perimeter of $\triangle \mathrm{ABC}=\frac{25 \times 91}{65}=35 \mathrm{~cm}$

Que 12. $\triangle A B C \sim \triangle P Q R$; if area of $\triangle A B C=81 \mathrm{~cm}^{2}$, area of $\triangle P Q R=169 \mathrm{~cm}^{2}$ and $A C=7.2 \mathrm{~cm}$, find the length of PR.

Sol. Since $\triangle A B C \sim \triangle P Q R$

$$
\begin{aligned}
& \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A C^{2}}{P R^{2}} \quad \Rightarrow \quad \frac{81}{169}=\frac{(7.2)^{2}}{P R^{2}} \\
\Rightarrow \quad & P R^{2}=\frac{(7.2)^{2} \times 169}{81}
\end{aligned}
$$

Taking square root both the sides

$$
P R=\frac{7.2 \times 13}{9}=\frac{72 \times 13}{10 \times 9}=\frac{104}{10}=10.4 \mathrm{~cm} .
$$

Short Answer Type Questions - II

[3 marks]

Que 1. In Fig. 7.11, $D E \| B C$. If $A D=x, D B=x-2, A E=x+2$ and $E C=x 0-1$, find the value of x.

Fig. 7.11
Sol. In $\triangle A B C$, we have $D E \| B C$.
$\therefore \quad \frac{A D}{D B}=\frac{A E}{E C} \quad$ [By Basic Proportionality Theorem]
$\Rightarrow \frac{x}{x-2}=\frac{x+2}{x-1} \quad \Rightarrow x(x-1)=(x-2)(x+2)$
$\Rightarrow x^{2}-x=x^{2}-4 \quad \Rightarrow x=4$
Que 2. E and Fare points on the sides $P Q$ and $P R$ respectively of a $\triangle P Q R$.
Show that $E F \| Q R$. If $P Q=1.28 \mathrm{~cm}, P R=2.56 \mathrm{~cm}, P E=0.18 \mathrm{~cm}$ and $P F=0.36$ cm.

Fig. 7.12
Sol. We have,

$$
\begin{aligned}
& \mathrm{PQ}=1.28, \mathrm{PR}=2.56 \mathrm{~cm} \\
& \mathrm{PE}=0.18 \mathrm{~cm}, \mathrm{PF}=0.36 \mathrm{~cm}
\end{aligned}
$$

Now,

$$
\mathrm{EQ}=\mathrm{PQ}=\mathrm{PQ}=1.28-0.18=1.10 \mathrm{~cm}
$$

And

$$
\mathrm{FR}=\mathrm{PR}-\mathrm{PF}=2.56-0.36=2.20 \mathrm{~cm}
$$

Now,

$$
\frac{P E}{E Q}=\frac{0.18}{1.10}=\frac{18}{110}=\frac{9}{55}
$$

And, $\frac{P F}{F R}=\frac{0.36}{2.20}=\frac{36}{220}=\frac{9}{55} \quad \therefore \frac{P E}{E Q}=\frac{P F}{F R}$

Therefore, EF||QR [By the converse of basic proportionality Theorem]
Que 3. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Sol. Let $A B$ be a vertical pole of length 6 m and $B C$ be its shadow and $D E$ be tower and $E F$ be its shadow.
Join AC and DF.

Fig. 7.13
Now, in $\triangle A B C$ and $\triangle D E F$, we have

$$
\angle B=\angle E=90^{\circ}
$$

$$
\angle C=\angle F \quad \text { (Angle of elevation of the sun) }
$$

$\therefore \triangle A B C \sim \triangle D E F$
(By AA criterion of similarity)
Thus, $\frac{A B}{D E}=\frac{B C}{E F}$

$$
\begin{array}{ll}
\Rightarrow & \frac{6}{h}=\frac{4}{28} \\
\Rightarrow & \frac{6}{h}=\frac{1}{7}
\end{array}
$$

Hence, height of tower, DE $=42 \mathrm{~m}$
Que 4. In Fig. 7.14, if $L M \| C B$ and $L N \| C D$, prove that $\frac{A M}{A B}=\frac{A N}{A D}$.

Fig. 7.14

Sol. Firstly, in $\triangle A B C$, we have
LM||CB
(Given)
Therefore, by Basic proportionality Theorem, we have

$$
\begin{equation*}
\frac{A M}{A B}=\frac{A L}{A C} \tag{i}
\end{equation*}
$$

Again, in $\triangle A C D$, we have LN||CD
(Given)
\therefore By Basic proportionality Theorem, we have

$$
\begin{equation*}
\frac{A N}{A D}=\frac{A L}{A C} \tag{ii}
\end{equation*}
$$

Now, from (i) and (ii), we have $\frac{A M}{A B}=\frac{A N}{A D}$.

Que 5. In Fig. 7.15, DE || $O Q$ and DF || OR, Show that EF || QR.

Fig. 7.15
Sol. In $\triangle P O Q$, we have
DE \| OQ (Given)
\therefore By Basic proportionality Theorem, we have

$$
\begin{equation*}
\frac{P E}{E Q}=\frac{P D}{D O} \tag{i}
\end{equation*}
$$

Similarly, in $\triangle P O R$, we have DF || OR

$$
\begin{equation*}
\therefore \quad \frac{P D}{D O}=\frac{P F}{F R} \tag{ii}
\end{equation*}
$$

Now, from (i) and (ii), we have

$$
\frac{P E}{E Q}=\frac{P F}{F R} \quad \Rightarrow \quad E F \| Q R
$$

[Applying the converse of Basic proportionality Theorem in $\triangle \mathrm{PQR}$]
Que 6. Using converse of Basic proportionality Theorem, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side.

Fig. 7.16

Sol. Given: $\triangle A B C$ in which D and E are the mid-points of sides $A B$ and $A C$ respectively.
To prove: DE || BC
Proof: Since, D and E are the mid-points of $A B$ and $A C$ respectively

$$
\begin{array}{ll}
\therefore & \mathrm{AD}=\mathrm{DB} \text { and } \mathrm{AE}=\mathrm{EC} \\
\Rightarrow & \frac{A D}{D B}=1 \text { and } \frac{A E}{E C}=1 \\
\Rightarrow & \frac{A D}{D B}=\frac{A E}{E C}
\end{array}
$$

Therefore, DE || BC (By the converse of Basic proportionality Theorem)
Que 7. State which pairs of triangles in the following figures are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form.

Sol. (i) In $\triangle A B C$ and $\triangle P Q R$, we have

$$
\frac{A B}{Q R}=\frac{2}{4}=\frac{1}{2}, \quad \frac{A C}{P Q}=\frac{3}{6}=\frac{1}{2}
$$

Hence,

$$
\frac{A B}{Q R}=\frac{A C}{P Q}=\frac{B C}{P R}
$$

$\therefore \triangle A B C \sim \triangle Q R P$ by SSS criterion of similarity.
(ii) In $\Delta \mathrm{LMP}$ and $\Delta \mathrm{FED}$, we have

$$
\frac{L P}{D F}=\frac{3}{6}=\frac{1}{2}, \quad \frac{M P}{D E}=\frac{2}{4}=\frac{1}{2}, \quad \frac{L M}{E F}=\frac{27}{5}
$$

Hence, $\quad \frac{L P}{D F}=\frac{M P}{D E} \neq \frac{L M}{E F}$
$\therefore \quad \triangle L M P$ is not similar to \triangle FED.
(iii) In $\triangle \mathrm{NML}$ and $\triangle \mathrm{PQR}$, we have

$$
\angle M=\angle Q=70^{\circ}
$$

Now,

$$
\frac{M N}{P Q}=\frac{2.5}{6}=\frac{5}{12} \quad \text { and } \quad \frac{M L}{Q R}=\frac{5}{10}=\frac{1}{2}
$$

Hence $\quad \frac{M N}{P Q} \neq \frac{M L}{Q R}$
$\therefore \triangle N M L$ is not similar to $\triangle P Q R$.
Que 8. In Fig. 7.18, $\frac{A O}{O C}=\frac{B O}{O D}=\frac{1}{2}$ and $A B=5 \mathrm{~cm}$. Find the value of $D C$.

Fig. 7.18

Sol. In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$, we have
$\angle A O B=\angle C O D$
[Vertically opposite angles]

$$
\begin{equation*}
\frac{A O}{O C}=\frac{B O}{O D} \tag{Given}
\end{equation*}
$$

So, by SAS criterion of similarity, we have
$\triangle A O B \sim \triangle C O D$
$\Rightarrow \frac{A O}{O C}=\frac{B O}{O D}=\frac{A B}{D C}$

$$
\Rightarrow \frac{1}{2}=\frac{5}{D C} \quad[\because A B=5 \mathrm{~cm}]
$$

$\Rightarrow D C=10 \mathrm{~cm}$
Que 9. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects CD at F. Show that $\triangle \mathrm{ABE} \sim \triangle \mathrm{CFB}$.

Fig. 7.19
Sol. In $\triangle A B E$ and $\triangle C F B$, we have
$\angle A E B=\angle C B F$
(Alternate angles)
$\angle A=\angle C \quad$ (Opposite angles of a parallelogram)
$\therefore \triangle \mathrm{ABE} \sim \triangle \mathrm{CFB} \quad$ (By AA criterion of similarity)

Que 10. S and T are points on sides $P R$ and $Q R$ if $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that \triangle RPQ $\sim \Delta$ RTS.

Fig. 7.20

Sol. In $\triangle R P Q$ and $\triangle R T S$, we have
$\angle R P Q=\angle R T S$
(Given)
$\angle P R Q=\angle T R S=\angle R$
(Common)
$\therefore \quad \angle \mathrm{RPQ} \sim \Delta \mathrm{RTS}$
(By AA criterion of similarity)

Que 11. In Fig. 7.21, ABC and AMP are two right triangles right-angled at B and M respectively. Prove that:
(i) $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$
(ii) $\frac{C A}{P A}=\frac{B C}{M P}$

Fig. 7.21

Sol. (i) In $\triangle A B C$ and $\triangle A M P$, we have

$$
\angle \mathrm{ABC}=\angle \mathrm{AMP}=90^{\circ} \quad \text { (Given) }
$$

And, $\quad \angle B A C=\angle M A P \quad$ (Common angle)
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{AMP} \quad$ (By AA criterion of similarity)
(ii) As $\quad \triangle \mathrm{ABC} \sim \triangle \mathrm{AMP} \quad$ (Proved above)
$\therefore \quad \frac{C A}{P A}=\frac{B C}{M P} \quad$ (Sides of similar triangles are proportional)
Que 12. D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=\angle B A C$. Show that $C A^{2}=C B . C D$.

Fig. 7.22

Sol. In $\triangle A B C$ and $\triangle D A C$, we have
$\angle B A C=\angle A D C$
and

$$
\angle C=\angle C
$$

(Common)
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{DAC}$
(By AA criterion of similarity)
$\Rightarrow \quad \frac{A B}{D A}=\frac{B C}{A C}=\frac{A C}{D C}$
$\Rightarrow \quad \frac{C B}{C A}=\frac{C A}{C D} \quad \Rightarrow \quad C A^{2}=C B \times C D$
Que 13. $A B C$ is an equilateral triangle of side $\mathbf{2 a}$. Find each of its altitudes.

Fig. 7.23

Sol. Let $A B C$ be an equilateral triangle of side 2 a units.
We draw $A D \perp B C$. Then D is the mid-point of $B C$.

$$
\Rightarrow \quad B D=\frac{B C}{2}=\frac{2 a}{2}=a
$$

Now, ABD is a right triangle right-angled at D .
$\therefore \quad A B^{2}=A D^{2}+B D^{2} \quad[$ By Pythagoras Theorem $]$
$\Rightarrow \quad(2 a)^{2}=A D^{2}+a^{2}$
$\Rightarrow \quad A D^{2}=4 a^{2}-a^{2}=3 a^{2} \quad \Rightarrow A D=\sqrt{3} a$
Hence, each altitude $=\sqrt{3} a$ unit.
Que 14. An aeroplane leaves an airport an airport and flies due north at a speed of 1000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. How far apart will be the two planes after $1 \frac{1}{2}$ hours?

Fig. 7.24

Sol. Let the first aeroplane starts from O and goes upto A towards north where

$$
\begin{aligned}
& O A=\left(1000 \times \frac{3}{2}\right) \mathrm{km}=1500 \mathrm{~km} \\
& (\text { Distance }=\text { Speed } \times \text { Time })
\end{aligned}
$$

Again let second aeroplane starts from O at the same time and goes upto B towards west where
$O B=1200 \times \frac{3}{2}=1800 \mathrm{~km}$

Now, we have to find $A B$.
In right angled $\triangle \mathrm{ABO}$, we have

$$
\begin{array}{lll}
& \mathrm{AB}^{2}=\mathrm{OA}^{2}+\mathrm{OB}{ }^{2} & \text { [By using Pythagoras Theorem }] \\
\Rightarrow & \mathrm{AB}^{2}=(1500)^{2}+(1800)^{2} & \\
\Rightarrow & \mathrm{AB}^{2}=2250000+3240000 \Rightarrow \quad & \mathrm{AB}^{2}=5490000 \\
\therefore & \mathrm{AB}=100 \sqrt{549}=100 \times 234307=2343.07 \mathrm{~km} .
\end{array}
$$

Que 15. In the given Fig. 7.25, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are on the same base $B C$. If $A D$

 intersects $B C$ at O. prove that $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$.

Sol. Given: $\triangle A B C$ and $\triangle D B C$ are on the same base $B C$ and $A D$ intersects $B C$ at O.
To Prove: $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D P}$
Construction: Draw $A L \perp B C$ and $D M \perp B C$
Proof: In $\triangle \mathrm{ALO}$ and $\triangle \mathrm{DMO}$, we have

$$
\begin{aligned}
& \angle A L O=\angle D M O=90^{\circ} \text { and } \\
& \angle A O L=\angle D O M \quad \text { (Vertically opposite angles) } \\
& \therefore \quad \triangle \mathrm{ALO} \sim \triangle \mathrm{DMO} \quad \text { (By AA-Similarity) } \\
& \Rightarrow \quad \frac{A L}{D M}=\frac{A O}{D O} \\
& \therefore \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{\frac{1}{2} B C \times A L}{\frac{1}{2} B C \times D M}=\frac{A L}{D M}=\frac{A O}{D O} \quad(U \sin g(i)) \\
& \text { Hence, } \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}
\end{aligned}
$$

Que 16. In Fig. 7.26, $A B||P Q|| C D, A B=x$ units, $C D=y$ units and $P Q=z$ units. Prove that $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$.

Fig. 7.26

Sol. In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{PDQ}$,
Since $A B \| P Q$

$$
\begin{array}{ll}
\angle \mathrm{ABQ}=\angle \mathrm{PQD} & \text { (Corresponding } \angle ’ \mathrm{~s}) \\
\angle \mathrm{ADB}=\angle \mathrm{PDQ} & (\text { (Common) }
\end{array}
$$

By AA-Similarity

$$
\begin{equation*}
\Delta \mathrm{ADB} \sim \Delta \mathrm{PDQ} \tag{i}
\end{equation*}
$$

$\therefore \quad \frac{D Q}{D B}=\frac{P Q}{A B} \quad \Rightarrow \quad \frac{D Q}{D B}=\frac{Z}{x}$
Similarly, $\triangle \mathrm{PBQ} \sim \Delta \mathrm{CBD}$
And

$$
\begin{equation*}
\frac{B Q}{D B}=\frac{z}{x} \tag{ii}
\end{equation*}
$$

Adding (i) and (i), we get

$$
\begin{array}{ll}
\frac{z}{x}+\frac{z}{y}=\frac{D Q+B Q}{D B}=\frac{B D}{B D} & \\
\frac{z}{x}+\frac{z}{y}=1 & \Rightarrow
\end{array} \frac{1}{x}+\frac{1}{y}+\frac{1}{z}
$$

Que 17. In Fig. 7.27, if $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$ and their sides are of length (in cm) as marked along them, then find the length of the sides of each triangle.

Fig. 7.27

Sol. $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$ (Given)

Therefore, $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$
So, $\quad \frac{2 x-1}{18}=\frac{2 x+2}{3 x+9}=\frac{3 x}{6 x}$
Now, taking $\frac{2 x-1}{18}=\frac{1}{2}$
$\Rightarrow \quad 4 x-2=18 \Rightarrow x=5$
$\therefore \quad A B=2 \times 5-1=9, B C=2 \times 5+2=12$

$$
C A=3 \times 5=15, D E=18, E F=3 \times 5+9=24 \text { and } F D=6 \times 5=30
$$

Hence, $A B=9 \mathrm{~cm}$,
$B C=12 \mathrm{~cm}, C A=15 \mathrm{~cm}$
$D E=18 \mathrm{~cm}$,
$E F=24 \mathrm{~cm}, F D=30 \mathrm{~cm}$
Que 18. In $\triangle A B C$, it is given that $\frac{A B}{A C}=\frac{B D}{D C}$. If $\angle B=70^{\circ}$ and $\angle C=50^{\circ}$ thwen find $\angle B A D$.

Fig. 7.28
Sol. In $\triangle A B C$

$$
\begin{array}{ll}
\because & \angle A+\angle B+\angle C=180^{\circ} \quad \quad \text { (Angle sum property) } \\
& \angle A+70^{\circ}+50^{\circ}=180^{\circ} \\
\Rightarrow & \angle A=180^{\circ}-120^{\circ} \quad \Rightarrow \quad \angle A=60^{\circ} \\
\because & \frac{A B}{A C}=\frac{B D}{D C} \quad \text { (Given) } \\
\therefore \quad \angle 1=\angle 2 & \ldots . \text { (i) }
\end{array}
$$

[Because a line through one vertex of a triangle divides the opposite sides in the ratio of other two sides, then the line bisects the angle at the vertex.]

But $\angle 1+\angle 2=60^{\circ}$
From (i) and (ii) we get,

$$
2 \angle 1=60^{\circ} \quad \Rightarrow \angle 1=\frac{60^{\circ}}{2}=30^{\circ}
$$

Hence, $\angle B A D=30^{\circ}$

Que 19. If the diagonals of a quadrilateral divides each other proportionally, prove that it is a trapezium.

Fig. 7.29
Sol. $\frac{A O}{B O}=\frac{C O}{D O} \quad$ (Given)
$\Rightarrow \quad \frac{A O}{C O}=\frac{B O}{D O}$
In $\triangle A B D, E Q \| A B \quad$ (Construction)
$\therefore \quad \frac{A E}{E D}=\frac{B O}{D O}$
(By BPT)
From equations (i) and (ii)

$$
\frac{A E}{E D}=\frac{A O}{C O} \quad \Rightarrow \quad \mathrm{EO} \| \mathrm{DC} \quad(\text { Converse of BPT) }
$$

But EO || AB (Construction)
$\therefore A B \| D C$
\Rightarrow In quad $A B C D D A B \| D C \quad \Rightarrow A B C D$ is a trapezium.
Que 20. In the given Fig. 7.30, $\frac{P S}{S Q}=\frac{P T}{T R}$ and $\angle P S T=\angle P R Q$. Prove that $P Q R$ is an isosceles triangle.

Fig. 7.30

Sol. Given: $\frac{P S}{S Q}=\frac{P T}{T R}$ and $\angle \mathrm{PST}=\angle \mathrm{PRQ}$
To Prove: PQR is isosceles triangle.
Proof: $\frac{P S}{S Q}=\frac{P T}{T R}$

By converse of BPT we get
ST \| QR
$\therefore \quad \angle P S T=\angle P Q R \quad$ (Corresponding angles)
But, $\angle \mathrm{PST}=\angle \mathrm{PRQ} \quad$ (Given)
From equation (i) and (ii)

$$
\angle P Q R=\angle P R Q \quad \Rightarrow \quad P R=P Q
$$

So, $\triangle P Q R$ is an isosceles triangle.
Que 21. The diagonals of a trapezium $A B C D$ in which $A B|\mid D C$, intersect at O. If $A B=\mathbf{2 c d}$ then find the ratio of areas of triangles $A O B$ and COD.

Fig. 7.31
Sol. In $\triangle A O B$ and $\triangle C O D$

$$
\begin{array}{rlc}
\angle \mathrm{COD} & =\angle \mathrm{AOB} & \text { (Vertically opposite angles) } \\
& \angle \mathrm{CAB} & =\angle \mathrm{DCA}
\end{array}
$$

By area of theorem

$$
\frac{\operatorname{ar}(\triangle A O B)}{\operatorname{ar}(\triangle C O D)}=\frac{A B^{2}}{D C^{2}} \quad \Rightarrow \quad \frac{\operatorname{ar}(\triangle A O B)}{\operatorname{ar}(\triangle C O D)}=\frac{(2 C D)^{2}}{C D^{2}}=\frac{4}{1}
$$

Hence, $\operatorname{ar}(\triangle A O B): \operatorname{ar}(\triangle C O D)=4: 1$.
Que 22. In the given Fig. 7.32, find the value of x in terms of a, b and c.

Fig. 7.32
Sol. In $\Delta \mathrm{LMK}$ and $\triangle \mathrm{PNK}$
We have, $\quad \angle \mathrm{M}=\angle \mathrm{N}=50^{\circ}$ and $\quad \angle \mathrm{K}=\angle \mathrm{K} \quad$ (Common)
$\Delta \mathrm{LMK} \sim \Delta \mathrm{PNK} \quad$ (AA - Similarity)

$$
\frac{L M}{P N}=\frac{K M}{K N}
$$

$$
\frac{a}{x}=\frac{b+c}{c} \quad \Rightarrow \quad x=\frac{a c}{b+c}
$$

Que 23. In the given Fig. 7.33, $C D|\mid L A$ and $D E \| A C$. Find the length of $C L$ if $B E$ $=4 \mathrm{~cm}$ and $E C=2 \mathrm{~cm}$.

Fig. 7.33
Sol. In $\triangle A B C, D E \| A C \quad$ (Given)
$\Rightarrow \quad \frac{B D}{D A}=\frac{B E}{E C}$
(By BPT)

In $\triangle A B L D C \| A L$
$\Rightarrow \quad \frac{B D}{D a}=\frac{B C}{C L}$
(By BPT)
From (i) and (ii) we get

$$
\frac{B E}{E C}=\frac{B C}{C L} \quad \Rightarrow \quad \frac{4}{2}=\frac{6}{C L} \quad \Rightarrow \quad C L=3 \mathrm{~cm}
$$

Que 24. In the given Fig. 7.34, $A B=A C$. E is a point on $C B$ produced. If $A D$ is perpendicular to $B C$ and $E F$ perpendicular to $A C$, prove that $\triangle A B D$ is similar to $\Delta C E F$.

Fig. 7.34

Sol. In $\triangle A B D$ and $\triangle C E F$
$A B=A C$
(Given)
$\Rightarrow \angle A B C=\angle A C B \quad$ (Equal sides have equal opposite angles)

$$
\begin{aligned}
\angle A B D & =\angle E C F & & \\
\angle A D B & =\angle E F C & & \text { (Each } \left.90^{\circ}\right) \\
\text { So, } \triangle A B D & \sim \triangle C E F & & \text { (AA }- \text { Similarity) }
\end{aligned}
$$

Long Answer Type Questions

[4 MARKS]

Que 1. Using Basic proportionality Theorem, prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side.

Fig. 7.35

Sol. Given: $A \triangle A B C$ in which D is the mid-point of $A B$ and $D E$ is drawn parallel to $B C$, which meets $A C$ at E.

To prove: $A E=E C$
Proof: In $\triangle A B C, D E| | B C$
\therefore By Basic proportionality Theorem, we have

$$
\begin{equation*}
\frac{A D}{D B}=\frac{A E}{E C} \tag{i}
\end{equation*}
$$

Now, since D is the mid-point of $A B$

$$
\begin{equation*}
\Rightarrow \quad A D=B D \tag{ii}
\end{equation*}
$$

From (i) and (ii), we have

$$
\begin{aligned}
& \qquad \frac{B D}{B D}=\frac{A E}{E C} \quad \Rightarrow \quad 1=\frac{A E}{E C} \\
& \Rightarrow \quad \mathrm{AE}=\mathrm{EC} \\
& \text { Hence, } \mathrm{E} \text { is the mid-point of } \mathrm{AC} \text {. }
\end{aligned}
$$

Que 2. $A B C D$ is a trapezium in which $A B|\mid D C$ and its diagonals intersect each other at the point O. Show that $\frac{A O}{B O}=\frac{C O}{D O}$.

Sol. Given: $A B C D$ is a trapezium, in which $A B$ || DC and its diagonals intersect each other at the point O .

To prove: $\frac{A O}{B O}=\frac{C O}{D O}$
Construction: Through O, draw OE || AB i.e., OE || DC.

Fia. 7.36
Proof: In $\triangle \mathrm{ADC}$, we have OE || AB (Construction)
\therefore By Basic proportionality Theorem, we have

$$
\begin{equation*}
\frac{E D}{A E}=\frac{D O}{B O} \tag{i}
\end{equation*}
$$

Now, in $\triangle A B D$, we have $O E$ || $A B$ (Construction)
\therefore By Basic proportionality Theorem, we have

$$
\begin{equation*}
\frac{E D}{A E}=\frac{D O}{B O} \Rightarrow \frac{A E}{E D}=\frac{B O}{D O} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we have

$$
\frac{A O}{C O}=\frac{B O}{D O} \quad \Rightarrow \quad \frac{A O}{B O}=\frac{C O}{D O}
$$

Que 3. If $A D$ and $P M$ are medians of triangles $A B C$ and PQR respectively, where $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$, prove that $\frac{A B}{P Q}=\frac{A D}{P M}$.

Fig. 7.37
Sol. In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQM}$, we have

$$
\begin{align*}
\angle \mathrm{B} & =\angle \mathrm{Q} \quad(\because \triangle A B C \sim \triangle P Q R) \tag{i}\\
\frac{A B}{P Q} & =\frac{B C}{Q R}(\because \quad \triangle A B C \sim \triangle P Q R) \\
\Rightarrow \quad \frac{A B}{P Q} & =\frac{\frac{1}{2} B C}{\frac{1}{2} Q R} \quad \Rightarrow \quad \frac{A B}{P Q}=\frac{B D}{Q M} \tag{ii}
\end{align*}
$$

[Since $A D$ and $P M$ are the medians of $\triangle A B C$ and $\triangle P Q R$ respectively]
From (i) and (ii) it is proved that

$$
\triangle A B D \sim \triangle P Q M
$$

(By SAS criterion of similarity)
$\Rightarrow \frac{A B}{P Q}=\frac{B D}{Q M}=\frac{A D}{P M} \quad \Rightarrow \quad \frac{A B}{P Q}=\frac{A D}{P M}$
Que 4. In Fig. 7.38, $A B C D$ is a trapezium with $A B|\mid ~ D C$. If $\triangle A E D$ is similar to $\triangle B E C$, prove that $A D=B C$.

Fig. 7.38
Sol. In $\triangle \mathrm{EDC}$ and $\triangle \mathrm{EBA}$, we have

$$
\begin{array}{ll}
\angle 1=\angle 2 & \text { [Alternate angles] } \\
\angle 3=\angle 4 & \text { [Alternate angles] }
\end{array}
$$

and $\angle C E D=\angle A E B$
[Vertically opposite angles]
$\therefore \quad \triangle E D C \sim \triangle E B A$
[By AA criterion of similarity]
$\Rightarrow \quad \frac{E D}{E B}=\frac{E C}{E A} \quad \Rightarrow \quad \frac{E D}{E C}=\frac{E B}{E A}$
It is given that $\triangle \mathrm{AED} \sim \triangle \mathrm{BEC}$
$\therefore \quad \frac{E D}{E C}=\frac{E A}{E B}=\frac{A D}{B C}$
From (i) and (ii), we get

$$
\frac{E B}{E A}=\frac{E A}{E B} \quad \Rightarrow \quad(E B)^{2}=(E A)^{2} \quad \Rightarrow \quad E B=E A
$$

Substituting EB = EA in (ii), we get

$$
\frac{E A}{E A}=\frac{A D}{B C} \quad \Rightarrow \quad \frac{A D}{B C}=1 \quad \Rightarrow \quad A D=B C
$$

Que 5. Prove that the area of an equilateral triangle described on a side of a right-angled isosceles triangle is half the area of the equilateral triangle describe on its hypotenuse.

Fig. 7.39

Sol. Given: $\triangle \mathrm{ABC}$ in which $\angle A B C=90^{\circ}$ and $A B=B C . \triangle A B D$ and $\triangle A C E$ are equilateral triangles.

To Prove: $\operatorname{ar}(\triangle A B D)=\frac{1}{2} \times \operatorname{ar}(\triangle C A E)$
Proof: Let $\mathrm{AB}=\mathrm{BC}=\mathrm{x}$ units.
\therefore hyp. $C A=\sqrt{x^{2}+x^{2}}=x \sqrt{2}$ units.
Each of the $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CAE}$ being equilateral, has each angle equal to 60°
$\therefore \quad \triangle A B D \sim \triangle C A E$
But, the ratio of the areas of two similar triangles in equal to the ratio of the squares of their corresponding sides.
$\therefore \quad \frac{\operatorname{ar}(\triangle A B D)}{\operatorname{ar}(\triangle C A E)}=\frac{A B^{2}}{C A^{2}}=\frac{x^{2}}{(x \sqrt{2})^{2}}=\frac{x^{2}}{2 x^{2}}=\frac{1}{2}$
Hence, $\operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{2} \times \operatorname{ar}(\triangle C A E)$
Que 6. If the areas of two similar triangles are equal, prove that they are congruent.

Fig. 7.40
Sol. Given: Two triangles ABC and DEF, such that

$$
\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF} \text { and area }(\triangle \mathrm{ABC})=\operatorname{area}(\triangle \mathrm{DEF})
$$

To prove: $\triangle A B C \cong \triangle D E F$
Proof: $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\Rightarrow \quad \angle A=\angle D, \angle B=\angle C=\angle F$
And $\quad \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
Now, $\operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{DEF})$
$\therefore \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=1$
And

$$
\begin{equation*}
\frac{A B^{2}}{D E^{2}}=\frac{B C^{2}}{E F^{2}}=\frac{A C^{2}}{D F^{2}}=\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}(\therefore \Delta A B C-\triangle D E F) \tag{ii}
\end{equation*}
$$

From (i) and (ii), we have

$$
\frac{A B^{2}}{D E^{2}}=\frac{B C^{2}}{E F^{2}}=\frac{A C^{2}}{D F^{2}}=1 \quad \Rightarrow \quad \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}=1
$$

Hence, $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ (By SSS criterion of congruency)
Que 7. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Sol. Let $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ be two similar triangles. AD and PM are the medians of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ resopectively.

To prove: $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A D^{2}}{P M^{2}}$
Proof: Since $\triangle A B C \sim \triangle P Q R$

$$
\begin{equation*}
\therefore \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}} \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQM}$

$$
\frac{A B}{P Q}=\frac{B D}{Q M} \quad\left(\because \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{1 / 2 B C}{1 / 2 Q R}\right)
$$

And $\angle B=\angle Q$
$(\because \triangle A B C \sim \triangle P Q R)$
Hence, $\triangle \mathrm{ABD} \sim \triangle \mathrm{PQM}$
(By SAS Similarity criterion)

$$
\begin{equation*}
\therefore \quad \frac{A B}{P Q}=\frac{A D}{P M} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we have

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A D^{2}}{P M^{2}}
$$

Que 8. In Fig.7.42, O is a point in the interior of a triangle $A B C, O D \perp B C, O E \perp$ $A C$ and $O F \perp A B$. Show that
(i) $O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$
(ii) $A F^{2}+B D^{2}+C E^{2}+A E^{2}+C D^{2}+B F^{2}$.

Fig. 7.42
Sol. Join OA, OB and OC.
(i) In right $\Delta^{\prime} s$ OFA, ODB and OEC, we have

$$
\begin{align*}
& O A^{2}=A F^{2}+O F^{2} \tag{i}\\
& O B^{2}=\mathrm{BD}^{2}+O \mathrm{OD}^{2} \tag{ii}\\
& O C^{2}=\mathrm{CE}^{2}+O E^{2}
\end{align*}
$$

and
Adding (i), (ii) and (iii), we have

$$
\begin{array}{ll}
& O A^{2}+O B^{2}+O C^{2}=A F^{2}+B D^{2}+C E^{2}+O F^{2}+O D^{2}+O E^{2} \\
\Rightarrow & O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+\mathrm{BD}^{2}+C E^{2}
\end{array}
$$

(ii) We have, $O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}$

$$
\begin{array}{ll}
\Rightarrow & \left(O A^{2}-O E^{2}\right)+\left(O B^{2}-O F^{2}\right)+\left(O C^{2}-O D^{2}\right)=A F^{2}+\mathrm{BD}^{2}+C E^{2} \\
\Rightarrow & \mathrm{AE}^{2}+C D^{2}+\mathrm{BF}^{2}=\mathrm{AF}^{2}+\mathrm{BD}^{2} \mathrm{CE}^{2}
\end{array}
$$

[Using Pythagoras Theorem in $\triangle \mathrm{AOE}, \triangle \mathrm{BOF}$ and $\triangle \mathrm{COD}$]
Que 9. The perpendicular from A on side $B C$ of a $\triangle A B C$ intersects $B C$ at D such that $D B=3 C D$
(see Fig. 7.43). Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$.

Fig. 7.43

$$
\begin{array}{ll}
\text { Sol. We have, } & D B=3 C D \\
\text { Now, } & B C=B D+C D \\
\Rightarrow & B C=3 C D+C D=4 C D \\
\therefore & C D=\frac{1}{4} B C
\end{array} \quad \text { (Given } D B=3 C D \text {) }
$$

And $\quad \mathrm{DB}=3 \mathrm{CD}=\frac{3}{4} B C$
Now, in right-angled triangle $A B D$, we have

$$
\begin{equation*}
A B^{2}=A D^{2}+D B^{2} \tag{i}
\end{equation*}
$$

Again, in right- angled triangle $\triangle A D C$, we have

$$
\begin{equation*}
A C^{2}=A D^{2}+C D^{2} \tag{ii}
\end{equation*}
$$

Subtracting (ii) from (i), we have

$$
\mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{DB}^{2}-\mathrm{CD}^{2}
$$

$\Rightarrow A B^{2}-A C^{2}=\left(\frac{3}{4} B C\right)^{2}-\left(\frac{1}{4} B C\right)^{2}=\left(\frac{9}{16}-\frac{1}{16}\right) B C^{2}=\frac{8}{16} B C^{2}$
$\Rightarrow A B^{2}-A C^{2}=\frac{1}{2} B C^{2}$
$\therefore \quad 2 A B^{2}-2 A C^{2}=B C^{2} \quad \Rightarrow \quad 2 A B^{2}=2 A C^{2}+B C^{2}$

HOTS (Higher Order Thinking Skills)

Que 1. In Fig. 7.58, $\triangle F E C \cong \triangle G D B$ and $\angle 1=\angle 2$. Prove that $\triangle A D E \sim \triangle A B C$.

Sol. Since $\triangle F E C \cong \triangle G D B$
$\Rightarrow \quad E C=B D$
It is given that

$$
\begin{gather*}
\Rightarrow 1=\angle 2 \\
\Rightarrow \quad A E=A D \quad \text { [Sides opposite to equal } \\
 \tag{ii}\\
\\
\\
\\
\\
\text { angles are equal] } \quad \ldots . \text { (ii) }
\end{gather*}
$$

From (i) and (ii), we have

$$
\frac{A E}{E C}=\frac{A D}{B D}
$$

$\Rightarrow \quad \mathrm{DE} \| \mathrm{BC} \quad$ [By the converse of basic proportionality theorem]
$\Rightarrow \quad \angle 1=\angle 3$ and $\angle 2=\angle 4 \quad$ [Corresponding angles]
Thus, in $\triangle^{\prime} S A D E$ and $A B C$, we have

$$
\begin{array}{ll}
\angle A=\angle A & \text { [Common] } \\
\angle 1=\angle 3 & \text { [Proved above] }
\end{array}
$$

So, by AAA criterion of similarity, we have

$$
\triangle A D E \sim \triangle A B C
$$

Que 2. Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides PQ and PR and median PM of another triangle PQR.
Show that $\triangle A B C \sim \triangle P Q R$.
Sol. Given: In $\triangle A B C$ and $\triangle P Q R, A D$ and $P M$ are their medians respectively
Such that $\frac{A B}{P Q}=\frac{A D}{P M}=\frac{A C}{P R}$
To prove: $\triangle A B C \sim \triangle P Q R$
Construction: Produce $A D$ to E such that $A D=D E$ and produce $P M$ to N such that $P M=M N$.
Join BE, CE, QN, RN.

Proof: Quadrilateral ABEC and PQNR are $\|^{9 m}$ because their diagonals bisect each other
at D and M respectively.

$$
\begin{array}{ll}
\Rightarrow & B E=A C \quad \text { and } \quad Q N=P R \\
\Rightarrow & \frac{B E}{Q N}=\frac{A C}{P R} \quad \Rightarrow \quad \frac{B E}{Q N}=\frac{A B}{P Q}
\end{array}
$$

i.e., $\frac{A B}{P Q}=\frac{B E}{Q N}$

From (i) $\frac{A B}{P Q}=\frac{A D}{P M}=\frac{2 A D}{2 P M}=\frac{A E}{P N}$
$\Rightarrow \quad \frac{A B}{P Q}=\frac{A E}{P N}$

Fig. 7.59
From (ii) and (iii)

$$
\frac{A B}{P Q}=\frac{B E}{Q N}=\frac{A E}{P N}
$$

$\Rightarrow \quad \triangle A B E \sim \triangle P Q N$
(SSS similarity criterion)
$\Rightarrow \quad \angle 1=\angle 2$

Similarly, we can prove

$$
\triangle A C E \sim \triangle P R N \quad \Rightarrow \quad \angle 3=\angle 4
$$

Adding (iv) and (v), we get $\angle 1+\angle 3=\angle 2+\angle 4 \Rightarrow \angle A=\angle P$

And $\frac{A B}{P Q}=\frac{A C}{P R}$
(Given)
$\therefore \quad \triangle A B C \sim \triangle P Q R \quad$ (By SAS criterion of similarity)
Que 3. In Fig. 7.60, P is the mid-point of $B C$ and Q is the mid-point of $A P$. If $B Q$ when produced meets $A C$ at R, prove that $R A=\frac{1}{3} C A$.

Fig. 7.60

Sol. Given: In $\triangle A B C, \mathrm{P}$ is the mid-point of BC, Q is the mid-point of AP such that BQ produced meets $A C$ at R.

To prove: RA $=\frac{1}{3} C A$.
Construction: Draw $P S \| B R$, meeting $A C$ at S.
Proof: In $\triangle B C R, P$ is the mid-point of BC and $\mathrm{PS}|\mid \mathrm{BR}$.
$\therefore \quad \mathrm{S}$ is the mid-point of CR .
$\Rightarrow \quad \mathrm{CS}=\mathrm{SR}$
In $\triangle A P S, Q$ is the mid-point of AP and $\mathrm{QR}|\mid \mathrm{PS}$.
$\therefore \quad \mathrm{R}$ is the mid-point of AS.
$\Rightarrow \quad A R=R S$
From (i) and (ii), we get
$A R=R S=S C$
$\Rightarrow \quad A C=A R+R S+S C=3 A R \quad \Rightarrow \quad A R=\frac{1}{3} A C=\frac{1}{3} C A$
Que 4. In Fig. 7.61, $A B C$ and DBC are two triangles on the same base BC. If AD intersects $B C$ at O, show that $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DBC})}=\frac{\mathrm{AO}}{\mathrm{DO}}$.

Fig. 7.61
Sol. Given: Two triangles $\triangle A B C$ and $\triangle D B C$ which stand on the same base but on opposite sides of BC.

To Prove: $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$
Construction: We draw $\mathrm{AE} \perp \mathrm{BC}$ and $\mathrm{DF} \perp \mathrm{BC}$.
Proof: In $\triangle A O E$ and $\triangle D O F$, we have

$$
\begin{array}{ll}
& \angle A E O=\angle D F O=90^{\circ} \\
& \angle A O E=\angle D O F \quad \text { (Vertically opposite angles) } \\
\therefore \quad & \triangle A O E \sim \triangle D O F \quad \text { (By AA criterion of similarity) } \\
\Rightarrow & \frac{A E}{D F}=\frac{A O}{D O} \\
\text { Now, } \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{\frac{1}{2} \times B C \times A E}{\frac{1}{2} \times B C \times D F}
\end{array}
$$

Fig. 7.62

$$
\begin{equation*}
\Rightarrow \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A E}{D E} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we have

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}
$$

Que 5. Two poles of height a metres and b metres are p metres apart. Prove that the height of the point of intersection of the lines joining the top of each pole to the foot of the opposite pole is given by $\frac{a b}{a+b}$ metres.

Fig. 7.63
Sol. Let $A B$ and $C D$ be two poles of height a and b metres respectively such that the poles are p metres apart i.e., $A C=p$ metres. Suppose the lines $A D$ and $B C$ meet at O such that
$\mathrm{OL}=\mathrm{h}$ metres.
Let $C L=x$ and $L A=y$. Then, $x+y=p$.
In $\triangle A B C$ and $\triangle L O C$, we have

$$
\angle C A B=\angle C L O
$$

[Each equal to 90°]

$$
\begin{array}{ccc}
& \angle C=\angle C & \text { [Common] } \\
\therefore & \triangle A B C \sim \triangle L O C & \\
\Rightarrow & \frac{C A}{C L}=\frac{A B}{L O} \quad \Rightarrow & \frac{P}{x}=\frac{a}{h} \\
\Rightarrow & x=\frac{p h}{a} & \ldots \text { (By AA criterion of similarity] } \tag{i}
\end{array}
$$

In $\triangle A L O$ and $\triangle A C D$, we have

$$
\begin{array}{cl}
\angle A L O=\angle A C D & \text { [Each equal to } 90^{\circ} \text {] } \\
\angle A=\angle A & \text { [Common] }
\end{array}
$$

$\therefore \quad \triangle A L O \sim \triangle A C D$
[By AA criterion of similarity]
$\Rightarrow \quad \frac{A L}{A C}=\frac{O L}{D C} \quad \Rightarrow \quad \frac{y}{p}=\frac{h}{b}$
$\Rightarrow \quad y=\frac{p h}{b}$
From (i) and (ii), we have

$$
\begin{array}{cccc}
& x+y=\frac{p h}{a}+\frac{p h}{b} \quad \Rightarrow \quad p=p h\left(\frac{1}{a}+\frac{1}{b}\right) \quad[\because x+y=p] \\
\Rightarrow & 1=h\left(\frac{a+b}{a b}\right) \quad \Rightarrow \quad h=\frac{a b}{a+b} \text { metres. }
\end{array}
$$

Hence, the height of the intersection of the lines joining the top of each pole to the foot of the opposite pole is $\frac{a b}{a+b}$ metres.

Value Based Questions

Que 1. Puneet prepared two posters on 'National Integration' for decoration on Independence Day on triangular sheets (say ABC and DEF). The sides AB and $A C$ and the perimeter P_{1} of $\triangle A B C$ are respectively three times the corresponding sides DE and DF and the perimeter P^{2} of $\triangle D E F$. Are the two triangular sheets similar? If yes, find $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}$.

What values can be inculcated through celebration of national festivals?

Fig. 4
Sol. In $\triangle A B C$ and $D E F$

$$
\begin{array}{ll}
& \mathrm{AB}=3 \mathrm{DE}, \mathrm{AC}=3 \mathrm{DF} \quad \text { and } \quad \mathrm{P}_{1}=3 \mathrm{p}_{2} \\
\therefore & \frac{A B}{D E}=3 ; \quad \frac{A C}{D F}=3 \\
\text { And } \quad \mathrm{P}_{1}=3 \mathrm{p}_{2} \Rightarrow \mathrm{BC}=3 \mathrm{EF} \\
\Rightarrow & \quad \frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}=3 \\
\Rightarrow & \quad \Delta \mathrm{ABC} \sim \triangle \mathrm{DEF} \quad \text { (By SSS similarity) } \\
\Rightarrow & \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar(}(\triangle D E F)}=\left(\frac{A B}{D E}\right)^{2}=(3)^{2}=9
\end{array}
$$

Unity of nation, fraternity, Patriotism.
Que 2. A man steadily goes 4 m due East and then 3 m due North.
(i) Find the distance from initial point to last point.
(ii) Which mathematical concept is used in this problem?
(iii) What is its value?

Fig. 5
Sol. (i) Let the initial position of the man be O and his final position be B . Since man goes 4 m due East and then 3 m due North. Therefore, $\triangle A 0 B$ is a right triangle right angled at A such that $O A=4 \mathrm{~m}$ and $A B=3 \mathrm{~m}$
By Pythagoras Theorem, we have

$$
\begin{aligned}
O B^{2} & =O A^{2}+A B^{2} \\
O B^{2} & =(4)^{2}+(3)^{2}=16+9=25 \\
O B & =\sqrt{25}=5 \mathrm{~m} .
\end{aligned}
$$

Hence, the man is at a distance of 5 m from the initial position.
(ii) Right-angled triangle, Pythagoras Theorem.
(iii) Knowledge of direction and speed saves the time.

Que 3. Two trees of height x and y are p metres apart.
(i) Prove that the height of the point of intersection of the line joining the top of each tree to the foot of the opposite tree is given by $\frac{x y}{x+y} \boldsymbol{m}$.
(ii) Which mathematical concept is used in this problem?
(iii) What is its value?

Sol. (i) Similar to solution Q. 5, page 161.
(ii) Similarity of triangles.
(iii) Trees are helpful to maintain the balance in the environment. They should be saved at any cost.

