Very Short Answer Type Questions

[1 Mark]

Que 1. If a point P is 17 cm from the centre of a circle of radius 8 cm , then find the length of the tangent drawn to the circle from point P.

Fig. 8.4
Sol. $\mathrm{OA} \perp \mathrm{PA}(\because$ radius is \perp to tangent at point of contact. $)$
\therefore In $\triangle \mathrm{OAP}$, we have

$$
\begin{array}{lll}
\mathrm{PO}^{2}=\mathrm{PA}^{2}+\mathrm{AO}^{2} & \Rightarrow & (17)^{2}=(P A)^{2}+(8)^{2} \\
(\mathrm{PA})^{2}=289-64=225 & \Rightarrow \quad \mathrm{PA}=\sqrt{225}=15
\end{array}
$$

Hence, the length of the tangent from point P is 15 cm .
Que 2. The lenght of the tangent to a circle from a point P, which is $\mathbf{2 5 c m}$ away from the centre, is 24 cm . What is the radius of the circle?

Fig. 8.5
Sol. $\because O Q \perp P Q$
$\therefore P Q^{2}+Q O^{2}=O P^{2}$
$\Rightarrow \quad 25^{2}=O Q^{2}+24^{2}$
or

$$
\begin{aligned}
\mathrm{OQ} & =\sqrt{625-576} \\
& =\sqrt{49}=7 \mathrm{~cm}
\end{aligned}
$$

Que 3. In Fig. 8.6, $A B C D$ is a cyclic quadrilateral. If $\angle B A C=50^{\circ}$ and $\angle D B C=60^{\circ}$ then find $\angle B C D$.

Fig. 8.6
Sol. Here $\angle B D C=\angle B A C=50^{\circ}$ (angles in same segment are equal)
In $\triangle B C D$, we have

$$
\begin{aligned}
\angle B C D & =180^{\circ}-(\angle B D C+\angle D B C) \\
& =180^{\circ}\left(50^{\circ}+60^{\circ}\right)=70^{\circ}
\end{aligned}
$$

Que 4. In Fig. 8.7, the quadrilateral $A B C D$ circumscribes a circle with centre 0. If $\angle A O B=115^{\circ}$, then find $\angle C O D$.

Fig. 8.7
Sol. $\because \angle A O B=\angle C O D$ (Vertically opposite angle)
$\therefore \angle C O D=115^{\circ}$
Que 5. In Fig. 8.8, $\triangle A B C$ is circumscribing a circle. Find the length of $B C$.

Fig. 8.8

Sol. $\begin{aligned} A N & =A M \\ B N & =3 \mathrm{~cm} \\ B L & =4 \mathrm{~cm}\end{aligned}$
[Tangents drawn from an external point]
[Tangents drawn from an external point]

$$
\begin{aligned}
& \mathrm{CL}=\mathrm{CM}=\mathrm{AC}-\mathrm{AM}=9-3=6 \mathrm{~cm} \\
& \Rightarrow B C=B L+C L=4+6=10 \mathrm{~cm} .
\end{aligned}
$$

Que 6. In Fig. 8.9, O is the centre of a circle, $P Q$ is a chord and the tangent PR at P makes an angle of 50° with $P Q$. Find $\angle P O Q$.

Fig. 8.9
Sol.

$$
\begin{gathered}
\angle O P Q=90^{\circ}-50^{\circ}=40^{\circ} \\
\mathrm{OP}=\mathrm{OQ} \quad[\text { Radii of a circle }]
\end{gathered}
$$

$$
\Rightarrow \quad \angle O P Q=\angle O Q P=40^{\circ}
$$

(Equal opposite sides have equal opposite angles)
\therefore

$$
\angle P O Q=180^{\circ}-40^{\circ}-40^{\circ}=100^{\circ}
$$

Que 7. If two tangents inclined at an angle 60° are drawn to a circle of radius 3 cm, then find the length of each tangent.

Fig. 8.10
Sol. In Fig. 8.10

$$
\triangle A O P \cong \triangle B O P \quad(\text { By SSS congruence criterion })
$$

$\Rightarrow \angle A P O=\angle B P O=\frac{60^{\circ}}{2}=30^{\circ}$
In $\triangle A O P, O A \perp A P$
$\therefore \quad \tan 30^{\circ}=\frac{O A}{A P}=\frac{1}{\sqrt{3}}=\frac{3}{A P}$
$\Rightarrow \quad \mathrm{AP}=3 \sqrt{3} \mathrm{~cm}$

Short Answer Type Questions - I

[2 marks]

State true or false for each of the following and justify your answer (Q. 1 to 3)
Que 1. $A B$ is a diameter of a circle and $A C$ is its chord such that $\angle B A C=30^{\circ}$ If the tangent at C intersects $A B$ extended at D, then $B C=B D$.

Fig. 8.16

Sol. True, Join OC,

$$
\begin{aligned}
& \quad \angle A C B=90^{\circ} \\
& \therefore \quad \angle O B C=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)=60^{\circ} \\
& \text { Since, } O B=O C=\text { radii of same circle [Fig. 8.16] } \\
& \therefore \quad \angle O B C=\angle O C B=60^{\circ} \\
& \text { Also, } \angle O C D=90^{\circ} \\
& \Rightarrow \quad \angle B C D=90^{\circ}-60^{\circ}=30^{\circ} \\
& \text { Now, } \angle O B C=\angle B C D+\angle B D C \\
& \Rightarrow \quad 60^{\circ}=30^{\circ}+\angle B D C \quad \begin{array}{ll}
& \angle B D C=30^{\circ} \\
\because \quad \angle B C D=\angle B D C=30^{\circ} & \therefore B C=B D
\end{array}
\end{aligned}
$$

Que 2. The length of tangent from an external point P on a circle with centre 0 is always less than OP.

Fig. 8.17
Sol. True. Let PQ be the tangent from the external point P.
Then $\triangle P Q O$ is always a right angled triangle with OP as the hypotenuse.
So, PQ is always less than OP .

Que 3. If angle between two tangents drawn from a point to a circle of radius ' a ' and centre O is 90°, then $O P=a \sqrt{2}$.

Fig. 8.18
Sol. True, let PQ and PR be the tangents
since $\angle P=90^{\circ}$, so $\angle Q O R=90^{\circ}$
Also, $\mathrm{OR}=\mathrm{OQ}=\mathrm{a}$
$\therefore \quad P Q O R$ is a square
$\Rightarrow O P=\sqrt{a^{2}+a^{2}}=\sqrt{2 a^{2}}=a \sqrt{2}$
Que 4. In Fig. 8.19, PA and PB are tangents to the circle drawn from an external point P. $C D$ is the third tangent touching the circle at Q. If $P A=15 \mathrm{~cm}$, find the perimeter of $\triangle P C D$.

Fig. 8.19
Sol. $\because \mathrm{PA}$ and PB are tangent from same external point

$$
\therefore \quad P A=P B=15 \mathrm{~cm}
$$

Now, perimeter of $\triangle P C D=P C+C D+D P=P C+C Q+Q D+D P$

$$
\begin{aligned}
& =P C+C A+D B+D P \\
& =P A+P B=15+15=30 \mathrm{~cm}
\end{aligned}
$$

Que 5. Prove that the line segment joining the points of contact of two parallel tangent of a circle, passes through its centre.

Fig. 8.20

Sol. Let the tangent to a circle with centre O be ABC and XYZ .
Construction: Join OB and OY.
Draw OP || AC
Since AB || PO

$$
\angle \mathrm{ABO}+\angle \mathrm{POB}=180^{\circ} \quad \text { (Adjacent interior angles) }
$$

$\angle \mathrm{ABO}=90^{\circ}$ (A tangent to a circle is perpendicular to the radius through the point of contact)
$\Rightarrow \quad 90^{\circ}+\angle \mathrm{POB}=180^{\circ} \Rightarrow \quad \angle \mathrm{POB}=90^{\circ}$
Similarly $\quad \angle \mathrm{POY}=90^{\circ}$
$\therefore \quad \angle \mathrm{POB}+\angle \mathrm{POY}=90^{\circ}+90^{\circ}=180^{\circ}$
Hence, BOY is a straight line passing through the centre of the circle.
Que 6. If from an external point P of a circle with centre O, two tangents $P Q$ and $P R$ are drawn such that $\angle Q P R=120^{\circ}$, prove that $2 P Q=P O$.

Fig. 8.21

Sol. Given, $\angle Q P R=120^{\circ}$
Radius is perpendicular to the tangent at the point of contact.

$$
\therefore \quad \angle O Q P=90^{\circ} \quad \Rightarrow \angle Q P O=60^{\circ}
$$

(Tangent drawn to a circle from an external point are equally inclined to the segment, joining the centre to that point)

In $\triangle Q P O, \quad \cos 60^{\circ}=\frac{P Q}{P O} \quad \Rightarrow \frac{1}{2}=\frac{P Q}{P O}$
$\Rightarrow \quad 2 \mathrm{PQ}=\mathrm{PO}$
Que 7. In Fig. 8.22, common tangent $A B$ and $C D$ to two circles with centres O_{1} and O_{2} intersect at E. Prove that $A B=C D$.

Fig. 8.22
Sol. $\mathrm{AE}=\mathrm{CE}$ and $\mathrm{BE}=\mathrm{ED}$ [Tangents drawn from an external point are equal]
On addition, we get
$A E+B E=C E+E D \quad \Rightarrow \quad A B=C D$
Que 8. The incircle of an isosceles triangle $A B C$, in which $A B=A C$, touches the sides $B C, C A$ and $A B$ at D, E and F respectively. Prove that $B D=D C$.

Fig. 8.23

Sol. Given, $\quad A B=A C$
We have, $B F+A F=A E+C E$
$A B, B C$ and $C A$ are tangent to the circle at F, D and E respectively.
$\therefore \quad B F=B D$ and $C E=C D$
From (i) and (ii)

$$
\begin{aligned}
& & B D+A E=A E+C D(\because A F=A E) \\
\Rightarrow & & B D=C D
\end{aligned}
$$

Short Answer Type Questions - II

[3 marks]

Que 1. A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $O Q=12 \mathrm{~cm}$. Find the length of $P Q$.

Fig. 8.30
Sol. We have,

$$
\angle O P Q=90^{\circ}
$$

$$
O Q=12 \mathrm{~cm} \text { and } O P=5 \mathrm{~cm}
$$

\therefore By Pythagoras Theorem

$$
\begin{gathered}
O Q^{2}=O P^{2}+Q P^{2} \Rightarrow 12^{2}=5^{2}+Q P^{2} \\
\Rightarrow \quad Q P^{2}=144-25=119 \Rightarrow Q P=\sqrt{119} \mathrm{~cm}
\end{gathered}
$$

Que 2. From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is $\mathbf{2 5} \mathbf{~ c m}$. Find the radius of the circle.

Fig. 8.31
Sol. Let QT be the tangent and OT be the radius of circle. Therefore

$$
\begin{aligned}
& O T \perp Q T \text { i.e., } \angle O T Q=90^{\circ} \\
& \text { and } O Q=25 \mathrm{~cm} \text { and } Q T=24 \mathrm{~cm}
\end{aligned}
$$

Now, by Pythagoras Theorem, we have

$$
\begin{array}{ll}
& \mathrm{OQ}^{2}=\mathrm{QT}^{2}+\mathrm{OT}^{2} \Rightarrow 25^{2}=24^{2}+O T^{2} \\
\Rightarrow \quad \mathrm{OT}^{2}=25^{2}-24^{2}=625-576 \\
\mathrm{OT}^{2}=49 \quad \therefore \quad O T=7 \mathrm{~cm}
\end{array}
$$

Que 3. In Fig. 8.32, if TP and TQ are the two tangents to a circle with centre O so that $\angle P O Q=110^{\circ}$, then find $\angle P T Q$.

Fig. 8.32

Sol. Since TP and TQ are the tangents to the circle with centre O
So, OP $\perp \mathrm{PT}$ and $\mathrm{OQ} \perp \mathrm{QT}$
$\Rightarrow \angle O P T=90^{\circ}, \angle O Q T=90^{\circ}$ and $\angle P O Q=110^{\circ}$
So, in quadrilateral OPTQ, we have
$\angle P O Q+\angle O P T+\angle P T Q+\angle T Q O=360^{\circ}$
$\Rightarrow 110^{\circ}+90^{\circ}+\angle P T Q+90^{\circ}=360^{\circ} \Rightarrow \angle P T Q+290^{\circ}=360^{\circ}$
$\therefore \quad \angle P T Q=360^{\circ}-290^{\circ} \quad \Rightarrow \quad \angle P T Q=70^{\circ}$
Que 4. Prove that the tangent drawn at the ends of a diameter of a circle are parallel.

Fig. 8.33
Sol. Let $A B$ be the diameter of the given circle with centre O, and two tangents $P Q$ and LM are drawn at the end of diameter AB respectively.
Now, since the tangent at a point to a circle is perpendicular to the radius through the point of contact.
Therefore, $\quad O A \perp P Q$ and $O B \perp L M$
i.e., $\quad A B \perp P Q$ and also $A B \perp L M$
$\Rightarrow \quad \angle B A Q=\angle A B L\left(\right.$ each $\left.90^{\circ}\right)$
$\therefore \quad \mathrm{PQ} \| \mathrm{LM} \quad(\because \angle B A Q$ and $\angle A B L$ are alternate angles $)$

Que 5. If tangent PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80°, then find $\angle P O A$.

Fig. 8.34
Sol. $\because \mathrm{PA}$ and PB are tangents to a circle with centre O .
$\therefore O A \perp A P$ and $O B \perp P B$
i.e., $\angle A P B=80^{\circ}, \angle O A P=90^{\circ}$ and $\angle O B P=90^{\circ}$

Now, in quadrilateral OAPB, we have

$$
\angle A P B+\angle P B O+\angle O A P=360^{\circ}
$$

$\Rightarrow \quad 80^{\circ}+90^{\circ}+\angle B O A+90^{\circ}=360^{\circ}$
$\Rightarrow \quad 260^{\circ}+\angle B O A=360^{\circ}$
$\therefore \quad \angle B O A=360^{\circ}-260^{\circ} \quad \Rightarrow \quad \angle B O A=110^{\circ}$
Now, in $\triangle P O A$ and $\triangle P O B$, we have

$$
\begin{aligned}
& \mathrm{OP}=\mathrm{OP} \\
& \mathrm{OA}=\mathrm{OB} \\
& \angle O A P=\angle O B P=90^{\circ} \\
& \text { (Common) } \\
& \therefore \angle P O A \cong \triangle P O B \\
& \Rightarrow \angle P O A=\angle P O B \text { (RHS congruence condition) } \\
& \Rightarrow \angle \mathrm{CPCT} \text {) }
\end{aligned}
$$

Now, $\angle P O A=\frac{1}{2} \times \angle B O A=\frac{1}{2} \times 100=50^{\circ}$
Que 6. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm .

Fig. 8.35

Sol. Let O be the centre and P be the point of contact.
Since tangent to a circle is perpendicular to the radius through the point of contact.

$$
\therefore \quad \angle O P A=90^{\circ}
$$

Now, in right $\triangle O P A$, we have

$$
\begin{array}{cc}
O A^{2}=O P^{2}+P A^{2} & \text { [By Pythagoras Theorem] } \\
5^{2}=O P^{2}+4^{2} & \Rightarrow 25=O P^{2}+16 \\
\Rightarrow O P^{2}=25-16=9 & \therefore O P=3 \mathrm{~cm}
\end{array}
$$

Hence, the radius of the circle is 3 cm .
Que 7. Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.

Fig. 8.36

Sol. Let O be the common centre of two concentric circles and let $A B$ be a chord of larger circle touching the smaller circle at P. Join OP.
Since $O P$ is the radius of the smaller circle and $A B$ is tangent to this circle at P.
$\therefore \quad O P \perp A B$
We know that the perpendicular drawn from the centre of a circle to any chord of the circle bisects the chord.
Therefore, $\quad \mathrm{AP}=\mathrm{BP}$
In right $\triangle A P O$, we have
$\mathrm{OA}^{2}=\mathrm{AP}^{2}+\mathrm{OP}^{2}$
$\Rightarrow \quad 5^{2}=A P^{2}+3^{2} \quad \Rightarrow \quad 25-9=A P^{2}$
$\Rightarrow \quad A P^{2}=16 \quad \Rightarrow A P=4$
Now, $\quad \mathrm{AB}=2 . \mathrm{AP}=2 \times 4=8 \quad[\because A P=P B]$
Hence, the length of the chord of the larger circle which touches the smaller circle is 8 cm .

Long Answer Type Questions
 [4 MARKS]

Que 1. Prove that the tangent to a circle is perpendicular to the radius through the point of contact.

Fig. 8.43

Sol. Given: A circle $C(O, r)$ and a tangent $A B$ at a point P.
To prove: $O P \perp A B$.
Construction: Take any point Q, other than P, on the tangent AB. Join OQ. Suppose OQ meets the circle at R.
Proof: We know that among all line segment joining the point O to point on $A B$, the shortest one is perpendicular to $A B$. So, to prove that $O P \perp A B$, it is sufficient to prove that OP is shorter than any other segment joining O to any point of $A B$.
Clearly, $\quad \mathrm{OP}=\mathrm{OR} \quad$ [Radii of the same circle]
Now, $\quad O Q=O R+R Q$
$\Rightarrow \quad O Q>O R$
$\Rightarrow \quad \mathrm{OQ}>\mathrm{OP} \quad[\because O P=O R]$
Thus, OP is shorter than any other segment joining O to any point on AB .
Hence, $\quad O P \perp A B$.
Que 2. Prove that the length of two tangent drawn from an external point to a circle are equal.

Sol. Given: AP and AQ are two tangent from a point A to a circle $C(O, r)$.
To prove: AP = AQ
Construction: Join OP, OQ and OA.
Proof: In order to prove that $\mathrm{AP}=\mathrm{AQ}$, we shall first prove that $\triangle O P A \cong \triangle O Q A$.
Since a tangent at any point of a circle is perpendicular to the radius through the point of contact.
$\therefore \quad O P \perp A P$ and $O Q \perp A Q$.
$\Rightarrow \quad \angle O P A=\angle O Q A=90^{\circ}$
Now, in right triangles OPA and OQA, we have

$$
\begin{equation*}
\mathrm{OP}=\mathrm{OQ} \quad[\text { Radii of a circle }] \tag{i}
\end{equation*}
$$

$$
\angle O P A=\angle O Q A
$$

$$
\text { [Each } \left.90^{\circ}\right]
$$

and $\quad \mathrm{OA}=\mathrm{OA}$
[Common]

So, by RHS-criterion of congruence, we get

$$
\triangle O P A \cong \triangle O Q A \quad \Rightarrow \quad A P=A Q \quad[\mathrm{CPCT}]
$$

Hence, lengths of two tangents from an external point are equal.
Que 3. Prove that the parallelogram circumscribing a circle is a rhombus.

Fig. 8.45
Sol. Let ABCD be a parallelogram such that its sides touch a circle with centre O. We know that the tangent to a circle from an exterior point are equal in length.
Therefore, we have

$$
\begin{array}{llll}
& \mathrm{AP}=\mathrm{AS} & {[\text { Tangents from A] }} & \ldots \text { (i) } \\
& \mathrm{BP}=\mathrm{BQ} & {[\text { Tangents from B] }} & \ldots \text { (ii) } \\
& \mathrm{CR}=\mathrm{CQ} & {[\text { Tangents from C] }} & \ldots \text { (iii) } \\
\text { And } & \mathrm{DR}=\mathrm{DS} & {[\text { Tangents from D] }} & \ldots \text { (iv) }
\end{array}
$$

Adding (i), (ii), (iii) and (iv), we have

$$
(A P+B P)+(C R+D R)=(A S+D S)+(B Q+C Q)
$$

$\Rightarrow \quad \mathrm{AB}+\mathrm{CD}+=\mathrm{AD}+\mathrm{BC}$
$\Rightarrow \quad \mathrm{AB}+\mathrm{AB}=\mathrm{BC}+\mathrm{BC}[\because A B C D$ is a paralleogram $\therefore A B=C D, B C=D A]$
$\Rightarrow \quad 2 A B=2 B C \quad \Rightarrow \quad A B=B C$
Thus, $A B=B C=C D=A D$
Hence, $A B C D$ is a rhombus.
Que 4. In Fig.8.46, PQ is a chord of length 16 cm , of a circle of radius 10 cm . The tangents at P and Q intersect at a point T. Find the length of $T P$.

Fig. 8.46

Sol. Given: $\quad P Q=16 \mathrm{~cm}$

$$
\mathrm{PO}=10 \mathrm{~cm}
$$

To find: TP
$P R=R Q=\frac{16}{2}=8 \mathrm{~cm} \quad$ [Perpendicular from the center bisects the chord]
In $\triangle O P R$

$$
\begin{aligned}
O R & =\sqrt{O P^{2}-P R^{2}} \\
& =\sqrt{10^{2}-8^{2}}=\sqrt{100-64} \\
& =\sqrt{36}=6 \mathrm{~cm}
\end{aligned}
$$

Let $\angle P O R$ be θ
In $\triangle P O R, \quad \tan \theta=\frac{P R}{R O}=\frac{8}{6}$

$$
\tan \theta=\frac{4}{3}
$$

We know, $\mathrm{OP} \perp \mathrm{TP}$ (Point of contact of a tangent is perpendicular to the line from the centre)

In $\triangle O T P, \quad \tan \theta=\frac{O P}{T P} \quad \Rightarrow \frac{4}{3}=\frac{10}{T P}$

$$
T P=\frac{10 \times 3}{4}=\frac{15}{2}=7.5 \mathrm{~cm}
$$

HOTS (Higher Order Thinking Skills)

Que 1. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Fig. 8.51
Sol. Let a circle with centre O touches the sides $A B, B C, C D$ and $D A$ of a quadrilateral ABCD
at the points P, Q, R and S respectively. Then, we have to prove that

$$
\angle A O B+\angle C O D=180^{\circ} \text { and } \angle A O D+\angle B O C=180^{\circ}
$$

Now, Join OP, OQ, OR and OS.
Since the two tangents drawn from an external point to a circle subtend equal angles at
the centre.

$$
\begin{align*}
& \therefore \quad \angle 1=\angle 2, \angle 3=\angle 4, \angle 5=\angle 6 \text { and } \angle 7=\angle 8 \tag{i}\\
& \text { Now, } \angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ}
\end{align*}
$$

[sum of all the angles subtended at a point is 360°]

$$
\begin{array}{lc}
\Rightarrow & 2(\angle 2+\angle 3+\angle 6+\angle 7)=360^{\circ} \\
\Rightarrow & 2(\angle 2+\angle 3+\angle 6+\angle 7)=180^{\circ} \\
& \angle A O B+\angle C O D=180^{\circ} \\
\text { again } & 2(\angle 1+\angle 8+\angle 4+\angle 5)=360^{\circ} \\
\therefore & (\angle 1+\angle 8)+(\angle 4+\angle 5)=180^{\circ} \\
\Rightarrow & \angle A O D+\angle B O C=180^{\circ}
\end{array}
$$

[from (i) and (ii)]

Que 2. A triangle ABC [Fig.8.52] is drawn to circumscribe a circle of radius 4 cm such that the segments $B D$ and $D C$ into which $B C$ is divided by the point of contact D are of lengths 8 cm and 6 cm respectively. Find the sides $A B$ and AC.

Fig. 8.52
Sol. Let $\triangle A B C$ be drawn to circumscribe a circle with centre O and radius 4 cm and circle
touches the sides $B C, C A$ and $A B$ at D, E and F respectively.
We have given that $C D=6 \mathrm{~cm}$ and $B D=8 \mathrm{~cm}$
$\therefore \quad B F=B D=8 \mathrm{~cm}$ and $C E=C D=6 \mathrm{~cm}$
\{Length of two tangents drawn from an external point of circle are equal\}
Now, let $A F=A E=x c m$
Then, $\quad A B=c=(x+8) c m, B C=a=14 \mathrm{~cm}, C A=b=(x+6) c m$
$\therefore \quad 2 \mathrm{~s}=(\mathrm{x}+8)+14+(\mathrm{x}+6)$
$\Rightarrow \quad 2 s=2 x+28$ or $s=x+14$
$\therefore \quad s-a=(x+14)-14=x$
$s-b=(x+14)-(x+6)=8$

$$
s-c=(x+14)-(x+8)=6
$$

$\therefore \quad$ area of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$

$$
=\sqrt{(x+14)(x)(8)(6)}=\sqrt{48 x(x+14)}
$$

Also, $\operatorname{area}(\triangle A B C)=\operatorname{Area}(\triangle O B C)+\operatorname{area}(\triangle O C A)+\operatorname{area}(\triangle O A B)$

$$
\begin{aligned}
& =\frac{1}{2} \times B C \times O D+\frac{1}{2} \times C A \times O E+\frac{1}{2} \times A B \times O F \\
& =\frac{1}{2} \times 14 \times 4+\frac{1}{2} \times(x+6) \times 4+\frac{1}{2} \times(x+8) \times 4 \\
& =28+2 x+12+2 x+16=4 x+56
\end{aligned}
$$

$$
\therefore \quad \sqrt{48 x(x+14)}=4 x+56 \Rightarrow \sqrt{48 x(x+14)}=4(x+14)
$$

Squaring both sides, we have

$$
\begin{array}{lc}
& 48 x(x+14)=16(x+14)^{2} \Rightarrow 48 x(x+14)-16(x+14)^{2}=0 \\
\Rightarrow & 16(x+14)[3 x-(x+14)]=0 \\
\Rightarrow & 16(x+14)(2 x-14)=0
\end{array}
$$

either $16(x+14)=0$ or $2 x-14=0$
$\Rightarrow \quad x=-14$ or $2 x=14$
$\Rightarrow \quad x=-14$ or $x=7$
But x cannot be negative so $x \neq-14$
$\therefore \quad x=7 \mathrm{~cm}$

Hence, the sides

$$
\begin{gathered}
A B=x+8=7+8=15 \mathrm{~cm} \\
A C=x+6=7+6=13 \mathrm{~cm} .
\end{gathered}
$$

Que 3. In Fig. 8.53, XY and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersecting $X Y$ at A and X^{\prime} Y^{\prime} at B. Prove that $\angle A O B=90^{\circ}$

Fig. 8.53

Sol. Join OC. In $\triangle A P O$ and $\triangle A C O$, we have

$$
A P=A C
$$

(Tangents drawn from external point A)
$A O=O A$
(Common)
$\mathrm{PO}=\mathrm{OC}$
(Radii of the same circle)
$\therefore \quad \triangle A P O \cong \triangle A C O \quad$ (By SSS criterion of congruence)
$\therefore \quad \angle P A O=\angle C A O \quad$ (CPCT)
$\Rightarrow \quad \angle P A C=2 \angle C A O$
Similarly, we can prove that

$$
\triangle O Q B \cong \triangle O C B
$$

$\therefore \quad \angle Q B O=\angle C B O \quad \Rightarrow \quad \angle C B Q=2 \angle C B O$
Now, $\angle P A C+\angle C B Q=180^{\circ}$
[Sum of interior angle on the same side of transversal is 180°]

$$
\begin{array}{lc}
\Rightarrow & 2 \angle C A O+2 \angle C B O=180^{\circ} \\
\Rightarrow & \angle C A O+\angle C B O=90^{\circ} \\
\Rightarrow & 180^{\circ}-\angle A O B=90^{\circ} \quad\left[\because \angle C A O+\angle C B O+\angle A O B=180^{\circ}\right] \\
\Rightarrow & 180^{\circ}-90^{\circ}=\angle A O B \Rightarrow \angle A O B=90^{\circ}
\end{array}
$$

Que 4. Let A be one point of intersection of two intersecting circles with centres O and Q. The tangents at A to the two circles meet the circles again at B and C respectively. Let the point P be located so that AOPQ is a parallelogram. Prove that P is the circumcentre of the triangle $A B C$.

Fig. 8.54
Sol. In order to prove that P is the circumcentre of $\triangle A B C$, it is sufficient to show that P is the point of intersection of perpendicular bisectors of the sides of $\triangle A B C$, i.e., OP and PQ are perpendicular bisectors of sides $A B$ and $A C$ respectively, Now, $A C$ is tangent at A to the circle with centre at O and $O A$ is its radius.
$\therefore \quad \mathrm{OA} \perp \mathrm{AC}$
$\Rightarrow \quad \mathrm{PQ} \perp \mathrm{AC} \quad[\because O A Q P$ is a parallelogram $\therefore O A \| P Q]$
Also, Q is the centre of the circle
$\therefore \quad$ QP bisects AC
[Perpendicular from the centre to the chord bisects the chord]
$\Rightarrow \quad \mathrm{PQ}$ is the perpendicular bisector of AC .
Similarly, $B A$ is the tangent to the circle at A and $A Q$ is its radius through A.
$\therefore \quad B A \perp A Q$
$\therefore \quad \mathrm{BA} \perp \mathrm{OP} \quad\left[\begin{array}{c}\because A Q P O \text { is parallelogram } \\ \therefore O P \| A Q\end{array}\right]$
Also, OP bisects $\mathrm{AB} \quad[\because$ O is the centre of the circle $]$
$\Rightarrow \quad \mathrm{OP}$ is the perpendicular bisector of AB .
Thus, P is the point of intersection of perpendicular bisects PQ and PO of sides AC and AB respectively. Hence, P is the circumcentre of $\triangle A B C$.

Value Based Questions

Que 1. Puneet prepared two posters on 'National Integration' for decoration on Independence Day on triangular sheets (say ABC and DEF). The sides AB and $A C$ and the perimeter P_{1} of $\triangle A B C$ are respectively three times the corresponding sides DE and DF and the perimeter P^{2} of $\triangle D E F$. Are the two triangular sheets similar? If yes, find $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}$.

What values can be inculcated through celebration of national festivals?

Fig. 4

Sol. In $\triangle A B C$ and DEF

$$
A B=3 D E, A C=3 D F \quad \text { and } \quad P_{1}=3 p_{2}
$$

$$
\therefore \quad \frac{A B}{D E}=3 ; \quad \frac{A C}{D F}=3
$$

And

$$
P_{1}=3 p_{2} \Rightarrow B C=3 E F
$$

$$
\Rightarrow \quad \frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}=3
$$

$$
\Rightarrow \quad \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF} \quad \text { (By SSS similarity) }
$$

$$
\Rightarrow \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\left(\frac{A B}{D E}\right)^{2}=(3)^{2}=9
$$

Unity of nation, fraternity, Patriotism.
Que 2. A man steadily goes 4 m due East and then 3 m due North.
(i) Find the distance from initial point to last point.
(ii) Which mathematical concept is used in this problem?
(iii) What is its value?

Fig. 5
Sol. (i) Let the initial position of the man be O and his final position be B . Since man goes 4 m due East and then 3 m due North. Therefore, $\triangle A O B$ is a right triangle right angled at A such that $O A=4 \mathrm{~m}$ and $A B=3 \mathrm{~m}$
By Pythagoras Theorem, we have

$$
\begin{aligned}
O B^{2} & =O A^{2}+A B^{2} \\
O B^{2} & =(4)^{2}+(3)^{2}=16+9=25 \\
O B & =\sqrt{25}=5 \mathrm{~m}
\end{aligned}
$$

Hence, the man is at a distance of 5 m from the initial position.
(ii) Right-angled triangle, Pythagoras Theorem.
(iii) Knowledge of direction and speed saves the time.

Que 3. Two trees of height x and y are p metres apart.
(i) Prove that the height of the point of intersection of the line joining the top of each tree to the foot of the opposite tree is given by $\frac{x y}{x+y} \boldsymbol{m}$.
(ii) Which mathematical concept is used in this problem?
(iii) What is its value?

Sol. (i) Similar to solution Q. 5, page 161.
(ii) Similarity of triangles.
(iii) Trees are helpful to maintain the balance in the environment. They should be saved at any cost.

