Very Short Answer Type Questions

[1 Marks]

Que 1. Is construction of a triangle with sides $8 \mathrm{~cm}, 4 \mathrm{~cm}$ possible?
Sol. No, we know that in a triangle sum of two sides of a triangle is greater than the third side. So the condition is not satisfied.

Que 2. To divide the line segment $A B$ in the ratio 5: 6 , draw a ray $A X$ such that $\angle B A X$ is an acute angle, then draw a ray $B Y$ parallel to $A X$ and the point $A_{1}, A_{2}, A_{3} \ldots$ and $B_{1}, B_{2}, B_{3} \ldots$ are located at equal distances on ray $A X$ and $B Y$ respectively. Then which points should be joined?

Sol. A_{5} and B_{6}.
Que 3. To draw a pair of tangents to a circle which are inclined to each other at an angle of 60°, it is required to draw tangents at end points of those two radii of the circle. What should be the angle between them?

Sol. 120°
Que 4. In the given figure, by what ratio does P divides $A B$ internally.
Sol. From Fig. 9.1, it is clear that there are 3 points at equal distance on $A X$ and 4 points at equal distances on BY. Here P divides AB on joining $\mathrm{A}_{3} \mathrm{~B}_{4}$. So P divides internally by 3: 4.

Fig. 9.1

Que 5. Given a triangle with side $A B=8 \mathrm{~cm}$. To get a line segment $A B,=\frac{3}{4}$ of $A B$, in what ratio will line segment $A B$ be divides?

Fig. 9.2

Sol. Given:

$$
A B=8 \mathrm{~cm}
$$

$$
\begin{aligned}
A B & =\frac{3}{4} \text { of } A B \\
& =\frac{3}{4} \times 8=6 \mathrm{~cm} .
\end{aligned}
$$

$$
\mathrm{BB}^{\prime}=A B-A B^{\prime}=8-6=2 \mathrm{~cm}
$$

$\Rightarrow \quad \mathrm{AB}^{\prime}: \mathrm{BB}^{\prime}=6: 2=3: 1$
Hence the required ratio is $3: 1$.

Short Answer Type Questions - I \& II
 [2 and 3 marks]

Que 1. Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm and then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.

Fig. 9.3

Sol. Steps of construction:

Step I: Draw a line segment $\mathrm{BC}=6 \mathrm{~cm}$.
Step II: Draw an arc with B as centre and radius equal to 5 cm .
Step III: Draw an arc, with C as centre and radius equal to 4 cm intersecting the previous drawn arc at A.
Step IV: Join $A B$ and $A C$, then $\triangle A B C$ is the required triangle.
Step V: Below BC, make an acute angle CBX.
Step VI: Along BX, mark off three points at equal distance:

$$
B_{1}, B_{2}, B_{3}, \text { such that } B B_{1}=B_{1} B_{2}=B_{2} B_{3} .
$$

Step VII: Join $B_{3} C$.
Step VIII: From B_{2}, draw $B_{2} D \| B_{3} C$, meeting $B C$ at D.
Step IX: From D, draw ED $\|$ AC, meeting BA at E . Then we have $\triangle E D B$ which is the required triangle.

Justification:

Since DE || CA

$$
\therefore \quad \triangle A B C \sim \triangle E B D \quad \text { and } \quad \frac{E B}{A B}=\frac{B D}{B C}=\frac{D W}{C A}=\frac{2}{3}
$$

Hence, we have the new $\triangle E B D$ similar to the given $\triangle A B C$, whose sides are equal to $\frac{2}{3}$ rd of the corresponding sides of $\triangle A B C$.

Que 2. Draw a line segment of length 7.6 cm and divides it in the ratio 5: 8. Measure the two parts.

Sol. Steps of construction:
Step I: Draw a line segment $A B=7.6 \mathrm{~cm}$
step II: Draw any ray AX making an acute angle $\angle B A X$ with AB .
Step III: On ray AX, starting from A, mark $5+8=13$ equal arcs.
$A A_{1}, A_{1} A_{2}, A_{2} A_{3}, A_{3} A_{4}, \ldots A_{11} A_{12}$ and $A_{12} A_{13}$.
Step IV: Join $\mathrm{A}_{13} \mathrm{~B}$.
Step V: From A_{5}, draw $A_{5} P \| A_{13} B$, meeting B at P.
Thus, P divides AB in the ratio 5: 8 . On measuring the two parts. We find $\mathrm{AP}=2.9 \mathrm{~cm}$ and $\mathrm{PB}=$ 4.7 (approx.).

Justification:

In $\triangle A B A_{13}, \quad \mathrm{PA} \| \mathrm{BA}_{13}$
\therefore By Basic proportionality theorem

$$
\frac{A P}{P B}=\frac{A A_{5}}{A_{5} A_{13}}=\frac{5}{8}
$$

$$
\Rightarrow \quad \frac{A P}{P B}=\frac{5}{8} \quad \therefore \quad A P: P B=5: 8
$$

Que 3. Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then draw another triangle whose sides are $1 \frac{1}{2}$ times the corresponding sides of the isosceles triangle.

Fig. 9.5

Sol. Steps of construction:

Step I: Draw BC $=8 \mathrm{~cm}$.
Step II: Construct XY, the perpendicular bisector of line segment BC , meeting BC at M .
Step III: Along MP, cut-off MA $=4 \mathrm{~cm}$.
Step IV: Join BA and CA, Then $\triangle A B C$ so obtained is the required $\triangle A B C$.
Step V: Extend BC to D, such that $\mathrm{BD}=12 \mathrm{~cm}\left(=\frac{3}{2} \times 8 \mathrm{~cm}\right)$.
Step VI: Draw DE $\|$ CA, meeting BA produced at E . Then $\triangle E B D$ is the required triangle.

Justification:

Since, DE \| CA

$$
\therefore \quad \triangle A B C \sim \triangle E B D \quad \text { and } \quad \frac{E B}{A B}=\frac{D E}{C A}=\frac{B D}{B C}=\frac{12}{8}=\frac{3}{2}
$$

Hence, we have the new triangle similar to the given triangle whose are $1 \frac{1}{2}$ i.e., $\frac{3}{2}$ times the corresponding sides of the isosceles $\triangle A B C$.

Que 4. Draw a triangle $A B C$ with side $B C=6 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Then construct a triangle whose sides are $\frac{3}{4} t h$ of the corresponding sides of the triangle $A B C$.

Fig. 9.6

Sol. Steps of construction:

Step I: Construct a $\triangle A B C$ in which $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$.
Step II: Below BC, make an acute $\angle C B X$.
Step III: Along BX, mark off four arcs:

$$
\begin{aligned}
& B_{1}, B_{2}, B_{3} \text { and } B_{4} \text { such that } \\
& B B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4} .
\end{aligned}
$$

Step IV: Join $B_{4} C$.
Step V: From B_{3}, draw $B_{3} D \| B_{4} C$, meeting BC at D.

Step VI: From D, draw ED $\|$ AC. Meeting BA at E.
Now, we have $\triangle E B D$ which is the required triangle whose sides are $\frac{3}{4} t h$ of the corresponding sides of $\triangle A B C$.

Justification:

Here, DE \| CA
$\therefore \quad \triangle A B C \sim \triangle E B D$
And $\quad \frac{E B}{A B}=\frac{B D}{B C}=\frac{D E}{C A}=\frac{3}{4}$
Hence, we get the new triangle similar to the given triangle whose sides are equal to $\frac{3}{4}$ th of the corresponding sides of $\triangle A B C$.

Que 5. Draw a circle of radius 6 cm . From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.

Fig. 9.7
Sol. Steps of construction:
Step I: Take a point O and draw a circle of radius 6 cm .
Step II: Take a point P at a distance of 10 cm from the centre O.
Step III: Join OP and bisect it. Let M be the mid-point.
Step IV: With M as centre and MP as radius, draw a circle to intersect the circle at Q and R .
Step V: Join PQ and PR. Then, PQ and PR are the required tangents. On measuring, we find, PQ $=P R=8 \mathrm{~cm}$.

Justification:

On joining OQ , we find that $\angle P Q O=90^{\circ}$, as $\angle P Q O$ is the angle in the semicircle.
$\therefore \quad P Q \perp O Q$
Since OQ is the radius of the given circle, so PQ has to be a tangent to the circle.
Similarly, PR is also a tangent to the circle.

Long Answer Type Questions

[4 marks]

Que 1. Construct a triangle similar to a given triangle $A B C$ with its sides equal to $\frac{5}{3}$ of the corresponding sides of the triangle ABC (i.e., of scale factor $\frac{5}{3}$).

Fig. 9.10

Sol. Steps of construction:

Step I: Draw any ray BX making an acute angle with BC on the side opposite to the vertex A.
Step II: From B cut off 5 arcs

$$
\begin{aligned}
& B_{1}, B_{2}, B_{3} B_{4} \text { and } B_{5} \text { on } B X \text { so that } \\
& B B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}=B_{4} B_{5} .
\end{aligned}
$$

Step III: Join B_{3} to C and draw a line through B_{5} parallel to $B_{3} C$, intersecting the extended line segment BC at C'.
Step IV: Draw a line through C' parallel to CA intersecting the extended line segment BA at A' (see figure). Then, $\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle.

Justification:

Note that $\triangle A B C \sim \Delta^{\prime} B C^{\prime} . \quad$ (Since $A C \| A^{\prime} C^{\prime}$)
Therefore, $\quad \frac{A B}{A^{\prime} B}=\frac{A C}{A^{\prime} C^{\prime}}=\frac{B C}{B C^{\prime}}$
But, $\quad \frac{B C}{B C^{\prime}}=\frac{B B_{3}}{B B_{5}}=\frac{3}{5}$,
Therefore, $\quad \frac{A^{\prime} B}{A B}=\frac{A^{\prime} C \prime}{A C}=\frac{B C \prime}{B C}=\frac{5}{3}$.
Que 2. Draw a circle of radius 3 cm . Take two points P and Q on one of its extended diameter each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q.

Sol.

Fig. 9.11

Steps of Construction:

Step I: Taking a point O as centre, draw a circle of radius 3 cm .
Step II: Take two points P and Q on one of its extended diameter such that $O P=O Q=7 \mathrm{~cm}$.
Step III: Bisect OP and OQ and let M_{1} and M_{2} be the mid-points of OP and OQ respectively.
Step IV: Draw a circle with M_{1} as centre and $M_{1} P$ as radius to intersect the circle at T_{1} and T_{2}.
Step V: Join PT_{1} and PT_{2}.
Then, PT_{1} and PT_{2} are the required tangents. Similarly, the tangents QT_{3} and QT_{4} can be obtained.

Justification: On joining OT_{1}, we find $\angle P T_{1} O=90^{\circ}$, as it is an angle in the semicircle.

$$
\therefore \quad P T_{1} \perp O T_{1}
$$

Since OT_{1} is a radius of the given circle, so PT_{1} has to be a tangents to the circle.
Similarly, $\mathrm{PT}_{2}, \mathrm{QT}_{3}$ and QT_{4} are also tangents to the circle.
Que 3. Let ABC be a right triangle in which $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\angle B=90^{\circ}$. BD is the perpendicular from B on $A C$. The circle through B, C, D is drawn. Construct the tangents from A to this circle.

Fig. 9.12

Sol. Steps of Construction:

Step I: Draw $\triangle A B C$ and perpendicular BD from B on AC .
Step II: Draw a circle with BC as diameter. This circle will pass through D.
Step III: Let O be the mid-point of BC. Join AO.
Step IV: Draw a circle with AO as diameter. This circle cuts the circle drawn in step II at B and
E.

Step V: Join AE . AE and AB are desired tangents drawn from A to the circle passing through B , C and D .

Que 4. Draw a right triangle in which the sides (other than hypotenuse) are of lengths $\mathbf{4} \mathbf{~ c m}$ and 3 cm . Then construct another triangle whose sides are $\frac{5}{3}$ times the corresponding sides of the given triangle.

Fig. 9.13
Sol. Steps of Construction:
Step I: Construct a $\triangle A B C$ in which $\mathrm{BC}=4 \mathrm{~cm}, \angle B=90^{\circ}$ and $\mathrm{BA}=3 \mathrm{~cm}$.
Step II: Below BC, make an acute $\angle C B X$.
Step III: Along BX, mark off five arcs: $B_{1}, B_{2}, B_{3}, B_{4}$ and B_{5} such that $B_{1}=B_{1} B_{2}=B_{2} B_{3}=$ $\mathrm{B}_{3} \mathrm{~B}_{4}=\mathrm{B}_{4} \mathrm{~B}_{5}$.
Step IV: Join B3 C.
Step V: From B_{5}, draw $B_{5} D \| B_{3} C$, meeting $B C$ produced at D.
Step VI: From D, draw ED $\|$ AC, meeting BA produced at E. Then EBD is the required triangle whose sides are $\frac{5}{3}$ times the corresponding sides of $\triangle A B C$.

Justification:

Since, DE \| CA

$$
\therefore \quad \triangle A B C \sim \triangle E B D \quad \text { and } \quad \frac{E B}{A B}=\frac{B D}{B C}=\frac{D E}{C A}=\frac{5}{3}
$$

Hence, we have the new triangle similar to the given triangle whose sides are equal to $\frac{5}{3}$ times the corresponding sides of $\triangle A B C$.

HOTS (Higher Order Thinking Skills)

Que 1. Draw a circle with the help of a bangle. Take a point outside the circle. Construct the pair of tangents from this point to the circle.

Fig. 9.17

Sol. Steps of Construction:

Step I: Draw a circle with the help of a bangle.
Step II: Let P be the external point from where the tangents are to be drawn to the given circle. Through P, draw a secant PAB to intersect the circle at A and B (say).
Step III: Produce AP to a point C , such that $\mathrm{AP}=\mathrm{PC}$, i.e., P is the mid-point of AC .
Step IV: Draw a semicircle with BC as diameter.
Step V: Draw PD $\perp \mathrm{CB}$, intersecting the semicircle at D .
Step VI: With P as centre and PD as radius, draw arcs to intersect the given circle at T and T .
Step VII: Join PT and PT_{1}. Then, PT and PT_{1} are the required tangents.
Que 2. Draw a $\triangle A B C$ with side $B C=7 \mathrm{~cm}, \angle B=45^{\circ}, \angle A=105^{\circ}$. Then construct a triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle A B C$.

Fig. 9.18

Sol. Step of Construction:

Step I: Construct a $\triangle A B C$ in which $B C=7 \mathrm{~cm}$,

$$
\angle B=45^{\circ}, \angle C=180^{\circ}-(\angle A+\angle B)
$$

$$
=180^{\circ}-\left(105^{\circ}+45^{\circ}\right)=180^{\circ}-150^{\circ}=30^{\circ} .
$$

Step II: Below BC, makes an acute angle $\angle C B X$.
Step III: Along BX, mark off four arcs: B_{1}, B_{2}, B_{3}, and B_{4} such that $B_{1}=B_{1} B_{2}=B_{2} B_{3}=$ $B_{3} B_{4}$.
Step IV: Join $B_{3} C$.
Step V: From B4, draw $\mathrm{B}_{4} \mathrm{D} \| \mathrm{B}_{3} \mathrm{C}$, meeting BC produced at D.
Step VI: From D, draw $E D \| A C$, meeting BA produced at E. Then EBD is the required triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle A B C$.

Justification:

Since, $D E \| \mathrm{CA} . \therefore \triangle A B C \sim \triangle E D B$ and $\frac{E B}{A B}=\frac{B D}{B C}=\frac{D E}{C A}=\frac{4}{3}$
Hence, We have the new triangle similar to the given triangle.
Whose sides are equal to $\frac{4}{3}$ times the corresponding sides of $\triangle A B C$.
Que 3. Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°.

Fig. 9.19

Sol. Steps of Construction:

Step I: Draw a circle with centre O and radius 5 cm .
Step II: Draw any diameter AOB.
Step III: Draw a radius OC such that $\angle B O C=60^{\circ}$.
Step IV: At C, we draw $\mathrm{CM} \perp \mathrm{OC}$ and at A , we draw $\mathrm{AN} \perp \mathrm{OA}$.
Step V: Let the two perpendicular intersect each other at P. Then, PA and PC are required tangents.

Justification:

Since OA is the radius, so PA has to be a tangent to the circle. Similarly, PC is also tangent to the circle.

$$
\begin{aligned}
\angle A P C & =360^{\circ}-(\angle O A P+\angle O C P+\angle A O C) \\
& =360^{\circ}-\left(90^{\circ}+90^{\circ}+120^{\circ}\right)=360^{\circ}-300^{\circ}=60^{\circ}
\end{aligned}
$$

Hence, tangents PA and PC are inclined to each other at an angle of 60°.

Value Based Questions

Que 1. Puneet prepared two posters on 'National Integration' for decoration on Independence Day on triangular sheets (say ABC and DEF). The sides AB and AC and the perimeter P_{1} of $\triangle A B C$ are respectively three times the corresponding sides $D E$ and DF and the perimeter $P^{\mathbf{2}}$ of $\triangle \mathrm{DEF}$. Are the two triangular sheets similar? If yes, find $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}$.

What values can be inculcated through celebration of national festivals?

Fig. 4

Sol. In $\triangle \mathrm{ABC}$ and DEF

$$
\mathrm{AB}=3 \mathrm{DE}, \mathrm{AC}=3 \mathrm{DF} \quad \text { and } \quad \mathrm{P}_{1}=3 \mathrm{p}_{2}
$$

$$
\begin{array}{ll}
\therefore & \frac{A B}{D E}=3 ; \quad \frac{A C}{D F}=3 \\
\text { And } & \mathrm{P}_{1}=3 \mathrm{p}_{2} \Rightarrow \mathrm{BC}=3 \mathrm{EF} \\
\Rightarrow & \frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}=3 \\
\Rightarrow & \quad \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF} \quad \text { (By SSS similarity) } \\
\Rightarrow & \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\left(\frac{A B}{D E}\right)^{2}=(3)^{2}=9
\end{array}
$$

Unity of nation, fraternity, Patriotism.
Que 2. A man steadily goes 4 m due East and then $\mathbf{3} \mathbf{m}$ due North.
(i) Find the distance from initial point to last point.
(ii) Which mathematical concept is used in this problem?
(iii) What is its value?

Fig. 5
Sol. (i) Let the initial position of the man be O and his final position be B . Since man goes 4 m due East and then 3 m due North. Therefore, $\triangle \mathrm{A} 0 \mathrm{~B}$ is a right triangle right angled at A such that $O A=4 \mathrm{~m}$ and $A B=3 \mathrm{~m}$
By Pythagoras Theorem, we have

$$
\begin{aligned}
O B^{2} & =O A^{2}+A B^{2} \\
O B^{2} & =(4)^{2}+(3)^{2}=16+9=25 \\
O B & =\sqrt{25}=5 \mathrm{~m}
\end{aligned}
$$

Hence, the man is at a distance of 5 m from the initial position.
(ii) Right-angled triangle, Pythagoras Theorem.
(iii) Knowledge of direction and speed saves the time.

Que 3. Two trees of height x and y are p metres apart.
(i) Prove that the height of the point of intersection of the line joining the top of each tree to the foot of the opposite tree is given by $\frac{x y}{x+y} m$.
(ii) Which mathematical concept is used in this problem?
(iii) What is its value?

Sol. (i) Similar to solution Q. 5, page 161.
(ii) Similarity of triangles.
(iii) Trees are helpful to maintain the balance in the environment. They should be saved at any cost.

