Very Short Answer Type Questions

[1 Marks]

Que 1. Find the class mark of the class 10 - 25.
Sol. \quad Class mark $=\frac{\text { Upper limit }+ \text { Lower } \text { limit }}{2}=\frac{10+25}{2}=\frac{35}{2} 17.5$
Que 2. Find the mean of the first five natural numbers.
Sol. Mean $=\frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}}{5}=\frac{1+2++3+4+5}{5}=\frac{15}{5}=3$
Que 3. A data has 13 observations arranged in descending order. Which observation represents the median of data?

Sol. Total no. of observations $=13$, which is odd
\therefore The median will be $\left(\frac{n+1}{2}\right)^{\text {th }}$ term $=\left(\frac{13+1}{2}\right)^{\text {th }}=\left(\frac{14}{2}\right)^{\text {th }}=7$ th
i.e., $7^{\text {th }}$ term will be the median.

Que 4. If the mode of a distribution is 8 and its mean is also 8 , then find median.
Sol. Mode $=8$; Mean $=8$; Median $=$?
Relation among mean, median and mode is

$$
\begin{aligned}
& 3 \text { median }=\text { mode }+2 \text { mean } \\
& 3 \times \text { median }=8+2 \times 8 \\
& \text { Median }=\frac{8+16}{3}=\frac{24}{3}=8
\end{aligned}
$$

Que 5. In an arranged series of an even number of 2 n terms which terms is median?
Sol. No. or terms $=2 \mathrm{n}$ which are even
\therefore The median term will be $\frac{\left[\left(\frac{n}{2}\right)^{t h}+\left(\frac{n}{2}+1\right)^{t h}\right]}{2}$
Put $\mathrm{n}=2 \mathrm{n}$

$$
=\frac{\left[\left(\frac{2 n}{2}\right)^{t h}+\left(\frac{2 n}{2}+1\right)^{t h}\right]}{2}=\left[\frac{n^{t h}+(n+1)^{t h}}{2}\right]
$$

i.e., the mean of $\mathrm{n}^{\text {th }}$ and $(\mathrm{n}+1)^{\text {th }}$ term will be the median.

Que 6. What does the abscissa of the point of intersection of the less than type and of the more than type cumulative frequency curves of a grouped data represent?

Sol. The abscissa of the point of intersection of the less than type and of the more than type cumulative frequency curves of a grouped data gives its median.

Que 7. Name the graphical representation from which the mode of a frequency distribution is obtained.

Sol. The mode of frequency distribution is determined graphically from Histogram.
Que 8. A student draws a cumulative frequency curve for the marks obtained by 60 students of a class as shown below. Find the median marks obtained by the students of the class.

Fig. 14.2
Sol. Here $\mathrm{n}=60$

$$
\therefore \frac{n}{2}=30
$$

Corresponding to 30 on y -axis, the marks on x -axis is 40 .
\therefore Median marks $=40$.
Que 9. Write the modal class for the following frequency distribution:

Class Interval	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	33	38	65	52	19	48

Sol. Maximum frequency, i.e., 65 corresponds to the class $30-40$
\therefore Modal class is $30-40$.

Short Answer Type Questions - I

[2 marks]

Que 1. If x_{i} 's are the mid-point of the class intervals of a grouped data. F_{i} 's are the corresponding frequencies and \bar{x} is the mean, then find $\Sigma f_{i}\left(x_{i}-\bar{x}\right)$.

Sol. We know mean $(\bar{x})=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}$

$$
\begin{equation*}
\therefore \quad \Sigma f_{i} x_{i}=\bar{x} \Sigma f_{i} \tag{i}
\end{equation*}
$$

Now the value of $\Sigma f_{i}\left(x_{i}-\bar{x}\right)=\Sigma f_{i} x_{i}-\Sigma f_{i} \bar{x}$

$$
=\Sigma f_{i} \bar{x}-\Sigma f_{i} \bar{x}=0 . \quad[\text { Using }(\mathrm{i})]
$$

Que 2. Consider the following frequency distribution.

Class	$0-5$	$6-11$	$12-17$	$18-23$	$24-29$
Frequency	13	10	18	8	11

Find the upper limit of median class.

Sol. Classes are not continuous, hence make them continuous by adding 0.5 to the upper limits and subtracting 0.5 from the lower limits.

C.I.	Frequency	Cumulative Frequency
$0-5.5$	13	13
$5.5-11.5$	10	23
$11.5-17.5$	15	38
$17.5-23.5$	08	46
$23.5-29.5$	11	57
Total	$\mathbf{\Sigma f}=\mathbf{5 7}$	

Class interval can't be negative hence the first C.I. is starting from 0 .
Now to find median we calculate $\frac{\Sigma f}{2}=\frac{57}{2}=28.5$
\therefore Median class 11.5 - 17.5
So, the upper limit is 17.5

Que 3. Find the median class of the following distribution:

Classes	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	4	4	8	10	12	8	4

Sol. First we find the cumulative frequency

Classes	Frequency	Cumulative Frequency
$0-10$	4	4
$10-20$	4	8
$20-30$	8	16
$30-40$	10	26
$40-50$	12	38
$50-60$	8	46
$60-70$	4	50
Total	50	

Here, $\frac{n}{2}=\frac{50}{2}=25$
\therefore Median class $=30-40$.
Que 4. Find the class marks of classes 15.5 - 18.5 and 50 - 75.
Sol. Class marks $=\frac{\text { upper limit }+ \text { lower limit }}{2}$
\therefore Class marks of $15.5-18.5=\frac{18.5+15.5}{2}=\frac{34}{2}=17$
Class marks of $50-75=\frac{75+50}{2}=\frac{125}{2}=62.5$.

Short Answer Type Questions - II

[3 marks]

Que 1. If the mean of the following distribution is 6 , find the value of p.

\mathbf{X}	2	4	6	10	$\mathrm{P}+5$
\mathbf{f}	3	2	3	1	2

Sol. Calculation of mean

$\mathbf{x}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$
2	3	6
4	2	8
6	3	18
10	1	10
$P+5$	2	$\mathbf{2 p}+10$
Total		

We have, $\Sigma \mathrm{f}_{\mathrm{i}}=11, \Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=2 \mathrm{p}+52, \bar{x}=6$

$$
\begin{aligned}
& \left.\therefore \quad \operatorname{Mean}(\bar{x})=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}\right] \\
& \Rightarrow \quad 6=\frac{2 p+52}{11} \quad \Rightarrow 66=2 p+52 \\
& \Rightarrow \quad 2 p=14 \quad \Rightarrow p=7
\end{aligned}
$$

Que 2. Find the mean of the following distribution:

\mathbf{x}	4	6	9	10	15
\mathbf{f}	5	10	10	7	8

Sol. Calculation of arithmetic mean

$\mathbf{x}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$
4	5	20
6	10	60
9	10	90
10	7	70
15	$\mathbf{8}$	120
Total	$\Sigma \mathrm{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}=\mathbf{3 0}$	

$\therefore \quad \operatorname{Mean}(\bar{x})=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{360}{40}=9$
Que 3. The following data gives the information on the observed lifetimes (in hours) of 225 electrical components:

Lifetimes (in hours)	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$
Frequency	10	35	52	61	38	29

Determine the modal lifetimes of the components.

Sol. Here, the maximum class frequency is 61 and the class corresponding to this frequency is $60-80$. So, the modal class is $60-80$.
Here, $\mathrm{l}=60, \mathrm{~h}=20, \mathrm{f}_{1}=61, \mathrm{f}_{0}=52, \mathrm{f}_{2}=38$

$$
\begin{aligned}
\therefore \quad \text { Mode } & =l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h=60+\frac{61-52}{2 \times 61-52-38} \times 20=60+\frac{9}{122-90} \times 20 \\
& =60+\frac{9}{32} \times 20=60+\frac{45}{8}=60+5.625=65.625
\end{aligned}
$$

Hence, modal lifetime of the components is 65.625 hours.

Weight (in kg)	$40-45$	$45-50$	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$
Number of students	2	3	8	6	6	3	2

Que 4. The distribution below gives the weights of 30 students of a class. Find the median weight of the students.

Sol. Calculation of median

Weight (in kg)	Number of students (f_{i})	Cumulative frequency (cf)
$40-45$	2	2
$45-50$	3	5
$50-55$	8	13
$55-60$	6	19
$60-65$	6	25
$65-70$	3	28
$70-75$	2	30
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=\mathbf{3 0}$	

We have, $\sum f_{i}=n=30 \quad \Rightarrow \quad \frac{n}{2}=15$
The cumulative frequency just greater that $\frac{n}{2}=15$ is 19 , and the corresponding class is $55-$ 60.
$\therefore 55-60$ is the median class.
Now, we have $\frac{n}{2}=15, l=55, c f=13, f=6, h=5$
$\therefore \quad$ Median $=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h$

$$
=55+\left(\frac{15-13}{6}\right) \times 5=55+\frac{2}{6} \times 5=55+1.67=56.67
$$

Hence, median weight is 56.67 kg .

Length (in mm)	$118-126$	$127-135$	$136-144$	$145-153$	$154-162$	$163-171$	$172-180$
Number of Leaves	3	5	9	12	5	4	2

Que 5. The length of 40 leaves of a plant are measured correctly to the nearest millimeter, and the data obtained is represented in the following table:

Find the median length of the leaves.
Sol. Here, the classes are not in inclusive form. So, we first convert them in inclusive form by subtracting $\frac{h}{2}$ from the lower limit and adding $\frac{h}{2}$ to the upper limit of each class, where h is the difference between the lower limit of a class and the upper limit of preceding class.
Now, we have

Class interval	Number of leaves	Cumulative frequency (cf)
$117.5-126.5$	3	3
$126.5-135.5$	5	8
$135.5-144.5$	9	17
$144.5-153.5$	5	39
$153.5-162.5$	4	38
$162.5-171.5$	2	40
$171.5-180.5$	$2 \mathrm{f}_{\mathrm{i}}=40$	
Total		5

We have, $\mathrm{n}=40 \Rightarrow \quad \frac{n}{2}=20$
And, the cumulative frequency just greater than $\frac{n}{2}$ is 29 and corresponding class is 144. 153.5. So median class is $144.5-153.5$.

Here, we have $\frac{n}{2}=20, \mathrm{I}=144.5, \mathrm{~h}=9, \mathrm{f}=12, \mathrm{cf}=17$
$\therefore \quad$ Median $=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h=144.5+\left(\frac{20-17}{12}\right) \times 9$

$$
=144.5+\frac{3}{12} \times 9=144.5+\frac{9}{4}=144.5+2.25=146.75 \mathrm{~mm} .
$$

Hence, the median length of the leaves is 146.75 mm .

Long Answer Type Questions

[4 MARKS]

Que 1. The following table gives the literacy rate (in percentage) of 35 cities.
Find the mean literacy rate.

Literacy rate (in \%)	$45-55$	$55-65$	$65-75$	$75-85$	$85-95$
Number of cities	3	10	11	8	3

Sol. Here, we use step deviation method to find mean.
Let assumed mean $A=70$ and class size $h=10$
So, $\quad u_{i}=\frac{x_{i}-70}{10}$
Now, we have

Literacy rate (in $\%)$	Frequency $\left(\mathbf{f}_{\mathbf{i}}\right)$	Class mark $\left(\mathbf{x}_{\mathbf{i}}\right)$	$\boldsymbol{u}_{\boldsymbol{i}}=\frac{\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{7 0}}{\mathbf{1 0}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i}}$
$45-55$	3	50	-2	-6
$55-65$	10	60	-1	-10
$65-75$	11	70	0	0
$75-85$	8	80	1	8
$85-95$	3	90	2	6
Total	$\boldsymbol{\Sigma} \boldsymbol{f}_{\boldsymbol{i}}=\mathbf{3 5}$			$\boldsymbol{\Sigma \boldsymbol { f } _ { \boldsymbol { i } } \boldsymbol { u } _ { \boldsymbol { i } } = - \mathbf { 2 }}$

$\therefore \quad \operatorname{Mean}(\bar{x})=A+h \times \frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}=70+10 \times \frac{-2}{35}=70-0.57=69.43 \%$
Que 2. The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is ₹18. Find the missing frequency f.

Daily pocket allowance (in ₹)	$11-13$	$13-15$	$15-17$	$17-19$	$19-21$	$21-23$	$23-25$
Number of children	7	6	9	13	f	5	4

Sol. Let the assumed mean $A=16$ and class size $h=2$, here we apply step deviation method.

$$
\text { So, } u_{i}=\frac{x_{i}-A}{h}=\frac{x_{i}-16}{2}
$$

Class interval	Frequency $\left(\mathbf{f}_{\mathbf{i}}\right)$	Class mark $\left(\mathbf{x}_{\mathbf{i}}\right)$	$\boldsymbol{u}_{\boldsymbol{i}}=\frac{\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{1 6}}{\mathbf{2}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i}}$
$11-13$	7	12	-2	-14
$13-15$	6	14	-1	-6

$15-17$	9	16	0	0
$17-19$	13	18	1	13
$19-21$	f	20	2	2 f
$21-23$	5	22	3	15
$23-25$	4	$\mathbf{2 4}$	4	16
Total	$\boldsymbol{\Sigma} \boldsymbol{f}_{\boldsymbol{i}}=\boldsymbol{f}+\mathbf{4 4}$			$\boldsymbol{\Sigma} \boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i}}=\mathbf{2} \boldsymbol{f}+\mathbf{2 4}$

Now, we have,
We have, Mean $(\bar{x})=18, A=16$ and $h=2$
$\therefore \quad \bar{x}=A+h \times \frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}$
$18=16+2 \times\left(\frac{2 f+24}{f+44}\right) \Rightarrow 2=2 \times\left(\frac{2 f+24}{f+44}\right)$
$\Rightarrow \quad 1=\frac{2 f+24}{f+44} \quad \Rightarrow f+44=2 f+24$
$\Rightarrow \quad f=44-24$
$\Rightarrow \quad f=20$
Hence, the missing frequency is 20.
Que 3. The mean of the following frequency distribution is $\mathbf{6 2 . 8}$. Find the missing frequency x.

Classes	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-20$
Frequency	5	8	x	12	7	8

Sol. We have

Class interval	Frequency	Class mark $\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$
$0-20$	5	10	50
$20-40$	8	30	240
$40-60$	x	50	50 x
$60-80$	12	70	840
$80-100$	7	90	630
$100-120$	8	110	880
Total	$\boldsymbol{\Sigma} \boldsymbol{f}_{\boldsymbol{i}}=\mathbf{4 0}+\boldsymbol{x}$		$\boldsymbol{\Sigma} \boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}=\mathbf{2 6 4 0}+\mathbf{5 0 x}$

Here, $\Sigma f_{i} x_{i}=2640+50 x, \Sigma f_{i}=40+x, \bar{x}=62.8$

$$
\begin{array}{ll}
\therefore & \operatorname{Mean}(\bar{x})=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}} \\
\Rightarrow & 62.8=\frac{2640+50 x}{40+x} \\
\Rightarrow & 2512+62.8 x=2640+50 x \\
\Rightarrow & 62.8 x-50 x=2640-2512 \\
\Rightarrow & 12.8 x=128
\end{array}
$$

$$
\therefore \quad x=\frac{128}{12.8}=10
$$

Hence, the missing frequency is 10.
Que 4. The distribution below gives the marks of 100 students of a class.

Marks	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$
Number of student s	4	6	10	10	25	22	18	5

Draw a less than type and a more than type ogive from the gives data. Hence, obtain the median marks from the graph.

Sol.

Marks	Cumulative Frequency	Marks	Cumulative Frequency
Less than 5	4	More than 0	100
Less than 10	10	More than 5	96
Less than 15	20	More than 10	90
Less than 20	30	More than 15	80
Less than 25	55	More than 20	70
Less than 30	77	More than 25	45
Less than 35	95	More than 30	23
Less than 40	100	More than 35	5

Fig. 14.3
Hence, median marks $=24$

Que 5. During the medical check-up of 35 students of a class, their weight were recorded as follows:

Weight	Number of students	Weight (in kg)	Number of students
Less than 38	0	Less than 46	14
Less than 40	3	Less than 48	28
Less than 42	5	Less than 50	32
Less than 44	9	Less than 52	35

Draw a less than type ogive for the given data. Hence, obtain the median weight from the graph and verify the result by using the formula.

Sol. To represent the data in the table graphically, we mark the upper limits of the class interval on x-axis and their corresponding cumulative frequency on y-axis choosing a convenient scale.

Now, let us plot the points corresponding to the ordered pair given by $(38,0),(40,3)$, $(42,5),(44,9),(46,14),(48,28),(50,32)$ and $(52,35)$ on a graph paper and join them by a freehand smooth curve.

Thus, the curve obtained is the less than type ogive.

Fig. 14.4
Now, locate $\frac{n}{2}=\frac{35}{2=17.5}$ on the y-axis,

We draw a line from this point parallel to x-axis cutting the curve at a point. From this point, draw a perpendicular line to the x-axis. The point of intersection of this perpendicular with the x-axis gives the median of the data. Here it is 46.5.
Let us make the following table in order to find median by using formula.

Weight (in kg)	No. of students (frequency)	Cumulative frequency (cf)
$36-38$	0	0
$38-40$	3	3
$40-42$	2	5
$42-44$	4	9
$44-46$	5	14
$46-48$	14	28
$48-50$	4	32
$50-52$	3	35
Total	$\Sigma f_{i}=35$	

Here, $\mathrm{n}=35, \frac{n}{2}=\frac{35}{2}=17.5$, cumulative frequency greater than $\frac{n}{2}=17.5$ is 28 and corresponding class is $46-48$. So median class is $46-48$.

Now, we have $l=46, \frac{n}{2}=17.5, c f=14, f=14, h=2$

$$
\begin{aligned}
\therefore \quad \text { Median }= & l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h \\
& =46+\left(\frac{17.5-14}{14}\right) \times 2 \\
& =46+\frac{3.5}{14} \times 2=46+\frac{7}{14} \\
& =46+0.5=46.5
\end{aligned}
$$

Hence, median is verified.
Que 6. A survey was conducted by a group of students as a part of their environment awareness programme, in which they collected the following data regarding the number of plants in $\mathbf{2 0}$ houses in a locality. Find the mean number of plants per house.

Number of plants	$0-2$	$2-4$	$4-6$	$6-8$	$8-10$	$10-12$	$12-14$
Number of houses	1	2	1	5	6	2	3

Which method did you use for finding the mean and why?

Sol. Calculation of mean number of plants per house.

Number of plants	Number of houses $\left(\boldsymbol{f}_{\boldsymbol{i}}\right)$	Class mark $\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$
$0-2$	1	1	1
$2-4$	2	3	6
$4-6$	1	5	5
$6-8$	5	7	35
$8-10$	6	9	54
$10-12$	2	11	22
$12-14$	3	13	39
Total	$\boldsymbol{\Sigma} \boldsymbol{f}_{\boldsymbol{i}}=\mathbf{2 0}$		$\boldsymbol{\Sigma} \boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}=\mathbf{1 6 2}$

Hence, $\operatorname{Mean}(\bar{x})=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{162}{20}=8.1$
Here, we used direct method to find mean because numerical values of x_{i} and f_{i} are small.

Age (in years)	Number of policy holders	Age (in years)	Number of policy holders	
Below 20	2	Below 45	89	
Below 25	6	Below 50	92	
Below 30	24	Below 55	98	
Below 35	45	Below 60	100	
Below 40	78			

Que 7. A life insurance agent found the following data for distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to persons having age 18 years onwards but less than 60 years.

Sol. We are given the cumulative frequency distribution. So, we first construct a frequency table from the given cumulative frequency distribution and then we will make necessary computations to compute median.

Class interval	Frequency $\left(\boldsymbol{f}_{\boldsymbol{i}}\right)$	Cumulative frequency (cf)
$15-20$	2	2
$20-25$	4	6
$25-30$	18	24
$30-35$	21	45
$35-40$	33	78
$40-45$	11	89
$45-50$	3	92
$50-55$	6	98
$55-60$	2	100
Total	$\boldsymbol{\Sigma \boldsymbol { f } _ { \boldsymbol { i } } = \mathbf { 1 0 0 }}$	

Here, $\mathrm{n}=100$

$$
\Rightarrow \quad \frac{n}{2}=50
$$

And, cumulative frequency just greater than $\frac{n}{2}=50$ is 78 and the corresponding class is $35-40$. So $35-40$ is the median class.

$$
\begin{aligned}
& \therefore \quad \frac{n}{2}=50, l=35, c f=45, f=33, h=5 \\
& \begin{aligned}
\therefore \quad \text { Median } & =l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h \\
& =35+\left(\frac{50-45}{33}\right) \times 5=35+\frac{5}{33} \times 5 \\
& =35+\frac{25}{33}=35+0.76=35.76
\end{aligned}
\end{aligned}
$$

Hence, the median age is 35.76 years.
Que 8. The following distribution gives the daily income of 50 workers of a

Daily income (in ₹)	$100-120$	$120-140$	$140-160$	$160-180$	$180-200$
Number of workers	12	14	8	6	10

factory.

Convert the distribution above to a less than type cumulative frequency distribution, and draw its ogive.

Sol. Converting gives distribution to a less than type cumulative frequency distribution, we have,

Daily income (in ₹)	Cumulative frequency
Less than 120	12
Less than 140	$12+14=26$
Less than 160	$26+8=34$
Less than 180	$34+6=40$
Less than 200	$40+10=50$

Now, let us plot the points corresponding to the ordered pairs $(120,12),(140,26)$, $(160,34),(180,40),(200,50)$ on a graph paper and join them by a freehand smooth curve.

Fig. 14.5
Thus, obtained curve is called the less than type ogive.

Que 9. Find the mean of the following frequency distribution:

Class interval	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Number of workers	15	18	21	29	17

Sol. Calculation of mean
We have, $A=50, h=20, \Sigma f_{i}=100$ and $\Sigma f_{i} u_{i}=15$.

Class interval	Class mark $\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	Frequency $\left(\boldsymbol{f}_{\boldsymbol{i}}\right)$	$\boldsymbol{u}_{\boldsymbol{i}}=\frac{\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{A}}{\mathbf{2 0}}=\frac{\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{5 0}}{\mathbf{2 0}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i}}$
$0-20$	10	15	-2	-30
$20-40$	30	18	-1	-18
$40-60$	50	21	0	0
$60-80$	70	29	1	29
$80-100$	90	17	2	34
Total		$\boldsymbol{\Sigma} \boldsymbol{f}_{\boldsymbol{i}}=\mathbf{1 0 0}$		$\boldsymbol{\Sigma} \boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i}}=\mathbf{1 5}$

$$
\begin{aligned}
\therefore \quad \operatorname{Mean}(\bar{x}) & =A+h\left(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\right) \\
& =50+20 \times \frac{15}{100} \\
& =50+3=53 .
\end{aligned}
$$

HOTS (Higher Order Thinking Skills)

Que 1. The mean of the following frequency table is 50 . But the frequencies f_{1} and f_{2} in class 20 - $\mathbf{4 0}$ and 60 - $\mathbf{8 0}$ respectively are missing. Find the missing frequencies.

Classes	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	Total
Frequency	17	f_{1}	32	f_{2}	19	120

Sol. Let the assumed mean $\mathrm{A}=50$ and $\mathrm{h}=20$.
Calculation of mean

Class interval	Mid-values $\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	Frequency $\left(\boldsymbol{f}_{\boldsymbol{i}}\right)$	$\boldsymbol{u}_{\boldsymbol{i}}=\frac{\boldsymbol{x}_{\boldsymbol{i}} \mathbf{- 5 0}}{\mathbf{2 0}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i}}$
$0-20$	10	17	-2	-34
$20-40$	30	f_{1}	-1	$-f_{1}$
$40-60$	50	32	0	0
$60-80$	70	f_{2}	1	f_{2}
$80-100$	90	19	2	38
Total		$\Sigma f_{i}=68+f_{1}+f_{2}$		$\Sigma f_{i} u_{i}=4-f_{1}+f_{2}$

We have,

$$
\begin{equation*}
\Sigma f_{i}=120 \tag{i}
\end{equation*}
$$

[Given]
$\Rightarrow \quad 68+f_{1}+f_{2}=120$
$\Rightarrow \quad f_{1}+f_{2}=52$
Now, Mean $=50$

$$
\begin{aligned}
& \Rightarrow \quad \bar{x}=A+h\left(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\right) \Rightarrow 50=50+20 \times\left\{\frac{4-f_{1}+f_{2}}{120}\right\} \\
& \Rightarrow \quad 50=50+\frac{4-f_{1}+f_{2}}{6} \Rightarrow \quad 0=\frac{4-f_{1}+f_{2}}{6} \\
& \Rightarrow \quad f_{1}-f_{2}=4
\end{aligned}
$$

From equation (i) and (ii), we get

$$
f_{1}+f_{2}=52
$$

$$
\frac{f_{1}-f_{2}=4}{2 f_{1}=56}
$$

$\Rightarrow \quad f_{1}=28$
Putting the value of f_{1} in equation (i), we get

$$
28+f_{2}=52 \Rightarrow f_{2}=24
$$

Hence, the missing frequencies f_{1} is 28 and f_{2} is 24 .

Que 2. If the median of the distribution given below is 28.5 , find the values of x and y.

Class interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	Total
Frequency	5	X	20	15	y	5	60

Sol. Here, median $=28.5$ and $\mathrm{n}=60$
Now, we have

Class interval	Frequency $\left(\boldsymbol{f}_{\boldsymbol{i}}\right)$	Cumulative frequency $(\boldsymbol{c} \boldsymbol{f})$
$0-10$	5	5
$10-20$	x	$5+\mathrm{x}$
$20-30$	20	$25+\mathrm{x}$
$30-40$	15	$40+\mathrm{x}$
$40-50$	y	$40+\mathrm{x}+\mathrm{y}$
$50-60$	5	$45+\mathrm{x}+\mathrm{y}$
Total	$\Sigma f_{i}=60$	

Since the median is given to be 28.5 , thus the median is $20-30$.

$$
\begin{array}{ll}
\therefore & \frac{n}{2}=30, I=20, h=10, c f=5+x \text { and } f=20 \\
\therefore & \text { Median }=I+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h \Rightarrow 28.5=20+\left[\frac{30-(5+x)}{20}\right] \times 10 \\
\Rightarrow & 28.5=20+\frac{25-x}{20} \times 10 \\
\Rightarrow & 28.5=20+\frac{25-x}{2} \Rightarrow 57=40+25-x \\
\Rightarrow & 57=65-\mathrm{x} \quad \Rightarrow \quad \mathrm{x}=65-57=8
\end{array}
$$

Also, $\mathrm{n}=\Sigma f_{i}=60$
$\Rightarrow \quad 45+\mathrm{x}+\mathrm{y}=60$
$\Rightarrow \quad 45+8+y=60 \quad[\because x=8]$
$\therefore \quad y=60-53 \quad \Rightarrow \quad y=7$
Hence, $x=8$ and $y=7$.

Value Based Questions

Que 1. The amount donated by some households in their religious organisation are as
follows:

Amount (in ₹)	Number of households
Less than 100	14
Less than 200	22
Less than 300	37
Less than 400	58
Less than 500	67
Less than 600	75

Calculate the arithmetic mean for the above data.
What values do these households possess?
Sol.

Amount (in ₹)	$\boldsymbol{c f}$	$\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{u i}=\frac{\boldsymbol{x} \boldsymbol{i}-\mathbf{2 5 0}}{\mathbf{1 0 0}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i}}$
$0-100$	14	14	50	-2	-28
$100-200$	22	8	150	-1	-8
$200-300$	37	15	$\mathbf{2 5 0}$	0	0
$300-400$	58	21	350	1	21
$400-500$	67	9	450	2	18
$500-600$	75	8	550	3	24
Total		$\boldsymbol{\Sigma f _ { \boldsymbol { i } } = 7 5}$			$\mathbf{2 7}$

By step deviation method
Arithmetic mean $=A+\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}} \times h=250+\frac{27}{75} \times 100=286$
Religion values, Helpfulness.
Que 2. Some people of a society decorated their area with flags and tricolour ribbons on Republic Days. The following data shows the number of person in different age group who participated in the decoration:

Age in years	$5-15$	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$
Number of patients	6	11	21	23	14	5

Find the mode of the above data. What values do there persons possess?
Sol. $h=10, f_{1}=23, f_{0}=21, f_{2}=14, l=35$

Mode $=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$
Mode $=35+\frac{23-21}{46-35} \times 10=35+\frac{20}{11}=35+1.8=36.8$
National integrity, Unity, Beauty.
Que 3. The table below gives the distribution of villages under different height from sea level in a certain region.

Height in metres	200	600	1000	1400	1800	2200
No. of villages	142	265	560	271	89	16

(i) Compute the mean height of the region.
(ii) Which mathematical concept is used in this problem?
(iii) What is the value of village in modern times?

Sol. (i) Let the assumed mean $A=1400$ and $h=400$

Height $\left(\boldsymbol{x}_{\boldsymbol{i}}\right.$ in metres $)$	No. of villages $\boldsymbol{f}_{\mathbf{i}}$	$\boldsymbol{u}_{\boldsymbol{i}}=\frac{\boldsymbol{x}_{\boldsymbol{i}}-\mathbf{1 4 0 0}}{\mathbf{4 0 0}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i}}$
200	142	-3	-426
600	265	-2	-530
1000	560	-1	-560
1400	271	0	0
1800	89	1	89
2200	16	2	32
Total	$N=\Sigma f_{i}=1343$		$\Sigma f_{i} u_{i}=-1395$

$$
\begin{aligned}
\text { Mean }= & A+\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}} \times h \\
& =1400+400 \times \frac{-1395}{1343}=1400-415.49=984.51
\end{aligned}
$$

(ii) Mean by step deviation method.
(iii) Villages are important to keep a balance between the ecological problems.

Que 4. (i) Find the mean of children per family from data given below:

No. of children	0	1	2	3	4	5
No. of families	5	11	25	12	5	2

(ii) Which mathematical concept is used in this problem?
(iii) Which value is discussed here?

Sol. (i)

No. of children $\boldsymbol{x}_{\boldsymbol{i}}$	No. of families $\boldsymbol{f}_{\boldsymbol{i}}$	$\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$
0	5	0
1	11	11
2	25	50
3	12	36
4	5	20
5	2	10
Total	$\Sigma f_{i}=60$	$\Sigma f_{i} x_{i}=127$

Mean $=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{127}{60}=2.12$ (approx.)
(ii) Mean of ungrouped data.
(iii) For progress, we should reduce the population growth.

Que 5. In a survey it was found that 40% people use petrol, 35% use diesel and remaining use CNG for their vehicles. Find the probability that a person chosen at random uses CNG.
Which fuel out of the above three is appropriate for the welfare of the society?
Sol. Percentage of people using CNG $=100-(40+35)=25 \%$

$$
P(\text { Person using } C N G)=\frac{25}{100}=\frac{1}{4}
$$

CNG is useful as it does not leave unburnt carbon particles and also does not release other harmful gases which causes pollution in air.

Que 6. In a survey it was found that 30% of the population is using nonbiodegradable products while the remaining is using biodegradable products. What is the probability that a person chosen at random uses nonbiodegradable products?

Which type of products should be used in a society for its proper development - biodegradable or non-biodegradable? Justify your answer.

Sol. P (Person using non-biodegradable products) $=(100-30) \%$

$$
=\frac{70}{100}=\frac{7}{10}
$$

Biodegradable products are reusable and cause less pollution, so such products should be used.

Que 7. A school gives awards to the students of each class-5 for bravery, 3 for punctuality, 3 for full attendance, 4 for social service and 5 for self-confidence. An awarded student is selected at random. What is the probability that he/she is being awarded for (i) punctuality (i) self-confidence.

Which value out of the above five is most important for the development of society? Justify your answer.

Sol. Total awards given to each class $=5+3+3+4+5=20$
(i) $\mathrm{P}($ punctual students $)=\frac{3}{20}$
(ii) P (Self-confident students) $=\frac{5}{20}=\frac{1}{4}$

Any value with justification is correct. (Do yourself)
Que 8. Arushi, Mahi and Saina were fighting to get first chance in a game. Arushi says, "Let us toss two coins. If both heads appear, Mahi will take first chance, if both tails appear, Saina will get it and if one head and one tail appears, I will get the chance."
(i) What is the probability of Arushi getting the first chance?
(ii) Is her decision fair?
(iii) What quality of her character is being depicted here?

Sol. The sample space of the experiment of tossing two coins in $\{H T, T H, H H, T T\}$. Outcomes favourable to Arushi are HT and HT.
(i) P (Arushi getting first chance) $=\frac{2}{4}=\frac{1}{2}$
(ii) No, the number of cases favourable to each one of them is not equal.
(iii) Dishonesty, as she kept two cases favourable to her and one each for the other two friends.

