RD Sharma
Solutions
Class 12 Maths
Chapter 29
Ex 29.9

The Plane Ex 29.9 Q1

We know that distance of a point \vec{a} from a plane $\vec{r} \cdot \vec{n} - d = 0$ is given by

$$D = \left| \frac{\overline{an} - d}{|\overline{n}|} \right| \text{ unit}$$

Here,
$$\vec{a} = 2\hat{i} - \hat{j} - 4\hat{k}$$
 and plane $\vec{r} \cdot (3\hat{i} - 4\hat{j} + 12\hat{k}) - 9 = 0$

$$\vec{r} \cdot \vec{n} - d = 0$$

So, required distance

$$D = \frac{\left| (2\hat{i} - \hat{j} - 4\hat{k}) (3\hat{i} - 4\hat{j} + 12\hat{k}) - 9 \right|}{\sqrt{(3)^2 + (-4)^2 + (12)^2}}$$

$$= \frac{\left| (2)(3) + (-1)(-4) + (-4)(12) - 9 \right|}{\sqrt{9 + 16 + 144}}$$

$$= \frac{\left| 6 + 4 - 48 - 9 \right|}{\sqrt{169}}$$

$$= \left| -\frac{47}{13} \right|$$

Required distance is $\frac{47}{13}$ units

 $=\frac{47}{12}$ units

We know that, distance of a point \vec{a} to a plane $\vec{r} \cdot \vec{n} - d = 0$ is given by

$$D = \left| \frac{\overline{an} - d}{|\overline{n}|} \right| \qquad --- (i)$$

Let D_1 be the distance of point $(\hat{i} - \hat{j} + 3\hat{k})$ from the plane $\vec{r} \cdot (5\hat{i} + 2\hat{j} - 7\hat{k}) + 9 = 0$, then

$$D_{1} = \frac{\left| (\hat{i} - \hat{j} + 3\hat{k}) (5\hat{i} + 2\hat{j} - 7\hat{k}) + 9 \right|}{\sqrt{(5)^{2} + (2)^{2} + (-7)^{2}}}$$

$$= \frac{\left| (1) (5) + (-1) (2) + (3) (-7) + 9 \right|}{\sqrt{25 + 4 + 49}}$$

$$= \frac{\left| 5 - 2 - 21 + 9 \right|}{\sqrt{78}}$$

$$= \left| -\frac{9}{\sqrt{78}} \right|$$

[Using equation (i)]

$$D_1 = \frac{9}{\sqrt{78}} \text{ units} \qquad --- \text{(ii)}$$

Again, let D_2 be the distance of point $(3\hat{i} + 3\hat{j} + 3\hat{k})$ from the plane $\vec{r} \cdot (5\hat{i} + 2\hat{j} - 7\hat{k}) + 9 = 0$, then, using equation (i), we get

$$D_2 = \frac{\left| \frac{(3\hat{i} + 3\hat{j} + 3\hat{k})(5\hat{i} + 2\hat{j} - 7\hat{k}) + 9}{\sqrt{(5)^2 + (2)^2 + (-7)^2}} \right|$$

$$= \frac{\left| \frac{(3)(5) + (3)(2) + (3)(-7) + 9}{\sqrt{25 + 4 + 49}} \right|$$

$$= \frac{\left| \frac{15 + 6 - 21 + 9}{\sqrt{78}} \right|$$

$$= \frac{9}{\sqrt{78}} \text{ units} \qquad ---- \text{(iii)}$$

From equation (ii) and (iii) $D_1 = D_2$

Distance of point $(\hat{i} - \hat{j} + 3\hat{k})$ from plane $\vec{r} \cdot (5\hat{i} + 2\hat{j} - 7\hat{k}) + 9 = 0$ = Distance of point $(3\hat{i} + 3\hat{j} + 3\hat{k})$ from plane $\vec{r} \cdot (5\hat{i} + 2\hat{j} - 7\hat{k}) + 9 = 0$ We know that, distance of a point (x_1, y_1, z_1) from a plane ax + by + cz + d = 0 is given by

$$D = \left| \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}} \right| - - - (i)$$

So, distance of point (2, 3, -5) from the plane x + 2y - 2z - 9 = 0 is given by

$$D = \frac{\left| \frac{2 + (2)(3) - 2(-5) - 9}{\sqrt{(1)^2 + (2)^2 + (-2)^2}} \right|}{\sqrt{(1)^2 + (2)^2 + (-2)^2}}$$

$$= \frac{\left| \frac{2 + 6 + 10 - 9}{\sqrt{1 + 4 + 4}} \right|}{\sqrt{1 + 4 + 4}}$$

$$= \frac{\left| \frac{9}{\sqrt{9}} \right|}{\left| \frac{9}{3} \right|}$$

D = 3 units

Given equation of plane is

$$x + 2y - 2z + 8 = 0$$

$$---(i)$$

We know that, equation of the plane parallel to plane (i) is given by

$$x + 2y - 2z + \lambda = 0$$

We know that, distance (D) of a point (x_1, y_1, z_1) from a plane ax + by + cz + d = 0is given by

$$D = \left| \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}} \right|$$

Given, D = 2 unit is the distance of the plane (ii) from the point (2,1,1), so Using (i),

$$2 = \left| \frac{2 + (2)(1) - 2(1) + \lambda}{\sqrt{(1)^2 + (2)^2 + (-2)^2}} \right|$$

$$2 = \left| \frac{2 + 2 - 2 + \lambda}{\sqrt{1 + 4 + 4}} \right|$$

$$2 = \left| \frac{2 + \lambda}{\sqrt{9}} \right|$$

Squaring both the sides, we get

$$4 = \frac{\left(2 + \lambda\right)^2}{9}$$

$$36 = (2 + \lambda)^2$$

$$2 + \lambda = \pm 6$$

$$\Rightarrow 2 + \lambda = 6 \qquad or \qquad 2 + \lambda = -6$$

\Rightarrow \lambda = 4 \qquad or \qquad \lambda = -8

$$2 + \lambda = -6$$

$$\Rightarrow \lambda = 4$$

$$\lambda = -8$$

Put $\lambda = 4$ in equation (ii),

$$x + 2y - 2z + 4 = 0$$

Put $\lambda = -8$ in equation (ii),

$$x + 2y - 2z - 8 = 0$$

Hence, equation of the required plane are

$$x + 2y - 2z + 4 = 0$$

$$x + 2y - 2z - 8 = 0$$

We know that distance (D) of a point (x_1,y_1,z_1) from a plane ax + by + cz + d = 0 is given by

$$D = \left| \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{(a)^2 + (b)^2 + (c)^2}} \right| - - - (6)$$

Let D_1 be the distance of the point (1,1,1) from plane 3x + 4y - 12z + 13 = 0, so using (i), we get

$$D_{1} = \frac{\left| (3)(1) + (4)(1) - 12(1) + 13}{\sqrt{(3)^{2} + (4)^{2} + (-12)^{2}}} \right|$$
$$= \left| \frac{3 + 4 - 12 + 13}{\sqrt{9 + 16 + 144}} \right|$$
$$= \left| \frac{8}{\sqrt{169}} \right|$$

$$D = \frac{8}{13} \text{ units} \qquad --- \text{(ii)}$$

Let D_2 be the distance of a point (-3,0,1) from the plane 3x + 4y - 12z + 13 = 0, so using equation (i),

$$D_2 = \frac{\left| \frac{(3)(-3) + (4)(0) - 12(1) + 13}{\sqrt{(3)^2 + (4)^2 + (-12)^2}} \right|$$

$$= \left| \frac{-9 + 0 - 12 + 13}{\sqrt{9 + 4 + 144}} \right|$$

$$= \left| -\frac{8}{\sqrt{169}} \right|$$

$$D_2 = \frac{8}{13} \text{ units} \qquad --- \text{(iii)}$$

Hence, from equation (ii) and (iii)

$$D_1=D_2$$

Given equation of plane is

$$x - 2y + 2z - 3 = 0$$

We know that, equation of a plane parallel to plane (i) is given by,

$$x - 2y + 2z + \lambda = 0 \qquad \qquad - - - \text{(ii)}$$

We know that distance (D) of a point (x_1, y_1, z_1) from a plane ax + by + cz + d = 0is given by,

---(i)

$$D = \left| \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{(a)^2 + b^2 + c^2}} \right| - - - \text{(iii)}$$

Given that, distance of plane (ii) from a point (1,1,1) is one unit, so using (iii),

$$1 = \frac{\left| (1) - 2(1) + 2(1) + \lambda \right|}{\sqrt{(1)^2 + (-2)^2 + (2)^2}}$$
$$= \frac{\left| \frac{1 - 2 + 2 + \lambda}{\sqrt{1 + 4 + 4}} \right|}{1 = \frac{1 + \lambda}{\sqrt{9}}}$$

$$1 = \left| \frac{1 + \lambda}{3} \right|$$

Squaring both the sides,

$$1=\frac{\left(1+\lambda\right)^2}{9}$$

$$9 = (1 + \lambda)^2$$

$$1+\lambda=\pm 3$$

$$\Rightarrow 1 + \lambda = 3 \qquad \text{or} \qquad 1 + \lambda = -3$$

$$\Rightarrow \lambda = 2 \qquad \text{or} \qquad \lambda = -4$$

$$1 + \lambda = -3$$

Put the value of λ in equation (ii) to get the equations of required planes,

$$x - 2y + 2z + 2 = 0$$

$$x - 2y + 2z - 4 = 0$$

We know that, distance (D) of a point (x_1, y_1, z_1) from a plane ax + by + cz + d = 0 is given by,

$$D = \left| \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}} \right| - - - (i)$$

So, distance of point (2,3,5) from xy-plane (we know that equation of xy-plane is z=0) is

$$= \frac{\left| (2)(0) + (3)(0) + (5)(1) + 0}{\sqrt{(0)^2 + (0)^2 + (1)^2}} \right|$$

$$= \frac{\left| (0 + 0 + 5) \right|}{\sqrt{(0 + 0 + 1)}}$$
[Using (i)]

= 5 unit

Distance of the point (2,3,5) from xy-plane = 5 unit

The Plane Ex 29.9 Q8

We know that, distance (D) of a point \vec{a} from a plane $\vec{r} \cdot \vec{n} - d = 0$ is given by,

$$D = \left| \frac{\vec{a} \cdot \vec{n} - d}{|\vec{n}|} \right| \qquad --- (i)$$

So, distance of point $(3\hat{i} + 3\hat{j} + 3\hat{k})$ from plane $\vec{r} \cdot (5\hat{i} + 2\hat{j} + 3\hat{k}) + 9 = 0$ is

$$D = \frac{\left| \frac{(3\hat{i} + 3\hat{j} + 3\hat{k})(5\hat{i} + 2\hat{j} + 3\hat{k}) + 9}{\sqrt{(5)^2 + (2)^2 + (-7)^2}} \right|$$

$$= \frac{\left| \frac{(3)(5) + (3)(2) + (3)(-7) + 9}{\sqrt{25 + 4 + 49}} \right|$$

$$= \frac{\left| \frac{15 + 6 - 21 + 9}{\sqrt{78}} \right|$$

$$= \frac{9}{\sqrt{78}}$$

Therefore, required distance is

$$=\frac{9}{\sqrt{78}}$$
 units

Distance of point (1,1,1) from origin is $\sqrt{3}$ Distance of point (1,1,1) from plane is $\frac{1+\lambda}{\sqrt{3}}$

Product =
$$\left| \frac{1+\hat{\lambda}}{\sqrt{3}} \right| \times \sqrt{3} = 5$$

 $\left| 1+\hat{\lambda} \right| = 5$

so 2=4 or -6

The Plane Ex 29.9 Q10

Consider

$$3x-4y+12z-6=0$$
 (1)
 $4x+3z-7=0$ (2)

The distance of a point (x_1, y_1, z_1) from the plane 3x - 4y + 12z - 6 = 0 is

$$D_1 = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

$$= \frac{3x_1 - 4y_1 + 12z_1 - 6}{\sqrt{3^2 + (-4)^2 + 12^2}}$$

$$= \frac{3x_1 - 4y_1 + 12z_1 - 6}{\sqrt{169}}$$

$$= \frac{3x_1 - 4y_1 + 12z_1 - 6}{13}$$

The distance of the point (x_1, y_1, z_1) from the plane 4x + 3z - 7 = 0 is

$$D_2 = \frac{\left| \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}} \right|}{\sqrt{a^2 + b^2 + c^2}}$$

$$= \frac{\left| \frac{4x_1 + 3z_1 - 7}{\sqrt{4^2 + 3^2}} \right|}{\sqrt{25}}$$

$$= \frac{\left| \frac{4x_1 + 3z_1 - 7}{\sqrt{25}} \right|}{5}$$

Since the point (x_1, y_1, z_1) are equidistant from the 3x-4y+12z-6=0 and 4x+3z-7=0So

$$D_1 = D_2$$

$$\left| \frac{3x_1 - 4y_1 + 12z_1 - 6}{13} \right| = \left| \frac{4x_1 + 3z_1 - 7}{5} \right|$$

$$\frac{3x_1 - 4y_1 + 12z_1 - 6}{13} = \pm \frac{4x_1 + 3z_1 - 7}{5}$$

Taking positive sign
$$\frac{3x_1 - 4y_1 + 12z_1 - 6}{13} = \frac{4x_1 + 3z_1 - 7}{5}$$

$$15x_1 - 20y_1 + 60z_1 - 30 = 52x_1 + 39z_1 - 91$$

$$37x_1 + 20y_1 - 21z_1 - 61 = 0$$

Taking negative sign
$$\frac{3x_1 - 4y_1 + 12z_1 - 6}{13} = -\frac{4x_1 + 3z_1 - 7}{5}$$

$$15x_1 - 20y_1 + 60z_1 - 30 = -52x_1 - 39z_1 + 91$$

$$67x_1 - 20y_1 + 99z_1 - 121 = 0$$

The Plane Ex 29.9 011

The equation of any plane passing through A(2,5,-3)

is a(x-2) + b(y-5) + c(z+3) = 0...(1)

The above plane passes through the point B(-2, -3.5)and hence, we have,

Substituting the above values in equation (1), we have.

a(-2-2)+b(-3-5)+c(5+3)=0

$$a(-2-2)+b(-3-5)+c(5+3)=1$$

 $\Rightarrow -4a-8b+8c=0...(2)$

Again the required plane passes through the point C(5,3,-3)

and hence, we have,

a(5-2)+b(3-5)+c(-3+3)=0 \Rightarrow 3a - 2b + 0c = 0...(3)

Solving equations (2) and (3) by cross multiplication, we have,

Solving equations (2) and
$$\frac{a}{(-8)\times0} = -$$

$$\frac{a}{(-8)\times 0-(-2)\times 8}=$$

 $\Rightarrow \frac{a}{16} = \frac{b}{24} = \frac{c}{32} = \lambda$

 \Rightarrow a = 2λ b = 3λ and c= 4λ

$\frac{a}{(-8) \times 0 - (-2) \times 8} = \frac{b}{3 \times 8 - (-4) \times 0} = \frac{c}{(-4) \times (-2) - 3 \times (-8)} = \lambda (say)$

 $\Rightarrow \frac{a}{0+16} = \frac{b}{24+0} = \frac{c}{8+24} = \lambda$

 $2\lambda(x-2) + 3\lambda(y-5) + 4\lambda(z+3) = 0$ Since $\lambda \neq 0$, we have,

 $\Rightarrow \frac{a}{2} = \frac{b}{2} = \frac{c}{4} = \lambda$

- 2(x-2)+3(v-5)+4(z+3)=0
- \Rightarrow 2x 4 + 3v 15 + 4z + 12 = 0
- $\Rightarrow 2x + 3v + 4z 7 = 0$
- Thus the equation of the plane is

- 2x + 3v + 4z 7 = 0The distance from the point P(7, 2, 4) to the plane is
- $d = \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}}$
- .. Distance, d = $\frac{2x + 3y + 4z 7}{\sqrt{2^2 + 3^2 + 4^2}}$
- $\Rightarrow d_{(7,2,4)} = \left| \frac{2 \times 7 + 3 \times 2 + 4 \times 4 7}{\sqrt{2^2 + 3^2 + 4^2}} \right|$
- $\Rightarrow d_{(7,2,4)} = \frac{29}{\sqrt{29}}$ \Rightarrow d_(7,24) = $\sqrt{29}$ units

The Plane Ex 29.9 Q12

Given that a plane is making intercepts -6,3 and 4 respectively on the coordinate axes.

Thus the equation of the plane is

$$\frac{x}{6} + \frac{y}{2} + \frac{z}{4} = 1...(1)$$

We need to find the length of the perpendicular from the origin on the plane.

If the plane $\frac{x}{2} + \frac{y}{b} + \frac{z}{6} = 1$ is at a distance 'p', then

$$\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} ...(2)$$

Comparing equation (1) with the

$$a = -6, b = 3$$
 and $c = 4$

Thus, equation (2) becomes,

$$\frac{1}{p^2} = \frac{1}{(-6)^2} + \frac{1}{3^2} + \frac{1}{4^2}$$

$$\Rightarrow \frac{1}{p^2} = \frac{4+16+9}{144}$$

$$\Rightarrow \frac{1}{p^2} = \frac{29}{144}$$

$$\Rightarrow p^2 = \frac{144}{29}$$

⇒ p =
$$\frac{12}{\sqrt{29}}$$
 units