RD Sharma Solutions
 Class 12 Maths
 Chapter 30
 Ex 30.2

Linear Programming Ex 30.2 Q1

Converting the given inequations into equations, we get
$3 x+5 y=15,5 x+2 y=10, x=0, y=0$

Region represented by $5 x+2 y \leq 10$: The line meets coordinate axes at $A_{1}(2,0)$ and $B_{1}(0,5)$ respectively. Join these points to obtain the line $5 x+2 y=10$, clearly, $(0,0)$ satisfies the in eqation $5 x+2 y \leq 10$, so, the region in $x y$-plane that contains the origin represents the solution set if the given in equation.

Region represented by $3 x+5 y \leq 10$: The line meets coordinate axes at $A_{2}(5,0)$ and $B_{2}(0,3)$ respectively. Join these points to obtain the line $3 x+5 y=15$, clearly, $(0,0)$ satisfies the in eqation $3 x+5 y \leq 15$, so, the region in $x y$-plane contains the origin represents the solution set if the given in equation.

Region represented by $x \geq 0, y \geq 0$: It clearly represents first quadrant of $x y$-plane. Common region to regions represented by above in equalities.

The coordinates of the corner points of the shaded region are $0(0,0), A(2,0), P\left(\frac{20}{19}, \frac{45}{19}\right)$, $B_{2}(0,3)$.

The value of $z=5 x+3 y$ at
$0(0,0)=5 \times+3 \times 0$
$A(2,0)=5 \times 2+3 \times 0=10$
$P\left(\frac{20}{19}, \frac{45}{19}\right)=5\left(\frac{20}{19}\right)+3\left(\frac{45}{19}\right)=\frac{235}{19}$
$B_{2}(0,3)=5 \times 0+3 \times 3=9$
Clearly, Z is maximum at $P\left(\frac{20}{19}, \frac{45}{19}\right)$

So, $x=\frac{20}{19}, y=\frac{45}{19}$, maximum $z=\frac{235}{19}$

Linear Programming Ex 30.2 Q3

Converting the given inequations into equations, we get

$$
2 x+3 y=13,3 x+y=5, \text { and } x=0, y=0
$$

Region represented by $2 x+3 y \leq 13$: The line meets coordinate axes at $A_{1}\left(\frac{13}{2}, 0\right)$ and $B_{1}\left(0, \frac{13}{3}\right)$ respectively. Join these points to obtain the line $2 x+3 y=13$, clearly, $(0,0)$ satisfies the in eqation $2 x+3 y \leq 13$, so, the region in $x y$-plane that contains origin represents the solution set of $2 x+3 y \leq 13$.

Region represented by $3 x+y \leq 5$: The line meets coordinate axes at $A_{2}\left(\frac{5}{3}, 0\right)$ and $B_{2}(0,5)$ respectively. Join these points to obtain the line $3 x+y=5$, clearly, $(0,0)$ satisfies the in eqation $3 x+y \leq 5$, so, the region in $x y$-plane that contains origin represents the solution set of $3 x+y \leq 5$.

Region represented by $x, y \geq 0$: It clearly represent first quadrant of $x y$-plane. The common region to regions represented by above in equalities.

The coordinates of the corner points of the shaded region are $0(0,0), A\left(\frac{5}{3}, 0\right), p\left(\frac{2}{7}, \frac{29}{7}\right), B_{2}\left(0, \frac{13}{3}\right)$.
The value of $z=9 x+3 y$ at
$0(0,0)=9(0)+3(0)=0$
$A_{1}\left(\frac{5}{3}, 0\right) \quad=9\left(\frac{5}{3}\right)+3(0)=15$
$p\left(\frac{2}{7}, \frac{29}{7}\right) \quad=9\left(\frac{2}{7}\right)+3\left(\frac{29}{7}\right)=15$
$B_{2}\left(0, \frac{13}{3}\right)=9(0)+3\left(\frac{13}{3}\right)=13$
Clearly, Z is maximum at at every point on the line joining A_{1} and P, so $x=\frac{5}{3}$ or $\frac{2}{7}, y=0$ or $\frac{29}{7}$ and maximum $Z=15$.

Linear Programming Ex 30.2 Q3

Converting given inequations into equations as

$$
4 x+y=20,2 x+3 y=30, x=0, y=0
$$

Region represented by in equation $4 x+y \geq 20$: The line $4 x+y=20$ meets the coordinate axes at $A_{1}(5,0)$ and $B_{1}(0,20)$. Joining $A_{1} B_{1}$ we get $4 x+y=20$. Clearly, $(0,0)$, also does not satisfies the in eqation, so the region does not oontaining the origin represents the in equality $4 x+y \geq 20$ in the $x y$-plane.

Region represented by in equation $2 x+3 y \geq 30$: The line $2 x+3 y=30$ meets the coordinate axes at $A_{2}(15,0)$ and $B_{2}(0,20)$. Obtain line $2 x+3 y=30$ by joining A_{2} and B_{2}. Clearly, $(0,0)$, does not satisfies the in eqation $2 x+3 y \geq 30$, so the region does not containing the origin represents the in equality $2 x+3 y \geq 30$ in the $x y$-plane.

Region represented by $x, y \geq 0: x, y \geq 0$ represents the first quadrant of $x y$-plane.
The shaded region is the feasible region with comer points $A_{2}(15,0), P(3,8), B_{1}(0,20)$ where P is obtained by solving $2 x+3 y=30$ and $4 x+y=20$ simultaneously.

The value of $Z=18 x+10 y$ at
$A_{2}(15,0)=18(15)+10(8)=270$
$P(3,8)=18(3)+10(8)=134$
$B_{1}(0,20)=18(0)+10(20)=200$

Clearly, z is manimum at $x=3$ and $y=8$. The minimum value of Z is 134 .

We observe that open half plane represented by $18 x+10 y<134$ does not have points in oommon with the solution region. So Z has

Minimum value $=134$ at $x=3, y=8$

$2 x-y \geq 18$; when $x=12, y=6$ \& when $y=0, x=9$
$3 x+2 y \leq 34$; when $x=0, y=17$ \& when $y=0, x=34 / 3$
Plotting these points gives line $A B$ and $C D$
The feasible area is the unbounded area D-E-12

Corner point	Value of $Z=50 x+30 y$
10,2	560
$11.3,17$	1076.66

The maximize value of $Z=50 x+30 y$, occurs at $x=34 / 3$, $y=17$

Since we have an unbounded region as the feasible area plot $50 x+30 y>1076.66$

Since the region D-F-B has common points with region D-E-12 the problem has no optimal maximum value.

Linear Programming Ex 30.2 Q5

$3 x+4 y \leq 24$; when $x=0, y=6$ \& when $y=0, x=8$, line AB
$8 x+6 y \leq 48$; when $x=0, y=8$ \& when $y=0, x=6$, line CD

Plotting $\mathrm{x} \leq 5$ gives line EF; Plotting $\mathrm{y} \leq 6$ gives line AG
The feasible area is 0,0-C-H-G-E

Corner point	Value of $Z=4 x+3 y$
0,0	0
0,6	18
$3.4,3.4$	24
5,1	23
5,0	20

Linear Programming Ex 30.2 Q6

Converting the inequations into equations as $3 x+2 y=80,2 x+3 y=70, x=y=0$

Region represented by $3 x+2 y \leq 80$: Line $3 x+2 y=80$ meets coordinate axes at $A_{1}\left(\frac{80}{3}, 0\right)$ and $B_{1}(0,40)$, clearly, $(0,0)$ satisfies the $3 x+2 y \leq 80$, so, region containing the origin represents by $3 x+2 y \leq 80$ in $x y$-plane

Region represented by $2 x+3 y \leq 70$: Line $2 x+3 y=70$ meets the coordinate axes at $A_{2}(35,0)$ and $B_{2}\left(0, \frac{70}{3}\right)$, clearly, $(0,0)$ satisfies the $2 x+3 y \leq 70$ so, the region containing the origin represents by $2 x+3 y \leq 70$ in $x y$-plane

Region represented by $x, y \geq 0$: It represent the first quadrant in $x y$-plane

So, shaded area $O A_{1} P B_{2}$ represents the feasible region.

Coordinate of $P(20,10)$ can be obtained by solving $3 x+2 y=80$ and $2 x+3 y=70$

Now, the value of $Z=15 x+10 y$ at

$$
\begin{array}{ll}
O(0,0) & =15(0)+10(0)=0 \\
A_{1}\left(\frac{80}{3}, 0\right) & =15\left(\frac{80}{3}\right)+10(0)=400 \\
P(20,10) & =15(20)+10(10)=400 \\
B_{2}\left(0, \frac{70}{3}\right) & =15(0)+10\left(\frac{70}{3}\right)=\frac{700}{3}
\end{array}
$$

So, maximum $Z=400$ is on each and every point on the line joining $A_{1} P$, so we can have,
maximum $Z=400$ at $x=\frac{80}{3}$ and $y=0$
maximum $Z=400$ at $x=20$ and $y=10$

Converting the given inequations into equations

$$
3 x+y=12,2 x+5 y=34, x=y=0
$$

Region represented by $3 x+y \leq 12$: Line $3 x+y=12$ meets the coordinate axes at $A_{1}(4,0)$ and $B_{1}(0,12)$, clearly, $(0,0)$ satisfies $3 x+y \leq 12$, so, region containing origin is represented by $3 x+y \leq 12$ in $x y$-plane

Region represented by $2 x+5 y \leq 34$: Line $2 x+y=34$ meets coordinate axes at $A_{2}(17,0)$ and $B_{2}\left(0, \frac{34}{5}\right)$, clearly, $(0,0)$ satisfies the $2 x+5 y \leq 34$ so, region containing origin represents $2 x+5 y \leq 34$ in $x y$-plane

Region represented by $x, y \geq 0$: It represent the first quadrant in $x y$-plane Therefore, shaded area $O A_{1} P B_{2}$ is the feasible region.

The coordinate of $P(2,6)$ is obtained by solving $2 x+5 y=34$ and $3 x+y=12$

The value of $z=10 x+6 y$ at

$$
\begin{array}{ll}
O(0,0) & =10(0)+6(0)=0 \\
A_{1}(4,0) & =10(4)+6(0)=40 \\
P(2,6) & =10(2)+6(6)=56 \\
B_{2}\left(0, \frac{34}{5}\right) & =10(0)+6\left(\frac{34}{5}\right)=\frac{204}{5}=40 \frac{4}{5}
\end{array}
$$

Hence, maximum $Z=56$ at $x=2, y=6$

Linear Programming Ex 30.2 Q8

$2 x+2 y \leq 80$; when $x=0, y=40$ and when $y=0, x=40$ $2 x+4 y \leq 120$; when $x=0, y=30$ and when $y=0, x=60$

The intersection of the two plotted lines gives $(20,20)$ Feasible area is $30-\mathrm{C}-40$

Corner point	Value of $Z=3 x+4 y$
0,0	0
0,30	120
20,20	140
40,0	120

The maxima is obtained at $\mathrm{x}=20, \mathrm{y}=20$ and is 140

Linear Programming Ex 30.2 Q9

Converting the given inequations into equations,

$$
x+y=30000, y=12000, x=6000, x=y, x=y=0
$$

Region represented by $x+y \leq 30000$: Line $x+y=30000$ meets the coordinate axes at $A_{1}(30000,0)$ and $B_{1}(0,30000)$, dearly $(0,0)$ satisfies $x+y \leq 30000$, so, region containing the origin represents $x+y \leq 30000$ in $x y$-plane

Region represented by $y \leq 12000$: Line $y=12000$ is parallel to x-axis and meets y-axis at $B_{2}(0,12000)$. Clearly $(0,0)$ satisfies $y \leq 12000$, so, region containing origin represents $y \leq 12000$ in $x y$-plane.

Region represented by $x \leq 6000$: Line $x=6000$ is parallel to y-axis and meets x axis at $A_{2}(6000,0)$. Clearly $(0,0)$ satisfies $x \leq 6000$, so, region containing origin represents $x \leq 6000$ in $x y$-plane.

Region represented by $x \geq y$: Line $x=y$ passes through origin and point $Q(12000,12000)$. Clearly, $A_{2}(6000,0)$ satisfies $x \geq y$, so, region containing $A_{2}(6000,0)$ represents $x \geq y$ in $x y$-plane.

Region represented by $x, y \geq 0$: It represents the first quadrant in $x y$-plane.

Shaded region $A_{2} A_{1} Q^{P}$ represents the feasible region.

Coordinates of $R(18000,12000)$ is obtained by solving $x+y=30000$ and $y=12000, Q(12000,12000)$ is obtained by solving $x=y$ and $y=12000$, $P(6000,6000)$ is obtained by solving $x=y$ and $x=6000$.

The value of $Z=7 x+10 y$ at

$$
\begin{array}{ll}
A_{2}(6000,0) & =7(6000)+10(0)=42000 \\
A_{1}(30000,0) & =7(30000)+10(0)=210000 \\
R(18000,12000) & =7(18000)+10(12000)=246000 \\
Q(12000,12000) & =7(12000)+10(12000)=204000 \\
P(6000,6000) & =7(6000)+10(6000)=102000
\end{array}
$$

So, maximum $Z=246000$ at $x=18000, y=12000$
Linear Programming Ex 30.2 Q10

$2 x+2 y \geq 8$; When $x=0, y=4$ \& when $y=0, x=4$ line $A B$ $x+4 y \geq 12$; When $x=0, y=3$ \& when $y=0, x=12$ line CD $x \geq 3, y \geq 2$ are the lines parallel to Y-axis and X-axis resp.

The diverging shaded area in red lines is the area of feasible solution. This area is unbounded.
$Z=2 x+4 y @(3,2)=14$.
Plot $2 x+4 y>14$ line CJ to see if there is any common region. There is no common region so there is no optimal solution.

Linear Programming Ex 30.2 Q11

Converting the given inequations into equations,

$$
2 x+y=10, x+3 y=15, x=10, y=8, x=y=0
$$

Region represented by $2 x+y \geq 10$: Line $2 x+y=10$ meets coordinate axes at $A_{1}(5,0)$ and $B_{1}(0,10)$. Clearly, $(0,0)$ does not satisfy $2 x+y \geq 10$, so, region not containing origin represents $2 x+y \geq 10$ in $x y$-plane.

Region represented by $x+3 y \geq 15$: Line $x+3 y=15$ meets coordinate axes at $A_{2}(15,0)$ and $B_{2}(0,5)$. Clearly, $(0,0)$ does not satisfy $x+3 y \geq 15$, so, region not containing origin represents $x+3 y \geq 15$ in $x y$-plane.

Region represented by $x \leq 10$: Line $x=10$ is parallel to y-axis and meet x-axis at $A_{3}(10,0)$. Clearly $(0,0)$ satisfies $x \leq 10$, so region containing origin represent $x \leq 10$ in $x y$-plane.

Region represented by $y \leq 8$: Line $y=8$ is parallel to x-axis and meet y-axis at $B_{3}(0,8)$, clearly $(0,0)$ satisfies $y \leq 8$, so region containing origin represent $y \leq 8$ in $x y$-plane.

Region represented by $x, y \geq 0$: It represent the first quadrant in $x y$-plane.

Shaded region QPSR is the feasible region. $Q(3,4)$ is obtained by solving $2 x+y=10$ and $x+3 y=15, p\left(10, \frac{5}{3}\right)$ is obtained by solving $x+3 y=15$ and $x=10, R\left(\frac{7}{2}, 8\right)$ is obtained by $2 x+y=10$ and $y=8$.

The value of $z=5 x+3 y$ at

$$
\begin{aligned}
& P\left(10, \frac{5}{3}\right)=5(10)+3\left(\frac{5}{3}\right)=55 \\
& Q(3,4)=5(3)+3(4)=27 \\
& R\left(\frac{7}{2}, 8\right)=5\left(\frac{7}{2}\right)+3(8)=\frac{83}{2}=41 \frac{1}{2} \\
& S(10,8)=5(10)+3(8)=74
\end{aligned}
$$

So,

$$
\text { Minimum } Z=27 \text { at } x=3, y=4
$$

Linear Programming Ex 30.2 Q12

$x+y \leq 8$; when $x=0, y=8$ \& when $y=0, x=8$, line $8-8$
$x+4 y \geq 12$; when $x=0, y=3$ \& when $y=0, x=12$ line $A-12$
$5 x+8 y=20$; when $x=0, y=5 / 2$ \& when $y=0, x=4$
The shaded area in red is the area of feasible solution.

Corner point	Value of $Z=30 x+20 y$
0,3	60
0,8	160
$6.66,1.33$	226.66

The maxima is obtained at $\mathrm{x}=6.66, \mathrm{y}=1.33$ and is 226.66

Linear Programming Ex 30.2 Q13

Converting the given inequations into equations,

$$
3 x+4 y=24,8 x+6 y=48, x=5, y=6, x=y=0
$$

Region represented by $3 x+4 y \leq 24$: Line $3 x+4 y=24$ meets coordinate axes at $A_{1}(8,0)$ and $B_{1}(0,6)$, clearly $(0,0)$ satisfies $3 x+4 y \leq 24$, so region containing origin represents $3 x+4 y \leq 24$ in $x y$-plane.

Region represented by $8 x+6 y \leq 48$: Line $8 x+6 y=48$ meets coordinate axes at $A_{2}(6,0)$ and $B_{2}(0,8)$. Clearly, $(0,0)$ satisfies $8 x+6 y \leq 48$, so region containing origin represents $8 x+6 y \leq 48$ in $x y$-plane.

Region represented $x \leq 5$: Line $x=5$ is parallel to y-axis and meets x-axis at $A_{3}(5,0)$. Clearly $(0,0)$ satisfies $x \leq 5$, so region containing origin represent $x \leq 5$ in $x y$-plane.

Region represented by $y \leq 6$: Line $y=6$ is parallel to x-axis and meets y-axis at $B_{1}(0,6)$. Clearly $(0,0)$ satisfies $y \leq 6$, so, region containing origin represents $y \leq 6$ in xy-plane.

Region represented by $x, y \geq 0$: It represents the first quadrant in $x y$-plane.

So, shaded region $Q A_{3} P Q B$ represents feasible region.

Coordinate of $P\left(5, \frac{4}{3}\right)$ is obtained by solving $8 x+6 y=48$ and $x=5$, coordinate of $Q\left(\frac{24}{7}, \frac{24}{7}\right)$ is obtained by solving $3 x+4 y=24$ and $8 x+6 y=48$.

The value of $z=4 x+3 y$ at

$$
\begin{array}{ll}
0(0,0) & =4(0)+3(0)=0 \\
A_{3}(5,0) & =4(5)+3(0)=20 \\
P\left(5, \frac{4}{3}\right) & =4(5)+3\left(\frac{4}{3}\right)=24 \\
Q\left(\frac{24}{7}, \frac{24}{7}\right) & =4\left(\frac{24}{7}\right)+3\left(\frac{24}{7}\right)=24 \\
B_{1}(0,6) & =4(0)+3(6)=18
\end{array}
$$

So, maximum $Z=24$ at $x=5, y=\frac{4}{3}$ or $x=\frac{24}{7}, y=\frac{24}{7}$ or at every point joining $P Q$.

Converting the given inequations into equations,

$$
x-y=0,-x+2 y=2, x=3, y=4, x=y=0
$$

Region represented by $x-y \geq 0: x-y=0$ is a line passing through origin and $R(4,4)$. Clearly, $(3,0)$ satisfies $x-y \geq 0$, so, region containing (3,0) represents $x-y \geq 0$ in $x y$-plane.

Region represented by $-x+2 y \geq 2$: Line $-x+2 y=2$ meets coordinate axes at $A_{1}(-2,0)$ and $B_{1}(0,1)$. Clearly, $(0,0)$ does not satisfy $-x+2 y \geq 2$, so, region not containing origin represents $-x+2 y \geq 2$ in $x y$-plane.

Region represented $x \geq 3$: Line $x=3$ is parallel to y-axis and meets x-axis at $A_{2}(3,0)$. Clearly, $(0,0)$ does not satisfy $x \geq 3$, so region not containing origin represent $x \geq 3$ in $x y$-plane.

Region represented by $y \leq 4$: Line $y=4$ is parallel to x-axis and meets y-axis at $B_{2}(0,4)$. Clearly $(0,0)$ satisfies $y \leq 4$, so region containing origin represents $y \leq 4$ in xy-plane.

Region represented by $x, y \geq 0$: It represent the first quadrant in $x y$-plane.
So, shaded region $P Q R S$ represents feasible region.

The coordinate of $P\left(3, \frac{5}{2}\right)$ is obtained by solving $x=3$ and $-x+2 y=2, Q(3,3)$ by solving $x=3$ and $x-y=0, R(4,4)$ by solving $x=4$ and $x-y=0, s(6,4)$ by solving $y=4$ and $-x+2 y=2$

The value of $z=x-5 y+20$ at

$$
\begin{aligned}
& P\left(3, \frac{5}{2}\right)=3-5\left(\frac{5}{2}\right)+20=\frac{21}{2}=11 \frac{1}{2} \\
& Q(3,3)=3-5(3)+20=8 \\
& R(4,4)=4-5(4)+20=4 \\
& S(6,4)=6-5(4)+20=6
\end{aligned}
$$

Hence,
Minimum $Z=4$ at $x=4$ and $y=4$

Linear Programming Ex 30.2 Q15

Converting the given inequations into equations:-

$$
x+2 y=20, x+y=15, y=5, x=y=0
$$

Region represented by $x+2 y \leq 20$: Line $x+2 y=20$ meets coordinate axes at $A_{1}(20,0)$ and $B_{1}(0,10)$, clearly, $(0,0)$ satisfies $x+2 y \leq 20$, so region containing origin represents $x+2 y \leq 20$ in $x y$-plane.

Region represented by $x+y \leq 15$: Line $x+y=15$ meets coordinate axes at $A_{2}(15,0)$ and $B_{2}(0,15)$, clearly, $(0,0)$ satisfies $x+y \leq 15$, so region containing origin represents $x+y \leq 15$ in $x y$-plane.

Region represented by $y \leq 5$: Line $y=5$ is parallel to x-axis and meets at $B_{3}(0,5)$ on y-axis. Clearly $(0,0)$ satisfies $y \leq 5$, so region containing origin represents $y \leq 5$ in $x y$-plane.

Region represented by $x, y \geq 0$: It represent the first quadrant in $x y$-plane.
So, shaded region $O A_{2} P B_{3}$ represents the feasible region.

Coordinate of $P(10,5)$ is obtained by solving $x+2 y=20$ and $y=5$.

The value of $Z=3 x+5 y$ at

$$
\begin{array}{ll}
O(0,0) & =3(0)+5(0)=0 \\
A_{2}(15,0) & =3(15)+5(0)=45 \\
P(10,5) & =3(10)+5(5)=55 \\
B_{3}(0,5) & =3(0)+5(5)=25
\end{array}
$$

Hence, maximum $Z=55$ at $x=10$ and $y=5$

Converting the given inequations into equations,

$$
x_{1}+3 x_{2}=3, x_{1}+x_{2}=2, x_{1}=x_{2}=0
$$

Region represented by $x_{1}+3 x_{2} \geq 3$: Line $x_{1}+3 x_{2}=3$ meets the coordinate axes at $A_{1}(3,0)$ and $B_{1}(0,1)$, clearly, $(0,0)$ does not satisfy $x_{1}+3 x_{2} \geq 3$, so, region not containing $(3,0)$ represents $x_{1}+3 x_{2} \geq 3$ in $x_{1} x_{2}$-plane.

Region represented by $x_{1}+x_{2} \geq 2$: Line $x_{1}+x_{2}=2$ meets the coordinate axes at $A_{2}(2,0)$ and $B_{2}(0,2)$, clearly, $(0,0)$ does not satisfy $x_{1}+x_{2} \geq 2$, so, region not containing origin represents $x_{1}+x_{2} \geq 2$ in $x_{1} x_{2}$-plane.

Region represented $x_{1}, x_{2} \geq 0$: It represents the first quadrant in $x_{1} x_{2}$-plane.

The unbounded shaded region with corner points $A_{1}(3,0), B_{2}(0,2)$, and $P\left(\frac{3}{2}, \frac{1}{2}\right)$. $p\left(\frac{3}{2}, \frac{1}{2}\right)$ is obtained by $x_{1}+x_{2}=2$ and $x_{1}+3 x_{2}=3$.

The value of $Z=3 x_{1}+5 x_{2}$ at

$$
\begin{array}{ll}
A_{1}(3,0) & =3(3)+5(0)=9 \\
P\left(\frac{3}{2}, \frac{1}{2}\right) & =3\left(\frac{3}{2}\right)+5\left(\frac{1}{2}\right)=7 \\
B_{2}(0,2) & =3(0)+5(2)=10
\end{array}
$$

The smallest value of $Z=7$, region has no point in common, so smallest value is the minimum value.

Hence, minimum $Z=7$ at $x=\frac{3}{2}$ and $y=\frac{1}{2}$

Converting the given inequations in to equations

$$
x+y=1,10 x+y=5, x+10 y=1, x=y=0
$$

Region represented by $x+y \geq 1$: Line $x+y=1$ meets coordinate axes at $A_{1}(1,0)$ and $B_{1}(0,1)$, dearly, $(0,0)$ does not satisfy $x+y \geq 1$, so region not containing origin represents $x+y \geq 1$ in $x y$-plane.

Region represented by $10 x+y \geq 5$: Line $10 x+y=5$ meets coordinate axes at $A_{2}\left(\frac{1}{2}, 0\right)$ and $B_{2}(0,5)$. Clearly, $(0,0)$ does not satisfy $10 x+y \geq 5$, so region not containing origin represents $10 x+y \geq 5$ in $x y$-plane.

Region represented by $x+10 y \geq 1$: Line $x+10 y=1$ meets coordinate axes $A_{1}(1,0)$ and $B_{3}\left(0, \frac{1}{10}\right)$. Clearly, $(0,0)$ does not satisfy $x+10 y \geq 1$, so, region not containing origin represents $x+10 y \geq 1$ in $x y$-plane.

Region represented by $x, y \geq 0$: It represents first quadrant in $x y$-plane.

So, unbounded shaded represents feasible region. Its corner points are $A_{1}(1,0), p\left(\frac{4}{9}, \frac{5}{9}\right)$ and $B_{2}(0,5)$.

The coordinate of $P\left(\frac{4}{9}, \frac{5}{9}\right)$ is obtained by solving $10 x+y=5$ and $x+y=1$.

The value of $Z=2 x+3 y$ at

$$
\begin{array}{ll}
A_{1}(1,0) & =2(1)+3(0)=2 \\
P\left(\frac{4}{9}, \frac{5}{9}\right) & =2\left(\frac{4}{8}\right)+3\left(\frac{5}{9}\right)=\frac{23}{9}=2 \frac{5}{9} \\
B_{2}(0,5) & =2(0)+3(5)=15
\end{array}
$$

The smallest value of Z is 2 . Now, open half plane $2 x+3 y<2$ has no point in common with feasible region so, smallest value of Z is the minimum value.

Linear Programming Ex 30.2 Q18

Converting the given inequations into equations,

$$
-x_{1}+3 x_{2}=10, x_{1}+x_{2}=6, x_{1}=x_{2}=2, x_{1}=x_{2}=0
$$

Region represented by $-x_{1}+3 x_{2} \leq 10$: Line $-x_{1}+3 x_{2}=10$ meets coordinate axes at $A_{1}(-10,0)$ and $B_{1}\left(0, \frac{10}{3}\right)$, clearly, $(0,0)$ satisfies $-x_{1}+3 x_{2} \leq 10$, so region containing origin represents $-x_{1}+3 x_{2} \leq 10$ in $x_{1} x_{2}$-plane.

Region represented by $x_{1}+x_{2} \leq 6$: Line $x_{1}+x_{2}=6$ meets coordinate axes at $A_{2}(6,0)$ and $B_{2}(0,6)$. Clearly, $(0,0)$ satisfies $x_{1}+x_{2} \leq 6$, so region containing origin represents $x_{1}+x_{2} \leq 6$ in $x_{1} x_{2}$-plane.

Region represented by $x_{1}-x_{2} \leq 2$: Line $x_{1}-x_{2}=2$ meets coordinate axes at $A_{3}(2,0)$ and $B_{3}(0,-2)$. Clearly, $(0,0)$ satisfies $x_{1}-x_{2} \leq 2$, so, region containing origin represents $x_{1}-x_{2} \leq 2$ in $x_{1} x_{2}$-plane.

Region represented $x_{1}, x_{2} \geq 0$: It represents first quadrant in $x_{1} x_{2}$-plane.
So, shaded region $O A_{3} P Q B$, represents feasible region.

Coordinate of $P(4,2)$ is obtained by solving $x_{1}+x_{2}=6$ and $x_{1}-x_{2}=2, Q(2,4)$ by solving $x_{1}+x_{2}=6$ and $-x_{1}+3 x_{2}=10$

The value of $Z=-x_{1}+2 x_{2}$ at

$$
\begin{array}{ll}
O(0,0) & =-(0)+2(0)=0 \\
A_{3}(2,0) & =-(2)+2(0)=-2 \\
P(4,2) & =-(4)+2(2)=0 \\
Q(2,4) & =-(2)+2(4)=6 \\
B_{1}\left(0, \frac{10}{3}\right) & =-(0)+2\left(\frac{10}{3}\right)=\frac{20}{3}=6 \frac{2}{3}
\end{array}
$$

Hence, maximum $Z=\frac{20}{3}$ at $x=0$ and $y=\frac{10}{3}$

Converting the given inequations into equations,

$$
-2 x+y=1, x=2, x+y=3, x=y=0
$$

Region represented by $-2 x+y \leq 1$: Line $-2 x+y=1$ meets coordinate axes at $A_{1}\left(\frac{-1}{2}, 0\right)$ and $B_{1}(0,1)$, clearly, $(0,0)$ satisfies $-2 x+y \leq 1$, so region containing origin represents $-2 x+y \leq 1$ in $x y-$ plane.

Region represented by $x \leq 2$: Line $x=2$ is parallel to y-axis and meets x-axis at $A_{3}(2,0)$. Clearly, $(0,0)$ satisfies $x \leq 2$, so region containing origin represents $x \leq 2$ in $x y$-plane.

Region represented by $x+y \leq 3$: Line $x+y=3$ meets coordinate axes at $A_{2}(3,0)$ and $B_{2}(0,3)$. Clearly, $(0,0)$ satisfies $x+y \leq 3$, so region containing origin represents $x+y \leq 3$ in $x y$-plane.

Region represented by $x, y \geq 0$: It represents first quadrant in $x y$-plane.

So, shaded region $O A_{3} P Q B$, represents the feasible region.

Coordinates of $P(2,1)$ is obtained by solving $x+y=3$ and $x=2, Q\left(\frac{2}{3}, \frac{7}{3}\right)$ by solving $-2 x+y=1$ and $x+y=3$.

The value of $z=x+y$ at

$$
\begin{array}{ll}
O(0,0) & =0+0=0 \\
A_{3}(2,0) & =2+0=2 \\
P(2,1) & =2+1=2 \\
Q\left(\frac{2}{3}, \frac{7}{3}\right) & =\frac{2}{3}+\frac{7}{3}=3 \\
B_{1}(0,1) & =0+1=1
\end{array}
$$

So, maximum $Z=3$ is at every point on the line joining $P Q$.

Hence, maximum $Z=3$ at $x=2$ and $y=1$ Or $x=\frac{2}{3}$ and $y=\frac{7}{3}$

Converting the given inequations into equations,

$$
x_{1}-x_{2}=-1,-x_{1}+x_{2}=0, x_{1}=x_{2}=0
$$

Region represented by $x_{1}-x_{2} \leq-1$: Line $x_{1}-x_{2}=-1$ meets coordinate axes at $A_{1}(-1,0)$ and $B_{1}(0,1)$, clearly, $(0,0)$ does not satisfy $x_{1}-x_{2} \leq-1$, so region not containing origin represents $x_{1}-x_{2} \leq-1$ in $x_{1} x_{2}$-plane.

Region represented by $-x_{1}+x_{2} \leq 0$: Line $-x_{1}+x_{2}=0$ passes through origin and $A_{2}(1,1)$. Clearly, $(0,0)$ does not satisfy $-x_{1}+x_{2} \leq 0$, so, region not containing (0,1) represents $-x_{1}+x_{2} \leq 0$ in $x_{1} x_{2}$-plane.

Since, there is not comm on shaded region represented by $x_{1}-x_{2} \leq-1$ and $-x_{1}+x_{2} \leq 0$ which can form feasible region.

Hence, maximum $Z=3 x_{1}+4 x_{2}$ does not exists.

Linear Programming Ex 30.2 Q21

$x-y \leq 1$; when $x=0, y=1$ \& when $y=0, x=2$ $x+y \geq 3$; when $x=0, y=3$ \& when $y=0, x=3$, line $A B$ a unbounded region $A-C-D$ is obtained using the constraints.

Corner point	Value of $Z=3 x+3 y$
0,3	9
2,1	9

So an optimal solution does not exist.

Linear Programming Ex 30.2 Q22

Converting the given inequations into equations

$$
5 x+y=10, x+y=6, x+4 y=12, x=y=0
$$

Region represented by $5 x+y \geq 10$: Line $5 x+y=10$ meets coordinate axes at $A_{1}(2,0)$ and $B_{1}(0,10)$. Clearly, $(0,0)$ does not satisfy $5 x+y \geq 10$, so region not containing origin represents $5 x+y \geq 10$ in $x y$-plane.

Region represented by $x+y \geq 6$: Line $x+y=6$ meets coordinate axes at $A_{2}(6,0)$ and $B_{2}(0,6)$. Clearly, $(0,0)$ does not satisfy $x+y \geq 6$, so region not containing origin represents $x+y \geq 6$ in $x y$-plane.

Region represented by $x+4 y \geq 12$: Line $x+4 y=12$ meets coordinate axes at $A_{3}(12,0)$ and $B_{3}(0,3)$. Clearly, $(0,0)$ does not satisfy $x+4 y \geq 12$, so, region not containing origin $x+4 y \geq 12$ in $x y$ - plane.

Region represented by $x, y \geq 0$: It represents first quadrant in $x y$-plane.

The unbounded shaded region with corner points $A_{3}(12,0), P(4,2), Q(1,5), B_{1}(0,10)$ represents feasible region. Point P is obtained by solving $x+4 y=12$ and $x+y=6$, Q by solving $x+y=6$ and $5 x+y=10$.

The value of $Z=3 x+2 y$ at

$$
\begin{array}{ll}
A_{3}(12,0) & =3(12)+2(0)=36 \\
P(4,2) & =3(4)+2(2)=16 \\
Q(1,5) & =3(1)+2(5)=13 \\
B(0,10) & =3(0)+2(10)=20
\end{array}
$$

Smallest value of $Z=13$, Now open half plane $3 x+2 y<13$ has no point in comm with feasible region, so, smallest value is the minimum value of Z, Hence

```
Minimum Z = 13 at }x=1,y=
```


$x+3 y \geq 6$; or $y=-0.333 x+2$; when $x=0, y=2$ \& when $y=0$, $x=6$; line $C D$
$x-3 y \leq 3$; or $y=0.333 x-1$; when $x=0, y=-1$ \& when $y=0$, $x=3$; line IJ
$3 x+4 y \leq 24$; or $y=-0.75 x+6$; when $x=0, y=6$ \& when $y=0, x=8$; line $E F$
$-3 x+2 y \leq 6$; or $y=1.5 x+3$; when $x=0, y=3$ \& when $y=0$, $x=-2$;line GH
$5 x+y \geq 5$; or $y=-5 x+5$; when $x=0, y=5$ \& when $y=0$, $x=1$; line $A B$

The feasible area is shaded in green

Corner point	Value of $Z=2 x+y$
$4.5,0.5$	9.5
$0.64,1.78$	3.07
$6.46,1.15$	Maximum
$1.33,5$	14.07
$0.30,3.46$	4.6667

Maximum value is 14.07 at the point $(6.46,1.15)$ Minimum value is 3.07 at the point $(0.64,1.78)$

Linear Programming Ex 30.2 Q24

$-2 x+y \leq 4$; or $y=2 x+4$; when $x=0, y=4$ \& when $y=0, x=-$ 2 line EF
$x+y \geq 3$; or $y=-x+3$; when $x=0, y=3$ \& when $y=0, x=3$; line $A B$
$x-2 y \leq 2$; or $y=0.5 x-1$; when $x=0, y=-1$ \& when $y=0$,
$x=2$ line $C D$
The feasible solution is the unbounded area with F-E-A-G-D

Corner point	Value of $Z=3 x+5 y$	
(2.67, 0.33)	Minimum	9.66
$(0,3)$		15
$(0,4)$		20

To check whether it is the minimal value plot the objective function with a value less than 9.66 or $y=-0.6 x-1.932$
it can be seen that the values of x and y are always negative. So there is no optimal solution.

Linear Programming Ex 30.2 Q25

Converting the given inequations into equations,

$$
x+y=50,3 x+y=90, x=y=0
$$

Region represented by $x+y \leq 50$: Line $x+y=50$ meets coordinate axes at $A_{1}(50,0)$ and $B_{1}(0,50)$. Clearly, $(0,0)$ satisfies $x+y \leq 50$, so, region containing origin represents $x+y \leq 50$ in $x y$ - plane.

Region represented by $3 x+y \leq 90$: Line $3 x+y=90$ meets coordinate axes at $A_{2}(30,0)$ and $B_{2}(0,90)$. Clearly, $(0,0)$ satisfies $3 x+y \leq 90$, so, region containing origin represents $3 x+y \leq 90$ in $x y$-plane.

Region represented by $x, y \geq 0$: It represents first quadrant in $x y$-plane.

Shaded region $O A_{2} P B_{1}$ represents the feasible region. $P(20,30)$ can be obtained by solving $x+y=50$ and $3 x+y=90$.

The value of $Z=60 x+15 y$ at

$$
\begin{array}{ll}
O(0,0) & =60(0)+15(0)=0 \\
A_{2}(30,0) & =60(30)+15(0)=1800 \\
P(20,30) & =60(20)+15(30)=1650 \\
B_{1}(0,50) & =60(0)+15(50)=750
\end{array}
$$

Hence,
maximum Z is 1800 at $x=30$ and $y=0$.

Linear Programming Ex 30.2 Q26

Converting the inequations into equations, we obtain the lines
$2 x+4 y=8,3 x+y=6, x+y=4, x=0, y=0$.
These lines are drawn on a suitable scale and the feasible region of the LPP is shaded in the graph.

From the graph we can see the corner points as $(0,2)$ and $(2,0)$.

Now solving the equations $3 x+y=6$ and $2 x+4 y=8$ we get the values of x and y as $x=\frac{8}{5}$ and $y=\frac{6}{5}$.

Substituting $x=\frac{8}{5}$ and $y=\frac{6}{5}$ in $z=2 x+5 y$ we get,
$z=2\left(\frac{8}{5}\right)+5\left(\frac{6}{5}\right)$
$Z=\frac{46}{5}$

Hence maximum value of Z is $\frac{46}{5}$ at $x=\frac{8}{5}$ and $y=\frac{6}{5}$.

