RD Sharma Solutions
 Class 12 Maths
 Chapter 30
 Ex30.3

Linear Programming Ex 30.3 Q1

Let x and y be the No. of 25 gm packets of foods F_{1} and F_{2}

Minimum cost of $\operatorname{diet} Z=0.20 x+0.15 y$
The constraints are
$0.25 x+0.1 y \geq 1$; when $x=0, y=10$ \& $y=0, x=4 \quad 10-4$
$0.75 x+1.5 y \geq 7.5$; when $x=0, y=5 \& y=0, x=10 \quad$ - -10
$1.6 x+0.8 y \geq 10$; when $x=0, y=25 / 2 \& y=0, x=25 / 4$
The feasible region is the open region B-E-10
The minimum cost of the diet can be checked by finding the value of Z at corner points B, E \& 10

Corner point	Value of $Z=20 x+15 y$
$0,12.5$	187.5
10,0	200
$5,2.5$	137.5

Since the feasible region is an open region so we plot $20 x+15 y<137.5$, to check whether the resulting open half plane has any point common with the feasible region. Since it has common points $Z=20 x+15 y$

There is no optimal minimum value subject to the given constraints.

Linear Programming Ex 30.3 Q2

Let required quantity of food A and B be x and y units respectively.

Costs of one unit of food A and B are Rs 4 and Rs 3 per unit respectively, so, costs of x unit of food A and y unit of food B are $4 x$ and $3 y$ respectively. Let Z be minimum total cost, so

$$
z=4 x+3 y
$$

Since one unit of food A and B contain 200 and 100 units of vitamin respectively. So, x units of food A and y units of food B contain $200 x$ and $100 y$ units of vitamin but minimum requirement of vitamin is 4000 units, so

$$
200 x+100 y \geq 4000
$$

$\Rightarrow \quad 2 x+y \geq 40 \quad$ (first constraint)

Since one unit of food A and B contain 1 unit and 2 unit of minerals, so x units of food A and y units of food B contain x and $2 y$ units of minerals respectively but minimum requirement of minerals is 50 units, so

$$
x+2 y \geq 50 \quad \text { (second constraint) }
$$

Since one unit of food A and B contain 40 calories each, so x units of food A and y units of food B contain $40 x$ and $40 y$ calories respectively but minimum requirement of calories is 1400 , so

	$40 x+40 y \geq 1400$
\Rightarrow	$2 x+2 y \geq 70$
\Rightarrow	$x+y \geq 35$

So, mathematical formulation of LPP is find x and y which

$$
\text { minimize } z=4 x+3 y
$$

Subject to constraint,

$$
\begin{aligned}
& 2 x+y \geq 40 \\
& x+2 y \geq 50 \\
& x+y \geq 35
\end{aligned}
$$

$$
x, y \geq 0 \quad \text { [Since quantity of food can not be less than zero] }
$$

Region $2 x+y \geq 40$: Line $2 x+y=40$ meets axes at $A_{1}(20,0), B_{1}(0,40)$ region not containing origin represents $2 x+y \geq 40$ as $(0,0)$ does not satisfy $2 x+y \geq 40$.

Region $x+2 y \geq 50$: Line $x+2 y=50$ meets axes at $A_{2}(50,0), B_{2}(0,25)$. Region not containing origin represents $x+2 y \geq 50$ as $(0,0)$ does not satisfy $x+2 y \geq 50$.

Region $x+y \geq 35$: Line $x+y=35$ meets axes at $A_{3}(35,0), B_{3}(0,35)$. Region not containing origin represents $x+y \geq 35$ as (0,0) does not satisfy $x+y \geq 35$.

Region $x, y \geq 0$: It represent first quadrant in $x y$-plane.

Unbounded shaded region $A_{2} P Q B_{1}$ represents feasible region with corner points $A_{2}(50,0)$, $P(20,15), Q(5,30), B_{1}(0,40)$

The value of $z=4 x+3 y$ at

$$
\begin{array}{ll}
A_{2}(50,0) & =4(50)+3(0)=2000 \\
P(20,15) & =4(20)+3(15)=125 \\
Q(5,30) & =4(5)+3(30)=110 \\
B_{1}(0,40) & =4(0)+3(40)=110
\end{array}
$$

Smallest value of $Z=110$

Open half plane $4 x+3 y<110$ has no point in common with feasible region, so, smallest value is the minimum value.

Hence,
quantity of food $A=x=5$ unit
quantity of food $B=y=30$ unit
minimum cost $=$ Rs 110

Linear Programming Ex 30.3 Q3

Let x \& y be the units of Food I and Food II resptly.
The objective function is to minimize the function $Z=0.6 x+y$ such that $10 x+4 y \geq 20$ requirement of calcium, line 5-2 $5 x+6 y \geq 20$ requirement of protein, line A-4 $2 x+6 y \geq 12$ requirement of calories, line 2-6

These when plotted give 5-F-E-6 an open unbounded region.

The function $20 x+15 y<57.5$ needs to be plotted to check if there are any common points. The green line shows that there are no common points. So

Corner point	Value of $Z=0.6 x+y$
0,5	5
$F(1,2.5)$	3.1
$E(2.67,1.11)$	2.71
6,0	3.6

The minimum cost occurs when Food I is 1 unit and Food II is 2.5 units. Since it is an unbounded region plotting $Z<3.1$ gives the green line which has no common points, so $(1,2.5)$ can be said to be a minimum point.

Linear Programming Ex 30.3 Q4

Let required quantity of food A and food B be x and y units.

Given, costs of one unit of food A and B are 10 paise per unit each, so costs of x unit of food A and y unit of food B are $10 x$ and $10 y$ respectively, let Z be total cost of foods, so

$$
z=10 x+10 y
$$

Since one unit of food A and B contain 0.12 mg and 0.10 mg of Thiamin respectively, so, x units of food A and y units of food B contain $0.12 x \mathrm{mg}$ and $0.10 y \mathrm{mg}$ of Thiam in respectively but minimum requirement of Thiamin is 0.4 mg , so

$$
\begin{aligned}
& 0.12 x+0.10 y \geq 0.5 \\
\Rightarrow \quad & 12 x+10 y \geq 50 \\
\Rightarrow \quad & 6 x+5 y \geq 25 \quad \text { (first constraint) }
\end{aligned}
$$

Since one unit of food A and B contain 100 and 150 Calories respectively, so x units of food A and y units of food B contain $100 x$ and $150 y$ units of Calories but minimum requirement of C alories is 600 , so
$100 x+150 y \geq 600$
$\Rightarrow \quad 2 x+3 y \geq 12 \quad$ (second constraint)

Hence, mathematical formulation of LPP is find x and y which
minimize $Z=10 x+10 y$

Subject to constraint,
$6 x+5 y \geq 25$
$2 x+3 y \geq 12$
$x, y \geq 0$
[Since quantity of food A and B can not be less than zero]
Region $6 x+5 y \geq 25: \quad 6 x+5 y=25$ meets axes at $A_{1}\left(\frac{25}{6}, 0\right), B_{1}(0,5)$. Region not containing origin represents $6 x+5 y \geq 25$ as $(0,0)$ does not satisfy $6 x+5 y \geq 25$.

Region $2 x+3 y \geq 12$: Line $2 x+3 y=12$ meets axes at $A_{2}(6,0), B_{2}(0,4)$. Region not containing origin represents $2 x+3 y \geq 12$ as $(0,0)$ does not satisfy $2 x+3 y \geq 12$.

Region $x, y \geq 0$ represent first quadrant in $x y$-plane.

Unbounded shaded region $A_{2} P B_{1}$ represents feasible region with corner points $A_{2}(6,0)$, $p\left(\frac{15}{8}, \frac{11}{4}\right), B_{1}(0,5)$

$$
\begin{aligned}
& \text { The value of } Z=10 x+10 y \text { at } \\
& \begin{aligned}
A_{2}(6,0) & =10(6)+10(0)=60 \\
P\left(\frac{15}{8}, \frac{11}{4}\right) & =10\left(\frac{15}{8}\right)+10\left(\frac{11}{4}\right)=\frac{370}{8}=46 \frac{1}{4} \\
B_{1}(0,5) & =10(0)+10(5)=50
\end{aligned}
\end{aligned}
$$

Smallest value of Z is $46 \frac{1}{4}$.
Now open half plane $10 x+10 y<\frac{370}{8}$
$\Rightarrow \quad 8 x+8 y<370$ has no point in common with feasible region, so smallest value is the minimum value.

Hence,
Required quantity of food $A=\frac{15}{8}$ units, food $B=\frac{11}{4}$ units
minimum cost $=$ Rs 46.25

Linear Programming Ex 30.3 Q5

Let required quantity of food X and food Y be $x \mathrm{~kg}$ and $y \mathrm{~kg}$.

Since costs of food X and Y are Rs 5 and Rs 8 perkg., So, costs of food X and food Y are Rs. $5 x$ and Rs. $8 y$ respectively. Let Z be the total cost of food, then

$$
z=5 x+8 y
$$

Since one kg of food X and Y contain 1 and 2 unit of vitamin A so, $x \mathrm{~kg}$ of food X and y kg of food Y contain x and $2 y$ units of vitamin A respectively but minimum requirement of vitamin A is 6 units, so

$$
x+2 y \geq 6 \quad \text { (first oonstraint })
$$

Since one kg of food X and Y contain 1 unit of vitamin B each, so $\times \mathrm{kg}$ of food X and $y \mathrm{~kg}$ of food Y contain x and y units of vitamin B but minimum requirement of vitamin B is 7 units, so

$$
x+y \geq 7 \quad \text { (second constraint) }
$$

Since one kg of food X and food Y contain 1 unit and 3 units of vitam in C respectively, so $x \mathrm{~kg}$ of food x and $y \mathrm{~kg}$ of food Y contain x and $3 y$ units of vitamin C respectively but minimum requirement of vitamin C is 11 units, so

$$
x+3 y \geq 11 \quad \text { (third constraint) }
$$

Since 1 kg of food X and food Y contain 2 units and 1 unit of vitam in D respectively, so, $x \mathrm{~kg}$ of food X and $y \mathrm{~kg}$ of food Y contain $2 x$ and y units of vitamin D respectively but minimum requirement of vitamin D is 9 units, so

$$
2 x+y \geq 9 \quad \text { (fourth constraint) }
$$

Hence, mathematical formulation of LPP is find x and y which minimize $z=5 x+8 y$

Subject to constraints,

$$
\begin{aligned}
& x+2 y \geq 6 \\
& x+y \geq 7 \\
& x+3 y \geq 11 \\
& 2 x+y \geq 9
\end{aligned}
$$

$$
x, y \geq 0 \quad \text { [Since quantity of food } X \text { and } Y \text { can not be less than zero] }
$$

Region $x+2 y \geq 6$: Line $x+2 y=6$ meets axes at $A_{1}(6,0), B_{1}(0,3)$. Region not containing origin represents $x+2 y \geq 6$ as $(0,0)$ does not satisfy $x+2 y \geq 6$.

Region $x+y \geq 7$: Line $x+y=7$ meets axes at $A_{2}(7,0), B_{2}(0,7)$ respectively. Region not containing origin represents $x+y \geq 7$ as $(0,0)$ does not satisfy $x+y \geq 7$.

Region $x+3 y \geq 11$: Line $x+3 y=11$ meets axes at $A_{3}(11,0), B_{3}\left(0, \frac{11}{3}\right)$ respectively.
Region not containing origin represents $x+3 y \geq 11$ as $(0,0)$ does not satisfy $x+3 y \geq 11$.

Region $2 x+y \geq 9$: Line $2 x+y=9$ meets axes at $A_{4}\left(\frac{9}{2}, 0\right), B_{4}(0,9)$ respectively. Region not containing origin represents $2 x+y \geq 9$ as $(0,0)$ does not satisfy $2 x+y \geq 9$.

Region $x, y \geq 0$ it represent first quadrant.

Unbounded shaded region $A_{2} P Q B_{4}$ is the feasible region with corner points $A_{3}(11,0)$, $P(5,2), Q(2,5), B_{4}(0,9)$

The value of $Z=5 x+8 y$ at

$$
\begin{array}{ll}
A_{3}(11,0) & =5(11)+8(0)=55 \\
P(5,2) & =5(5)+8(2)=41 \\
Q(2,5) & =5(2)+8(5)=50 \\
B_{4}(0,9) & =5(0)+8(9)=72
\end{array}
$$

Smallest value of Z is 41 .
Now open half plane $5 x+8 y<41$ has no point is common with feasible region, os, smallest value of is the minimum value.
hence
last cost of mixture $=$ Rs 41

Linear Programming Ex 30.3 Q6

Let quantity of food F_{1} and F_{2} be x and y units.
respectively.
Given, costs of one unit of food F_{1} and F_{2} be Rs 4 and Rs 6 per unit, So, costs of X unit of food F_{1} and Y units of food F_{2} be $4 x$ and $6 y$ respectively,
Let Z be the total cost, so

$$
z=4 x+8 y
$$

Since one unit of food F_{1} and F_{2} contain 3 and 6 unit of vitamin A respectively, so, x units of food F_{1} and y units of food F_{2} contain $3 x$ and $6 y$ units of vitamin A respectively, but minimum requirement
of vitamin A is 80 units, so

$$
3 x+6 y \geq 80 \quad \text { (first constraint) }
$$

Since one unit of food F_{1} and F_{2} contain 4 unit and 3 unit of mineral, so x unit of food F_{1} and y unit of food F_{2} contain $4 x$ and $3 y$ units of mineral respectively but minimum requirement of minerals be 100 units, so

```
    4x+3y\geq100
# 4x+3y\geq100 (second constraint)
```

mathematical formulation of LPP is, Find x and y which minimum

$$
z=4 x+6 y
$$

Subject to constraints,

$$
\begin{aligned}
& 3 x+6 y \geq 80 \\
& 4 x+3 y \geq 100 \\
& x, y \geq 0
\end{aligned}
$$

[since quantity of food can not be less than zero]

Region $3 x+6 y \geq 80$: line $3 x+6 y=80$ meets axes at $A_{1}\left(\frac{80}{3}, 0\right), B_{1}\left(0, \frac{40}{3}\right)$ respectively. Region not containing origin represents $3 x+6 y \geq 80$ as $(0,0)$ does not satisfy $3 x+6 y \geq 80$.

Region $4 x+3 y \geq 100$ line $3 x+6 y=100$ meets axes at $A_{2}(25,0), B_{2}\left(0, \frac{100}{3}\right)$ respectively. Region not containing origin represents $4 x+3 y \geq 100$ as $(0,0)$ does not satisfy $4 x+3 y \geq 100$.

Region $x, y \geq 0$ represents first quadrant

Unbounded shaded region $A_{1} P B_{2}$ represents feasible region with corner points $A_{1}\left(\frac{80}{3}, 0\right)$, $p\left(24, \frac{4}{3}\right), B_{2}\left(0, \frac{100}{3}\right)$.

The value of $Z=4 x+6 y$ at

$$
\begin{array}{ll}
A_{1}\left(\frac{80}{3}, 0\right) & =4\left(\frac{80}{3}\right)+6(0)=\frac{320}{3} \\
P\left(24, \frac{4}{3}\right) & =4(24)+6\left(\frac{4}{3}\right)=104 \\
B_{2}\left(0, \frac{100}{3}\right) & =4(0)+6\left(\frac{100}{3}\right)=200
\end{array}
$$

Smallest value of Z is 104 . Now open half plane $4 x+6 y<104$ has no point in common with feasible region so, smallest value is minimum value.
Hence,
Minimum cost of mixture $=$ Rs 104

Linear Programming Ex 30.3 Q7

Let required quantity of bran and rice be $\times \mathrm{kg}$ and $y \mathrm{~kg}$.
Given, costs of one kg of bran and rice are Rs 5 and Rs 4 per kg, So, costs of X unit of bran and $Y \mathrm{~kg}$ of rice are $5 x$ and $R s 4 y$ respectively,
Let total cost of bran and rice be Z, so,

$$
z=5 x+4 y
$$

Since one kg of bran and rice contain 80 and 100 mg of protien, so, $x \mathrm{~kg}$ of bran and y kg of rice contain $80 x$ and 100 y grms of protien respectively, but minimum requirement of protien for kelloggs is 88 gms , so

$$
\begin{aligned}
& 80 x+100 y \geq 88 \\
\Rightarrow \quad & 20 x+25 y \geq 22
\end{aligned} \quad \text { (first constraint) }
$$

Since one kg of bran and rice contain 40 mg and 30 mg of iron, so, $x \mathrm{~kg}$ of bran and ykg of rice contain $40 x$ and $30 y \mathrm{mg}$ of iron respectively, but minimum requirement of iron is 36 mg for kelloggs, so

```
40x+30y\geq36 (second constraint)
```

Hence, mathematical formulation of LPP is, Find x and y which minimize

$$
z=5 x+4 y
$$

subject to constraints,

$$
20 x+25 y \geq 22
$$

$40 x+30 y \geq 36$
$x, y \geq 0$
[Since quantity of bran and rice can not be less than zero]

Region $20 x+25 y \geq 22$: line $20 x+25 y=22$ meets axes at $A_{1}\left(\frac{11}{10}, 0\right), B_{1}\left(0, \frac{22}{25}\right)$ respectively. Region not containing origin represents $20 x+25 y \geq 22$ as $(0,0)$ does not satisfy $20 x+25 y \geq 22$.

Region $40 x+30 y \geq 36$ line $40 x+30 y=36$ meets axes at $A_{2}\left(\frac{9}{10}, 0\right), B_{2}\left(0, \frac{6}{5}\right)$. Region
not containing origin represents $40 x+30 y \geq 36$ as $(0,0)$ does not satisfy $40 x+30 y \geq 36$.

The value of $z=5 x+4 y$ at

$$
\begin{array}{ll}
A_{1}\left(\frac{11}{10}, 0\right) & =5\left(\frac{11}{10}\right)+4(0)=5.5 \\
P\left(\frac{3}{5}, \frac{2}{5}\right) & =5\left(\frac{3}{5}\right)+4\left(\frac{2}{5}\right)=4.6 \\
B_{2}\left(0, \frac{6}{5}\right) & =5(0)+4\left(\frac{6}{5}\right)=4.8
\end{array}
$$

Smallest value of Z is 4.6. Now open half plane $5 x+4 y<4.6$ has no point in common with feasible region so, smallest value z is the minimum value.

Hence
Minimum cost of mixture $=$ Rs 4.6

Linear Programming Ex 30.3 Q8

Let required number of $\operatorname{bag} A$ and $\operatorname{bag} B$ be x and y respectively.

Since, costs of each bag A and $\operatorname{bag} B$ are Rs 8 and Rs 12 per kg., So, cost of x number of bag A and y number of $\operatorname{bag} B$ are Rs $8 x$ and Rs $12 y$ respectively, Let Z be total cost of bags, so,

$$
z=8 x+12 y
$$

Since, each bag A and B contain 60 and 30 gms . of almonds respectively. so, x bags of A and y bags of B contain $60 x$ and $30 y \mathrm{gms}$. of almonds respectively but, mixtures should contain at least 240 gms almonds, so,

$$
60 x+30 y \geq 240
$$

$\Rightarrow \quad 2 x+y \geq 8 \quad$ (first constraint)

Since, each $\operatorname{bag} A$ and B contain 30 and 60 gms . of cashew nuts respectively. so, x bags of A and y bags of B contain $30 x$ and $60 y$ gms. of cashew nuts respectively but, mixtures should contain at least 300 gms of cashew nuts, so,
$30 x+60 y \geq 300$
$\Rightarrow \quad x+2 y \geq 10 \quad$ (second constraint)

Since, each bag A and B contain 30 and 180 gms . of hazel nuts respectively. so, x bags of A and y bags of B contain $30 x$ and $180 y$ gms. of hazel nuts respectively but, mixtures should contain at least 540 gms of hazel nuts, so, $30 x+180 y \geq 540$
$\Rightarrow \quad x+6 y \geq 18 \quad$ (third constraint)

Hence, mathematical formulation of LPP is, Find x and y which maximize

$$
z=8 x+12 y
$$

subject to constraints,
$2 x+y \geq 8$
$x+2 y \geq 10$
$x+6 y \geq 18$
$x, y \geq 0$
[Since quantity of bags can not be less than zero]
Region $2 x+y \geq 8$: line $2 x+y=8$ meets axes at $A_{1}(4,0), B_{1}(0,8)$ respectively. Region not containing origin represents $2 x+y \geq 8$ as $(0,0)$ does not satisfy $2 x+y \geq 8$.

Region $x+2 y \geq 10$: line $x+2 y=10$ meets axes at $A_{2}(10,0), B_{2}(0,5)$ respectively. Region not containing origin represents $2 x+y \geq 10$ as $(0,0)$ does not satisfy $x+2 y \geq 10$

Region $x+6 y \geq 18$: line $x+6 y=18$ meets axes at $A_{3}(18,0), B_{3}(0,3)$ respectively. Region not containing origin represents $x+6 y \geq 8$ as $(0,0)$ does not satisfy $x+6 y \geq 8$

Region $x, y \geq 0$: it represents first quadrant.

Unbouded shaded region $A_{3} P Q B_{1}$ is feasible region with corner point $A_{3}(18,0), P(6,2)$ $Q(2,4), B_{1}(0,8), P$ is obtained by solving $x+6 y=18$ and $x+2 y=10, Q$ is obtained by solving $2 x+y=8$ and $x+2 y=10$

The value of $z=8 x+12 y$ at

$$
\begin{array}{ll}
A_{3}(18,0) & =8(18)+12(0)=144 \\
P(6,2) & =8(6)+12(2)=72 \\
Q(2,4) & =8(2)+12(4)=64 \\
B_{1}(0,8) & \quad=8(0)+12(8)=96
\end{array}
$$

Smallest value of Z is 64 , open half plane $8 x+12 y \geq 64$ has no point is common with feasible region, so, smallest value is the minimum value

Minimum cost $=$ Rs64
quantity of mixture $A=2 \mathrm{~kg}$.
quantity of mixture $B=4 \mathrm{~kg}$

Linear Programming Ex 30.3 Q9

Let required number of cakes of type A and B are x and y respectively.

Let Z be total number of cakes,so,

$$
z=x+y
$$

Since one unit of cake of type A and B contain 300 gm and 150 gm flour respectively, so, x unit of cake of type A and y units of cake of type B require $300 x$ and $150 y \mathrm{gms}$ of flour respectivley, but maximum flour available is $7.5 \times 1000=7500 \mathrm{gm}$, so $300 x+150 y \leq 7500$
$\Rightarrow \quad 2 x+y \leq 50 \quad$ (first constraint)

Since one unit of cake of type A and B contain 15 and 30 gm fat respectively, so, x unit of cake of type A and y units of cake of type B contain $15 x$ and $30 y$ gms of fat respectivley, but maximum fat available is 600 gm , so $15 x+30 y \leq 600$
$\Rightarrow \quad x+2 y \leq 40 \quad$ (second constraint)

Hence, mathematical formulation of LPP is find x and y which maximize $z=x+y$

Subject to constriants,

$$
\begin{aligned}
& 2 x+y \leq 50 \\
& x+2 y \leq 40
\end{aligned}
$$

$$
x, y \geq 0 \quad \text { [Since number of cakes can not be less than zero }]
$$

Region $2 x+y \leq 50$: line $2 x+y=50$ meets axes at $A_{1}(25,0), B_{1}(0,50)$ respectively.
Region containing origin represents $2 x+y \leq 50$ as $(0,0)$ satisfies $2 x+y \leq 50$.

Region $x+2 y \leq 40$: line $x+2 y=40$ meets axes at $A_{2}(40,0), B_{2}(0,20)$ respectively.
Region containing origin represents $x+2 y \leq 40$ as $(0,0)$ satisfies $x+2 y \leq 40$.
Region $x, y \geq 0$: it represent first quandrant

Shaded region $O A_{1} P B_{2}$ represents feasible region.
Point $P(20,10)$ is obtained by solving $x+2 y=40$ and $2 x+y=50$

The value of $z=x+y$ at

$$
\begin{array}{ll}
O(0,0) & =0+0=0 \\
A_{1}(25,0) & =25+0=25 \\
P(20,10) & =20+10=30 \\
B_{2}(0,20) & =0+20=20
\end{array}
$$

$$
\text { maximum } Z=30 \text { at } x=20, y=10
$$

Number of books of type $A=20$, type $B=10$

Linear Programming Ex 30.3 Q10

Let $x \mathrm{~kg}$ of food P and $y \mathrm{~kg}$ of food Q are mixed together to make the mixture.

Then the mathematical model of the LPP is as follows:
Minimize $Z=60 x+80 y$
Subject to $3 x+4 y \geq 8$,
$5 x+2 y \geq 11$
and $x \geq 0, y \geq 0$

To solve the LPP we draw the lines,
$3 x+4 y=8$,
$5 x+2 y=11$

The feasible region of the LPP is shaded in graph.

The coordinates of the vertiœes (Corner - points) of shaded feasible region ABC are
$\mathrm{A}\left(\frac{8}{3}, 0\right), \mathrm{B}\left(2, \frac{1}{2}\right)$ and $\mathrm{C}\left(0, \frac{11}{2}\right)$.

The values of the objective of function at these points are given in the following table:

Point $\left(x_{1}, x_{2}\right)$	Value of objective function $Z=60 x+80 y$
$A\left(\frac{8}{3}, 0\right)$	$Z=160$
$B\left(2, \frac{1}{2}\right)$	$Z=160$
$C\left(0, \frac{11}{2}\right)$	$Z=440$

The minimum value of the mixture is Rs. 160 at all points on the line segment joining points $\left(\frac{8}{3}, 0\right)$ and $(2$, Linear Programming Ex 30.3 Q11

Let x be the number of one kind of cake and y be the number of second kind of cakes that are made.

Then the mathematical model of the LPP is as follows:
Maximize $Z=x+y$
Subject to $200 x+100 y \leq 5000$,
$25 x+50 y \leq 1000$
and $x \geq 0, y \geq 0$
To solve the LPP we draw the lines,
$2 x+y=50$,
$x+2 y=40$

The feasible region of the LPP is shaded in graph.

The coordinates of the vertios (Corner - points) of shaded feasible region ABC are $A(25,0), B(20,10)$ and $C(0,20)$.

The values of the objective of function at these points are given in the following table:

Point $\left(x_{1}, x_{2}\right)$	Value of objective function $Z=x+y$
$A(25,0)$	$Z=25$
$B(20,10)$	$Z=30$
$C(0,20)$	$Z=20$

The maximum of 30 cakes can be made.

Linear Programming Ex 30.3 Q12

Let x be the number of packets of food P
y be the number of packets of food Q used to minimize vitamin A.
Then the mathematical model of the LPP is as follows:
Minimize $z=6 x+3 y$
Subject to $12 x+3 y \geq 240$,
$4 x+20 y \geq 460$
$6 x+4 y \leq 300$
and $x \geq 0, y \geq 0$
To solve the LPP we draw the lines,
$12 x+3 y=240$,
$4 x+20 y=460$,
$6 x+4 y=300$

The feasible region of the LPP is shaded in graph.

The coordinates of the vertios (Corner - points) of shaded feasible region ABC are $\mathrm{A}(15,20), \mathrm{B}(40,15)$ and $\mathrm{C}(2,72)$.

The values of the objective of function at these points are given in the following table:

Point $\left(x_{1}, x_{2}\right)$	Value of objective function $Z=6 x+3 y$
$A(15,20)$	$Z=150$
$B(40,15)$	$Z=285$
$C(2,72)$	$Z=228$

15 packets of food P and 20 packets of food Q should be used to minimise the amount of vitamin The minimum amount of vitamin A is 150 units.

Linear Programming Ex 30.3 Q13

Let x be the number of bags of brand P
y be the number of bags of brand Q.

Then the mathematical model of the LPP is as follows:
Minimize $Z=250 x+200 y$
Subject to $3 x+1.5 y \geq 18$,
$2.5 x+11.25 y \geq 45$
$2 x+3 y \geq 24$
and $x \geq 0, y \geq 0$

To solve the LPP we draw the lines,
$3 x+1.5 y=18$,
$2.5 x+11.25 y=45$
$2 x+3 y=24$

The feasible region of the LPP is shaded in graph.

The coordinates of the vertiœes (Corner - points) of shaded feasible region ABCD are $A(18,0), B(9,2), C(3,6)$ and $D(0,12)$.

The values of the objective of function at these points are given in the following table:

Point $\left(x_{1}, x_{2}\right)$	Value of objective function $Z=250 x+200 y$
$A(18,0)$	$Z=4500$
$B(9,2)$	$Z=2650$
$C(3,6)$	$Z=1950$
$D(0,12)$	$Z=2400$

3 bags of brand P and 6 bags of brand Q should be mixed in order to prepare the mixture having a minumum cost per bag.
Mimum cost of the mixture per bag is $=\frac{1950}{9}=\mathrm{Rs} .216 .67$.

Note: Answer given in the book is incorrect.

Linear Programming Ex 30.3 Q14

Let x be the amount of food X and y be the amount of food Y that is to be mixed which will produce the required diet.

Then the mathematical model of the LPP is as follows:
Minimize $Z=16 x+20 y$
Subject to $x+2 y \geq 10$,
$2 x+2 y \geq 12$
$3 x+y \geq 8$
and $x \geq 0, y \geq 0$

To solve the LPP we draw the lines,
$x+2 y=10$,
$2 x+2 y=12$
$3 x+y=8$
The feasible region of the LPP is shaded in graph.

The coordinates of the vertiœes (Corner - points) of shaded feasible region ABCD are $A(10,0), B(2,4), C(1,5)$ and $D(0,8)$.

The values of the objective of function at these points are given in the following table:

Point $\left(x_{1}, x_{2}\right)$	Value of objective function $Z=16 x+20 y$
$A(10,0)$	$Z=160$
$B(2,4)$	$Z=112$
$C(1,5)$	$Z=116$
$D(0,8)$	$Z=160$

2 kg of food X and 4 kg of food y will be required to mimimize the cost of the diet. The least cost of the mixture is Rs. 112.

Let x bags of fertilizer P and y bags of fertilizer Q used in the garden to minimize the usage of nitroge
Then the mathematical model of the LPP is as follows:
Minimize $z=3 x+3.5 y$
Subject to $x+2 y \geq 240$,
$3 x+1.5 y \geq 270$
$1.5 x+2 y \leq 310$
and $x \geq 0, y \geq 0$
To solve the LPP we draw the lines,
$x+2 y=240$,
$3 x+1.5 y=270$
$1.5 x+2 y=310$
The feasible region of the LPP is shaded in graph.

The coordinates of the vertices (Corner - points) of shaded feasible region ABC are $A(40,100), B(140,50)$ and $C(20,140)$.

The values of the objective of function at these points are given in the following table:

Point $\left(x_{1}, x_{2}\right)$	Value of objective function $Z=3 x+3.5 y$
$A(40,100)$	$Z=470$
$B(140,50)$	$Z=595$
$C(20,140)$	$Z=550$

40 bags of brand P and 100 bags of brand Q should be used to minimize the amount of nitrogen added to the garden.
The minimum amount of nitrogen added in the garden is 470 kg .

