RD Sharma
Solutions
Class 12 Maths
Chapter 30
Ex 30.5

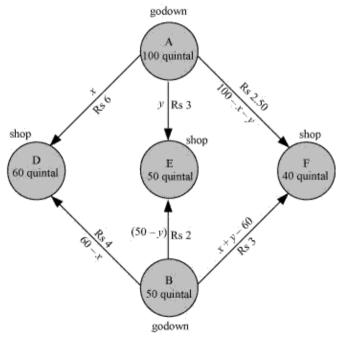
Linear Programming Ex 30.5 Q1

Let godown A supply x and y quintals of grain to the shops D and E respectively. Then, (100 - x - y) will be supplied to shop F.

The requirement at shop D is 60 quintals since x quintals are transported from godown A. Therefore, the remaining (60 -x) quintals will be transported from godown B.

Similarly, (50 - y) quintals and 40 - (100 - x - y) = (x + y - 60) quintals will be transported from godown B to shop E and F respectively.

The given problem can be represented diagrammatically as follows.



$$x \ge 0$$
, $y \ge 0$, and $100 - x - y \ge 0$
 $\Rightarrow x \ge 0$, $y \ge 0$, and $x + y \le 100$

$$60-x \ge 0$$
, $50-y \ge 0$, and $x+y-60 \ge 0$

$$\Rightarrow x \le 60, y \le 50, \text{ and } x + y \ge 60$$

Total transportation cost z is given by,

$$z = 6x + 3y + 2.5(100 - x - y) + 4(60 - x) + 2(50 - y) + 3(x + y - 60)$$

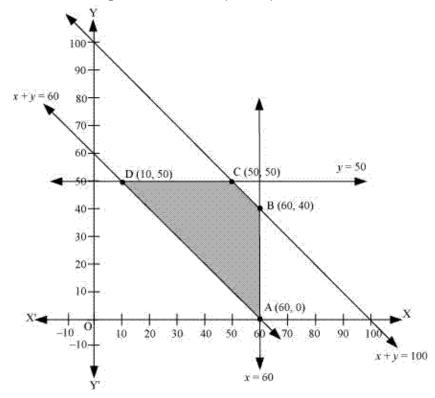
= $6x + 3y + 250 - 2.5x - 2.5y + 240 - 4x + 100 - 2y + 3x + 3y - 180$
= $2.5x + 1.5y + 410$

The given problem can be formulated as Minimize $z = 2.5x + 1.5y + 410 \dots (1)$

subject to the constraints,

$$x + y \le 100$$
 ...(2)
 $x \le 60$...(3)
 $y \le 50$...(4)
 $x + y \ge 60$...(5)
 $x, y \ge 0$...(6)

The feasible region determined by the system of constraints is as follows.



The corner points are A (60, 0), B (60, 40), C (50, 50), and D (10, 50).

The values of z at these corner points are as follows.

Corner point	z = 2.5x + 1.5y + 410	
A (60, 0)	560	
B (60, 40)	620	
C (50, 50)	610	
D (10, 50)	510	→ Minimum

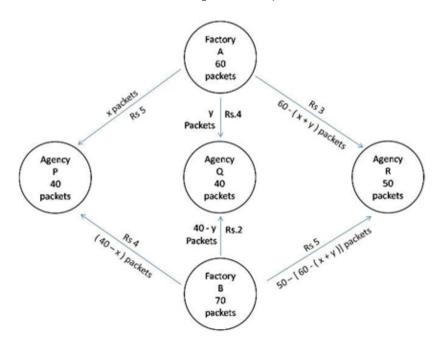
The minimum value of z is 510 at (10, 50).

Thus, the amount of grain transported from A to D, E, and F is 10 quintals, 50 quintals, and 40 quintals respectively and from B to D, E, and F is 50 quintals, 0 quintals, and 0 quintals respectively.

The minimum cost is Rs 510.

Linear Programming Ex 30.5 Q2

The given information can be exhibited diagramatically as below:



Let factory A transports x packets to agency P and y packet to agency Q. Since factory A has capacity of 60 packets so, rest $\left[60 - \left(x + y\right)\right]$ packets transported to agency R.

it has recieved y packets, so (40 - y) packets are transported from factory B. Requirement

of agency R is 50 packets but it has recieved (60 - x - y) packets from factory A, so

Since requirements are always non negative so,

$$\Rightarrow x, y \ge 0$$
 (first constraint)

and
$$60 - (x + y) \ge 0$$

$$(x + y) \le 60$$
 (second constraint)

Since requirement of agency
$$P$$
 is 40 packet but it has recieved x packet, so $(40 - x)$ packets are transported from factory B , requirement of agency Q is 40 packets but

$$50 - [60 - x - y] = (x + y - 10)$$
 is transported from factory B , As the requirements of agencies P, Q, R are always non negative, so, $40 - x \ge 0$

 $\Rightarrow x \le 40$ (third constraint)

$$40 - y \ge 0$$

 $\Rightarrow y \le 40$ (fourth constraint)
 $x + y - 10 \ge 0$

$$\Rightarrow$$
 $x + y \ge 10$ (fifth constraint)

Costs of transportation of each packet from factory A to agency P, Q, R are Rs 5,4,3 respectively and costs of transportation of each packet from factory B to agency P, Q, R are Rs 4,2,5 respectively,

Let Z be total cost of transportation so,

$$Z = 5x + 4y + 3[60 - x - y] + 4(40 - x) + 2(40 - y) + 5(x + y - 10)$$

$$= 5x + 4y + 180 - 3x - 3y + 160 - 4x + 80 - 2y + 5x + 5y - 50$$

$$= 3x + 4y + 370$$

Hence, mathematical formulation of LPP is find x and y which maximize Z = 3x + 4y + 370

subject to constraints,

$$x, y \ge 0$$

 $x + y \le 60$

x ≤ 40

y ≤ 0

 $x + y \ge 10$

Region $x, y \ge 0$: It is represents first quandrant.

Region $x+y \le 60$: line x+y=60 meets axes at A_1 (60,0), B_1 (0,60) respectively. Region containing origin represents $x+y \le 60$ as (0,0) satisfies $x+y \le 60$.

Region $x \le 40$: line x = 40 is parallel to y-axis and meets x-axis at A_2 (40,0). Region containing origin represents $x \le 40$ as (0,0) satisfies $x \le 40$.

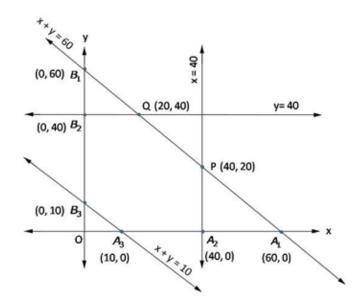
Region $y \le 40$: line y = 40 is parallel to x-axis and meets y-axis at $B_2(0,40)$. Region containing origin represents $y \le 40$ as (0,0) satisfies $y \le 40$.

Region $x+y \ge 10$: line x+y=10 meets axes at $A_2(10,0)$, $B_3(0,10)$ respectively. Region containing origin represents $x+y \ge 10$ as (0,0) does not satisfy $x+y \ge 10$.

Shaded region $A_3A_2PQB_2B_3$ represents feasible region.

Point P(40,20) is obtained by solving x = 40 and x + y = 60

Point Q (20, 40) is obtained by solving y = 40 and x + y = 60



The value of Z = 3x + 4y + 370 at $A_3(10,0) = 3(10) + 4(0) + 370 = 400$

$$A_3(10,0) = 3(10) + 4(0) + 370 = 490$$

 $A_2(40,0) = 3(40) + 4(0) + 370 = 490$

$$P(40,20) = 3(40) + 4(20) + 370 = 570$$

$$Q(20,40) = 3(20) + 4(40) + 370 = 590$$

$$P(0,40) = 3(0) + 4(40) + 370 = 530$$

$$B_2(0,40) = 3(0) + 4(40) + 370 = 530$$

 $B_3(0,10) = 3(0) + 4(10) + 370 = 410$

minimum
$$Z = 400 \text{ at } x = 10 \text{ , } y = 0$$

minimum
$$Z$$
 = 400 at x = 10 , y = 0
From $A \rightarrow P$ = 10 packets
From $A \rightarrow Q$ = 0 packets

From $A \rightarrow R = 50$ packets From $B \rightarrow P = 30$ packets From $B \rightarrow Q = 40$ packets From $B \rightarrow R = 0$ packets

minimum cost = Rs 400

minimum
$$Z = 400$$
 at $x = 10$, $y = 0$
From $A \rightarrow P = 10$ packets

$$\text{mum } Z = 400 \text{ at } x = 10 \text{ , } y = 0$$

$$\text{From } A \rightarrow P = 10 \text{ packets}$$

