RD Sharma
Solutions Class
12 Maths
Chapter 31
Ex 31.1

Probability Ex 31.1 Q1

The sample space $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

$$A = Number on the card drawn is even number$$

$$A = \{2, 4, 6, 8, 10\}$$

$$B = Number on the card greater than 4$$

$$B = \{4, 5, 6, 7, 8, 9, 10\}$$

$$A \cap B = \{4, 6, 8, 10\}$$

$$P\left(\frac{A}{B}\right) = \frac{n\left(A \cap B\right)}{n\left(B\right)}$$

$$=\frac{4}{7}$$

Required probability = $\frac{4}{7}$

Probability Ex 31.1 Q2

Let b and g represent the boy and the girl child respectively. If a family has two children, the sample space will be

$$S = \{(b, b), (b, g), (g, b), (g, g)\}$$

Let A be the event that both children are girls.

$$\therefore A = \{(g, g)\}\$$

(i) Let B be the event that the youngest child is a girl.

$$\therefore B = [(b,g),(g,g)]$$

$$\Rightarrow A \cap B = \{(g,g)\}$$

$$\therefore P(B) = \frac{2}{4} = \frac{1}{2}$$

$$P(A \cap B) = \frac{1}{4}$$

The conditional probability that both are girls, given that the youngest child is a girl, is given by P(A|B).

$$P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}$$

Therefore, the required probability is $\frac{1}{2}$.

Probability Ex 31.1 Q3

A = Two numbers on two dice are different $= \{(1,2), (1,3), (1,4), (1,5), (1,6)$ (2,1), (2,3), (2,4), (2,5), (2,6) (3,1), (3,2), (3,4), (3,5), (3,6) (4,1), (4,2), (4,3), (4,5), (4,6) (5,1), (5,2), (5,3), (5,4), (5,6) $(6,1), (6,2), (6,3), (6,4), (6,5)\}$

B = Sum of numbers on the dice is 4 $B = \{(1,3),(2,2),(3,1)\}$

$$A \cap B = \{(1,3),(3,1)\}$$

Required probability =
$$P\left(\frac{B}{A}\right)$$

= $\frac{n(A \cap B)}{n(A)}$
= $\frac{2}{30}$

Required probability =
$$\frac{1}{15}$$

(ii) Let C be the event that at least one child is a girl.

$$: C = \{(b, g), (g, b), (g, g)\}$$

$$\Rightarrow A \cap C = \{g, g\}$$

$$\Rightarrow P(C) = \frac{3}{4}$$

$$P(A \cap C) = \frac{1}{4}$$
 The conditional probability that both are girls, given that at least one child is a girl, is given by P(A|C).

Therefore,
$$P(A \mid C) = \frac{P(A \cap C)}{P(C)} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}$$

Probability Ex 31.1 Q4

$$A = \text{Head on the first two toss on three tosses of coin}$$

 $A = \{HHT, HHH\}$

$$A = \{HHT, HHH\}$$

$$B = \{HHH, HTH, THH, TTH\}$$

$$A \cap B = \{HHH\}$$

Required probability =
$$P\left(\frac{B}{A}\right)$$

= $\frac{n(A \land B)}{n(A)}$

Required probability = $\frac{1}{2}$

$$A = 4$$
 appears on third toss, if a die is thrown three times

$$B = 6$$
 and 5 appears respectively on first two tosses, if die is tosses three times $B = \{(6,5,1),(6,5,2),(6,5,3),(6,5,4),(6,5,5),(6,5,6)\}$

$$A \cap B = \{(6, 5, 4)\}$$

Required probability =
$$P\left(\frac{A}{B}\right)$$

= $\frac{n(A \land B)}{A}$

 $=\frac{n(A \cap B)}{n(B)}$

Required probability =
$$\frac{1}{6}$$

Given, P(B) = 0.5, $P(A \land B) = 0.32$

Probability Ex 31.1 Q6

$$P\left(\frac{A}{B}\right) = \frac{n\left(A \cap B\right)}{n\left(B\right)}$$
$$= \frac{0.32}{0.5}$$
$$= \frac{32}{50}$$
$$= \frac{16}{25}$$

 $P\left(\frac{A}{B}\right) = \frac{16}{25}$

Given,
$$P(A) = 0.4$$
, $P(B) = 0.3$ and $P(\frac{B}{A}) = 0.5$

We know that,

$$P\left(\frac{B}{A}\right) = \frac{P\left(A \cap B\right)}{P\left(A\right)}$$

$$0.5 = \frac{P\left(A \cap B\right)}{0.4}$$

$$P\left(A \cap B\right) = 0.5 \times 0.4$$

$$P(A \cap B) = 0.2$$

$$P\left(\frac{A}{B}\right) = \frac{P\left(A \cap B\right)}{P\left(B\right)}$$
$$= \frac{0.2}{0.3}$$

$$P\left(\frac{A}{B}\right) = \frac{2}{3}$$

Probability Ex 31.1 Q8

Given, $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{5}$, $P(A \cup B) = \frac{11}{30}$ We know that,

$$\frac{11}{30} = \frac{1}{3} + \frac{1}{5} - P(A \cap B)$$

$$P(A \cap B) = \frac{1}{3} + \frac{1}{5} - \frac{11}{30}$$
$$= \frac{10 + 6 - 11}{30}$$

$P\left(A \cap B\right) = \frac{1}{6}$

$$P\left(\frac{A}{B}\right) = \frac{A}{A}$$

$$P\left(\frac{A}{B}\right) = \frac{P\left(A \cap B\right)}{P\left(B\right)}$$

$$P\left(\frac{\cdots}{B}\right) = -$$

 $P\left(\frac{A}{B}\right) = \frac{5}{6}$

 $P\left(\frac{B}{A}\right) = \frac{\frac{1}{6}}{\frac{1}{3}}$

Probability Ex 31.1 Q9

 $P\left(\frac{B}{A}\right) = \frac{P\left(B \cap A\right)}{P\left(A\right)}$

 $= \frac{1}{6} \times \frac{3}{1}$

 $P\left(\frac{A}{B}\right) = \frac{5}{6}$, $P\left(\frac{B}{A}\right) = \frac{1}{2}$

We that,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

11 1 1 - ()

Given, Couple has two children.

(i)
$$A = Both are male$$

$$A = \{M_1 M_2\}$$

$$B = \text{Atleast one is male}$$

,
$$F_1M_2$$

$$B = \{M_1M_2, M_1F_2, F_1M_2\}$$

$$A \cap B = \{M_1M_2\}$$

$$P\left(\frac{A}{B}\right) = \frac{n\left(A \cap B\right)}{n\left(B\right)}$$

$$P\left(\frac{A}{B}\right) = \frac{1}{3}$$

$$P\left(\frac{A}{B}\right) = \frac{1}{3}$$

(ii)
$$A = Both are Females$$

 $B = \{F_1 M_2, F_1 F_2\}$ $A \cap B = \{F_1F_2\}$

 $P\left(\frac{A}{B}\right) = \frac{n\left(A \cap B\right)}{n\left(B\right)}$

 $=\frac{1}{2}$

 $P\left(\frac{A}{B}\right) = \frac{1}{2}$

 $A = \{F_1 F_2\}$ B = Elder child is female