9. Values of Trigonometric Functions at Multiples and Submultiple of an Angles

Exercise 9.1

1. Question

Prove the following identities:

$$\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x$$

Answer

To prove:
$$\sqrt{\frac{1-\cos 2x}{1+\cos 2x}} = \tan x$$

Proof:

Take LHS:

Let I =
$$\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}$$

Identities used:

 $\cos 2x = 1 - 2 \sin^2 x$

$$= 2\cos^2 x - 1$$

Therefore,

$$= \sqrt{\frac{1 - (1 - 2\sin^2 x)}{1 + (2\cos^2 x - 1)}}$$
$$= \sqrt{\frac{1 - 1 + 2\sin^2 x}{1 + 2\cos^2 x - 1}}$$
$$= \sqrt{\frac{2\sin^2 x}{2\cos^2 x}}$$
$$= \sqrt{\frac{\sin^2 x}{\cos^2 x}}$$
$$= \sqrt{\tan^2 x}$$
$$\{:: \frac{\sin x}{\cos x} = \tan x\}$$
$$= \tan x$$

= RHS

Hence Proved

2. Question

Prove the following identities:

$$\frac{\sin 2x}{1 - \cos 2x} = \cot x$$

Answer

To prove:
$$\frac{\sin 2x}{1 - \cos 2x} = \cot x$$

Proof:

Take LHS:

sin 2x

 $1 - \cos 2x$

Identities used:

 $\cos 2x = 1 - 2 \sin^2 x$

 $\sin 2x = 2 \sin x \cos x$

Therefore,

$$= \frac{2 \sin x \cos x}{1 - (1 - 2 \sin^2 x)}$$
$$= \frac{2 \sin x \cos x}{1 - 1 + 2 \sin^2 x}$$
$$= \frac{2 \sin x \cos x}{2 \sin^2 x}$$
$$= \frac{\cos x}{\sin x}$$
$$\{:: \frac{\cos x}{\sin x} = \cot x\}$$
$$= \cot x$$
$$= RHS$$

Hence Proved

3. Question

Prove the following identities:

 $\frac{\sin 2x}{1 + \cos 2x} = \tan x$

Answer

To prove: $\frac{\sin 2x}{1 + \cos 2x} = \tan x$

Proof:

Take LHS:

sin 2x

 $1 + \cos 2x$

Identities used:

 $\cos 2x = 2 \cos^2 x - 1$

 $\sin 2x = 2 \sin x \cos x$

Therefore,

 $= \frac{2 \sin x \cos x}{1 + (2 \cos^2 x - 1)}$ $= \frac{2 \sin x \cos x}{1 + 2 \cos^2 x - 1}$ $= \frac{2 \sin x \cos x}{2 \cos^2 x}$ $= \frac{\sin x}{\cos x}$ $\{:: \frac{\sin x}{\cos x} = \tan x\}$ $= \tan x$ = RHS

Hence Proved

4. Question

Prove the following identities:

$$\sqrt{2 + \sqrt{2 + 2\cos 4x}} = 2\cos x, 0 < x < \frac{\pi}{4}$$

Answer

To prove:
$$\sqrt{2 + \sqrt{2 + 2\cos 4x}} = 2\cos x$$

Proof:

Take LHS:

$$\sqrt{2 + \sqrt{2 + 2\cos 4x}}$$
$$= \sqrt{2 + \sqrt{2 + 2(2\cos^2 2x - 1)}}$$

 $\{\because \cos 2x = 2\cos^2 x - 1 \Rightarrow \cos 4x = 2\cos^2 2x - 1\}$

$$= \sqrt{2 + \sqrt{2 + 4\cos^2 2x - 2}}$$
$$= \sqrt{2 + \sqrt{4\cos^2 2x}}$$
$$= \sqrt{2 + 2\cos 2x}$$
$$= \sqrt{2 + 2(2\cos^2 x - 1)}$$
$$\{\because \cos 2x = 2\cos^2 x - 1\}$$
$$= \sqrt{2 + 4\cos^2 x - 2}$$
$$= \sqrt{4\cos^2 x}$$
$$= 2\cos x$$
$$= RHS$$

Hence Proved

5. Question

Prove the following identities:

 $\frac{1-\cos 2x + \sin 2x}{1+\cos 2x + \sin 2x} = \tan x$

Answer

To prove: $\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x$

Proof:

Take LHS

 $\frac{1-\cos 2x+\sin 2x}{1+\cos 2x+\sin 2x}$

Identities used:

 $\cos 2x = 2\cos^2 x - 1$

$$= 1 - 2 \sin^2 x$$

 $\sin 2x = 2 \sin x \cos x$

Therefore,

```
= \frac{1 - (1 - 2\sin^2 x) + 2\sin x \cos x}{1 + (2\cos^2 x - 1) + 2\sin x \cos x}= \frac{1 - 1 + 2\sin^2 x + 2\sin x \cos x}{1 + 2\cos^2 x - 1 + 2\sin x \cos x}= \frac{2\sin^2 x + 2\sin x \cos x}{2\cos^2 x + 2\sin x \cos x}= \frac{2\sin x (\sin x + \cos x)}{2\cos x (\cos x + \sin x)}= \frac{\sin x}{\cos x}= \tan x\{:: \frac{\sin x}{\cos x} = \tan x\}= RHS
```

Hence Proved

6. Question

Prove the following identities:

 $\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x$

Answer

To prove: $\frac{\sin x + \sin 2x}{1 + \cos 2x} = \tan x$

Proof:

Take LHS:

 $\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x}$

Identities used:

 $\cos 2x = \cos^2 x - \sin^2 x$

 $\sin 2x = 2 \sin x \cos x$

Therefore,

 $= \frac{\sin x + 2 \sin x \cos x}{1 + \cos x + (2 \cos^2 x - 1)}$ $= \frac{\sin x + 2 \sin x \cos x}{1 + \cos x + 2 \cos^2 x - 1}$ $= \frac{\sin x + 2 \sin x \cos x}{\cos x + 2 \cos^2 x}$ $= \frac{\sin x (1 + 2 \cos x)}{\cos x (1 + 2 \cos x)}$ $= \frac{\sin x}{\cos x}$ $= \tan x$ $\{:: \frac{\sin x}{\cos x} = \tan x\}$

= RHS

Hence Proved

7. Question

Prove the following identities:

$$\frac{\cos 2x}{1+\sin 2x} = \tan\left(\frac{\pi}{4} - x\right)$$

Answer

To prove:
$$\frac{\cos 2x}{1+\sin 2x} = \tan\left(\frac{\pi}{4}-x\right)$$

Proof:

Take LHS:

 $\frac{\cos 2x}{1+\sin 2x}$

Identities used:

 $\cos 2x = \cos^2 x - \sin^2 x$

 $\sin 2x = 2 \sin x \cos x$

Therefore,

 $=\frac{\cos^2 x - \sin^2 x}{1 + 2\sin x \cos x}$

$$= \frac{(\cos x - \sin x)(\cos x + \sin x)}{\sin^2 x + \cos^2 x + 2\sin x \cos x}$$

$$\{\because a^2 - b^2 = (a - b)(a + b) \& \sin^2 x + \cos^2 x = 1\}$$

$$= \frac{(\cos x - \sin x)(\cos x + \sin x)}{(\sin x + \cos x)^2}$$

$$\{\because a^2 + b^2 + 2ab = (a + b)^2\}$$

$$= \frac{(\cos x - \sin x)(\cos x + \sin x)}{(\sin x + \cos x)}$$

$$= \frac{(\cos x - \sin x)}{(\sin x + \cos x)}$$

Multiplying numerator and denominator by $\frac{1}{\sqrt{2}}$:

$$= \frac{\frac{1}{\sqrt{2}}(\cos x - \sin x)}{\frac{1}{\sqrt{2}}(\sin x + \cos x)}$$
$$= \frac{\left(\frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x\right)}{\left(\frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x\right)}$$
$$= \frac{\left(\sin\frac{\pi}{4}\cos x - \cos\frac{\pi}{4}\sin x\right)}{\left(\sin\frac{\pi}{4}\sin x + \cos\frac{\pi}{4}\cos x\right)}$$
$$\left\{:: \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}\right\}$$
$$= \frac{\sin\left(\frac{\pi}{4} - x\right)}{\cos\left(\frac{\pi}{4} - x\right)}$$

{ \because sin (A - B) = sin A cos B - sin B cos A

 $\cos (A - B) = \cos A \cos B + \sin A \sin B$

$$= \tan\left(\frac{\pi}{4} - x\right)$$
$$\left\{:: \frac{\sin x}{\cos x} = \tan x\right\}$$

= RHS

Hence Proved

8. Question

Prove the following identities:

$$\frac{\cos x}{1-\sin x} = \tan\left(\frac{\pi}{4} + \frac{x}{2}\right)$$

Answer

To prove: $\frac{\cos x}{1-\sin x} = \tan\left(\frac{\pi}{4} + \frac{x}{2}\right)$

Proof:

Take LHS:

COSX

 $1 - \sin x$

Identities used:

 $\cos 2x = \cos^2 x - \sin^2 x$

$$\Rightarrow \cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}$$

 $\sin 2x = 2 \sin x \cos x$

$$\Rightarrow \sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}$$

Therefore,

$$\begin{split} &= \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{1 - 2\sin \frac{x}{2}\cos \frac{x}{2}} \\ &= \frac{\left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)\left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}} \\ &\{\because a^2 - b^2 = (a - b)(a + b) \& \sin^2 x + \cos^2 x = 1\} \\ &= \frac{\left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)\left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)}{\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2} \\ &\{\because a^2 + b^2 + 2ab = (a + b)^2\} \\ &= \frac{\left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)\left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)}{\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)} \\ &= \frac{\left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)}{\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)} \\ &= \frac{\left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)}{\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)} \\ &= \frac{\left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)}{\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)} \end{split}$$

Multiplying numerator and denominator by $\frac{1}{\sqrt{2}}$:

$$= \frac{\frac{1}{\sqrt{2}} \left(\cos \frac{x}{2} + \sin \frac{x}{2} \right)}{\frac{1}{\sqrt{2}} \left(\sin \frac{x}{2} - \cos \frac{x}{2} \right)}$$
$$= \frac{\left(\frac{1}{\sqrt{2}} \cos \frac{x}{2} + \frac{1}{\sqrt{2}} \sin \frac{x}{2} \right)}{\left(\frac{1}{\sqrt{2}} \sin \frac{x}{2} - \frac{1}{\sqrt{2}} \cos \frac{x}{2} \right)}$$

$$= \frac{\left(\sin\frac{\pi}{4}\cos\frac{x}{2} + \cos\frac{\pi}{4}\sin\frac{x}{2}\right)}{\left(\sin\frac{\pi}{4}\sin\frac{x}{2} - \cos\frac{\pi}{4}\cos\frac{x}{2}\right)}$$
$$\left\{\because \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}\right\}$$
$$= \frac{\sin\left(\frac{\pi}{4} - x\right)}{\cos\left(\frac{\pi}{4} - x\right)}$$
$$\left\{\because \sin (A - B) = \sin A \cos B - \sin B \cos A \cos (A - B) = \cos A \cos B + \sin A \sin B\right\}$$
$$= \tan\left(\frac{\pi}{4} - x\right)$$

$$= \tan\left(\frac{1}{4} - x\right)$$
$$\left\{:: \frac{\sin x}{\cos x} = \tan x\right\}$$

$$= RHS$$

Hence Proved

9. Question

Prove the following identities:

$$\cos^2\frac{\pi}{8} + \cos^2\frac{3\pi}{8} + \cos^2\frac{5\pi}{8} + \cos^2\frac{7\pi}{8} = 2$$

Answer

To prove:
$$\cos^2\frac{\pi}{8} + \cos^2\frac{3\pi}{8} + \cos^2\frac{5\pi}{8} + \cos^2\frac{7\pi}{8} = 2$$

Proof:

Take LHS:

$$\cos^2\frac{\pi}{8} + \cos^2\frac{3\pi}{8} + \cos^2\frac{5\pi}{8} + \cos^2\frac{7\pi}{8}$$

Identities used:

 $\cos 2x = 2 \cos^2 x - 1$ $\Rightarrow 2 \cos^2 x = 1 + \cos 2x$ $1 + \cos 2x$

$$\Rightarrow \cos^2 x = \frac{2}{2}$$

Therefore,

$$=\frac{1+\cos\frac{2\pi}{8}}{2}+\frac{1+\cos\frac{6\pi}{8}}{2}+\frac{1+\cos\frac{10\pi}{8}}{2}+\frac{1+\cos\frac{14\pi}{8}}{2}$$
$$=\frac{1+\cos\frac{2\pi}{8}}{2}+\frac{1+\cos\left(\pi-\frac{2\pi}{8}\right)}{2}+\frac{1+\cos\left(\pi+\frac{2\pi}{8}\right)}{2}+\frac{1+\cos\left(\pi+\frac{2\pi}{8}\right)}{2}+\frac{1+\cos\left(2\pi-\frac{2\pi}{8}\right)}{2}$$
$$\left\{:\pi-\frac{2\pi}{8}=\frac{6\pi}{8};\pi+\frac{2\pi}{8}=\frac{10\pi}{8};2\pi-\frac{2\pi}{8}=\frac{14\pi}{8}\right\}$$

$$=\frac{1+\cos\frac{2\pi}{8}}{2}+\frac{1-\cos\frac{2\pi}{8}}{2}+\frac{1-\cos\frac{2\pi}{8}}{2}+\frac{1+\cos\frac{2\pi}{8}}{2}$$

{ $\because \cos (\pi - \theta) = -\cos \theta, \cos (\pi + \theta) = -\cos \theta \& \cos(2\pi - \theta) = \cos \theta$ }

$$= 2 \times \frac{1 + \cos \frac{2\pi}{8}}{2} + 2 \times \frac{1 - \cos \frac{2\pi}{8}}{2}$$
$$= 1 + \cos \frac{2\pi}{8} + 1 - \cos \frac{2\pi}{8}$$
$$= 2$$

= RHS

Hence Proved

10. Question

Prove the following identities:

$$\sin^2\frac{\pi}{8} + \sin^2\frac{3\pi}{8} + \sin^2\frac{5\pi}{8} + \sin^2\frac{7\pi}{8} = 2$$

Answer

To prove: $\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2$

Proof:

Take LHS:

$$\sin^2\frac{\pi}{8} + \sin^2\frac{3\pi}{8} + \sin^2\frac{5\pi}{8} + \sin^2\frac{7\pi}{8}$$

Identities used:

$$\cos 2x = 1 - 2 \sin^2 x$$
$$\Rightarrow 2 \sin^2 x = 1 - \cos 2x$$
$$\Rightarrow \sin^2 x = \frac{1 - \cos 2x}{2}$$

Therefore,

$$= \frac{1 - \cos\frac{2\pi}{8}}{2} + \frac{1 - \cos\frac{6\pi}{8}}{2} + \frac{1 - \cos\frac{10\pi}{8}}{2} + \frac{1 - \cos\frac{14\pi}{8}}{2}$$

$$= \frac{1 - \cos\frac{2\pi}{8}}{2} + \frac{1 - \cos\left(\pi - \frac{2\pi}{8}\right)}{2} + \frac{1 - \cos\left(\pi + \frac{2\pi}{8}\right)}{2} + \frac{1 - \cos\left(2\pi - \frac{2\pi}{8}\right)}{2}$$

$$\left\{:\pi - \frac{2\pi}{8} = \frac{6\pi}{8}; \pi + \frac{2\pi}{8} = \frac{10\pi}{8}; 2\pi - \frac{2\pi}{8} = \frac{14\pi}{8}\right\}$$

$$= \frac{1 - \cos\frac{2\pi}{8}}{2} + \frac{1 - \left(-\cos\frac{2\pi}{8}\right)}{2} + \frac{1 - \left(-\cos\frac{2\pi}{8}\right)}{2} + \frac{1 - \cos\frac{2\pi}{8}}{2}$$

$$\left\{:\cos\left(\pi - \theta\right) = -\cos\theta, \cos\left(\pi + \theta\right) = -\cos\theta, \cos\left(\pi + \theta\right) = -\cos\theta$$

$$= \frac{1 - \cos\frac{2\pi}{8}}{2} + \frac{1 + \cos\frac{2\pi}{8}}{2} + \frac{1 + \cos\frac{2\pi}{8}}{2} + \frac{1 - \cos\frac{2\pi}{8}}{2}$$
$$= 2 \times \frac{1 - \cos\frac{2\pi}{8}}{2} + 2 \times \frac{1 + \cos\frac{2\pi}{8}}{2}$$
$$= 1 - \cos\frac{2\pi}{8} + 1 + \cos\frac{2\pi}{8}$$
$$= 2$$
$$= RHS$$

Hence Proved

11. Question

Prove the following identities:

 $(\cos \alpha + \cos \beta)^2 + (\sin \alpha + \sin \beta)^2 = 4 \cos^2 \left(\frac{\alpha - \beta}{2}\right)$

Answer

To prove: $(\cos \alpha + \cos \beta)^2 + (\sin \alpha + \sin \beta)^2 = 4\cos^2 \frac{\alpha - \beta}{2}$

Proof:

Take LHS:

$$(\cos \alpha + \cos \beta)^{2} + (\sin \alpha + \sin \beta)^{2}$$
$$= \cos^{2} \alpha + \cos^{2} \beta + 2\cos \alpha \cos \beta + \sin^{2} \alpha + \sin^{2} \beta + 2\sin \alpha \sin \beta$$

$$= 2 + 2 \cos \alpha \cos \beta + 2 \sin \alpha \sin \beta$$

$$= 2(1 + \cos\alpha\cos\beta + \sin\alpha\sin\beta)$$

$$= 2(1 + \cos(\alpha - \beta))$$

 $\{\because \cos (A - B) = \cos A \cos B + \sin A \sin B\}$

$$= 2\left(1 + 2\cos^2\frac{\alpha - \beta}{2} - 1\right)$$

{:: cos2x = 2cos² x - 1}
$$= 2\left(2\cos^2\frac{\alpha - \beta}{2}\right)$$

$$= 4\cos^2\frac{\alpha - \beta}{2}$$

= RHS

Hence Proved

12. Question

Prove the following identities:

$$\sin^2\left(\frac{\pi}{8} + \frac{x}{2}\right) - \sin^2\left(\frac{\pi}{8} - \frac{x}{2}\right) = \frac{1}{\sqrt{2}}\sin x$$

Answer

To prove:
$$\sin^2\left(\frac{\pi}{8} + \frac{x}{2}\right) - \sin^2\left(\frac{\pi}{8} - \frac{x}{2}\right) = \frac{1}{\sqrt{2}}\sin x$$

Proof:

Take LHS:

$$\sin^2\left(\frac{\pi}{8} + \frac{x}{2}\right) - \sin^2\left(\frac{\pi}{8} - \frac{x}{2}\right)$$

Identities used:

 $\sin^2 A - \sin^2 B = \sin (A + B) \sin(A - B)$

Therefore,

$$= \sin\left(\frac{\pi}{8} + \frac{x}{2} + \frac{\pi}{8} - \frac{x}{2}\right) \sin\left(\frac{\pi}{8} + \frac{x}{2} - \left(\frac{\pi}{8} - \frac{x}{2}\right)\right)$$
$$= \sin\left(\frac{\pi}{8} + \frac{\pi}{8}\right) \sin\left(\frac{\pi}{8} + \frac{x}{2} - \frac{\pi}{8} + \frac{x}{2}\right)$$
$$= \sin\frac{\pi}{4}\sin x$$
$$= \frac{1}{\sqrt{2}}\sin x$$
$$= \text{RHS}$$

Hence Proved

13. Question

Prove the following identities:

 $1 + \cos^2 2x = 2(\cos^4 x + \sin^4 x)$

Answer

```
To prove: 1 + \cos^2 2x = 2(\cos^4 x + \sin^4 x)

Proof:

Take LHS:

1 + \cos^2 2x

= [(\cos^2 x + \sin^2 x)]^2 + [(\cos^2 x - \sin^2 x)]^2

\{\because \cos^2 x = \cos^2 x - \sin^2 x \& \cos^2 x + \sin^2 x = 1\}

= (\cos^4 x + \sin^4 x + 2\cos^2 x \sin^2 x) + (\cos^4 x + \sin^4 x - 2\cos^2 x \sin^2 x)

= \cos^4 x + \sin^4 x + \cos^4 x + \sin^4 x

= 2\cos^4 x + 2\sin^4 x

= 2(\cos^4 x + \sin^4 x)

= RHS

14. Question

Prove the following identities:
```

 $\cos^3 2x + 3 \cos 2x = 4(\cos^6 x - \sin^6 x)$

Answer

```
To prove: \cos^3 2x + 3 \cos 2x = 4(\cos^6 x - \sin^6 x)
Proof:
Take RHS:
4(\cos^6 x - \sin^6 x)
= 4 ((\cos^2 x)^3 - (\sin^2 x)^3)
= 4 (\cos^2 x - \sin^2 x) (\cos^4 x + \sin^4 x + \cos^2 x \sin^2 x)
= 4 (\cos^2 x - \sin^2 x) (\cos^4 x + \sin^4 x + \cos^2 x \sin^2 x)
\{:: a^3 - b^3 = (a - b) (a^2 + b^2 + ab)\}
= 4\cos 2x(\cos^4 x + \sin^4 x + \cos^2 x \sin^2 x + \cos^2 x \sin^2 x - \cos^2 x \sin^2 x)
\{\because \cos 2x = \cos^2 x - \sin^2 x\}
= 4 \cos 2x (\cos^4 x + \sin^4 x + 2 \cos^2 x \sin^2 x - \cos^2 x \sin^2 x)
= 4\cos 2x\{(\cos^2 x)^2 + (\sin^2 x)^2 + 2\cos^2 x \sin^2 x - \cos^2 x \sin^2 x)\}
\{:: a^2 + b^2 + 2ab = (a + b)^2\}
= 4\cos 2x \{(\cos^2 x + \sin^2 x)^2 - \cos^2 x \sin^2 x\}
\{:: \cos^2 x + \sin^2 x = 1\}
= 4\cos 2x\{(1)^2 - \frac{1}{4}(4\cos^2 x \sin^2 x)\}
= 4\cos 2x \{(1)^2 - \frac{1}{4}(2\cos x \sin x)^2\}
\{:: \sin 2x = 2 \sin x \cos x\} = 4 \cos 2x \left\{ (1)^2 - \frac{1}{4} (\sin 2x)^2 \right\}
=4\cos 2x\left(1-\frac{1}{4}\sin^2 2x\right)
\{:: \sin^2 x = 1 - \cos^2 x\}
=4\cos 2x\left(1-\frac{1}{4}(1-\cos^2 2x)\right)
=4\cos 2x\left(1-\frac{1}{4}+\frac{1}{4}\cos^2 2x\right)
=4\cos 2x \Big(\frac{3}{4}+\frac{1}{4}\cos^2 2x\Big)
=4\left(\frac{3}{4}\cos 2x+\frac{1}{4}\cos^3 2x\right)
= 3 \cos 2x + \cos^3 2x
= LHS
```

Hence Proved

15. Question

Prove the following identities:

 $(\sin 3x + \sin x) \sin x + (\cos 3x - \cos x) \cos x = 0$

Answer

```
To prove: (\sin 3x + \sin x)\sin x + (\cos 3x - \cos x)\cos x = 0

Proof:

Take LHS:

(\sin 3x + \sin x)\sin x + (\cos 3x - \cos x)\cos x

= (\sin 3x)(\sin x) + \sin^2 x + (\cos 3x)(\cos x) - \cos^2 x

= [(\sin 3x)(\sin x) + (\cos 3x)(\cos x)] + (\sin^2 x - \cos^2 x)

= [(\sin 3x)(\sin x) + (\cos 3x)(\cos x)] - (\cos^2 x - \sin^2 x)

= \cos(3x - x) - \cos 2x

\{\because \cos 2x = \cos^2 x - \sin^2 x \&

\cos A \cos B + \sin A \sin B = \cos(A - B)\}

= \cos 2x - \cos 2x

= 0
```

= RHS

Hence Proved

16. Question

Prove the following identities:

$$\cos^2\left(\frac{\pi}{4} - x\right) - \sin^2\left(\frac{\pi}{4} - x\right) = \sin 2x$$

Answer

To prove:
$$\cos^2\left(\frac{\pi}{4} - x\right) - \sin^2\left(\frac{\pi}{4} - x\right) = \sin 2x$$

Proof:

Take LHS:

$$\cos^2\left(\frac{\pi}{4}-x\right)-\sin^2\left(\frac{\pi}{4}-x\right)$$

Identities used:

 $\cos^2 A - \sin^2 A = \cos 2A$

Therefore,

$$= \cos 2\left(\frac{\pi}{4} - x\right)$$
$$= \cos\left(\frac{\pi}{2} - 2x\right)$$

 $= \sin 2x$

$$\left\{ \because \cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta \right\}$$

= RHS

Hence Proved

17. Question

Prove the following identities:

 $\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x$

Answer

To prove: $\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x$

Proof:

Take LHS:

cos 4x

Identities used:

 $\cos 2x = 2 \cos^2 x - 1$

Therefore,

```
= 2 \cos^{2} 2x - 1
= 2(2 cos<sup>2</sup> 2x - 1)<sup>2</sup> - 1
= 2{(2 cos<sup>2</sup> 2x}<sup>2</sup> + 1<sup>2</sup> - 2×2 cos<sup>2</sup> x} - 1
= 2(4 cos<sup>4</sup> 2x + 1 - 4 cos<sup>2</sup> x) - 1
= 8 cos<sup>4</sup> 2x + 2 - 8 cos<sup>2</sup> x - 1
= 8 cos<sup>4</sup> 2x + 1 - 8 cos<sup>2</sup> x
```

```
= RHS
```

Hence Proved

18. Question

Prove the following identities:

 $\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x$

Answer

To prove: $\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x$

Proof:

Take LHS:

sin 4x

Identities used:

 $\sin 2x = 2 \sin x \cos x$

```
\cos 2x = \cos^2 x - \sin^2 x
```

Therefore,

- = 2 sin 2x cos 2x
- = 2 (2 sin x cos x) (cos² x sin² x)
- $= 4 \sin x \cos x (\cos^2 x \sin^2 x)$
- = $4 \sin x \cos^3 x 4 \sin^3 x \cos x$

= RHS

Hence Proved

19. Question

Prove the following identities:

 $3(\sin x - \cos x)^4 + 6(\sin x + \cos x)^2 + 4(\sin^6 x + \cos^6 x) = 13$

Answer

To prove: $3(\sin x - \cos x)^4 + 6(\sin x + \cos x)^2 + 4(\sin^6 x + \cos^6 x) = 13$

Proof:

Take LHS:

 $3(\sin x - \cos x)^4 + 6 (\sin x + \cos x)^2 + 4 (\sin^6 x + \cos^6 x)$

Identities used:

 $(a + b)^2 = a^2 + b^2 + 2ab$ $(a - b)^2 = a^2 + b^2 - 2ab$ $a^3 + b^3 = (a + b) (a^2 + b^2 - ab)$

Therefore,

 $= 3\{(\sin x - \cos x)^2\}^2 + 6\{(\sin x)^2 + (\cos x)^2 + 2\sin x \cos x) + 4\{(\sin^2 x)^3 + (\cos^2 x)^3\}$ = 3{(sin x)² + (cos x)² - 2 sin x cos x)}² + 6 (sin² x + cos² x + 2 sin x cos x) + 4{(sin² x + cos² x) (sin⁴ x + cos⁴ x - sin² x cos² x)}

 $= 3(1 - 2 \sin x \cos x)^{2} + 6 (1 + 2 \sin x \cos x) + 4\{(1) (\sin^{4} x + \cos^{4} x - \sin^{2} x \cos^{2} x)\}$

 $\{:: \sin^2 x + \cos^2 x = 1\}$

 $= 3\{1^{2} + (2 \sin x \cos x)^{2} - 4 \sin x \cos x\} + 6 (1 + 2 \sin x \cos x) + 4\{(\sin^{2} x)^{2} + (\cos^{2} x)^{2} + 2 \sin^{2} x \cos^{2} x - 3 \sin^{2} x \cos^{2} x)\}$

 $= 3\{1 + 4 \sin^2 x \cos^2 x - 4 \sin x \cos x\} + 6 (1 + 2 \sin x \cos x) + 4\{(\sin^2 x + \cos^2 x)^2 - 3 \sin^2 x \cos^2 x)\}$

 $= 3 + 12 \sin^2 x \cos^2 x - 12 \sin x \cos x + 6 + 12 \sin x \cos x + 4\{(1^2 - 3 \sin^2 x \cos^2 x)\}$

 $= 9 + 12 \sin^2 x \cos^2 x + 4(1 - 3 \sin^2 x \cos^2 x)$

 $= 9 + 12 \sin^2 x \cos^2 x + 4 - 12 \sin^2 x \cos^2 x$

= 13

= RHS

Hence Proved

20. Question

Prove the following identities:

 $2(\sin^6 x + \cos^6 x) - 3(\sin^4 x + \cos^4 x) + 1 = 0$

Answer

To prove: $2(\sin^6 x + \cos^6 x) - 3(\sin^4 x + \cos^4 x) + 1 = 0$

Proof:

Take LHS:

 $2(\sin^6 x + \cos^6 x) - 3(\sin^4 x + \cos^4 x) + 1$

Identities used:

 $(a + b)^{2} = a^{2} + b^{2} + 2ab$ $a^{3} + b^{3} = (a + b) (a^{2} + b^{2} - ab)$ Therefore, $= 2\{(\sin^{2} x)^{3} + (\cos^{2} x)^{3}\} - 3\{(\sin^{2} x)^{2} + (\cos^{2} x)^{2}\} + 1$ $= 2\{(\sin^{2} x + \cos^{2} x)(\sin^{4} x + \cos^{4} x - \sin^{2} x \cos^{2} x) - 3\{(\sin^{2} x)^{2} + (\cos^{2} x)^{2} + 2\sin^{2} x \cos^{2} x - 2\sin^{2} x \cos^{2} x\} + 1$ $= 2\{(1)(\sin^{4} x + \cos^{4} x + 2 \sin^{2} x \cos^{2} x - 3 \sin^{2} x \cos^{2} x) - 3\{(\sin^{2} x + \cos^{2} x)^{2} - 2\sin^{2} x \cos^{2} x\} + 1$ $= 2\{(1)(\sin^{4} x + \cos^{4} x + 2 \sin^{2} x \cos^{2} x) - 3 \sin^{2} x \cos^{2} x\} - 3\{(1)^{2} - 2\sin^{2} x \cos^{2} x\} + 1$ $= 2\{(\sin^{2} x + \cos^{2} x)^{2} - 3 \sin^{2} x \cos^{2} x\} - 3\{(1)^{2} - 2\sin^{2} x \cos^{2} x\} + 1$ $= 2\{(1)^{2} - 3 \sin^{2} x \cos^{2} x\} - 3(1 - 2\sin^{2} x \cos^{2} x) + 1$ $= 2(1 - 3 \sin^{2} x \cos^{2} x) - 3 + 6 \sin^{2} x \cos^{2} x + 1$ $= 2 - 6 \sin^{2} x \cos^{2} x - 2 + 6 \sin^{2} x \cos^{2} x$ = 0

Hence Proved

21. Question

Prove the following identities:

$$\cos^6 x - \sin^6 x = \cos 2x \left(1 - \frac{1}{4} \sin^2 2x \right)$$

Answer

To prove:
$$\cos^6 x - \sin^6 x = \cos 2x \left(1 - \frac{1}{4} \sin^2 2x\right)$$

Proof:

Take LHS:

 $\cos^6 x - \sin^6 x$

Identities used:

$$(a + b)^2 = a^2 + b^2 + 2ab$$

 $a^3 - b^3 = (a - b) (a^2 + b^2 + ab)$

Therefore,

$$= (\cos^{2}x)^{3} - (\sin^{2}x)^{3}$$

$$= (\cos^{2}x - \sin^{2}x)(\cos^{4}x + \sin^{4}x + \cos^{2}x\sin^{2}x)$$

$$\{\because \cos 2x = \cos^{2}x - \sin^{2}x\}$$

$$= \cos 2x((\cos^{2}x)^{2} + (\sin^{2}x)^{2} + 2\cos^{2}x\sin^{2}x - \cos^{2}x\sin^{2}x)$$

$$= \cos 2x((\cos^{2}x + \sin^{2}x)^{2} - \frac{1}{4} \times 4\cos^{2}x\sin^{2}x)$$

$$\{\because \sin^{2}x + \cos^{2}x = 1\}$$

$$= \cos 2x \left((1)^2 - \frac{1}{4} \times (2\cos x \sin x)^2 \right)$$

{:: sin 2x = 2 sin x cos x}
$$= \cos 2x \left(1 - \frac{1}{4} \times (\sin 2x)^2 \right)$$

$$= \cos 2x \left(1 - \frac{1}{4} \sin^2 2x \right)$$

)

= RHS

Hence Proved

22. Question

Prove the following identities:

$$\tan\left(\frac{\pi}{4} + x\right) + \tan\left(\frac{\pi}{4} - x\right) = 2 \sec 2x$$

Answer

To prove:
$$\tan\left(\frac{\pi}{4} + x\right) + \tan\left(\frac{\pi}{4} - x\right) = 2 \sec 2x$$

Proof:

Take LHS:

$$\tan\left(\frac{\pi}{4} + x\right) + \tan\left(\frac{\pi}{4} - x\right)$$

Identities used:

$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Therefore,

$$= \frac{\tan\frac{\pi}{4} + \tan x}{1 - \tan\frac{\pi}{4}\tan x} + \frac{\tan\frac{\pi}{4} - \tan x}{1 + \tan\frac{\pi}{4}\tan x}$$

$$\left\{ \because \tan\frac{\pi}{4} = 1 \right\}$$

$$= \frac{1 + \tan x}{1 - \tan x} + \frac{1 - \tan x}{1 + \tan x}$$

$$= \frac{(1 + \tan x)^2 + (1 - \tan x)^2}{(1 - \tan x)(1 + \tan x)}$$

$$\left\{ \because (a - b)(a + b) = a^2 - b^2; \\ (a + b)^2 = a^2 + b^2 + 2ab \& \\ (a - b)^2 = a^2 + b^2 - 2ab \right\}$$

$$= \frac{1^2 + \tan^2 x + 2\tan x + 1^2 + \tan^2 x - 2\tan x}{1^2 - \tan^2 x}$$

$$= \frac{1 + \tan^2 x + 1 + \tan^2 x}{1 - \tan^2 x}$$

$$= \frac{2(1 + \tan^2 x)}{1 - \tan^2 x}$$
$$\{: \tan x = \frac{\sin x}{\cos x}\}$$
$$= \frac{2\left(1 + \left(\frac{\sin x}{\cos x}\right)^2\right)}{1 - \left(\frac{\sin x}{\cos x}\right)^2}$$
$$= \frac{2\left(1 + \frac{\sin^2 x}{\cos^2 x}\right)}{1 - \frac{\sin^2 x}{\cos^2 x}}$$
$$= \frac{2\left(\frac{\cos^2 x + \sin^2 x}{\cos^2 x}\right)}{\frac{\cos^2 x - \sin^2 x}{\cos^2 x}}$$

{∵ cos² x + sin² x = 1 & cos 2x = cos² x - sin² x} 2($\frac{1}{2}$)

$$= \frac{2(\cos^2 x)}{\cos^2 x}$$
$$= \frac{2}{\cos 2x}$$
$$= 2 \sec 2x$$

$$\left\{ \because \frac{1}{\cos 2x} = \sec 2x \right\}$$

= RHS

Hence Proved

23. Question

Prove the following identities:

 $\cot^2 x - \tan^2 x = 4 \cot 2x \csc 2x$

Answer

To prove:
$$\cot^2 x - \tan^2 x = 4 \cot 2x \csc 2x$$

Proof:

Take LHS:

 $\cot^2 x - \tan^2 x$

Identities used:

 $a^2 - b^2 = (a - b)(a + b)$

Therefore,

 $= (\cot x - \tan x)(\cot x + \tan x)$

$$\begin{cases} \because \tan x = \frac{1}{\cot x} \\ = \left(\cot x - \frac{1}{\cot x}\right) \left(\cot x + \frac{1}{\cot x}\right) \end{cases}$$

$$= \left(\frac{\cot^2 x - 1}{\cot x}\right) \left(\frac{\cot^2 x + 1}{\cot x}\right)$$
$$= 2 \left(\frac{\cot^2 x - 1}{2\cot x}\right) \left(\frac{\cot^2 x + 1}{\cot x}\right)$$

 $\{\because \cot^2 x + 1 = \csc^2 x\}$

$$= 2\left(\frac{\cot^2 x - 1}{2\cot x}\right)\left(\frac{\csc^2 x}{\cot x}\right)$$
$$= 2(\cot 2x)\left(\frac{\frac{1}{\sin^2 x}}{\frac{\cos x}{\sin x}}\right)$$
$$\left\{ \because \cot 2x = \frac{\cot^2 x - 1}{2\cot x}; \\ \csc x = \frac{1}{\sin x}; \\ \cot x = \frac{\cos x}{\sin x}; \\ \cot x = \frac{\cos x}{\sin x} \right\}$$
$$= 2(\cot 2x)\left(\frac{1}{\sin x \cos x}\right)$$
$$= 2(\cot 2x)\left(\frac{2}{2\cos x \sin x}\right)$$
$$= \frac{4\cot 2x}{\sin 2x}$$
$$\left\{ \because \sin 2x = 2\sin x \cos x \right\}$$

= 4 cot 2x cosec 2x

$$\left\{ \because \operatorname{cosec} x = \frac{1}{\sin x} \right\}$$

= RHS

Hence Proved

24. Question

Prove the following identities:

 $\cos 4x - \cos 4\alpha = 8(\cos x - \cos \alpha)(\cos x + \cos \alpha)(\cos x - \sin \alpha)(\cos x + \sin \alpha)$

Answer

To prove: $\cos 4x - \cos 4\alpha = 8(\cos x - \cos \alpha)(\cos x + \cos \alpha)(\cos x - \sin \alpha)(\cos x + \sin \alpha)$

Proof:

Take LHS:

 $Cos \; 4x - cos \; 4\alpha$

- $\{\because \cos 2\theta = 2\cos^2 \theta 1\}$
- $= 2 \cos^2 2x 1 (2 \cos^2 2\alpha 1)$
- $= 2\cos^2 2x 1 2\cos^2 2\alpha + 1$
- $= 2 \cos^2 2x 2 \cos^2 2\alpha$
- $= 2(\cos^2 2x \cos^2 2\alpha)$

$$\{\because (a - b)(a + b) = a^{2} - b^{2}\}\$$

$$= 2(\cos 2x - \cos 2\alpha) (\cos 2x + \cos 2\alpha)$$

$$\{\because \cos 2\theta = 2\cos^{2}\theta - 1 = 1 - 2\sin^{2}\theta\}\$$

$$= 2\{2\cos^{2}x - 1 - (2\cos^{2}\alpha - 1)\}(2\cos^{2}x - 1 + 1 - 2\sin^{2}\alpha)\$$

$$= 2\{2\cos^{2}x - 1 - 2\cos^{2}\alpha + 1\}(2\cos^{2}x - 2\sin^{2}\alpha)\$$

$$= 2 \times 2\{2\cos^{2}x - 2\cos^{2}\alpha\}(\cos^{2}x - \sin^{2}\alpha)\$$

$$= 4 \times 2\{\cos^{2}x - \cos^{2}\alpha\}(\cos^{2}x - \sin^{2}\alpha)\$$

$$= 8(\cos x - \cos \alpha)(\cos x + \cos \alpha)(\cos x - \sin \alpha)(\cos x + \sin \alpha)\$$

$$= RHS$$

Hence Proved

25. Question

Prove the following identities:

$$\sin 3x + \sin 2x - \sin x = 4 \sin x \cos \frac{x}{2} \cos \frac{3x}{2}$$

Answer

	х	3x
To prove : $\sin 3x + \sin 2x - \sin x = 4 \sin x \cos x$	$\frac{s-c}{2}$	$\frac{0S}{2}$

Proof:

Take LHS:

 $\sin 3x + \sin 2x - \sin x$

Identities used:

 $\sin 2x = 2 \sin x \cos x$

$$\sin A - \sin B = 2\sin\frac{A-B}{2}\cos\frac{A+B}{2}$$
$$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$$

Therefore,

$$= 2\sin\frac{3x}{2}\cos\frac{3x}{2} + 2\sin\frac{2x-x}{2}\cos\frac{2x+x}{2}$$
$$= 2\sin\frac{3x}{2}\cos\frac{3x}{2} + 2\sin\frac{x}{2}\cos\frac{3x}{2}$$
$$= 2\cos\frac{3x}{2}\left(\sin\frac{3x}{2} + \sin\frac{x}{2}\right)$$
$$= 2\cos\frac{3x}{2}\left(2\sin\frac{3x}{2} + \frac{x}{2}\cos\frac{3x}{2} - \frac{x}{2}\right)$$
$$= 2\cos\frac{3x}{2}\left(2\sin\frac{4x}{2}\cos\frac{2x}{2}\right)$$

$$= 2\cos\frac{3x}{2} \left(2\sin\frac{2x}{2}\cos\frac{x}{2}\right)$$
$$= 4\sin x\cos\frac{x}{2}\cos\frac{3x}{2}$$

= RHS

Hence Proved

26. Question

Prove that: $\tan 82\frac{1}{2}^{\circ} = (\sqrt{3} + \sqrt{2})(\sqrt{2} + 1) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}$

Answer

To prove:
$$\tan 82\frac{1}{2}^{\circ} = (\sqrt{3} + \sqrt{2})(\sqrt{2} + 1) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}$$

Proof:

Identities used:

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Therefore,

$$\tan 15^\circ = \tan (45^\circ - 30^\circ)$$

$$\Rightarrow \tan 15^\circ = \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 30^\circ \tan 45^\circ}$$

$$\Rightarrow \tan 15^\circ = \frac{1 - \frac{1}{\sqrt{3}}}{1 + (1)\left(\frac{1}{\sqrt{3}}\right)}$$

$$\left\{ \because \tan 45^\circ = 1 \& \tan 30^\circ = \frac{1}{\sqrt{3}} \right\}$$

$$\Rightarrow \tan 15^\circ = \frac{\sqrt{3} - 1}{\frac{\sqrt{3}}{\sqrt{3} + 1}}$$

$$\Rightarrow \tan 15^\circ = \frac{\sqrt{3} - 1}{\sqrt{3}}$$

On rationalising:

$$\Rightarrow \tan 15^\circ = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \times \frac{\sqrt{3} - 1}{\sqrt{3} - 1}$$
$$\Rightarrow \tan 15^\circ = \frac{\left(\sqrt{3} - 1\right)^2}{\left(\sqrt{3}\right)^2 - 1}$$
$$\{\because (a - b)(a + b) = a^2 - b^2\}$$
$$\Rightarrow \tan 15^\circ = \frac{3 + 1 - 2\sqrt{3}}{3 - 1}$$

$$\Rightarrow \tan 15^\circ = \frac{4 - 2\sqrt{3}}{2}$$
$$\Rightarrow \tan 15^\circ = \frac{2(2 - \sqrt{3})}{2}$$
$$\Rightarrow \tan 15^\circ = 2 - \sqrt{3}$$
$$\Rightarrow \cot 15^\circ = \frac{1}{2 - \sqrt{3}}$$
$$\left\{ \because \cot x = \frac{1}{\tan x} \right\}$$

On rationalising

$$\Rightarrow \cot 15^{\circ} = \frac{1}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}}$$

$$\Rightarrow \cot 15^{\circ} = \frac{2 + \sqrt{3}}{(2)^2 - (\sqrt{3})^2}$$

$$\{\because (a - b)(a + b) = a^2 - b^2\}$$

$$\Rightarrow \cot 15^{\circ} = \frac{2 + \sqrt{3}}{4 - 3}$$

$$\Rightarrow \cot 15^{\circ} = 2 + \sqrt{3}$$
Let $2\theta = 15^{\circ}$

$$\Rightarrow \cot 2\theta = 2 + \sqrt{3}$$
We know,

$$\cot 2\theta = \frac{\cot^2 \theta - 1}{2 \cot \theta}$$

$$\Rightarrow \frac{\cot^2 \theta - 1}{2 \cot \theta} = 2 + \sqrt{3}$$

$$\Rightarrow \cot^2 \theta - 1 = 2(2 + \sqrt{3}) \cot \theta$$

$$\Rightarrow \cot^2 \theta - 2(2 + \sqrt{3}) \cot \theta - 1 = 0$$

Formula used:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \text{ for } ax^2 + bx + c = 0$$

$$\Rightarrow \cot\theta = \frac{-[-2(2+\sqrt{3})] \pm \sqrt{[-2(2+\sqrt{3})]^2 - 4(1)(-1)}}{2(1)}$$

$$\Rightarrow \cot\theta = \frac{2(2+\sqrt{3}) \pm \sqrt{4(4+3+4\sqrt{3})+4}}{2}$$

$$\{\because (a+b)^2 = a^2 + b^2 + 2ab\}$$

$$\Rightarrow \cot\theta = \frac{2(2+\sqrt{3}) \pm 2\sqrt{7+4\sqrt{3}+1}}{2}$$

$$\Rightarrow \cot\theta = \left(2 + \sqrt{3}\right) \pm \sqrt{8 + 4\sqrt{3}}$$

 $\cot \theta < 0$ as θ is in 1st quadrant. So,

 $\cot \theta = (2 + \sqrt{3}) + \sqrt{8 + 4\sqrt{3}}$ $\Rightarrow \cot \theta = (2 + \sqrt{3}) + \sqrt{(\sqrt{6})^2 + (\sqrt{2})^2 + 2 \cdot (\sqrt{6})(\sqrt{2})}$ $\{\because (a + b)^2 = a^2 + b^2 + 2ab\}$ $\Rightarrow \cot \theta = (2 + \sqrt{3}) + \sqrt{(\sqrt{6} + \sqrt{2})^2}$ $\Rightarrow \cot \theta = (2 + \sqrt{3}) + (\sqrt{6} + \sqrt{2})$ As, $2\theta = 15^\circ \Rightarrow \theta = \frac{15^\circ}{2} = 7\frac{1}{2}^\circ$ $\Rightarrow \cot 7\frac{1}{2}^\circ = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}$ $\{\because 4 = \sqrt{2}\}$ $\Rightarrow \tan \left(90^\circ - 7\frac{1}{2}^\circ\right) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}$ $\{\because \cot \theta = \tan(90^\circ - \theta)\}$ $\Rightarrow \tan 82\frac{1}{2}^\circ = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}$

Hence Proved

27. Question

Prove that: $\cot \frac{\pi}{8} = \sqrt{2} + 1$

Answer

To prove: $\cot\frac{\pi}{8} = \sqrt{2} + 1$

Proof:

Take LHS:

Let $2\theta = 45^{\circ}$

$$\cot 2\theta = \frac{\cot^2 \theta - 1}{2 \cot \theta}$$
$$\Rightarrow \cot 45^\circ = \frac{\cot^2 \theta - 1}{2 \cot \theta}$$
$$\{\because \cot 45^\circ = 1\}$$
$$\Rightarrow 1 = \frac{\cot^2 \theta - 1}{2 \cot \theta}$$

 $\Rightarrow 2\cot\theta = \cot^2\theta - 1$

 $\Rightarrow \cot^2\theta - 2\cot\theta - 1 = 0$

Formula used:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \text{ for } ax^2 + bx + c = 0$$

$$\Rightarrow \cot\theta = \frac{-[-2] \pm \sqrt{[-2]^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1}$$

$$\Rightarrow \cot\theta = \frac{2 \pm \sqrt{4 + 4}}{2}$$

$$\Rightarrow \cot\theta = \frac{2 \pm 2\sqrt{2}}{2}$$

$$\Rightarrow \cot\theta = 1 \pm \sqrt{2}$$

$$\cot\theta < 0 \text{ as } \theta \text{ is in } 1^{\text{st}} \text{ quadrant.}$$

So,

 $\cot\theta = 1 + \sqrt{2}$

As,
$$2\theta = 45^\circ \Rightarrow \theta = \frac{45^\circ}{2} = \frac{\pi}{8}$$

$$\Rightarrow \cot \frac{\pi}{8} = 1 + \sqrt{2}$$

Hence Proved

28 A. Question

If
$$\cos x = -\frac{3}{5}$$
 and x lies in the IIIrd quadrant, find the values of $\cos \frac{x}{2}$, $\sin \frac{x}{2}$ and $\sin 2x$.

Answer

Given:

$$\cos x = -\frac{3}{5}$$
 and x lies in 3^{rd} quadrant $\Rightarrow x \in \left(\pi, \frac{3\pi}{2}\right)$

To find: Values of
$$\cos \frac{x}{2}$$
, $\sin \frac{x}{2}$, $\sin 2x$

$$\cos 2x = 2\cos^2 x - 1$$

$$\Rightarrow \cos x = 2\cos^2 \frac{x}{2} - 1$$

$$\Rightarrow -\frac{3}{5} = 2\cos^2 \frac{x}{2} - 1$$

$$\{\because \cos x = -\frac{3}{5}\}$$

$$\Rightarrow 2\cos^2 \frac{x}{2} = -\frac{3}{5} + 1$$

$$\Rightarrow 2\cos^2 \frac{x}{2} = \frac{2}{5}$$

$$\Rightarrow \cos^2 \frac{x}{2} = \frac{1}{5}$$
$$\Rightarrow \cos \frac{x}{2} = \pm \frac{1}{\sqrt{5}}$$

$$x \in \left(\pi, \frac{3\pi}{2}\right) \Rightarrow \frac{x}{2} \in \left(\frac{\pi}{2}, \frac{3\pi}{4}\right)$$

 $\Rightarrow \cos{\frac{x}{2}}$ will be negative in third quadrant So,

 $\cos x = -\frac{1}{\sqrt{5}}$

We know,

 $\cos 2x = 1 - 2 \sin^2 x$ $\Rightarrow \cos x = 1 - 2 \sin^2 \frac{x}{2}$ $\left\{ \because \cos x = -\frac{3}{5} \right\}$ $\Rightarrow -\frac{3}{5} = 1 - 2 \sin^2 \frac{x}{2}$ $\Rightarrow 2 \sin^2 \frac{x}{2} = \frac{3}{5} + 1$ $\Rightarrow 2 \sin^2 \frac{x}{2} = \frac{8}{5}$ $\Rightarrow \sin^2 \frac{x}{2} = \frac{4}{5}$ $\Rightarrow \sin \frac{x}{2} = \pm \frac{2}{\sqrt{5}}$

Since,

$$x \in \left(\pi, \frac{3\pi}{2}\right) \Rightarrow \frac{x}{2} \in \left(\frac{\pi}{2}, \frac{3\pi}{4}\right)$$

 $\Rightarrow \sin \frac{x}{2}$ will be positive in second quadrant So,

 $\Rightarrow \sin \frac{x}{2} = \frac{2}{\sqrt{5}}$

$$\sin^{2} x + \cos^{2} x = 1$$

$$\Rightarrow \sin^{2} x = 1 - \cos^{2} x$$

$$\Rightarrow \sin^{2} x = 1 - \left(-\frac{3}{5}\right)^{2}$$

$$\left\{ \because \cos x = -\frac{3}{5} \right\}$$

$$\Rightarrow \sin^2 x = 1 - \frac{9}{25}$$
$$\Rightarrow \sin^2 x = \frac{25 - 9}{25}$$
$$\Rightarrow \sin^2 x = \frac{16}{25}$$
$$\Rightarrow \sin x = \pm \frac{4}{5}$$

$$x \in \left(\pi, \frac{3\pi}{2}\right)$$

 \Rightarrow sinx will be negative in third quadrant

So,

$$\Rightarrow \sin x = -\frac{4}{5}$$

Now,

 $\sin 2x = 2(\sin x)(\cos x)$

$$\left\{ \because \cos x = -\frac{3}{5} \& \sin x = -\frac{4}{5} \right\}$$
$$\Rightarrow \sin 2x = 2 \times -\frac{4}{5} \times -\frac{3}{5}$$
$$\Rightarrow \sin 2x = \frac{24}{25}$$

Hence, values of $\cos{\frac{x}{2}}$, $\sin{\frac{x}{2}}$, $\sin{2x}$ are $-\frac{1}{\sqrt{5}}$, $\frac{2}{\sqrt{5}}$ and $\frac{24}{25}$

28 B. Question

If $\cos x = -\frac{3}{5}$ and x lies in the IInd quadrant, find the values of $\sin 2x$ and $\sin \frac{x}{2}$.

Answer

Given:

$$\cos x = -\frac{3}{5}$$
 and x lies in 2nd quadrant $\Rightarrow x \in \left(\frac{\pi}{2}, \pi\right)$

To find: Values of
$$\sin \frac{x}{2}$$
, $\sin 2x$

We know,

 $\cos 2x = 1 - 2 \sin^2 x$ $\Rightarrow \cos x = 1 - 2 \sin^2 \frac{x}{2}$

$$\left\{ \because \cos x = -\frac{3}{5} \right\}$$
$$\Rightarrow -\frac{3}{5} = 1 - 2\sin^2 \frac{x}{2}$$

$$\Rightarrow 2\sin^2 \frac{x}{2} = \frac{3}{5} + 1$$
$$\Rightarrow 2\sin^2 \frac{x}{2} = \frac{8}{5}$$
$$\Rightarrow \sin^2 \frac{x}{2} = \frac{4}{5}$$
$$\Rightarrow \sin \frac{x}{2} = \pm \frac{2}{\sqrt{5}}$$

$$\mathbf{x} \in \left(\frac{\pi}{2}, \pi\right) \Rightarrow \frac{\mathbf{x}}{2} \in \left(\frac{\pi}{4}, \frac{3\pi}{2}\right)$$

 $\Rightarrow \sin \frac{x}{2}$ will be positive in first quadrant

So,

$$\Rightarrow \sin \frac{x}{2} = \frac{2}{\sqrt{5}}$$

We know,

$$\sin^{2} x + \cos^{2} x = 1$$

$$\Rightarrow \sin^{2} x = 1 - \cos^{2} x$$

$$\Rightarrow \sin^{2} x = 1 - \left(-\frac{3}{5}\right)^{2}$$

$$\left\{ \because \cos x = -\frac{3}{5} \right\}$$

$$\Rightarrow \sin^{2} x = 1 - \frac{9}{25}$$

$$\Rightarrow \sin^{2} x = \frac{25 - 9}{25}$$

$$\Rightarrow \sin^{2} x = \frac{16}{25}$$

$$\Rightarrow \sin x = \pm \frac{4}{5}$$

Since,

$$\mathbf{x} \in \left(\frac{\pi}{2}, \pi\right)$$

 \Rightarrow sin x will be positive in second quadrant

So,

$$\Rightarrow \sin x = \frac{4}{5}$$

Now,

 $\sin 2x = 2(\sin x)(\cos x)$

 $\left\{ \because \cos x = -\frac{3}{5} \& \sin x = \frac{4}{5} \right\}$

$$\Rightarrow \sin 2x = 2 \times \frac{4}{5} \times -\frac{3}{5}$$
$$\Rightarrow \sin 2x = -\frac{24}{25}$$
Hence, values of $\sin \frac{x}{2}$, $\sin 2x \operatorname{are} \frac{2}{\sqrt{5}} \operatorname{and} -\frac{24}{25}$

29. Question

If
$$\sin x = \frac{\sqrt{5}}{3}$$
 and x lies in IInd quadrant, find the values of $\cos \frac{x}{2}$, $\sin \frac{x}{2}$ and $\tan \frac{x}{2}$.

Answer

Given:

$$\sin x = \frac{\sqrt{5}}{3}$$
 and x lies in 2nd quadrant $\Rightarrow x \in \left(\frac{\pi}{2}, \pi\right)$

To find: Values of
$$\cos \frac{x}{2}$$
, $\sin \frac{x}{2}$, $\tan \frac{x}{2}$

We know,

$$\sin^{2} x + \cos^{2} x = 1$$

$$\Rightarrow \cos^{2} x = 1 - \sin^{2} x$$

$$\Rightarrow \cos^{2} x = 1 - \left(\frac{\sqrt{5}}{3}\right)^{2}$$

$$\left\{ \because \sin x = \frac{\sqrt{5}}{3} \right\}$$

$$\Rightarrow \cos^{2} x = 1 - \frac{5}{9}$$

$$\Rightarrow \cos^{2} x = \frac{9 - 5}{9}$$

$$\Rightarrow \cos^{2} x = \frac{4}{9}$$

$$\Rightarrow \cos x = \pm \frac{2}{3}$$

Cince

Since,

$$x \in \left(\frac{\pi}{2}, \pi\right)$$

 \Rightarrow cosx will be negative in second quadrant

So,

$$\Rightarrow \cos x = -\frac{2}{3}$$

We know,

 $\cos 2x = 2\cos^2 x - 1$ $\Rightarrow \cos x = 2\cos^2 \frac{x}{2} - 1$

$$\Rightarrow -\frac{2}{3} = 2\cos^2\frac{x}{2} - 1$$

$$\left\{::\cos x = -\frac{2}{3}\right\}$$

$$\Rightarrow 2\cos^2\frac{x}{2} = -\frac{2}{3} + 1$$

$$\Rightarrow 2\cos^2\frac{x}{2} = \frac{-2+3}{3}$$

$$\Rightarrow \cos^2\frac{x}{2} = \frac{1}{6}$$

$$\Rightarrow \cos\frac{x}{2} = \pm \frac{1}{\sqrt{6}}$$

$$\mathbf{x} \in \left(\frac{\pi}{2}, \pi\right) \Rightarrow \frac{\mathbf{x}}{2} \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

 $\Rightarrow \cos{\frac{x}{2}}$ will be positive in first quadrant

So,

 $\cos\frac{x}{2} = \frac{1}{\sqrt{6}}$

We know,

 $\cos 2x = 1 - 2 \sin^2 x$ $\Rightarrow \cos x = 1 - 2 \sin^2 \frac{x}{2}$ $\left\{: \cos x = -\frac{2}{3}\right\}$ $\Rightarrow -\frac{2}{3} = 1 - 2 \sin^2 \frac{x}{2}$ $\Rightarrow 2 \sin^2 \frac{x}{2} = \frac{2}{3} + 1$ $\Rightarrow 2 \sin^2 \frac{x}{2} = \frac{2 + 3}{3}$ $\Rightarrow \sin^2 \frac{x}{2} = \frac{5}{6}$ $\Rightarrow \sin \frac{x}{2} = \pm \sqrt{\frac{5}{6}}$

Since,

$$\begin{split} &x \in \left(\frac{\pi}{2}, \pi\right) \Rightarrow \frac{x}{2} \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right) \\ &\Rightarrow \sin \frac{x}{2} \text{ will be positive in first quadrant} \\ &\text{So,} \end{split}$$

$$\Rightarrow \sin \frac{x}{2} = \sqrt{\frac{5}{6}}$$

We know,

$$\tan \frac{x}{2} = \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}$$
$$\Rightarrow \tan \frac{x}{2} = \frac{\sqrt{\frac{5}{6}}}{\frac{1}{\sqrt{6}}}$$
$$\Rightarrow \tan \frac{x}{2} = \sqrt{5}$$

Hence, values of $\cos \frac{x}{2}$, $\sin \frac{x}{2}$, $\tan \frac{x}{2}$ are $\frac{1}{\sqrt{6}}$, $\sqrt{\frac{5}{6}}$ and $\sqrt{5}$

30 A. Question

 $0 \le x \le \pi$ and x lies in the IInd quadrant such that $\sin x = \frac{1}{4}$. Find the values of $\cos \frac{x}{2}$, $\sin \frac{x}{2}$ and $\tan \frac{x}{2}$.

Answer

Given:

$$\sin x = \frac{1}{4}$$
 and x lies in 2nd quadrant $\Rightarrow x \in \left(\frac{\pi}{2}, \pi\right)$

To find: Values of
$$\cos \frac{x}{2}$$
, $\sin \frac{x}{2}$, $\tan \frac{x}{2}$
We know,
 $\sin^2 x + \cos^2 x = 1$
 $\Rightarrow \cos^2 x = 1 - \sin^2 x$
 $\Rightarrow \cos^2 x = 1 - \left(\frac{1}{4}\right)^2$
 $\{\because \sin x = \frac{1}{4}\}$
 $\Rightarrow \cos^2 x = 1 - \frac{1}{16}$
 $\Rightarrow \cos^2 x = \frac{16 - 1}{16}$
 $\Rightarrow \cos^2 x = \frac{15}{16}$
 $\Rightarrow \cos x = \pm \frac{\sqrt{15}}{4}$
Since,
 $x \in \left(\frac{\pi}{2}, \pi\right)$

⇒cosx will be negative in second quadrant

So,

$$\Rightarrow \cos x = -\frac{\sqrt{15}}{4}$$

We know,

 $\cos 2x = 2\cos^{2} x - 1$ $\Rightarrow \cos x = 2\cos^{2} \frac{x}{2} - 1$ $\Rightarrow -\frac{\sqrt{15}}{4} = 2\cos^{2} \frac{x}{2} - 1$ $\left\{ \because \cos x = -\frac{\sqrt{15}}{4} \right\}$ $\Rightarrow 2\cos^{2} \frac{x}{2} = -\frac{\sqrt{15}}{4} + 1$ $\Rightarrow 2\cos^{2} \frac{x}{2} = \frac{-\sqrt{15} + 4}{4}$ $\Rightarrow \cos^{2} \frac{x}{2} = \frac{-\sqrt{15} + 4}{8}$ $\Rightarrow \cos \frac{x}{2} = \pm \sqrt{\frac{-\sqrt{15} + 4}{8}}$

Since,

$$\begin{split} & x \in \left(\frac{\pi}{2}, \pi\right) \Rightarrow \frac{x}{2} \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right) \\ & \Rightarrow \cos \frac{x}{2} \text{ will be positive in first quadrant} \\ & \text{So,} \end{split}$$

$$\cos\frac{x}{2} = \sqrt{\frac{-\sqrt{15} + 4}{8}}$$

$$\cos 2x = 1 - 2\sin^2 x$$
$$\Rightarrow \cos x = 1 - 2\sin^2 \frac{x}{2}$$
$$\left\{ \because \cos x = -\frac{\sqrt{15}}{4} \right\}$$
$$\Rightarrow -\frac{\sqrt{15}}{4} = 1 - 2\sin^2 \frac{x}{2}$$
$$\Rightarrow 2\sin^2 \frac{x}{2} = \frac{\sqrt{15}}{4} + 1$$
$$\Rightarrow 2\sin^2 \frac{x}{2} = \frac{\sqrt{15} + 4}{4}$$

$$\Rightarrow \sin^2 \frac{x}{2} = \frac{\sqrt{15} + 4}{8}$$
$$\Rightarrow \sin \frac{x}{2} = \pm \sqrt{\frac{\sqrt{15} + 4}{8}}$$

$$x \in \left(\frac{\pi}{2}, \pi\right) \Rightarrow \frac{x}{2} \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

 $\Rightarrow \sin \frac{x}{2}$ will be positive in first quadrant

So,

$$\Rightarrow \sin\frac{x}{2} = \sqrt{\frac{\sqrt{15} + 4}{8}}$$

We know,

$$\tan \frac{x}{2} = \frac{\sqrt{\frac{\sqrt{15} + 4}{8}}}{\sqrt{\frac{-\sqrt{15} + 4}{8}}}$$
$$\Rightarrow \tan \frac{x}{2} = \sqrt{\frac{\sqrt{15} + 4}{8}} \times \frac{8}{-\sqrt{15} + 4}$$
$$\Rightarrow \tan \frac{x}{2} = \sqrt{\frac{\sqrt{15} + 4}{-\sqrt{15} + 4}}$$

On rationalising:

$$\Rightarrow \tan \frac{x}{2} = \sqrt{\frac{4 + \sqrt{15}}{4 - \sqrt{15}}} \times \frac{4 + \sqrt{15}}{4 + \sqrt{15}}$$
$$\Rightarrow \tan \frac{x}{2} = \sqrt{\frac{\left(4 + \sqrt{15}\right)^2}{4^2 - \left(\sqrt{15}\right)^2}}$$

 $\{\because (a + b)(a - b) = a^2 - b^2\}$

$$\Rightarrow \tan \frac{x}{2} = \sqrt{\frac{\left(4 + \sqrt{15}\right)^2}{16 - 15}}$$
$$\Rightarrow \tan \frac{x}{2} = \sqrt{\frac{\left(4 + \sqrt{15}\right)^2}{1}}$$
$$\Rightarrow \tan \frac{x}{2} = 4 + \sqrt{15}$$
$$x \quad x \quad x \quad \sqrt{-\sqrt{15} + 4} \quad \sqrt{15} + 4$$

Hence, values of $\cos \frac{x}{2}$, $\sin \frac{x}{2}$, $\tan \frac{x}{2}$ are $\sqrt{\frac{-\sqrt{15}+4}{8}}$, $\sqrt{\frac{\sqrt{15}+4}{8}}$ and $4 + \sqrt{15}$

30 B. Question

If
$$\cos x = \frac{4}{5}$$
 and x is acute, find tan 2x.

Answer

Given:

$\cos x = \frac{4}{5}$ and x is acute $\Rightarrow x \in \left(0, \frac{\pi}{2}\right)$

To find: Value of tan 2x

We know,

$$\sin^{2} x + \cos^{2} x = 1$$

$$\Rightarrow \sin^{2} x = 1 - \cos^{2} x$$

$$\Rightarrow \sin^{2} x = 1 - \left(\frac{4}{5}\right)^{2}$$

$$\left\{ \because \cos x = \frac{4}{5} \right\}$$

$$\Rightarrow \sin^{2} x = 1 - \frac{16}{25}$$

$$\Rightarrow \sin^{2} x = \frac{25 - 16}{25}$$

$$\Rightarrow \sin^{2} x = \frac{9}{25}$$

$$\Rightarrow \sin x = \pm \frac{3}{5}$$

Since,

$$x \in \left(0, \frac{\pi}{2}\right)$$

 $\Rightarrow sinx$ will be negative in first quadrant

So,

 $\Rightarrow \sin x = \frac{3}{5}$ Now,

$$\tan x = \frac{\sin x}{\cos x}$$
$$\Rightarrow \tan x = \frac{\frac{3}{5}}{\frac{4}{5}}$$
$$\Rightarrow \tan x = \frac{3}{\frac{4}{5}}$$

We know,

 $\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$

$$\Rightarrow \tan 2x = \frac{2\left(\frac{3}{4}\right)}{1-\left(\frac{3}{4}\right)^2}$$
$$\Rightarrow \tan 2x = \frac{\frac{3}{2}}{1-\frac{9}{16}}$$
$$\Rightarrow \tan 2x = \frac{\frac{3}{2}}{\frac{16-9}{16}}$$
$$\Rightarrow \tan 2x = \frac{\frac{3}{2}}{\frac{7}{16}}$$
$$\Rightarrow \tan 2x = \frac{3}{2} \times \frac{16}{7}$$
$$\Rightarrow \tan 2x = \frac{24}{7}$$

Hence, value of $\tan 2x = \frac{24}{7}$

30 C. Question

If $\sin x = \frac{4}{5}$ and $0 < x < \frac{\pi}{2}$, find the value of sin 4x.

Answer

Given:

$$\sin x = \frac{4}{5} \text{ and } x \in \left(0, \frac{\pi}{2}\right)$$

To find: Values of sin4x

We know,

$$\sin^{2} x + \cos^{2} x = 1$$

$$\Rightarrow \cos^{2} x = 1 - \sin^{2} x$$

$$\Rightarrow \cos^{2} x = 1 - \left(\frac{4}{5}\right)^{2}$$

$$\left\{ \because \sin x = \frac{4}{5} \right\}$$

$$\Rightarrow \cos^{2} x = 1 - \frac{16}{25}$$

$$\Rightarrow \cos^{2} x = \frac{25 - 16}{25}$$

$$\Rightarrow \cos^{2} x = \frac{9}{25}$$

$$\Rightarrow \cos x = \pm \frac{3}{5}$$

Since,

 $x\in \left(0,\frac{\pi}{2}\right)$

 \Rightarrow cosx will be negative in first quadrant

So, $\Rightarrow \cos x = \frac{3}{5}$

We know,

 $\sin 2x = 2 \sin x \cos x$

 $\cos 2x = 2\cos^2 x - 1$

Therefore,

 $\sin 4x = 2 \sin 2x \cos 2x$

 $\Rightarrow \sin 4x = 2 (2 \sin x \cos x) (2 \cos^2 x - 1)$

$$\left\{ \because \sin x = \frac{4}{5} \& \cos x = \frac{4}{5} \right\}$$

$$\Rightarrow \sin 4x = 2 \left(2 \times \frac{4}{5} \times \frac{3}{5} \right) \left(2 \left(\frac{4}{5} \right)^2 - 1 \right)$$

$$\Rightarrow \sin 4x = 2 \left(\frac{24}{25} \right) \left(2 \times \frac{16}{25} - 1 \right)$$

$$\Rightarrow \sin 4x = \frac{48}{25} \left(\frac{32}{25} - 1 \right)$$

$$\Rightarrow \sin 4x = \frac{48}{25} \left(\frac{32 - 25}{25} \right)$$

$$\Rightarrow \sin 4x = \frac{48}{25} \left(\frac{7}{25} \right)$$

$$\Rightarrow \sin 4x = \frac{336}{625}$$

Hence, value of $\sin 4x = \frac{336}{625}$

31. Question

If
$$\tan x = \frac{b}{a}$$
, then find the value of $\sqrt{\frac{a+b}{a-b}} + \sqrt{\frac{a-b}{a+b}}$.

Answer

Given: $\tan x = \frac{b}{a}$ To find: $\sqrt{\frac{a+b}{a-b}} + \sqrt{\frac{a-b}{a+b}}$ $\sqrt{\frac{a+b}{a-b}} + \sqrt{\frac{a-b}{a+b}}$

On taking LCM:

$$= \frac{\left(\sqrt{a+b}\right)^2 + \left(\sqrt{a-b}\right)^2}{\sqrt{a+b}\sqrt{a-b}}$$
$$= \frac{a+b+a-b}{\sqrt{a+b}\sqrt{a-b}}$$
$$= \frac{2a}{\sqrt{a+b}\sqrt{a-b}}$$

Dividing numerator and denominator by a:

$$= \frac{\frac{2a}{a}}{\frac{\sqrt{a+b}\sqrt{a-b}}{a}}$$
$$= \frac{2}{\sqrt{\frac{a+b}{a}}\sqrt{\frac{a-b}{a}}}$$
$$= \frac{2}{\sqrt{1+\frac{b}{a}}\sqrt{1-\frac{b}{a}}}$$
$$= \frac{2}{\sqrt{1+\frac{b}{a}}\sqrt{1-\frac{b}{a}}}$$
$$\{\because \tan x = \frac{b}{a}\}$$
$$= \frac{2}{\sqrt{(1+\tan x)(1-\tan x)}}$$
$$\{\because (a+b)(a-b) = a^2 - b^2\}$$
$$= \frac{2}{\sqrt{2}}$$

$$=\frac{2}{\sqrt{1-\tan^2 x}}$$

32. Question

If $\tan A = \frac{1}{7}$ and $\tan B = \frac{1}{3}$, show that $\cos 2A = \sin 4B$

Answer

Given: $\tan A = \frac{1}{7} \& \tan B = \frac{1}{3}$

To prove: cos 2A = sin 4B

$$\tan 2B = \frac{2 \tan B}{1 - \tan^2 B}$$
$$\Rightarrow \tan 2B = \frac{2\left(\frac{1}{3}\right)}{1 - \left(\frac{1}{3}\right)^2}$$
$$\Rightarrow \tan 2B = \frac{\frac{2}{3}}{1 - \frac{1}{9}}$$
$$\Rightarrow \tan 2B = \frac{\frac{2}{3}}{\frac{9-1}{9}}$$

$$\Rightarrow \tan 2B = \frac{\frac{2}{3}}{\frac{8}{9}}$$

$$\Rightarrow \tan 2B = \frac{3}{4}$$
Take LHS:

$$\cos 2A$$

$$= \frac{1-\tan^{2}A}{1+\tan^{2}A}$$

$$\{\because \tan A = \frac{1}{7}\}$$

$$= \frac{1-\left(\frac{1}{7}\right)^{2}}{1+\left(\frac{1}{7}\right)^{2}}$$

$$= \frac{1-\frac{49}{19}}{1+\frac{49}{19}}$$

$$= \frac{\frac{49-1}{49}}{\frac{49+1}{49}}$$

$$= \frac{\frac{48}{50}}{\frac{50}{49}}$$

$$= \frac{48}{50}$$

$$= \frac{24}{25}$$
Now,
Take RHS:

$$\sin 4B$$

$$= \frac{2\tan 2B}{1+\tan^{2} 2B}$$

$$\{\because \tan 2B = \frac{3}{4}\}$$

$$= \frac{2\left(\frac{3}{4}\right)}{1+\left(\frac{3}{4}\right)^{2}}$$

$$= \frac{\frac{3}{2}}{1+\frac{9}{16}}$$

$$=\frac{\frac{3}{2}}{\frac{16+9}{16}}$$
$$=\frac{\frac{3}{2}}{\frac{25}{16}}$$
$$=\frac{24}{25}$$

Clearly, LHS = RHS = $\frac{24}{25}$

Hence Proved

33. Question

Prove that:

 $\cos 7^{\circ} \cos 14^{\circ} \cos 28^{\circ} \cos 56^{\circ} = \frac{\sin 68^{\circ}}{16 \cos 83^{\circ}}$

Answer

To prove : cos 7° cos 14° cos 28° cos 56° =	sin 68°
	16 cos 83°
Proof:	
Take LHS:	
cos 7° cos 14° cos 28° cos 56°	
Multiplying and Dividing 2 ⁴ sin 7°	
$=\frac{2^{4} \sin 7^{\circ} \cos 7^{\circ} \cos 14^{\circ} \cos 28^{\circ} \cos 56^{\circ}}{2^{4} \sin 7^{\circ}}$	
$=\frac{2^3(2\sin 7^\circ\cos 7^\circ)\cos 14^\circ\cos 28^\circ\cos 5}{2^4\sin 7^\circ}$	6°
$\{\because \sin 2x = 2 \sin x \cos x\}$	
$=\frac{2^{3}(\sin 14^{\circ})\cos 14^{\circ}\cos 28^{\circ}\cos 56^{\circ}}{2^{4}\sin 7^{\circ}}$	
$=\frac{2^2(2\sin 14^\circ\cos 14^\circ)\cos 28^\circ\cos 56^\circ}{2^4\sin 7^\circ}$	
$=\frac{2^{2}(\sin 28^{\circ})\cos 28^{\circ}\cos 56^{\circ}}{2^{4}\sin 7^{\circ}}$	
$=\frac{2^{1}(2\sin 28^{\circ}\cos 28^{\circ})\cos 56^{\circ}}{2^{4}\sin 7^{\circ}}$	
$=\frac{2^{1}(\sin 56^{\circ})\cos 56^{\circ}}{2^{4}\sin 7^{\circ}}$	
$=\frac{2\sin 56^{\circ}\cos 56^{\circ}}{2^{4}\sin 7^{\circ}}$	
$=\frac{\sin 112^{\circ}}{2^{4}\sin 7^{\circ}}$	

We know,

 $\sin(180^\circ - \theta) = \sin \theta$

 $\sin (90^{\circ} - \theta) = \cos \theta$

Now,

$$=\frac{\sin(180^{\circ}-112^{\circ})}{2^{4}\cos(90^{\circ}-7^{\circ})}$$

sin 68°

= 16 cos 83°

= RHS

Hence Proved

34. Question

Prove that:

 $\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{8\pi}{15}\cos\frac{16\pi}{15} = \frac{1}{16}$

Answer

To prove: $\cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}$ Proof: Take LHS: $\cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15}$ Multiplying and Dividing by $2^4 \sin \frac{2\pi}{15}$: $=\frac{2^4 \sin \frac{2\pi}{15} \cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15}}{2^4 \sin \frac{2\pi}{15}}$ $=\frac{2^3 \left(2 \sin \frac{2\pi}{15} \cos \frac{2\pi}{15}\right) \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15}}{2^4 \sin \frac{2\pi}{15}}$ $\{ \because \sin 2x = 2 \sin x \cos x \}$ $=\frac{2^3 \sin \frac{4\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15}}{2^4 \sin \frac{2\pi}{15}}$ $=\frac{2^2 \left(2 \sin \frac{4 \pi}{15} \cos \frac{4 \pi}{15}\right) \cos \frac{8 \pi}{15} \cos \frac{16 \pi}{15}}{2^4 \sin \frac{2 \pi}{15}}$ $=\frac{2^2 \sin \frac{8\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15}}{2^4 \sin \frac{2\pi}{15}}$ $=\frac{2\left(2\sin\frac{8\pi}{15}\cos\frac{8\pi}{15}\right)\cos\frac{16\pi}{15}}{2^4\sin\frac{2\pi}{15}}$

$$= \frac{2 \sin \frac{16\pi}{15} \cos \frac{16\pi}{15}}{2^4 \sin \frac{2\pi}{15}}$$
$$= \frac{\sin \frac{32\pi}{15}}{2^4 \sin \frac{2\pi}{15}}$$
$$= \frac{\sin \left(2\pi + \frac{2\pi}{15}\right)}{2^4 \sin \frac{2\pi}{15}}$$
$$\left\{ \because 2\pi + \frac{2\pi}{15} = \frac{30\pi + 2\pi}{15} = \frac{32\pi}{15} \right\}$$
$$= \frac{\sin \frac{2\pi}{15}}{2^4 \sin \frac{2\pi}{15}}$$
$$\left\{ \because \sin (2\pi + \theta) = \sin \theta \right\}$$
$$= \frac{1}{2}$$

$$= \frac{1}{2^4}$$
$$= \frac{1}{16}$$

= RHS

Hence Proved

35. Question

Prove that:

$$\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{-1}{16}$$

Answer

To prove: $\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{-1}{16}$

Proof:

Take LHS:

 $cos\frac{\pi}{5}cos\frac{2\pi}{5}cos\frac{4\pi}{5}cos\frac{8\pi}{5}$

Multiplying and Dividing $2^4 \sin \frac{\pi}{5}$:

$$= \frac{\frac{2^4 \sin \frac{\pi}{5} \cos \frac{\pi}{5} \cos \frac{2\pi}{5} \cos \frac{4\pi}{5} \cos \frac{8\pi}{5}}{2^4 \sin \frac{\pi}{5}}}{\frac{2^4 \sin \frac{\pi}{5}}{5}}$$
$$= \frac{\frac{2^3 \left(2 \sin \frac{\pi}{5} \cos \frac{\pi}{5}\right) \cos \frac{2\pi}{5} \cos \frac{4\pi}{5} \cos \frac{8\pi}{5}}{2^4 \sin \frac{\pi}{5}}$$

 $\{\because \sin 2x = 2 \sin x \cos x\}$

$$= \frac{2^{3} \sin \frac{2\pi}{5} \cos \frac{2\pi}{5} \cos \frac{4\pi}{5} \cos \frac{8\pi}{5}}{2^{4} \sin \frac{\pi}{5}}$$

$$= \frac{2^{2} \left(2 \sin \frac{2\pi}{5} \cos \frac{2\pi}{5}\right) \cos \frac{4\pi}{5} \cos \frac{8\pi}{5}}{2^{4} \sin \frac{\pi}{5}}$$

$$= \frac{2^{2} \sin \frac{4\pi}{5} \cos \frac{4\pi}{5} \cos \frac{8\pi}{5}}{2^{4} \sin \frac{\pi}{5}}$$

$$= \frac{2 \left(2 \sin \frac{4\pi}{5} \cos \frac{4\pi}{5}\right) \cos \frac{8\pi}{5}}{2^{4} \sin \frac{\pi}{5}}$$

$$= \frac{2 \sin \frac{8\pi}{5} \cos \frac{8\pi}{5}}{2^{4} \sin \frac{\pi}{5}}$$

$$= \frac{\sin \frac{16\pi}{5}}{2^{4} \sin \frac{\pi}{5}}$$

$$= \frac{\sin \left(3\pi + \frac{\pi}{5}\right)}{2^{4} \sin \frac{\pi}{5}}$$

$$\{\because 3\pi + \frac{\pi}{5} = \frac{15\pi + \pi}{5} = \frac{16\pi}{5}\}$$

$$= -\frac{\sin \frac{\pi}{5}}{2^{4} \sin \frac{\pi}{5}}$$

$$\{\because \sin (3\pi + \theta) = -\sin \theta\}$$

$$= -\frac{1}{2^{4}}$$

$$= -\frac{1}{16}$$

$$= RHS$$

Hence Proved

36. Question

Prove that:

$$\cos\frac{\pi}{65}\cos\frac{2\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\\\cos\frac{32\pi}{65} = \frac{1}{64}$$

Answer

To prove: $\cos\frac{\pi}{65}\cos\frac{2\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65} = \frac{1}{64}$

Proof:

Take LHS:

$$\begin{aligned} &\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65} \\ &\text{Multiplying and Dividing } 2^6 \sin \frac{\pi}{65}; \\ &= \frac{2^6 \sin \frac{\pi}{65} \cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65} \\ &= \frac{2^5 \left(2 \sin \frac{\pi}{65} \cos \frac{\pi}{65}\right) \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65} \\ &= \frac{2^5 \left(2 \sin \frac{\pi}{65} \cos \frac{2\pi}{65}\right) \cos \frac{2\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65} \\ &= \frac{2^5 \sin \frac{2\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65} \\ &= \frac{2^5 \sin \frac{2\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65} \\ &= \frac{2^4 \left(2 \sin \frac{2\pi}{65} \cos \frac{2\pi}{65}\right) \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65} \\ &= \frac{2^4 \left(2 \sin \frac{2\pi}{65} \cos \frac{4\pi}{65}\right) \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65} \\ &= \frac{2^4 \left(2 \sin \frac{4\pi}{65} \cos \frac{4\pi}{65}\right) \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65} \\ &= \frac{2^4 \left(2 \sin \frac{4\pi}{65} \cos \frac{4\pi}{65}\right) \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65} \\ &= \frac{2^3 \left(2 \sin \frac{4\pi}{65} \cos \frac{8\pi}{65}\right) \cos \frac{16\pi}{65} \cos \frac{32\pi}{65} \\ &= \frac{2^3 \left(2 \sin \frac{8\pi}{65} \cos \frac{8\pi}{65}\right) \cos \frac{16\pi}{65} \cos \frac{32\pi}{65} \\ &= \frac{2^2 \left(2 \sin \frac{8\pi}{65} \cos \frac{8\pi}{65}\right) \cos \frac{16\pi}{65} \cos \frac{32\pi}{65} \\ &= \frac{2^2 \left(2 \sin \frac{8\pi}{65} \cos \frac{8\pi}{65}\right) \cos \frac{16\pi}{65} \cos \frac{32\pi}{65} \\ &= \frac{2^2 \left(2 \sin \frac{8\pi}{65} \cos \frac{8\pi}{65}\right) \cos \frac{16\pi}{65} \cos \frac{32\pi}{65} \\ &= \frac{2^2 \left(2 \sin \frac{8\pi}{65} \cos \frac{8\pi}{65}\right) \cos \frac{32\pi}{65} \\ &= \frac{2^2 \left(2 \sin \frac{8\pi}{65} \cos \frac{32\pi}{65}\right) \cos \frac{32\pi}{65} \\ &= \frac{2^2 \left(2 \sin \frac{8\pi}{65} \cos \frac{32\pi}{65}\right) \cos \frac{32\pi}{65} \\ &= \frac{2 \left(2 \sin \frac{8\pi}{65} \cos \frac{32\pi}{65}\right) \cos \frac{32\pi}{65} \\ &= \frac{2 \left(2 \sin \frac{16\pi}{65} \cos \frac{32\pi}{65}\right) \cos \frac{32\pi}{65} \\ &= \frac{2 \left(2 \sin \frac{16\pi}{65} \cos \frac{32\pi}{65}\right) \cos \frac{32\pi}{65} \\ &= \frac{16\pi}{65} \cos \frac{32\pi}{65} \\ &= \frac{\sin \frac{64\pi}{65}} \cos \frac{32\pi}{65} \\ &= \frac{\sin \frac{64\pi}{65}} \cos \frac{32\pi}{65} \\ &= \frac{\sin \left(\pi - \frac{\pi}{65}\right)}{2^6 \sin \frac{\pi}{65}} \\ &= \frac{16\pi}{2^6 \sin \frac{\pi}{65$$

$$\left\{ \because \pi - \frac{\pi}{65} = \frac{65\pi - \pi}{65} = \frac{64\pi}{65} \right\}$$
$$= \frac{\sin \frac{\pi}{65}}{2^5 \sin \frac{\pi}{65}}$$
$$\left\{ \because \sin (\pi - \theta) = \sin \theta \right\}$$
$$= \frac{1}{2^5}$$
$$= \frac{1}{64}$$
$$= \text{RHS}$$

Hence Proved

37. Question

If 2 tan α = 3 tan β , prove that tan ($\alpha - \beta$) = $\frac{\sin 2\beta}{5 - \cos 2\beta}$.

Answer

Given: 2 tan α = 3 tan β **To prove**: $\tan (\alpha - \beta) = \frac{\sin 2\beta}{5 - \cos 2\beta}$ Proof: Take LHS: tan α - tan β $=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}$ $= \frac{\frac{3}{2} \tan\beta - \tan\beta}{1 + \frac{3}{2} \tan\beta \tan\beta}$ $\left\{:: 2 \tan \alpha = 3 \tan \beta \Rightarrow \tan \alpha = \frac{3}{2} \tan \beta\right\}$ $= \frac{\tan\beta\left(\frac{3}{2}-1\right)}{1+\frac{3}{2}\tan^2\beta}$ $=\frac{\displaystyle\frac{1}{2}\tan\beta}{1+\displaystyle\frac{3}{2}\tan^2\beta}$ $= \frac{\frac{1}{2}\frac{\sin\beta}{\cos\beta}}{1 + \frac{3}{2}\cdot\left(\frac{\sin\beta}{\cos\beta}\right)^2}$ $\left\{:: \tan \beta = \frac{\sin \beta}{\cos \beta}\right\}$

$$= \frac{\frac{\sin \beta}{2 \cos \beta}}{1 + \frac{3 \sin^2 \beta}{2 \cos^2 \beta}}$$

$$= \frac{\frac{\sin \beta}{2 \cos^2 \beta + 3 \sin^2 \beta}}{\frac{2 \cos^2 \beta + 3 \sin^2 \beta}{2 \cos^2 \beta}}$$

$$= \frac{2 \cos^2 \beta \sin \beta}{2 \cos \beta (2 \cos^2 \beta + 3 \sin^2 \beta)}$$

$$= \frac{2 \cos \beta \sin \beta}{2(2 \cos^2 \beta + 3 \sin^2 \beta)}$$

$$= \frac{\sin 2 \beta}{2(2 \cos^2 \beta) + 3(2 \sin^2 \beta)}$$
{:: sin 2x = 2(sin x)(cos x)}

$$= \frac{\sin 2 \beta}{2(1 + \cos 2\beta) + 3(1 - \cos 2\beta)}$$
{:: 2 cos² x = 1 + cos 2x & 2 sin² x = 1 - cos 2x}

$$= \frac{\sin 2 \beta}{2 + 2 \cos 2\beta + 3 - 3 \cos 2\beta}$$

$$= \frac{\sin 2 \beta}{5 - \cos 2\beta}$$

= RHS

Hence Proved

38 A. Question

If $\sin \alpha + \sin \beta = a$ and $\cos \alpha + \cos \beta = b$, prove that

$$\sin\left(\alpha+\beta\right)=\frac{2ab}{a^2+b^2}$$

Answer

Given: $\sin \alpha + \sin \beta = a \& \cos \alpha + \cos \beta = b$

To prove:
$$sin(\alpha + \beta) = \frac{2ab}{a^2 + b^2}$$

Proof:

 $\sin \alpha + \sin \beta = a$ (3)

 $\cos \alpha + \cos \beta = b \dots (4)$

Dividing equation 3 and 4:

$$\Rightarrow \frac{(\sin\alpha + \sin\beta)}{(\cos\alpha + \cos\beta)} = \frac{a}{b}$$
$$\Rightarrow \frac{2\sin\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}}{2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}} = \frac{a}{b}$$

$$\Rightarrow \frac{\sin\frac{\alpha+\beta}{2}}{\cos\frac{\alpha+\beta}{2}} = \frac{a}{b}$$
$$\Rightarrow \tan\frac{\alpha+\beta}{2} = \frac{a}{b}$$

We know,

$$\sin 2x = \frac{2\tan x}{1 + \tan^2 x}$$

Therefore,

$$\sin(\alpha + \beta) = \frac{2\tan\frac{\alpha + \beta}{2}}{1 + \tan^2\frac{\alpha + \beta}{2}}$$
$$\Rightarrow \sin(\alpha + \beta) = \frac{2\left(\frac{a}{b}\right)}{1 + \left(\frac{a}{b}\right)^2}$$
$$\Rightarrow \sin(\alpha + \beta) = \frac{\frac{2a}{b}}{1 + \frac{a^2}{b^2}}$$
$$\Rightarrow \sin(\alpha + \beta) = \frac{\frac{2a}{b}}{\frac{b^2 + a^2}{b^2}}$$
$$\Rightarrow \sin(\alpha + \beta) = \frac{\frac{2a}{1}}{\frac{b^2 + a^2}{b^2}}$$
$$\Rightarrow \sin(\alpha + \beta) = \frac{2ab}{a^2 + b^2}$$

Hence Proved

38 B. Question

If $\sin \alpha + \sin \beta = a$ and $\cos \alpha + \cos \beta = b$, prove that

$$\cos\left(\alpha-\beta\right)=\frac{a^2+b^2-2}{2}$$

Answer

Given: $\sin \alpha + \sin \beta = a \& \cos \alpha + \cos \beta = b$

To prove:
$$cos(\alpha - \beta) = \frac{a^2 + b^2 - 2}{2}$$

Proof:
 $sin \alpha + sin \beta = a$
Squaring both sides, we get

 $(\sin \alpha + \sin \beta)^2 = a^2$ $\Rightarrow \sin^2 \alpha + \sin^2 \beta + 2 \sin \alpha \sin \beta = a^2 \dots (1)$ $\cos \alpha + \cos \beta = b$ Squaring both sides, we get $(\cos \alpha + \cos \beta)^{2} = a^{2}$ $\Rightarrow \cos^{2} \alpha + \cos^{2} \beta + 2 \cos \alpha \cos \beta = b^{2} \dots (2)$ Adding equation 1 and 2, we get $\sin^{2} \alpha + \sin^{2} \beta + 2 \sin \alpha \sin \beta + \cos^{2} \alpha + \cos^{2} \beta + 2 \cos \alpha \cos \beta = a^{2} + b^{2}$ $\Rightarrow \sin^{2} \alpha + \cos^{2} \alpha + \sin^{2} \beta + \cos^{2} \beta + 2 \sin \alpha \sin \beta + 2 \cos \alpha \cos \beta = a^{2} + b^{2}$ $\Rightarrow 1 + 1 + 2 \sin \alpha \sin \beta + 2 \cos \alpha \cos \beta = a^{2} + b^{2}$ $\{\because \sin^{2} x + \cos^{2} x = 1\}$ $\Rightarrow 2 + 2 \sin \alpha \sin \beta + 2 \cos \alpha \cos \beta = a^{2} + b^{2}$ $\Rightarrow 2(\sin \alpha \sin \beta + \cos \alpha \cos \beta) = a^{2} + b^{2} - 2$ $\Rightarrow (\sin \alpha \sin \beta + \cos \alpha \cos \beta) = \frac{a^{2} + b^{2} - 2}{2}$ We know, sin A sin B + cos A cos B = cos (A - B) Therefore,

$$\Rightarrow \cos(\alpha - \beta) = \frac{a^2 + b^2 - 2}{2}$$

Hence Proved

39. Question

If
$$2 \tan \frac{\alpha}{2} = \tan \frac{\beta}{2}$$
, prove that $\cos \alpha = \frac{3+5\cos \beta}{5+3\cos \beta}$.

Answer

```
Given: 2\tan\frac{\alpha}{2} = \tan\frac{\beta}{2}
To prove: \cos\alpha = \frac{3+5\cos\beta}{5+3\cos\beta}
```

Proof:

Take LHS:

cos α

$$= \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$$
$$\left\{ \because \tan \frac{\alpha}{2} = \frac{1}{2} \tan \frac{\beta}{2} \right\}$$
$$= \frac{1 - \left(\frac{1}{2} \tan \frac{\beta}{2}\right)^2}{1 + \left(\frac{1}{2} \tan \frac{\beta}{2}\right)^2}$$

$$= \frac{1 - \frac{1}{4} \tan^2 \frac{\beta}{2}}{1 + \frac{1}{4} \tan^2 \frac{\beta}{2}}$$
$$= \frac{\frac{4 - \tan^2 \frac{\beta}{2}}{4}}{\frac{4 + \tan^2 \frac{\beta}{2}}{4}}$$
$$= \frac{4 - \tan^2 \frac{\beta}{2}}{4 + \tan^2 \frac{\beta}{2}}$$

Now, Take RHS:

 $3 + 5 \cos \beta$

 $5 + 3\cos\beta$ $=\frac{3+5\left(\frac{1-\tan^2\frac{\beta}{2}}{1+\tan^2\frac{\beta}{2}}\right)}{5+3\left(\frac{1-\tan^2\frac{\beta}{2}}{1+\tan^2\frac{\beta}{2}}\right)}$ $\left\{ \because \cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right\}$ $\frac{3\left(1+\tan^2\frac{\beta}{2}\right)+5\left(1-\tan^2\frac{\beta}{2}\right)}{1+\tan^2\frac{\beta}{2}}$ $\frac{5\left(1+\tan^2\frac{\beta}{2}\right)+3\left(1-\tan^2\frac{\beta}{2}\right)}{1+\tan^2\frac{\beta}{2}}$ $=\frac{3+3\tan^2\frac{\beta}{2}+5-5\tan^2\frac{\beta}{2}}{5+5\tan^2\frac{\beta}{2}+3-3\tan^2\frac{\beta}{2}}$ $=\frac{8-2\tan^2\frac{\beta}{2}}{8+2\tan^2\frac{\beta}{2}}$ $=\frac{2\left(4-\tan^2\frac{\beta}{2}\right)}{2\left(4+\tan^2\frac{\beta}{2}\right)}$ $=\frac{4-\tan^2\frac{\beta}{2}}{4+\tan^2\frac{\beta}{2}}$ $\left\{ \because \cos \alpha = = \frac{4 - \tan^2 \frac{\beta}{2}}{4 + \tan^2 \frac{\beta}{2}} \right\}$

Hence Proved

40. Question

If
$$\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}$$
, prove that $\tan \frac{x}{2} = \pm \tan \frac{\alpha}{2} \tan \frac{\beta}{2}$

Answer

Given: $\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}$ To prove: $\tan \frac{x}{2} = \pm \tan \frac{\alpha}{2} \tan \frac{\beta}{2}$ $\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}$

We know,

$$\begin{split} \cos x &= \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \\ \Rightarrow \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} &= \frac{\frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}} + \frac{1 - \tan^2 \frac{\beta}{2}}{1 + \tan^2 \frac{\alpha}{2}}}{1 + \tan^2 \frac{\alpha}{2}} \frac{1 - \tan^2 \frac{\beta}{2}}{1 + \tan^2 \frac{\alpha}{2}} \\ \Rightarrow \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} &= \frac{\frac{\left(1 - \tan^2 \frac{\alpha}{2}\right)\left(1 + \tan^2 \frac{\beta}{2}\right) + \left(1 - \tan^2 \frac{\beta}{2}\right)\left(1 + \tan^2 \frac{\alpha}{2}\right)}{\left(1 + \tan^2 \frac{\alpha}{2}\right)\left(1 + \tan^2 \frac{\beta}{2}\right) + \left(1 - \tan^2 \frac{\alpha}{2}\right)\left(1 + \tan^2 \frac{\alpha}{2}\right)} \\ \Rightarrow \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} &= \frac{\left(1 - \tan^2 \frac{\alpha}{2}\right)\left(1 + \tan^2 \frac{\beta}{2}\right) + \left(1 - \tan^2 \frac{\alpha}{2}\right)\left(1 + \tan^2 \frac{\beta}{2}\right)}{\left(1 + \tan^2 \frac{\alpha}{2}\right)\left(1 + \tan^2 \frac{\alpha}{2}\right)\left(1 + \tan^2 \frac{\alpha}{2}\right)} \\ \Rightarrow \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} &= \frac{\left(1 - \tan^2 \frac{\alpha}{2}\right)\left(1 + \tan^2 \frac{\beta}{2}\right) + \left(1 - \tan^2 \frac{\beta}{2}\right)\left(1 + \tan^2 \frac{\alpha}{2}\right)}{\left(1 + \tan^2 \frac{\alpha}{2}\right)\left(1 + \tan^2 \frac{\beta}{2}\right) + \left(1 - \tan^2 \frac{\alpha}{2}\right)\left(1 - \tan^2 \frac{\beta}{2}\right)} \\ \Rightarrow \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} &= \frac{\left(1 - \tan^2 \frac{\alpha}{2}\right)\left(1 + \tan^2 \frac{\beta}{2}\right) + \left(1 - \tan^2 \frac{\alpha}{2}\right)\left(1 - \tan^2 \frac{\beta}{2}\right)}{\left(1 + \tan^2 \frac{\alpha}{2}\right)\left(1 + \tan^2 \frac{\beta}{2}\right) + \left(1 - \tan^2 \frac{\alpha}{2}\right)\left(1 - \tan^2 \frac{\beta}{2}\right)} \\ \Rightarrow \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} &= \frac{1 - \tan^2 \frac{\beta}{2} - \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2} + 1 - \tan^2 \frac{\beta}{2} + \tan^2 \frac{\alpha}{2} - \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}}}{1 + \tan^2 \frac{\alpha}{2} + \tan^2 \frac{\beta}{2} + \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}} \\ \Rightarrow \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} &= \frac{2 - 2 \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}}{2 + 2 \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}} \\ \Rightarrow \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} &= \frac{2 \left(1 - \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}}{2 + 2 \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}} \\ \Rightarrow \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} &= \frac{2 \left(1 - \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}}{2 + 2 \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}} \\ \Rightarrow \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} &= \frac{2 \left(1 - \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}}{2 + 2 \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}} \\ \Rightarrow \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} &= \frac{2 \left(1 - \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}}{2 + 2 \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}} \\ \end{cases}$$

$$\Rightarrow \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \frac{1 - \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}}{1 + \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}}$$

Applying componendo and dividendo, we get

$$\Rightarrow \frac{\left(1 - \tan^2 \frac{x}{2}\right) + \left(1 + \tan^2 \frac{x}{2}\right)}{\left(1 - \tan^2 \frac{x}{2}\right) - \left(1 + \tan^2 \frac{x}{2}\right)} = \frac{\left(1 - \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}\right) + \left(1 + \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}\right)}{\left(1 - \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}\right) - \left(1 + \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}\right)}$$

$$\Rightarrow \frac{1 - \tan^2 \frac{x}{2} + 1 + \tan^2 \frac{x}{2}}{1 - \tan^2 \frac{x}{2} - 1 - \tan^2 \frac{x}{2}} = \frac{1 - \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2} + 1 + \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}}{1 - \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2} - 1 - \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}}$$

$$\Rightarrow \frac{2}{-2 \tan^2 \frac{x}{2}} = \frac{2}{-2 \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}}$$

$$\Rightarrow \frac{1}{-\tan^2 \frac{x}{2}} = \frac{1}{-\tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}}$$

Taking reciprocal both sides:

 $\Rightarrow -\tan^2 \frac{x}{2} = -\tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}$ $\Rightarrow \tan^2 \frac{x}{2} = \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}$ $\Rightarrow \tan \frac{x}{2} = \pm \sqrt{\tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}}$ $\Rightarrow \tan \frac{x}{2} = \pm \tan \frac{\alpha}{2} \tan \frac{\beta}{2}$

Hence Proved

41. Question

If sec (x + α) + sec(x - α) = 2 sec x, prove that cos x= $\pm \sqrt{2} \cos \frac{\alpha}{2}$

Answer

Given: sec $(x + \alpha) + sec(x - \alpha) = 2 sec x$

To prove:
$$\cos x = \pm \sqrt{2} \cos \frac{\alpha}{2}$$

 $\sec (x + \alpha) + \sec(x - \alpha) = 2 \sec x$
 $\Rightarrow \frac{1}{1 + \frac{1$

$$\cos(x + \alpha) - \cos(x - \alpha) - \cos x$$
$$\left\{ \because \sec x = \frac{1}{\cos x} \right\}$$
$$\Rightarrow \frac{\cos(x - \alpha) + \cos(x + \alpha)}{\cos(x + \alpha)\cos(x - \alpha)} = \frac{2}{\cos x}$$
$$\left\{ \because \cos A + \cos B = 2\cos\frac{A + B}{2}\cos\frac{A - B}{2} \right\}$$

$$\Rightarrow \frac{2\cos\left(\frac{x+\alpha+x-\alpha}{2}\right)\cos\left(\frac{x+\alpha-x+\alpha}{2}\right)}{\cos(x+\alpha)\cos(x-\alpha)} = \frac{2}{\cos x}$$

$$\Rightarrow \frac{2\cos\left(\frac{2x}{2}\right)\cos\left(\frac{2\alpha}{2}\right)}{2\cos(x+\alpha)\cos(x-\alpha)} = \frac{1}{\cos x}$$
{:: 2 cos A cos B = cos (A + B) + cos (A - B)}
$$\Rightarrow \frac{2\cos x \cos \alpha}{\cos(x+\alpha+x-\alpha) + \cos(x+\alpha-x+\alpha)} = \frac{1}{\cos x}$$

$$\Rightarrow \frac{2\cos x \cos \alpha}{\cos 2x + \cos 2\alpha} = \frac{1}{\cos x}$$

$$\Rightarrow 2\cos^2 x \cos \alpha = \cos 2x + \cos 2\alpha$$

$$\Rightarrow 2\cos^2 x \cos \alpha = 2\cos^2 x - 1 + \cos 2\alpha$$
{:: cos 2x = 2 cos² x - 1}
$$\Rightarrow 2\cos^2 x (\cos \alpha - 1) = 2\cos^2 \alpha - 1 - 1$$
{: cos 2x = 2 cos² x - 1}
$$\Rightarrow 2\cos^2 x = \frac{2\cos^2 \alpha - 2}{\cos \alpha - 1}$$

$$\Rightarrow 2\cos^2 x = \frac{2(\cos^2 \alpha - 1)}{\cos \alpha - 1}$$

$$\Rightarrow \cos^2 x = \frac{2(\cos^2 \alpha - 1)}{\cos \alpha - 1}$$

$$\Rightarrow \cos^2 x = \cos \alpha + 1$$

$$\Rightarrow \cos^2 x = 2\cos^2 \frac{\alpha}{2} - 1 + 1$$
{:: cos x = 2 cos² \frac{\alpha}{2} - 1}
$$\Rightarrow \cos^2 x = 2\cos^2 \frac{\alpha}{2}$$

$$\Rightarrow \cos x = \pm \sqrt{2}\cos^2 \frac{\alpha}{2}$$

Hence Proved

42. Question

If
$$\cos \alpha + \cos \beta = \frac{1}{3}$$
 and $\sin \alpha + \sin \beta = \frac{1}{4}$, prove that $\cos \frac{\alpha - \beta}{2} = \pm \frac{5}{24}$.

Answer

Given: $\cos \alpha + \cos \beta = \frac{1}{3} \& \sin \alpha + \sin \beta = \frac{1}{4}$

To prove: $\cos \frac{\alpha - \beta}{2} = \pm \frac{5}{24}$ $\sin\alpha+\sin\beta=\frac{1}{4}$ Squaring both sides, we get $\Rightarrow (\sin \alpha + \sin \beta)^2 = \left(\frac{1}{4}\right)^2$ $\cos \alpha + \cos \beta = \frac{1}{2}$ Squaring both sides, we get $\Rightarrow (\cos\alpha + \cos\beta)^2 = \left(\frac{1}{3}\right)^2$ Adding equation (1) and (2), we get $\sin^2 \alpha + \sin^2 \beta + 2\sin \alpha \sin \beta + \cos^2 \alpha + \cos^2 \beta + 2\cos \alpha \cos \beta = \frac{1}{16} + \frac{1}{9}$ $\Rightarrow \sin^2 \alpha + \cos^2 \alpha + \sin^2 \beta + \cos^2 \beta + 2 \sin \alpha \sin \beta + 2 \cos \alpha \cos \beta = \frac{16+9}{(16)(9)}$ $\Rightarrow 1 + 1 + 2(\sin\alpha\sin\beta + \cos\alpha\cos\beta) = \frac{25}{144}$ We know, sin A sin B + cos A cos B = cos (A - B)Therefore, 25

$$\Rightarrow 2 + 2(\cos(\alpha - \beta)) = \frac{25}{144}$$
$$\Rightarrow 2(\cos(\alpha - \beta)) = \frac{25}{144} - 2$$
$$\Rightarrow 2\cos(\alpha - \beta) = \frac{25 - 288}{144}$$
$$\Rightarrow \cos(\alpha - \beta) = -\frac{253}{288}$$
$$\{\because \cos x = 2\cos^2\frac{x}{2} - 1\}$$
$$\Rightarrow 2\cos^2\frac{(\alpha - \beta)}{2} - 1 = -\frac{253}{288}$$
$$\Rightarrow 2\cos^2\frac{(\alpha - \beta)}{2} = 1 - \frac{253}{288}$$
$$\Rightarrow 2\cos^2\frac{(\alpha - \beta)}{2} = \frac{288 - 253}{288}$$

$$\Rightarrow 2\cos^2\frac{(\alpha-\beta)}{2} = \frac{25}{288}$$
$$\Rightarrow \cos^2\frac{(\alpha-\beta)}{2} = \frac{25}{576}$$
$$\Rightarrow \cos\frac{\alpha-\beta}{2} = \pm\sqrt{\frac{25}{576}}$$
$$\Rightarrow \cos\frac{\alpha-\beta}{2} = \pm\frac{5}{24}$$

Hence Proved

43. Question

If
$$\sin \alpha = \frac{4}{5}$$
 and $\cos \beta = \frac{5}{13}$, prove that $\cos \frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}$.

Answer

Given: $\sin \alpha = \frac{4}{5} \& \cos \beta = \frac{5}{13}$ To prove: $\cos\frac{\alpha-\beta}{2}=\frac{8}{\sqrt{65}}$ Proof: We know, $\sin^2 \alpha + \cos^2 \alpha = 1$ $\Rightarrow \cos^2 \alpha = 1 - \sin^2 \alpha$ $\Rightarrow \cos \alpha = \sqrt{1 - \sin^2 \alpha}$ $\Rightarrow \cos \alpha = \sqrt{1 - \left(\frac{4}{5}\right)^2}$ $\Rightarrow \cos \alpha = \sqrt{1 - \frac{16}{25}}$ $\Rightarrow \cos \alpha = \sqrt{\frac{9}{25}}$ $\Rightarrow \cos \alpha = \frac{3}{5}$ Similarly, $\sin^2\beta + \cos^2\beta = 1$ $\Rightarrow \sin^2 \beta = 1 - \cos^2 \beta$ $\Rightarrow \sin \beta = \sqrt{1 - \cos^2 \beta}$ $\Rightarrow \sin\beta = \sqrt{1 - \left(\frac{5}{13}\right)^2}$

$$\Rightarrow \sin \beta = \sqrt{1 - \frac{25}{169}}$$
$$\Rightarrow \sin \beta = \sqrt{\frac{144}{169}}$$
$$\Rightarrow \sin \beta = \frac{12}{13}$$

Identity used:

 $\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$

$$\Rightarrow \cos(\alpha - \beta) = \frac{3}{5} \times \frac{5}{13} + \frac{4}{5} \times \frac{12}{13}$$
$$\Rightarrow 2\cos^2\left(\frac{\alpha - \beta}{2}\right) - 1 = \frac{15}{65} + \frac{48}{65}$$
$$\Rightarrow 2\cos^2\left(\frac{\alpha - \beta}{2}\right) = \frac{63}{65} + 1$$
$$\Rightarrow 2\cos^2\left(\frac{\alpha - \beta}{2}\right) = \frac{63 + 65}{65}$$
$$\Rightarrow 2\cos^2\left(\frac{\alpha - \beta}{2}\right) = \frac{128}{65}$$
$$\Rightarrow \cos^2\left(\frac{\alpha - \beta}{2}\right) = \frac{64}{65}$$
$$\Rightarrow \cos\left(\frac{\alpha - \beta}{2}\right) = \sqrt{\frac{64}{65}}$$
$$\Rightarrow \cos\left(\frac{\alpha - \beta}{2}\right) = \sqrt{\frac{64}{65}}$$

Hence Proved

44 A. Question

If a cos $2x + b \sin 2x = c has \alpha$ and β as its roots, then prove that

$$\tan \alpha + \tan \beta = \frac{2b}{a+c}$$

Answer

Given: a cos $2x + b \sin 2x = c$

To prove:
$$\tan \alpha + \tan \beta = \frac{2b}{a+c}$$

We know,

 $\sin 2x = \frac{2 \tan x}{1 + \tan^2 x}$ $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$

Therefore,

 $a \cos 2x + b \sin 2x = c$

$$\Rightarrow a\left(\frac{1-\tan^2 x}{1+\tan^2 x}\right) + b\left(\frac{2\tan x}{1+\tan^2 x}\right) = c$$

$$\Rightarrow \frac{a(1-\tan^2 x)}{1+\tan^2 x} + \frac{2b\tan x}{1+\tan^2 x} = c$$

$$\Rightarrow \frac{a(1-\tan^2 x) + 2b\tan x}{1+\tan^2 x} = c$$

$$\Rightarrow a(1-\tan^2 x) + 2b\tan x = c(1+\tan^2 x)$$

$$\Rightarrow 2b\tan x + a - a\tan^2 x = c + c\tan^2 x$$

$$\Rightarrow 2b\tan x + a - a\tan^2 x - c - c\tan^2 x = 0$$

$$\Rightarrow (-a-c)\tan^2 x + 2b\tan x + a - c = 0$$

We know,

If m and n are roots of the equation $ax^2 + bx + c = 0$

then,

Sum of the roots(m+n),
$$= -\frac{b}{a}$$

Therefore,

If tan α and tan β are the roots of the equation

$$(-a - c) \tan^2 x + 2b \tan x + a - c = 0$$

then,

$$\tan \alpha + \tan \beta = \frac{-2b}{-a-c}$$
$$\Rightarrow \tan \alpha + \tan \beta = \frac{-2b}{-(a+c)}$$
$$\Rightarrow \tan \alpha + \tan \beta = \frac{2b}{a+c}$$

Hence Proved

44 B. Question

If a cos $2x + b \sin 2x = c has \alpha$ and β as its roots, then prove that

 $\tan \alpha \tan \beta = \frac{c-a}{c+a}$

Answer

Given: a cos $2x + b \sin 2x = c$

To prove: $\tan \alpha \tan \beta = \frac{c-a}{c+a}$

We know,

 $\sin 2x = \frac{2 \tan x}{1 + \tan^2 x}$ $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$

Therefore,

a cos 2x + b sin 2x = c $\Rightarrow a\left(\frac{1-\tan^2 x}{1+\tan^2 x}\right) + b\left(\frac{2\tan x}{1+\tan^2 x}\right) = c$ $\Rightarrow \frac{a(1-\tan^2 x)}{1+\tan^2 x} + \frac{2b\tan x}{1+\tan^2 x} = c$ $\Rightarrow \frac{a(1-\tan^2 x) + 2b\tan x}{1+\tan^2 x} = c$ $\Rightarrow a(1-\tan^2 x) + 2b\tan x = c(1+\tan^2 x)$ $\Rightarrow 2b\tan x + a - a\tan^2 x = c + c\tan^2 x$ $\Rightarrow 2b\tan x + a - a\tan^2 x - c - c\tan^2 x = 0$ $\Rightarrow (-a-c)\tan^2 x + 2b\tan x + a - c = 0$

We know,

If m and n are roots of the equation $ax^2 + bx + c = 0$

then,

Product of the roots(mn), $=\frac{c}{a}$

Therefore,

If tan α and tan β are the roots of the equation

$$(-a - c)\tan^2 x + 2b\tan x + a - c = 0$$

then,

$$\tan \alpha \tan \beta = \frac{a-c}{-a-c}$$
$$\Rightarrow \tan \alpha \tan \beta = \frac{-(c-a)}{-(c+a)}$$
$$\Rightarrow \tan \alpha \tan \beta = \frac{c-a}{c+a}$$

Hence Proved

44 C. Question

If a cos $2x + b \sin 2x = c has \alpha$ and β as its roots, then prove that

$$\tan\left(\alpha+\beta\right)=\frac{b}{a}$$

Answer

To prove: $tan(\alpha + \beta) = \frac{b}{a}$

We know,

 $\tan(x+y) = \frac{\tan x + \tan y}{1 + \tan x \tan y}$

Therefore,

 $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 + \tan \alpha \tan \beta}$

From previous question:

$$\tan \alpha + \tan \beta = \frac{2b}{a+c} \& \tan \alpha \tan \beta = \frac{c-a}{c+a}$$

$$\Rightarrow \tan(\alpha + \beta) = \frac{\frac{2b}{a+c}}{1 + \frac{c-a}{c+a}}$$

$$\Rightarrow \tan(\alpha + \beta) = \frac{\frac{2b}{a+c}}{\frac{c+a+c-a}{c+a}}$$

$$\Rightarrow \tan(\alpha + \beta) = \frac{2b}{2c}$$

$$\Rightarrow \tan(\alpha + \beta) = \frac{b}{c}$$

Hence Proved

45. Question

If $\cos \alpha + \cos \beta = 0 = \sin \alpha + \sin \beta$, then prove that $\cos 2\alpha + \cos 2\beta = -2 \cos (\alpha + \beta)$.

— a

Answer

```
Given: \cos \alpha + \cos \beta = \sin \alpha + \sin \beta = 0
To prove: \cos 2\alpha + \cos 2\beta = -2 \cos (\alpha + \beta)
Proof:
\cos \alpha + \cos \beta = 0
Squaring both sides:
\Rightarrow (\cos \alpha + \cos \beta)^2 = (0)^2
\Rightarrow \cos^2 \alpha + \cos^2 \beta + 2 \cos \alpha \cos \beta = 0 \dots (1)
\sin \alpha + \sin \beta = 0
Squaring both sides:
\Rightarrow (\sin \alpha + \sin \beta)^2 = (0)^2
\Rightarrow \sin^2 \alpha + \sin^2 \beta + 2 \sin \alpha \sin \beta = 0 \dots (2)
Subtracting equation (1) from (2), we get
\cos^2 \alpha + \cos^2 \beta + 2 \cos \alpha \cos \beta - (\sin^2 \alpha + \sin^2 \beta + 2 \sin \alpha \sin \beta) = 0
\Rightarrow \cos^2 \alpha + \cos^2 \beta + 2 \cos \alpha \cos \beta - \sin^2 \alpha - \sin^2 \beta - 2 \sin \alpha \sin \beta = 0
\Rightarrow \cos^2 \alpha - \sin^2 \alpha + \cos^2 \beta - \sin^2 \beta + 2(\cos \alpha \cos \beta - \sin \alpha \sin \beta) = 0
{\because \cos^2 x - \sin^2 x = 2x \&
\cos A \cos B - \sin A \sin B = \cos(A + B)
\Rightarrow \cos 2\alpha + \cos 2\beta + 2 \cos (\alpha + \beta) = 0
\Rightarrow \cos 2\alpha + \cos 2\beta = -2 \cos (\alpha + \beta)
Hence Proved
```

Exercise 9.2

1. Question

Prove that:

```
\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x
Answer
LHS is
\sin 5x = \sin(3x+2x)
But we know,
sin(x+y) = sin x cos y+cos x sin y....(i)
\Rightarrow sin 5x = sin 3x cos 2x+cos 3x sin 2x
\Rightarrow \sin 5x = \sin (2x+x) \cos 2x + \cos (2x+x) \sin 2x \dots (ii)
And
\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y).....(iii)
Now substituting equation (i) and (iii) in equation (ii), we get
\Rightarrow sin 5x = (sin 2x cos x+cos 2x sin x)cos 2x+( cos 2x cos x - sin 2x sin x) sin 2x
\Rightarrow \sin 5x = \sin 2x \cos 2x \cos x + \cos^2 2x \sin x + (\sin 2x \cos 2x \cos x - \sin^2 2x \sin x)
\Rightarrow \sin 5x = 2\sin 2x \cos 2x \cos x + \cos^2 2x \sin x - \sin^2 2x \sin x \dots \dots (iv)
Now \sin 2x = 2\sin x \cos x \dots (v)
And \cos 2x = \cos^2 x - \sin^2 x \dots (vi)
Substituting equation (v) and (vi) in equation (iv), we get
\Rightarrow \sin 5x = 2(2\sin x \cos x)(\cos^2 x - \sin^2 x)\cos x + (\cos^2 x - \sin^2 x)^2 \sin x - (2\sin x \cos x)^2 \sin x
 \Rightarrow \sin 5x = 4(\sin x \cos^2 x)([1-\sin^2 x] - \sin^2 x) + ([1-\sin^2 x] - \sin^2 x)^2 \sin x - (4\sin^2 x \cos^2 x) \sin x (as \cos^2 x + \sin^2 x = 1)^2 + (1-\sin^2 x)^2 \sin^2 x + (1-\sin^2 x)^2 x + (1-\sin^2 x)^2 \sin^2 x + (1-\sin^2 x)^2 x + (1-\sin^2 x)^2 x + (1-\sin^2 x)^2 x + (1-
\Rightarrow \cos^2 x = 1 - \sin^2 x
\Rightarrow \sin 5x = 4(\sin x [1-\sin^2 x])(1-2\sin^2 x) + (1-2\sin^2 x)^2 \sin x - 4\sin^3 x [1-\sin^2 x]
⇒ sin 5x = 4sin x(1-sin<sup>2</sup>x)(1-2sin<sup>2</sup>x)+(1-4sin<sup>2</sup>x+4sin<sup>4</sup>x)sin x-4sin<sup>3</sup> x +4sin<sup>5</sup>x
⇒ sin 5x = (4\sin x - 4\sin^3 x)(1 - 2\sin^2 x) + \sin x - 4\sin^3 x + 4\sin^5 x - 4\sin^3 x + 4\sin^5 x
\Rightarrow \sin 5x = 4\sin x - 8\sin^3 x - 4\sin^3 x + 8\sin^5 x + \sin x - 8\sin^3 x + 8\sin^5 x
\Rightarrow sin 5x = 5sin x-20sin<sup>3</sup>x+16sin<sup>5</sup>x
Hence LHS = RHS
[Hence proved]
2. Question
Prove that:
4(\cos^3 10^\circ + \sin^3 20^\circ) = 3(\cos 10^\circ + \sin 20^\circ)
Answer
```

We know that

$$\sin 60^{\circ} = \frac{\sqrt{3}}{2} = \cos 30^{\circ \Rightarrow} \sin (3 \times 20^{\circ}) = \cos (3 \times 10^{\circ})$$

⇒ 3sin 20°-4sin³20°=4cos³10°-3cos 10°

(as sin $3\theta = 3\sin \theta - 4\sin^3 \theta$ and cos $3\theta = 4\cos^3\theta - 3\cos\theta$)

 $\Rightarrow 4(\cos^3 10^\circ + \sin^3 20^\circ) = 3(\sin 20^\circ + \cos 10^\circ)$

LHS=RHS

Hence proved

3. Question

Prove that:

$$\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x$$

Answer

We know that,

 $\cos 3\theta = 4\cos^3\theta - 3\cos\theta$

 $\Rightarrow 4 \cos^3\theta = \cos 3\theta + 3\cos \theta$

$$\Rightarrow \cos^3 \theta = \frac{\cos 3\theta + 3\cos \theta}{4} \dots (i)$$

And similarly

 $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$

⇒4 sin³θ=3sinθ-sin 3θ

$$\Rightarrow \sin^3 \theta = \frac{3\sin\theta - \sin 3\theta}{4} \dots (ii)$$

Now,

 $LHS = \cos^3 x \sin 3x + \sin^3 x \cos 3x$

Substituting the values from equation (i) and (ii), we get

$$\Rightarrow = \left(\frac{\cos 3x + 3\cos x}{4}\right)\sin 3x + \left(\frac{3\sin x - \sin 3x}{4}\right)\cos 3x$$
$$\Rightarrow = \frac{1}{4}\left(\sin 3x\cos 3x + 3\sin 3x\cos x + 3\sin x\cos 3x - \sin 3x\cos 3x\right)$$
$$\Rightarrow = \frac{1}{4}\left(3\left[\sin 3x\cos x + \sin x\cos 3x\right] + 0\right)$$
$$\Rightarrow \frac{1}{4}\left(3\sin(3x + x)\right)$$
$$(\text{as } \sin(x+y) = \sin x\cos y + \cos x\sin y)$$

$$\Rightarrow \frac{3}{4} \sin 4x$$

=RHS

Hence Proved

4. Question

Prove that:

$$\tan x \tan \left(x + \frac{\pi}{3}\right) + \tan x \tan \left(\frac{\pi}{3} - x\right) + \tan \left(x + \frac{\pi}{3}\right) \tan \left(x - \frac{\pi}{3}\right) = -3$$

Answer

$$\begin{split} \text{LHS} &= \tan x \tan \left(x + \frac{\pi}{3} \right) + \tan x \tan \left(\frac{\pi}{3} - x \right) + \tan \left(x + \frac{\pi}{3} \right) \tan \left(x - \frac{\pi}{3} \right) \\ \Rightarrow &= \tan x \left(\frac{\tan x + \tan \frac{\pi}{3}}{1 - \tan x \tan \frac{\pi}{3}} \right) + \tan x \left(\frac{\tan \frac{\pi}{3} - \tan x}{1 + \tan x \tan \frac{\pi}{3}} \right) \\ &+ \left(\frac{\tan x + \tan \frac{\pi}{3}}{1 - \tan x \tan \frac{\pi}{3}} \right) \left(\frac{\tan \frac{\pi}{3} - \tan x}{1 + \tan x \tan \frac{\pi}{3}} \right) \\ &+ \left(\frac{\tan x + \tan \frac{\pi}{3}}{1 - \tan x \tan \frac{\pi}{3}} \right) \left(\frac{\tan A - \tan B}{1 + \tan x \tan \frac{\pi}{3}} \right) \\ \left(\because \tan (A + B) = \left(\frac{\tan A + \tan B}{1 - \tan A \tan B} \right) \text{ and } \tan (A - B) = \left(\frac{\tan A - \tan B}{1 + \tan A \tan B} \right) \right) \\ \Rightarrow &= \tan x \left(\frac{\tan x + \sqrt{3}}{1 - \tan x (\sqrt{3})} \right) + \tan x \left(\frac{\sqrt{3} - \tan x}{1 + \tan x (\sqrt{3})} \right) \\ &+ \left(\frac{\tan x + \sqrt{3}}{1 - \tan x (\sqrt{3})} \right) \left(\frac{\sqrt{3} - \tan x}{1 + \tan x (\sqrt{3})} \right) \\ &+ \left(\frac{\tan x + \sqrt{3}}{1 - \tan x (\sqrt{3})} \right) \left(\frac{\sqrt{3} - \tan x}{1 + \tan x (\sqrt{3})} \right) \\ \left(\operatorname{astan} \frac{\pi}{3} = \sqrt{3} \right) \\ &= \left(\frac{\left(1 + \tan x (\sqrt{3}) \right) \tan x \left(\tan x + \sqrt{3} \right) + \left(1 - \tan x (\sqrt{3}) \right) \tan x \left(\sqrt{3} - \tan x \right) + \left(\tan x + \sqrt{3} \right) \left(\sqrt{3} - \tan x \right) }{\left(1 - \tan x (\sqrt{3}) \right) \left(1 + \tan x (\sqrt{3}) \right)} \right) \\ &= \left(\frac{\left(1 + \sqrt{3} \tan x \right) \tan x \left(\tan x + \sqrt{3} \right) + \left(1 - \sqrt{3} \tan x \right) \tan x \left(\sqrt{3} - \tan x \right) + \left(\tan^2 x - \left(\sqrt{3} \right)^2 \right) }{\left(1 - \left(\sqrt{3} \tan x \right)^2 \right)} \right) \\ &= \left(\frac{\left(\tan x + \sqrt{3} \tan^2 x + \sqrt{3} \tan^2 x + \sqrt{3} + \left(\tan x - \sqrt{3} \tan^2 x \right) \left(\sqrt{3} - \tan x \right) + \left(\tan^2 x - 3 \right) }{\left(1 - \left(\sqrt{3} \tan x \right)^2 \right)} \right) \\ &= \left(\frac{\left(\tan x + \sqrt{3} \tan^2 x + \sqrt{3} \tan^2 x + 3 \tan^2 x \right) + \left(\sqrt{3} \tan x - 3 \tan^2 x - \frac{\tan^2 x}{3} + \frac{\tan^2 x}{3} \right) \\ &= \left(\frac{\left(2\sqrt{3} \tan x + 2\sqrt{3} \tan^2 x + 3 \tan^2 x \right) + \left(\tan^2 x - 3 \right)}{\left(1 - \left(\sqrt{3} \tan x \right)^2 \right)} \right) \\ &= \left(\frac{\left(2\sqrt{3} \tan x + 2\sqrt{3} \tan^2 x + 4 \tan^2 x - 3}{\left(1 - 3 \tan^2 x \right)} \right) \\ &= \left(\frac{2\sqrt{3} \tan x + 2\sqrt{3} \tan^2 x + 4 \tan^2 x - 3}{\left(1 - 3 \tan^2 x \right)} \right) \end{aligned} \right) \end{aligned}$$

Hence LHS≠ RHS

5. Question

Prove that:

$$\tan x + \tan\left(\frac{\pi}{3} + x\right) - \tan\left(\frac{\pi}{3} - x\right) = 3\tan 3x$$

Answer

$$LHS = \tan x + \tan\left(\frac{\pi}{3} + x\right) - \tan\left(\frac{\pi}{3} - x\right)$$

$$\Rightarrow = \tan x + \left(\frac{\tan\frac{\pi}{3} + \tan x}{1 - \tan x \tan\frac{\pi}{3}}\right) - \left(\frac{\tan\frac{\pi}{3} - \tan x}{1 + \tan x \tan\frac{\pi}{3}}\right)$$

$$\left(\because \tan(A + B) = \left(\frac{\tan A + \tan B}{1 - \tan A \tan B}\right) \text{ and } \tan(A - B) = \left(\frac{\tan A - \tan B}{1 + \tan A \tan B}\right)\right)$$

$$\Rightarrow = \tan x + \left(\frac{\sqrt{3} + \tan x}{1 - \sqrt{3} \tan x}\right) - \left(\frac{\sqrt{3} - \tan x}{1 + \sqrt{3} \tan x}\right)$$

$$\Rightarrow = \tan x + \left(\frac{(1 + \sqrt{3} \tan x)(\sqrt{3} + \tan x) - (1 - \sqrt{3} \tan x)(\sqrt{3} - \tan x)}{(1 - \tan x(\sqrt{3}))(1 + \tan x(\sqrt{3}))}\right)$$

$$\Rightarrow = \tan x + \left(\frac{\left(\sqrt{3} + 3\tan x + \tan x + \sqrt{3}\tan^2 x\right) - \left(\sqrt{3} - 3\tan x - \tan x + \sqrt{3}\tan^2 x\right)}{(1 - 3\tan^2 x)} \right) \Rightarrow = \tan x + \left(\frac{\left(0 + 6\tan x + 2\tan x + 0\right)}{(1 - 3\tan^2 x)} \right) \Rightarrow = \tan x + \left(\frac{8\tan x}{(1 - 3\tan^2 x)} \right) \Rightarrow = \tan x + \left(\frac{8\tan x}{(1 - 3\tan^2 x)} \right) \Rightarrow = \left(\frac{\tan x (1 - 3\tan^2 x) + 8\tan x}{(1 - 3\tan^2 x)} \right) \Rightarrow = \left(\frac{(\tan x - 3\tan^3 x) + 8\tan x}{(1 - 3\tan^2 x)} \right) \Rightarrow = \left(\frac{9\tan x - 3\tan^3 x}{(1 - 3\tan^2 x)} \right) \Rightarrow = 3 \left(\frac{3\tan x - \tan^3 x}{(1 - 3\tan^2 x)} \right)$$

 \Rightarrow = 3 tan 3x = RHS

$$\left(\operatorname{as}\tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}\right)$$

Hence proved

6. Question

Prove that:

$$\cot x + \cot \left(\frac{\pi}{3} + x\right) - \cot \left(\frac{\pi}{3} - x\right) = 3 \cot 3x$$

Answer

LHS = cot x + cot
$$\left(\frac{\pi}{3} + x\right) - cot \left(\frac{\pi}{3} - x\right)$$

$$\begin{aligned} \Rightarrow \frac{1}{\tan x} + \frac{1}{\tan\left(\frac{\pi}{3} + x\right)} - \frac{1}{\tan\left(\frac{\pi}{3} - x\right)} \\ \Rightarrow = \frac{1}{\tan x} + \left(\frac{1 - \tan x \tan \frac{\pi}{3}}{\tan \frac{\pi}{3} + \tan x}\right) - \left(\frac{1 + \tan x \tan \frac{\pi}{3}}{\tan \frac{\pi}{3} - \tan x}\right) \\ \left(\because \tan(A + B) = \left(\frac{\tan A + \tan B}{1 - \tan A \tan B}\right) \text{ and } \tan(A - B) = \left(\frac{\tan A - \tan B}{1 + \tan A \tan B}\right)\right) \\ \Rightarrow = \frac{1}{\tan x} + \left(\frac{1 - \sqrt{3} \tan x}{\sqrt{3} + \tan x}\right) - \left(\frac{1 + \sqrt{3} \tan x}{\sqrt{3} - \tan x}\right) \\ \Rightarrow = \frac{1}{\tan x} + \left(\frac{(1 - \sqrt{3} \tan x)(\sqrt{3} - \tan x) - (1 + \sqrt{3} \tan x)(\sqrt{3} + \tan x)}{(\sqrt{3} + \tan x)(\sqrt{3} - \tan x)}\right) \\ \Rightarrow \\ = \frac{1}{\tan x} + \left(\frac{(\sqrt{3} - \tan x - 3 \tan x + \sqrt{3} \tan^2 x) - (\sqrt{3} + 3 \tan x + \tan x + \sqrt{3} \tan^2 x)}{(3 - \tan^2 x)}\right) \\ \Rightarrow \\ = \frac{1}{\tan x} + \left(\frac{(0 - 4 \tan x - 4 \tan x + 0)}{(3 - \tan^2 x)}\right) \\ \Rightarrow \\ = \frac{1}{\tan x} - \left(\frac{8 \tan x}{((3 - \tan^2 x) - 8 \tan^2 x)}\right) \end{aligned}$$

$$\Rightarrow = \left(\frac{3 - 9\tan^2 x}{(3\tan x - \tan^3 x)}\right)$$
$$\Rightarrow = 3\left(\frac{1 - 3\tan^2 x}{(3\tan x - \tan^3 x)}\right)$$

$$\Rightarrow = 3 \times \frac{1}{\tan 3x}$$

$$\left(\operatorname{as}\tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}\right)$$

 \Rightarrow 3 cot 3x = RHS

Hence proved

7. Question

Prove that:

$$\cot x + \cot\left(\frac{\pi}{3} + x\right) + \cot\left(\frac{2\pi}{3} + x\right) = 3\cot 3x$$

Answer

LHS =
$$\cot x + \cot \left(\frac{\pi}{3} + x\right) + \cot \left(\frac{2\pi}{3} + x\right)$$

We know,

$$\cot\left(\frac{2\pi}{3}+x\right) = \cot\left(\pi - \left(\frac{\pi}{3}-x\right)\right) = -\cot\left(\frac{\pi}{3}-x\right) (\text{as -}\cot\theta = \cot(180^{\circ}-\theta))$$

Hence the above LHS becomes

$$\begin{aligned} &= \cot x + \cot \left(\frac{\pi}{3} + x\right) - \cot \left(\frac{\pi}{3} - x\right) \\ &\Rightarrow \frac{1}{\tan x} + \frac{1}{\tan \left(\frac{\pi}{3} + x\right)} - \frac{1}{\tan \left(\frac{\pi}{3} - x\right)} \\ &\Rightarrow = \frac{1}{\tan x} + \left(\frac{1 - \tan x \tan \frac{\pi}{3}}{1 - \tan x}\right) - \left(\frac{1 + \tan x \tan \frac{\pi}{3}}{1 - \tan x}\right) \\ &\left(\because \tan(A + B) = \left(\frac{\tan A + \tan B}{1 - \tan A \tan B}\right) \text{ and } \tan(A - B) = \left(\frac{\tan A - \tan B}{1 + \tan A \tan B}\right)\right) \\ &\Rightarrow = \frac{1}{\tan x} + \left(\frac{1 - \sqrt{3} \tan x}{\sqrt{3} + \tan x}\right) - \left(\frac{1 + \sqrt{3} \tan x}{\sqrt{3} - \tan x}\right) \\ &\Rightarrow = \frac{1}{\tan x} + \left(\frac{\left(1 - \sqrt{3} \tan x\right)\left(\sqrt{3} - \tan x\right) - \left(1 + \sqrt{3} \tan x\right)\left(\sqrt{3} + \tan x\right)\right)}{(\sqrt{3} + \tan x)(\sqrt{3} - \tan x)}\right) \end{aligned}$$

$$\Rightarrow = \frac{1}{\tan x} + \left(\frac{\left(1 - \sqrt{3} \tan x\right)\left(\sqrt{3} - \tan x\right) - \left(1 + \sqrt{3} \tan x\right)\left(\sqrt{3} + \tan x\right)}{(\sqrt{3} + \tan x)(\sqrt{3} - \tan x)}\right) \\ \Rightarrow = \frac{1}{\tan x} + \left(\frac{\left(1 - \sqrt{3} \tan x\right)\left(\sqrt{3} - \tan x\right) - \left(\sqrt{3} + 3 \tan x + \tan x + \sqrt{3} \tan^2 x\right)}{(3 - \tan^2 x)}\right) \\ \Rightarrow = \frac{1}{\tan x} + \left(\frac{\left(0 - 4 \tan x - 4 \tan x + 0\right)}{(3 - \tan^2 x)}\right) \\ \Rightarrow = \frac{1}{\tan x} - \left(\frac{8 \tan x}{((3 - \tan^2 x))}\right) \\ \Rightarrow = \left(\frac{(3 - \tan^2 x) - 8 \tan^2 x}{\tan x(3 - \tan^2 x)}\right) \\ \Rightarrow = 3\left(\frac{1 - 3 \tan^2 x}{(3 \tan x - \tan^2 x)}\right) \\ \Rightarrow = 3\left(\frac{1 - 3 \tan^2 x}{(1 - 3 \tan^2 x)}\right) \\ \Rightarrow = 3 \times \frac{1}{1 - 3 \tan^2 x} \\ \left(as \tan 3x = \frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x}\right) \\ \Rightarrow 3 \cot 3x = \text{RHS} \end{aligned}$$

Hence proved

8. Question

Prove that:

```
\sin 5x = 5 \cos^4 x \sin x - 10 \cos^2 x \sin^3 x + \sin^5 x
```

Answer

```
LHS is
```

 $\sin 5x = \sin(3x+2x)$

But we know,

sin(x+y) = sin x cos y+cos x sin y....(i)

 $\Rightarrow \sin 5x = \sin 3x \cos 2x + \cos 3x \sin 2x$

 $\Rightarrow \sin 5x = \sin (2x+x) \cos 2x + \cos (2x+x) \sin 2x \dots (ii)$

And

 $\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y).....(iii)$

Now substituting equation (i) and (iii) in equation (ii), we get

 $\Rightarrow \sin 5x = (\sin 2x \cos x + \cos 2x \sin x)(\cos 2x) + (\cos 2x \cos x - \sin 2x \sin x)(\sin 2x).....(iv)$

Now $\sin 2x = 2\sin x \cos x \dots (v)$

And $\cos 2x = \cos^2 x - \sin^2 x \dots (vi)$

Substituting equation (v) and (vi) in equation (iv), we get

```
\Rightarrow \sin 5x = [(2 \sin x \cos x)\cos x + (\cos^2 x - \sin^2 x)\sin x](\cos^2 x - \sin^2 x) + [(\cos^2 x - \sin^2 x)\cos x - (2 \sin x \cos x)\sin x)](2 \sin x \cos x)
```

```
\Rightarrow \sin 5x = [2 \sin x \cos^2 x + \sin x \cos^2 x - \sin^3 x](\cos^2 x - \sin^2 x) + [\cos^3 x - \sin^2 x \cos x - 2 \sin^2 x \cos x](2 \sin x \cos x)
```

```
\Rightarrow \sin 5x = \cos^2 x [3 \sin x \cos^2 x - \sin^3 x] - \sin^2 x [3 \sin x \cos^2 x - \sin^3 x] + 2 \sin x \cos^4 x - 2 \sin^3 x \cos^2 x - 4 \sin^3 x \cos^2 x ]
```

```
\Rightarrow \sin 5x = 3 \sin x \cos^4 x - \sin^3 x \cos^2 x - 3 \sin^3 x \cos^2 x - \sin^5 x + 2 \sin x \cos^4 x - 2 \sin^3 x \cos^2 x - 4 \sin^3 x \cos^2 x
```

```
\Rightarrow \sin 5x = 5 \sin x \cos^4 x - 10 \sin^3 x \cos^2 x + \sin^5 x
```

Hence LHS = RHS

[Hence proved]

9. Question

Prove that:

$$\sin^3 x + \sin^3 \left(\frac{2\pi}{3} + x\right) + \sin^3 \left(\frac{4\pi}{3} + x\right) = -\frac{3}{4}\sin 3x$$

Answer

```
\sin 3\theta = 3\sin \theta - 4\sin^3 \theta
```

```
⇒4 sin<sup>3</sup>θ=3sinθ-sin 3θ
```

$$\Rightarrow \sin^3 \theta = \frac{3\sin\theta - \sin 3\theta}{4} \dots (i)$$

Now,

LHS =
$$\sin^3 x + \sin^3 \left(\frac{2\pi}{3} + x\right) + \sin^3 \left(\frac{4\pi}{3} + x\right)$$

Substituting equation (i) in above LHS, we get

$$=\frac{3\sin x - \sin 3x}{4} + \frac{3\sin\left(\frac{2\pi}{3} + x\right) - \sin 3\left(\frac{2\pi}{3} + x\right)}{4} + \frac{3\sin\left(\frac{4\pi}{3} + x\right) - \sin 3\left(\frac{4\pi}{3} + x\right)}{4} \dots (ii)$$

We know,

$$\sin\left(\frac{2\pi}{3} + x\right) = \sin\left(\pi - \left(\frac{\pi}{3} - x\right)\right) = \sin\left(\frac{\pi}{3} - x\right) \dots \dots (iii) \text{ (as sin } \theta = \text{sin (180°-}\theta)\text{)}$$

Similarly,

$$\sin\left(\frac{4\pi}{3} + x\right) = \sin\left(\pi + \left(\frac{\pi}{3} - x\right)\right) = -\sin\left(\frac{\pi}{3} - x\right) \dots \dots (iv) (as - \sin\theta = \sin(180^\circ + \theta))$$

Substituting the equation (iii) and (iv) in equation (ii), we get

$$= \frac{3\sin x - \sin 3x}{4} + \frac{3\sin\left\{\pi - \left(\frac{\pi}{3} - x\right)\right\} - \sin(2\pi + 3x)}{4} + \frac{3\sin\left\{\pi + \left(\frac{\pi}{3} + x\right)\right\} - \sin(4\pi + 3x)}{4}$$
$$= \frac{1}{4} \left[3\sin x - \sin 3x + 3\sin\left\{\pi - \left(\frac{\pi}{3} - x\right)\right\} - \sin(2\pi + 3x) + 3\sin\left\{\pi + \left(\frac{\pi}{3} + x\right)\right\} - \sin(4\pi + 3x)\right]$$
$$= \frac{1}{4} \left[3\sin x - \sin 3x + 3\sin\left(\frac{\pi}{3} - x\right) - \sin(3x) - 3\sin\left(\frac{\pi}{3} + x\right) - \sin(3x)\right]$$
$$= \frac{1}{4} \left[3\sin x - 3\sin 3x + 3\left\{\sin\left(\frac{\pi}{3} - x\right) - 3\sin\left(\frac{\pi}{3} + x\right)\right\}\right]$$
$$= \frac{1}{4} \left[3\sin x - 3\sin 3x + 3\left\{\sin\left(\frac{\pi}{3} - x\right) - 3\sin\left(\frac{\pi}{3} + x\right)\right\}\right]$$

We know,

$$\left[:: \sin C - \sin D = 2\cos \frac{C+D}{2}\sin \frac{C-D}{2} \right]$$

Substituting this in the above equation, we get

$$= \frac{1}{4} \left[3 \sin x - 3 \sin 3x + 3 \left\{ 2 \cos \left(\frac{\pi}{3} - x + \frac{\pi}{3} + x \right) \sin \left(\frac{\pi}{3} - x - \frac{\pi}{3} - x \right) \right\} \right]$$
$$= \frac{3}{4} \left[\sin x - \sin 3x + 2 \left\{ \cos \left(\frac{\pi}{3} \right) \sin (-x) \right\} \right]$$
$$= \frac{3}{4} \left[\sin x - \sin 3x - 2 \left\{ \frac{1}{2} \sin x \right\} \right]$$
$$= -\frac{3}{4} \sin 3x = \text{RHS}$$

Hence proved

10. Question

Prove that:

$$\left|\sin x \sin \left(\frac{\pi}{3} - x\right) \sin \left(\frac{\pi}{3} + x\right)\right| \le \frac{1}{4} \text{ For all values of } x$$

Answer

We know

 $sin (A+B)sin (A-B)=sin^2A-sin^2B$

So the above LHS becomes,

$$\begin{vmatrix} \sin x \sin \left(\frac{\pi}{3} - x\right) \sin \left(\frac{\pi}{3} + x\right) \\ \Rightarrow \left| \sin x \left\{ \sin^2 \frac{\pi}{3} - \sin^2 x \right\} \right| \\ \Rightarrow \left| \sin x \left\{ \left(\frac{\sqrt{3}}{2}\right)^2 - \sin^2 x \right\} \right| \\ \Rightarrow \left| \sin x \left\{ \frac{3}{4} - \sin^2 x \right\} \right| \\ \Rightarrow \frac{1}{4} |3 \sin x - 4 \sin^3 x| \\ \text{But } 3 \sin x - 4 \sin^3 x = \sin 3x \end{aligned}$$

$$\Rightarrow \frac{1}{4} |\sin 3x|$$

But $|\sin \theta| \le 1$ for all values of x

Hence LHS $\leq \frac{1}{4}$

Therefore $\left|\sin x \sin \left(\frac{\pi}{3} - x\right) \sin \left(\frac{\pi}{3} + x\right)\right| \le \frac{1}{4}$ For all values of x

11. Question

Prove that:

$$\left|\cos x \cos \left(\frac{\pi}{3} - x\right) \cos \left(\frac{\pi}{3} + x\right)\right| \le \frac{1}{4} \text{ for all values of } x$$

Answer

We know

$$\cos (A+B)\cos (A-B)=\cos^2 A-\sin^2 B$$

So the above LHS becomes,

$$\begin{aligned} \left| \cos x \cos \left(\frac{\pi}{3} - x\right) \cos \left(\frac{\pi}{3} + x\right) \right| \\ \Rightarrow \left| \cos x \left\{ \cos^2 \frac{\pi}{3} - \sin^2 x \right\} \right| \\ \Rightarrow \left| \cos x \left\{ \left(\frac{1}{2}\right)^2 - \sin^2 x \right\} \right| \\ \Rightarrow \left| \cos x \left\{ \frac{1}{4} - (1 - \cos^2 x) \right\} \right| \end{aligned}$$

$$\Rightarrow \frac{1}{4} |\cos x - 4\cos x + 4\cos^3 x|$$
$$\Rightarrow \frac{1}{4} |4\cos^3 x - 3\cos x|$$

But $4\cos^3 x - 3\cos x = \cos 3x$

$$\Rightarrow \frac{1}{4} |\cos 3x|$$

But $|\cos \theta| \le 1$ for all values of x

Hence LHS $\leq \frac{1}{4}$

Therefore $\left|\cos x \cos \left(\frac{\pi}{3} - x\right) \cos \left(\frac{\pi}{3} + x\right)\right| \le \frac{1}{4}$ For all values of x

Exercise 9.3

1. Question

Prove that:

$$\sin^2 \frac{2\pi}{5} - \sin^2 \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}$$

Answer

LHS = $\sin^2 \frac{2\pi}{5} - \sin^2 \frac{\pi}{3}$ = $\sin^2 \left(\frac{\pi}{2} - \frac{\pi}{10}\right) - \sin^2 \frac{\pi}{3}$

But sin $(90^{\circ}-\theta)=\cos\theta$

Then the above equation becomes,

 $=\cos^2\left(\frac{\pi}{10}\right)-\left(\frac{\sqrt{3}}{2}\right)^2$

And $\because \cos\frac{\pi}{10} = \frac{\sqrt{10+2\sqrt{5}}}{4}$

Hence the above equation becomes,

$$= \left(\frac{\sqrt{10 + 2\sqrt{5}}}{4}\right)^2 - \frac{3}{4}$$
$$= \frac{10 + 2\sqrt{5}}{16} - \frac{3}{4}$$
$$= \frac{10 + 2\sqrt{5} - 12}{16}$$
$$= \frac{2\sqrt{5} - 2}{16}$$
$$= \frac{\sqrt{5} - 1}{8} = \text{RHS}$$

Hence proved

2. Question

Prove that:

$$\sin^2 24^\circ - \sin^2 6^\circ = \frac{\sqrt{5} - 1}{8}$$

Answer

 $LHS = sin^2 24^\circ - sin^2 6^\circ$

But sin (A+B)sin(A-B)= sin^2A-sin^2B

Then the above equation becomes,

$$= \sin(24^{\circ} + 6^{\circ}) - \sin(24^{\circ} - 6^{\circ})$$

 $= \sin(30^\circ) - \sin(18^\circ)$

And $:: \sin(18^\circ) = \frac{\sqrt{5}-1}{4}$

Hence the above equation becomes,

$$=\frac{1}{2} \times \frac{\sqrt{5}-1}{4}$$
$$\frac{\sqrt{5}-1}{8} = \text{RHS}$$

_

Hence proved

3. Question

Prove that:

$$\sin^2 42^\circ - \cos^2 78^\circ = \frac{\sqrt{5} + 1}{8}$$

Answer

LHS =
$$\sin^2 42^\circ - \cos^2 78^\circ$$

 $\Rightarrow = \sin^2(90^\circ - 48^\circ) - \cos^2(90^\circ - 12^\circ)$
 $= \cos^2 48^\circ - \sin^2 12^\circ (\because \sin(90 - \theta) = \cos\theta \text{ and } \cos(90 - \theta) = \sin\theta)$
But $\cos (A+B)\cos(A-B)=\cos^2 A-\sin^2 B$
Then the above equation becomes,
 $= \cos(48^\circ + 12^\circ)\cos(48^\circ - 12^\circ)$
 $= \cos(60^\circ)\cos(36^\circ)$

And $:: \cos(36^\circ) = \frac{\sqrt{5}+1}{4}$

Hence the above equation becomes,

$$=\frac{1}{2} \times \frac{\sqrt{5}+1}{4}$$
$$=\frac{\sqrt{5}+1}{8} = \text{RHS}$$

Hence proved

4. Question

Prove that:

 $\cos 78^\circ \cos 42^\circ \cos 36^\circ = \frac{1}{8}$

Answer

 $LHS = \cos 78^\circ \cos 42^\circ \cos 36^\circ$

Multiply and divide by 2, we get

$$=\frac{1}{2}(2\cos 78^\circ\cos 42^\circ\cos 36^\circ)$$

But $2\cos A \cos B = \cos(A+B) + \cos(A-B)$

Then the above equation becomes,

$$= \frac{1}{2} (\cos(78^\circ + 42^\circ) + \cos(78^\circ - 42^\circ)) \times \cos 36^\circ$$
$$= \frac{1}{2} (\cos 120^\circ + \cos 36^\circ) \cos 36^\circ$$
$$= \frac{1}{2} (\cos(180^\circ - 60^\circ) + \cos 36^\circ) \cos 36^\circ$$

But $\cos(180^{\circ}-\theta) = -\cos \theta$

So the above equation becomes,

$$=\frac{1}{2}(-\cos(60^\circ)+\cos 36^\circ)\cos 36^\circ$$

And $:: \cos(36^\circ) = \frac{\sqrt{5}+1}{4}$

Hence the above equation becomes,

$$= \frac{1}{2} \left(-\frac{1}{2} + \frac{\sqrt{5} + 1}{4} \right) \left(\frac{\sqrt{5} + 1}{4} \right)$$
$$= \frac{1}{2} \left(\frac{\sqrt{5} + 1 - 2}{4} \right) \left(\frac{\sqrt{5} + 1}{4} \right)$$
$$= \frac{1}{2} \left(\frac{\sqrt{5} - 1}{4} \right) \left(\frac{\sqrt{5} + 1}{4} \right)$$
$$= \frac{1}{2} \left(\frac{\left(\sqrt{5} \right)^2 - 1^2}{16} \right)$$
$$= \frac{1}{2} \left(\frac{5 - 1}{16} \right)$$
$$= \frac{1}{2} \left(\frac{4}{16} \right)$$
$$= \frac{1}{8} = \text{RHS}$$

Hence proved

5. Question

Prove that:

$$\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}$$

Answer

$$LHS = \cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15}$$

Multiply and divide by $2\sin\frac{\pi}{15}$, we get

$$=\frac{\left(2\sin\frac{\pi}{15}\cos\frac{\pi}{15}\right)\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15}}{2\sin\frac{\pi}{15}}$$

But $2\sin A \cos A = \sin 2A$

Then the above equation becomes,

$$=\frac{\left(\sin\frac{2\pi}{15}\right)\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15}}{2\sin\frac{\pi}{15}}$$

Multiply and divide by 2, we get

$$=\frac{\left(2\sin\frac{2\pi}{15}\cos\frac{2\pi}{15}\right)\cos\frac{4\pi}{15}\cos\frac{7\pi}{15}}{2\times2\sin\frac{\pi}{15}}$$

But $2\sin A \cos A = \sin 2A$

Then the above equation becomes,

$$=\frac{\left(\sin\frac{4\pi}{15}\right)\cos\frac{4\pi}{15}\cos\frac{7\pi}{15}}{4\sin\frac{\pi}{15}}$$

Multiply and divide by 2, we get

$$=\frac{\left(2\sin\frac{4\pi}{15}\cos\frac{4\pi}{15}\right)\cos\frac{7\pi}{15}}{2\times4\sin\frac{\pi}{15}}$$

But $2\sin A \cos A = \sin 2A$

Then the above equation becomes,

$$=\frac{\left(\sin\frac{8\pi}{15}\right)\cos\frac{7\pi}{15}}{8\sin\frac{\pi}{15}}$$

Multiply and divide by 2, we get

$$=\frac{\left(2\sin\frac{8\pi}{15}\cos\frac{7\pi}{15}\right)}{2\times8\sin\frac{\pi}{15}}$$

But $2\sin A \cos B = \sin (A+B) + \sin(A-B)$, so the above equation becomes,

$$= \frac{\sin\left(\frac{8\pi}{15} + \frac{7\pi}{15}\right) + \sin\left(\frac{8\pi}{15} - \frac{7\pi}{15}\right)}{16\sin\frac{\pi}{15}}$$
$$= \frac{\sin(\pi) + \sin\left(\frac{\pi}{15}\right)}{16\sin\frac{\pi}{15}}$$
$$= \frac{0 + \sin\left(\frac{\pi}{15}\right)}{16\sin\frac{\pi}{15}}$$
$$= \frac{\sin\left(\frac{\pi}{15}\right)}{16\sin\frac{\pi}{15}}$$
$$= \frac{1}{16} = \text{RHS}$$

Hence proved

6. Question

Prove that:

$$\cos 6^{\circ} \cos 42^{\circ} \cos 66^{\circ} \cos 78^{\circ} = \frac{1}{16}$$

Answer

 $LHS = \cos 6^{\circ} \cos 42^{\circ} \cos 66^{\circ} \cos 78^{\circ}$

By regrouping the LHS and multiplying and dividing by 4 we get,

 $=\frac{1}{4}(2\cos 66^{\circ}\cos 6^{\circ})(2\cos 78^{\circ}\cos 42^{\circ})$

But $2\cos A \cos B = \cos (A+B) + \cos (A-B)$

Then the above equation becomes,

$$= \frac{1}{4} (\cos(66^\circ + 6^\circ) + \cos(66^\circ - 6^\circ))(\cos(78^\circ + 42^\circ) + \cos(78^\circ - 42^\circ))$$
$$= \frac{1}{4} (\cos(72^\circ) + \cos(60^\circ))(\cos(120^\circ) + \cos(36^\circ))$$
$$= \frac{1}{4} (\cos(90^\circ - 18^\circ) + \cos(60^\circ))(\cos(180^\circ - 60^\circ) + \cos(36^\circ))$$
But $\cos(90^\circ - \theta) = \sin \theta$ and $\cos(180^\circ - \theta) = -\cos(\theta)$.

Then the above equation becomes,

$$= \frac{1}{4} (\sin(18^\circ) + \cos(60^\circ))(-\cos(60^\circ) + \cos(36^\circ))$$

Now, $\cos(36^\circ) = \frac{\sqrt{5}+1}{4}$
 $\sin(18^\circ) = \frac{\sqrt{5}-1}{4}$
 $\cos(60^\circ) = \frac{1}{2}$

Substituting the corresponding values, we get

$$= \frac{1}{4} \left(\frac{\sqrt{5} - 1}{4} + \frac{1}{2} \right) \left(-\frac{1}{2} + \frac{\sqrt{5} + 1}{4} \right)$$
$$= \frac{1}{4} \left(\frac{\sqrt{5} - 1 + 2}{4} \right) \left(\frac{\sqrt{5} + 1 - 2}{4} \right)$$
$$= \frac{1}{4} \left(\frac{\sqrt{5} + 1}{4} \right) \left(\frac{\sqrt{5} - 1}{4} \right)$$
$$= \frac{1}{4} \left(\frac{\left(\sqrt{5} \right)^2 - 1^2}{4 \times 4} \right)$$
$$= \frac{1}{4} \left(\frac{4}{16} \right)$$
$$= \frac{1}{16} = \text{RHS}$$

Hence proved

7. Question

Prove that:

 $\sin 6^{\circ} \sin 42^{\circ} \sin 66^{\circ} \sin 78^{\circ} = \frac{1}{16}$

Answer

 $LHS = \sin 6^\circ \sin 42^\circ \sin 66^\circ \sin 78^\circ$

By regrouping the LHS and multiplying and dividing by 4 we get,

$$=\frac{1}{4}(2\sin 66^{\circ}\sin 6^{\circ})(2\sin 78^{\circ}\sin 42^{\circ})$$

But $2\sin A \sin B = \cos (A-B) - \cos (A+B)$

Then the above equation becomes,

$$= \frac{1}{4} (\cos(66^\circ - 6^\circ) - \cos(66^\circ + 6^\circ))(\cos(78^\circ - 42^\circ) - \cos(78^\circ + 42^\circ))$$
$$= \frac{1}{4} (\cos(60^\circ) - \cos(72^\circ))(\cos(36^\circ) - \cos(120^\circ))$$
$$= \frac{1}{4} (\cos(60^\circ) - \cos(90^\circ - 18^\circ))(\cos(36^\circ) - \cos(180^\circ - 60^\circ))$$

But $cos(90^{\circ}-\theta)=sin \theta$ and $cos(180^{\circ}-\theta)=-cos(\theta)$.

Then the above equation becomes,

$$= \frac{1}{4} (\cos(60^\circ) - \sin(18^\circ))(\cos(36^\circ) + \cos(60^\circ))$$

Now, $\cos(36^\circ) = \frac{\sqrt{5}+1}{4}$
 $\sin(18^\circ) = \frac{\sqrt{5}-1}{4}$

 $\cos(60^\circ) = \frac{1}{2}$

Substituting the corresponding values, we get

$$= \frac{1}{4} \left(\frac{1}{2} - \frac{\sqrt{5} - 1}{4} \right) \left(\frac{\sqrt{5} + 1}{4} + \frac{1}{2} \right)$$
$$= \frac{1}{4} \left(\frac{2 - \sqrt{5} + 1}{4} \right) \left(\frac{\sqrt{5} + 1 + 2}{4} \right)$$
$$= \frac{1}{4} \left(\frac{3 - \sqrt{5}}{4} \right) \left(\frac{3 + \sqrt{5}}{4} \right)$$
$$= \frac{1}{4} \left(\frac{3^2 - (\sqrt{5})^2}{4 \times 4} \right)$$
$$= \frac{1}{4} \left(\frac{9 - 5}{16} \right)$$
$$= \frac{1}{16} = \text{RHS}$$

Hence proved

8. Question

Prove that:

 $\cos 36^{\circ} \cos 42^{\circ} \cos 60^{\circ} \cos 78^{\circ} = \frac{1}{16}$

Answer

 $LHS = \cos 36^\circ \cos 42^\circ \cos 60^\circ \cos 78^\circ$

By regrouping the LHS and multiplying and dividing by 2 we get,

$$=\frac{1}{2}\cos 36^{\circ}\cos 60^{\circ}(2\cos 78^{\circ}\cos 42^{\circ})$$

But $2\cos A \cos B = \cos (A+B) + \cos (A-B)$

Then the above equation becomes,

$$= \frac{1}{2}\cos 36^{\circ}\cos 60^{\circ}(\cos(78^{\circ} + 42^{\circ}) + \cos(78^{\circ} - 42^{\circ}))$$
$$= \frac{1}{2}\cos 36^{\circ}\cos 60^{\circ}(\cos(120^{\circ}) + \cos(36^{\circ}))$$
$$= \frac{1}{2}\cos 36^{\circ}\cos 60^{\circ}(\cos(180^{\circ} - 60^{\circ}) + \cos(36^{\circ}))$$
But $\cos(00^{\circ} - 60^{\circ}) + \cos(36^{\circ}))$

But $cos(90^{\circ}-\theta)=sin \ \theta$ and $cos(180^{\circ}-\theta)=-cos(\theta)$.

Then the above equation becomes,

$$= \frac{1}{2}\cos 36^{\circ}\cos 60^{\circ}(-\cos(60^{\circ}) + \cos(36^{\circ}))$$

Now, $\cos(36^{\circ}) = \frac{\sqrt{5}+1}{4}$
$\cos(60^\circ) = \frac{1}{2}$

Substituting the corresponding values, we get

$$= \frac{1}{2} \left(\frac{\sqrt{5}+1}{4} \right) \left(\frac{1}{2} \right) \left(-\frac{1}{2} + \frac{\sqrt{5}+1}{4} \right)$$
$$= \left(\frac{\sqrt{5}+1}{16} \right) \left(\frac{\sqrt{5}+1-2}{4} \right)$$
$$= \left(\frac{\left(\sqrt{5} \right)^2 - 1^2}{16 \times 4} \right)$$
$$= \left(\frac{5-1}{64} \right)$$
$$= \frac{1}{16} = \text{RHS}$$

Hence proved

9. Question

Prove that:

 $\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}$

Answer

 $LHS=sin\frac{\pi}{5}sin\frac{2\pi}{5}sin\frac{3\pi}{5}sin\frac{4\pi}{5}$

This can be rewritten as,

$$=\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\left(\pi-\frac{2\pi}{5}\right)\sin\left(\pi-\frac{\pi}{5}\right)$$

But $sin(\pi - \theta) = sin \theta$ so the above equation becomes,

$$= \sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\left(\frac{2\pi}{5}\right)\sin\left(\frac{\pi}{5}\right)$$
$$= \sin^2\frac{\pi}{5}\sin^2\frac{2\pi}{5}$$

This can be rewritten as,

$$=\sin^2\frac{\pi}{5}\sin^2\left(\frac{\pi}{2}-\frac{\pi}{10}\right)$$

But sin $(90^{\circ}-\theta)=\cos\theta$

Then the above equation becomes,

$$=\sin^2\frac{\pi}{5}\cos^2\left(\frac{\pi}{10}\right)$$

Now,

$$\because \cos\frac{\pi}{10} = \frac{\sqrt{10 + 2\sqrt{5}}}{4}, \sin\frac{\pi}{5} = \frac{\sqrt{10 - 2\sqrt{5}}}{4}$$

Hence the above equation becomes,

$$= \left(\frac{\sqrt{10 - 2\sqrt{5}}}{4}\right)^{2} \left(\frac{\sqrt{10 + 2\sqrt{5}}}{4}\right)^{2}$$
$$= \left(\frac{10 - 2\sqrt{5}}{16}\right) \left(\frac{10 + 2\sqrt{5}}{16}\right)$$
$$= \left(\frac{(10)^{2} - (2\sqrt{5})^{2}}{16 \times 16}\right)$$
$$= \left(\frac{100 - 20}{16 \times 16}\right)$$
$$= \left(\frac{80}{16 \times 16}\right)$$
$$= \frac{5}{16} = \text{RHS}$$

Hence proved

10. Question

Prove that:

$$\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{3\pi}{15}\cos\frac{4\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{128}$$

Answer

 $LHS = \cos\frac{\pi}{15} \cos\frac{2\pi}{15} \cos\frac{3\pi}{15} \cos\frac{4\pi}{15} \cos\frac{5\pi}{15} \cos\frac{6\pi}{15} \cos\frac{7\pi}{15}$

Multiply and divide by $2\sin\frac{\pi}{15}$, we get

$$=\frac{\left(2\sin\frac{\pi}{15}\cos\frac{\pi}{15}\right)\cos\frac{2\pi}{15}\cos\frac{3\pi}{15}\cos\frac{4\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15}}{2\sin\frac{\pi}{15}}$$

But $2\sin A \cos A = \sin 2A$

Then the above equation becomes,

$$=\frac{\left(\sin\frac{2\pi}{15}\right)\cos\frac{2\pi}{15}\cos\frac{3\pi}{15}\cos\frac{4\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15}}{2\sin\frac{\pi}{15}}$$

Multiply and divide by 2, we get

$$=\frac{\left(2\sin\frac{2\pi}{15}\cos\frac{2\pi}{15}\right)\cos\frac{3\pi}{15}\cos\frac{4\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15}}{2\times2\sin\frac{\pi}{15}}$$

But $2\sin A \cos A = \sin 2A$

Then the above equation becomes,

$$=\frac{\left(\sin\frac{4\pi}{15}\right)\cos\frac{4\pi}{15}\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15}}{4\sin\frac{\pi}{15}}$$

Multiply and divide by 2, we get

$$=\frac{\left(2\sin\frac{4\pi}{15}\cos\frac{4\pi}{15}\right)\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15}}{2\times4\sin\frac{\pi}{15}}$$

But $2\sin A \cos A = \sin 2A$

Then the above equation becomes,

$$=\frac{\left(\sin\frac{8\pi}{15}\right)\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15}}{8\sin\frac{\pi}{15}}$$

Multiply and divide by 2, we get

_

$$=\frac{\left(2\sin\frac{8\pi}{15}\cos\frac{7\pi}{15}\right)\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}}{2\times8\sin\frac{\pi}{15}}$$

But $2\sin A \cos B = \sin (A+B) + \sin(A-B)$, so the above equation becomes,

_

$$= \frac{\left(\sin\left(\frac{8\pi}{15} + \frac{7\pi}{15}\right) + \sin\left(\frac{8\pi}{15} - \frac{7\pi}{15}\right)\right)\left(\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\right)}{16\sin\frac{\pi}{15}}$$
$$= \frac{\left(\sin(\pi) + \sin\left(\frac{\pi}{15}\right)\right)\left(\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\right)}{16\sin\frac{\pi}{15}}$$
$$= \frac{\left(0 + \sin\left(\frac{\pi}{15}\right)\right)\left(\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\right)}{16\sin\frac{\pi}{15}}$$
$$= \frac{\sin\left(\frac{\pi}{15}\right)\left(\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\right)}{16\sin\frac{\pi}{15}}$$

_

_

Multiply and divide by $2\sin\frac{3\pi}{15}$, we get

$$=\frac{\left(2\sin\frac{3\pi}{15}\cos\frac{3\pi}{15}\right)\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}}{16\times2\sin\frac{3\pi}{15}}$$

But $2\sin A \cos A = \sin 2A$

Then the above equation becomes,

$$=\frac{\left(\sin\frac{6\pi}{15}\right)\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}}{32\sin\frac{3\pi}{15}}$$

Multiply and divide by 2, we get

$$=\frac{\left(2\sin\frac{6\pi}{15}\cos\frac{6\pi}{15}\right)\cos\frac{5\pi}{15}}{2\times32\sin\frac{3\pi}{15}}$$

But $2\sin A \cos A = \sin 2A$

Then the above equation becomes,

$$= \frac{\left(\sin\frac{12\pi}{15}\right)\cos\frac{5\pi}{15}}{64\sin\frac{3\pi}{15}}$$
$$= \frac{\left(\sin\left(\pi - \frac{3\pi}{15}\right)\right)\left(\cos\frac{5\pi}{15}\right)}{64\sin\frac{3\pi}{15}}$$
$$= \frac{\left(\frac{\sin\left(\frac{3\pi}{15}\right)\right)\left(\cos\frac{5\pi}{15}\right)}{64\sin\frac{3\pi}{15}} (\because \sin(\pi - \theta) = \sin\theta)$$
$$= \frac{\cos\frac{\pi}{3}}{64}$$
$$= \frac{\frac{1}{2}}{\frac{1}{264}}$$
$$= \frac{1}{128} = \text{RHS}$$

Hence proved

Very Short Answer

1. Question

If $\cos 4x = 1 + k \sin^2 x \cos^2 x$, then write the value of k.

Answer

```
Given equation is
\cos 4x = 1 + k \sin^2 x \cos^2 x
Now consider the LHS of the equation,
\cos 4x = 2\cos^2 2x - 1
[Formula for Cos 2x = 2\cos^2 x - 1]
= 2[2\cos^2 x - 1]^2 - 1
= 2[(2\cos^2 x)^2 - 2 \times (2\cos^2 x) \times (1) + (1)^2] - 1
[Applying (a-b)^2 = a^2 - 2ab + b^2 \text{ formula}]
= 2[4\cos^4 x - 4\cos^2 x + 1] - 1
= 8 \cos^4 x - 8 \cos^2 x + 2 - 1
= 8\cos^2 x (\cos^2 x - 1) + 1
= 8\cos^2 x (-\sin^2 x) + 1
= -8\cos^2 x \sin^2 x + 1
Now as per the LHS \cos 4x = -8\cos^2 x \sin^2 x + 1 ------ (1)
Comparing LHS with the RHS,
\cos 4x = 1 - 8\cos^2 x \sin^2 x = 1 + k \sin^2 x \cos^2 x
by comparing we get k = -8
```

2. Question

If
$$\tan \frac{x}{2} = \frac{m}{n}$$
, then write the value of m sin x + n cos x.

Answer

Given,

$$\tan \frac{x}{y} = \frac{m}{n}$$

We need to find the value of m sin $x + n \cos x$

Now consider

$$m \sin x + n \cos x = m \left[\frac{2 \tan \frac{x}{y}}{1 + \tan^2 \frac{x}{y}} \right] + n \left[\frac{1 - \tan^2 \frac{x}{y}}{1 + \tan^2 \frac{x}{y}} \right]$$

[using the formulas sin $2x \& \cos 2x$ in terms of tan x

$$\sin 2x = \frac{2 \tan x}{1 + \tan^2 x} \text{ and } \cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}]$$
$$= m \left[\frac{2 \left(\frac{m}{n}\right)}{1 + \left(\frac{m}{n}\right)^2} \right] + n \left[\frac{1 - \left(\frac{m}{n}\right)^2}{1 + \left(\frac{m}{n}\right)^2} \right]$$

[Substituting tan $\frac{x}{y}=~\frac{m}{n}$]

$$= m \left[\frac{2\left(\frac{m}{n}\right)}{\frac{n^{2} + m^{2}}{n^{2}}} \right] + n \left[\frac{\frac{n^{2} - m^{2}}{n^{2}}}{\frac{n^{2} + m^{2}}{n^{2}}} \right]$$
$$= m \left[\frac{2mn}{n^{2} + m^{2}} \right] + n \left[\frac{n^{2} - m^{2}}{n^{2} + m^{2}} \right]$$
$$= \left[\frac{2m^{2}n}{n^{2} + m^{2}} \right] + \left[\frac{n^{3} - m^{2}n}{n^{2} + m^{2}} \right]$$
$$= \left[\frac{2m^{2}n + n^{3} - m^{2}n}{n^{2} + m^{2}} \right]$$
$$= \left[\frac{m^{2}n + n^{3}}{n^{2} + m^{2}} \right]$$
$$= \left[\frac{n(m^{2} + n^{2})}{m^{2} + n^{2}} \right]$$
$$= n$$

Hence the value of m sin $x + n \cos x = n$.

3. Question

If
$$\frac{\pi}{2} < x < \frac{3\pi}{2}$$
, then write the value of $\sqrt{\frac{1 + \cos 2x}{2}}$.

Answer

Given $\frac{\pi}{2} < \chi < \frac{3\pi}{2}$ then the value of

$$\sqrt{\frac{1+\cos 2x}{2}} = \sqrt{\frac{1+(\cos^2 x - \sin^2 x)}{2}}$$
$$= \sqrt{\frac{\cos^2 x + (1-\sin^2 x)}{2}}$$
$$= \sqrt{\frac{\cos^2 x + \cos^2 x}{2}}$$
$$= \sqrt{\frac{2\cos^2 x}{2}}$$
$$= \sqrt{\frac{2\cos^2 x}{2}}$$
$$= \pm \cos x$$
Hence
$$\sqrt{1+\cos 2x}$$

$$\sqrt{\frac{1+\cos 2x}{2}} = \pm \cos x$$

But as given, $\frac{\pi}{2} < x < \frac{3\pi}{2}$

This states that, $90^{\circ} < x < 270^{\circ}$, which means x lies between 2^{nd} and 3^{rd} quadrants.

In the 2nd and 3rd quadrants, the cosine function is negative, so the value of

$$\sqrt{\frac{1+\cos 2x}{2}} = -\cos x$$

4. Question

If $\frac{\pi}{2} < x < \pi$, then write the value of $\sqrt{2 + \sqrt{2 + 2\cos 2x}}$ in the simplest form.

Answer

Given, $\frac{\pi}{2} < x < \Pi$

To find the value of $\sqrt{2 + \sqrt{2 + 2 \cos 2x}}$

$$= \sqrt{2 + \sqrt{2 (1 + \cos 2x)}}$$

[using the formula $\cos 2x = 2\cos^2 x - 1$]

$$= \sqrt{2 + \sqrt{2 (1 + 1 - 2 \cos^2 x - 1)}}$$
$$= \sqrt{2 + \sqrt{2 (2 \cos^2 x)}}$$
$$= \sqrt{2 + \sqrt{4 \cos^2 x}}$$

[using the formula cos $2x = 2\cos^2 x - 1$, here $2x = \theta$ so $x = \frac{\theta}{2}$]

 $=\sqrt{2+2\cos x}$

$$= \sqrt{2 + 2 \left[2 \cos^2\left(\frac{x}{2}\right) - 1\right]}$$
$$= \sqrt{2 + 4 \cos^2\left(\frac{x}{2}\right) - 2}$$
$$= \sqrt{4 \cos^2\left(\frac{x}{2}\right)}$$
$$= \pm 2 \cos\left(\frac{x}{2}\right)$$
As given, $\frac{\pi}{2} < x < \Pi$ now by dividing the whole

As given, $\frac{\pi}{2} < x < \Pi$ now by dividing the whole inequation with 2 we get, $\frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2}$. This clearly state that $\frac{x}{2}$ lies in the 1st quadrant and between 45° and 90°.

So
$$\sqrt{2 + \sqrt{2 + 2\cos 2x}} = 2\cos\left(\frac{x}{2}\right)$$

5. Question

If
$$\frac{\pi}{2} < x < \pi$$
, then write the value of $\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}$

Answer

Given, for
$$\frac{\pi}{2} < x < \pi$$
 the value of $\sqrt{\frac{1-\cos 2x}{1+\cos 2x}}$

Consider,

$$\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \sqrt{\frac{1 - (\cos^2 x - \sin^2 x)}{1 + (\cos^2 x - \sin^2 x)}}$$

[by using the formula $\cos 2x = \cos^2 x - \sin^2 x$]

$$= \sqrt{\frac{(1 - \cos^2 x) + \sin^2 x}{(1 - \sin^2 x) + \cos^2 x}}$$
$$= \sqrt{\frac{\sin^2 x + \sin^2 x}{\cos^2 x + \cos^2 x}}$$

[by using the formula $\cos^2 x + \sin^2 x = 1$]

$$= \sqrt{\frac{2\sin^2 x}{2\cos^2 x}}$$

 $= \sqrt{\tan^2 x}$

$$= \pm \tan x$$

As already mentioned in the question, $\frac{\pi}{2} < x < \pi$, x is in the 2nd quadrant, where tangent function is negative.

Therefore,
$$\sqrt{\frac{1-\cos 2x}{1+\cos 2x}} = -\tan x$$

6. Question

If
$$\pi < x < \frac{2\pi}{2}$$
, then write the value of $\sqrt{\frac{1-\cos 2x}{1+\cos 2x}}$.

Answer

Given, for
$$\pi < x < \frac{3\pi}{2}$$
 the value of $\sqrt{\frac{1-\cos 2x}{1+\cos 2x}}$

Consider,

$$\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \sqrt{\frac{1 - (\cos^2 x - \sin^2 x)}{1 + (\cos^2 x - \sin^2 x)}}$$

[by using the formula $\cos 2x = \cos^2 x - \sin^2 x$]

$$= \sqrt{\frac{(1 - \cos^2 x) + \sin^2 x}{(1 - \sin^2 x) + \cos^2 x}}$$
$$= \sqrt{\frac{\sin^2 x + \sin^2 x}{\cos^2 x + \cos^2 x}}$$

[by using the formula $\cos^2 x + \sin^2 x = 1$]

$$= \sqrt{\frac{2 \sin^2 x}{2 \cos^2 x}}$$
$$= \sqrt{\tan^2 x}$$
$$= \pm \tan x$$

As already mentioned in the question, $\pi < x < \frac{3\pi}{2}$, x is in the 3rd quadrant, where tangent function is positive.

Therefore, $\sqrt{\frac{1-\cos 2x}{1+\cos 2x}} = \tan x$

7. Question

In a right-angled triangle ABC, write the value of $\sin^2 A + \sin^2 B + \sin^2 C$.

Answer

Given, triangle ABC is right angle.

So, let $\angle B = 90^{\circ}$

Then as per the property of angles in a triangle

 $\angle A + \angle B + \angle C = 180^{\circ}$ As $\angle B = 90^{\circ}$ $\angle A + 90^{\circ} + \angle C = 180^{\circ}$ Then $\angle A + \angle C = 180^{\circ} - 90^{\circ} = 90^{\circ}$ Now, consider sin ²A + sin ²B + sin ²C
As $\angle B = 90^{\circ}$ sin²A + sin²B + sin²C = sin²A + sin²(90^{\circ}) + sin²C $= sin^{2}A + 1 + sin^{2}C$

From before, we know that $\angle A + \angle C = 90^\circ$; $\angle C = 90^\circ - \angle A$ $\sin^2 A + \sin^2 B + \sin^2 C = \sin^2 A + 1 + \sin^2 (90^\circ - A)$ $= \sin^2 A + \cos^2 (A) + 1$ [by using the identity $\cos x = \sin (90^\circ - x)$] $\sin^2 A + \sin^2 B + \sin^2 C = (\sin^2 A + \cos^2 A) + 1$ = 1 + 1= 2

[by using the identity $\sin^2\theta + \cos^2\theta = 1$]

Therefore, $\sin^2 A + \sin^2 B + \sin^2 C = 2$.

8. Question

Write the value of $\cos^2 76^\circ + \cos^2 16^\circ - \cos 76^\circ \cos 16^\circ$.

Answer

Given to find the value for,

 $\cos^2 76^\circ + \cos^2 16^\circ - \cos 76^\circ \cos 16^\circ$

In the above expression consider $\cos 76^{\circ} \cos 16^{\circ}$

[By using the trigonometric sum formula, we can say that,

 $\cos(C+D) + \cos(C-D) = 2 \cos C \cos D$

Now multiply and divide this with 2, we get

 $\frac{\frac{2 \times (\cos 76^{\circ} \cos 16^{\circ})}{2}}{\frac{\cos 92^{\circ} + \cos 60^{\circ}}{2}} = \frac{\frac{\cos(76^{\circ} + 16^{\circ}) + \cos(76^{\circ} - 16^{\circ})}{2}}{2}$

Consider the full expression,

$$\cos^{2}76^{\circ} + \cos^{2}16^{\circ} - \cos 76^{\circ} \cos 16^{\circ}$$
$$= \cos^{2}76^{\circ} + \cos^{2}16^{\circ} - \left(\frac{\cos 92^{\circ} + \cos 60^{\circ}}{2}\right)$$
$$= \cos^{2}76^{\circ} + \cos^{2}16^{\circ} - \left(\frac{\cos 92^{\circ} + \cos 60^{\circ}}{2}\right)$$

Multiplying and dividing the terms $\cos^2 76^\circ + \cos^2 16^\circ$ with 2

$$= \frac{2\cos^2 76^\circ}{2} + \frac{2\cos^2 16^\circ}{2} - \left(\frac{\cos 92^\circ + \cos 60^\circ}{2}\right)$$
$$= \frac{1}{2}\left[\cos 2(76) + 1\right] + \frac{1}{2}\left[\cos 2(16) + 1\right] - \left(\frac{\cos 92^\circ + \cos 60^\circ}{2}\right)$$

[by using the formula, $\cos 2\theta = 2\cos^2\theta - 1$ $2\cos^2\theta = \cos 2\theta + 1$]

$$= \frac{1}{2} \left[2 + (\cos 152^{\circ} + \cos 32^{\circ}) \right] - \left(\frac{\cos 92^{\circ} + \cos 60^{\circ}}{2} \right)$$

[by using the formula, $\cos A + \cos B = 2 \cos \left(\frac{A+B}{2} \right) \cos \left(\frac{A-B}{2} \right) \right]$
$$= 1 + \frac{1}{2} \left[2 \cos \left(\frac{152^{\circ} + 32^{\circ}}{2} \right) \cos \left(\frac{152^{\circ} - 32^{\circ}}{2} \right) \right] - \left(\frac{\cos 92^{\circ} + \cos 60^{\circ}}{2} \right)$$

$$= 1 + \frac{1}{2} \left[2\cos\left(\frac{184^{\circ}}{2}\right) \cos\left(\frac{120^{\circ}}{2}\right) \right] - \left(\frac{\cos 92^{\circ} + \cos 60^{\circ}}{2}\right)$$
$$= 1 + \frac{1}{2} \left[2\cos(92^{\circ}) \cos(60^{\circ}) \right] - \left(\frac{\cos 92^{\circ} + \cos 60^{\circ}}{2}\right)$$
$$= 1 + \frac{\cos 92^{\circ}}{2} - \frac{\cos 92^{\circ}}{2} - \frac{\frac{1}{2}}{2}$$
$$= 1 - \frac{1}{4} = \frac{3}{4}$$

Hence, $\cos^2 76^\circ + \cos^2 16^\circ - \cos 76^\circ \cos 16^\circ = \frac{3}{\pi}$

9. Question

If
$$\frac{\pi}{4} < x < \frac{\pi}{2}$$
, then write the value of $\sqrt{1 - \sin 2x}$.

Answer

Given, $\frac{\pi}{4} < x < \frac{\pi}{2}$

We should find the value for $\sqrt{1-\sin 2x}$

$$\sqrt{1 - \sin 2x} = \sqrt{(\sin^2 x + \cos^2 x) - 2 \sin x \cos x}$$

[by using the formulae, $\sin^2\theta + \cos^2\theta = 1$ and $\sin^2\theta = 2 \sin\theta\cos\theta$]

$$\sqrt{1 - \sin 2x} = \sqrt{(\sin^2 x - \cos^2 x)^2}$$
$$= \sqrt{(\sin x - \cos x)^2}$$
$$= \pm (\sin x - \cos x)$$

As already mentioned in the question, $\frac{\pi}{4} < x < \frac{\pi}{2}$, so x lies in the 1st quadrant and both sine and cosine functions are positive.

Therefore, $\sqrt{1 - \sin 2x} = \sin x + \cos x$

10. Question

Write the value of $\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7}$.

Answer

Given expression is $\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7}$

[by using $\sin 2\theta = 2 \sin \theta \cos \theta \Leftrightarrow \cos \theta = \frac{\sin 2\theta}{2 \sin \theta}$]

$$\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7} = \left(\frac{\sin 2\left(\frac{\pi}{7}\right)}{2\sin\left(\frac{\pi}{7}\right)}\right) \left(\frac{\sin 2\left(\frac{2\pi}{7}\right)}{2\sin\left(\frac{2\pi}{7}\right)}\right) \left(\frac{\sin 2\left(\frac{4\pi}{7}\right)}{2\sin\left(\frac{4\pi}{7}\right)}\right)$$
$$= \left(\frac{\sin 2\left(\frac{\pi}{7}\right)}{2\sin\left(\frac{\pi}{7}\right)}\right) \left(\frac{\sin 2\left(\frac{2\pi}{7}\right)}{2\sin\left(\frac{2\pi}{7}\right)}\right) \left(\frac{\sin 2\left(\frac{4\pi}{7}\right)}{2\sin\left(\frac{4\pi}{7}\right)}\right) \left(\frac{\sin 2\left(\frac{4\pi}{7}\right)}{2\sin\left(\frac{4\pi}{7}\right)}\right)$$
$$= \left(\frac{\sin\left(\frac{2\pi}{7}\right)}{2\sin\left(\frac{\pi}{7}\right)}\right) \left(\frac{\sin\left(\frac{4\pi}{7}\right)}{2\sin\left(\frac{2\pi}{7}\right)}\right) \left(\frac{\sin\left(\frac{8\pi}{7}\right)}{2\sin\left(\frac{4\pi}{7}\right)}\right)$$

$$= \left(\frac{\sin\left(\frac{8\pi}{7}\right)}{2^{3}\sin\left(\frac{\pi}{7}\right)}\right) = \left(\frac{\sin\left(\pi + \frac{\pi}{7}\right)}{2^{3}\sin\left(\frac{\pi}{7}\right)}\right) = \left(\frac{-\sin\left(\frac{\pi}{7}\right)}{2^{3}\sin\left(\frac{\pi}{7}\right)}\right)$$
$$= -\frac{1}{8}$$

Hence $\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7} = -\frac{1}{8}$

11. Question

If $A = \frac{1 - \cos B}{\sin B}$, then find the value of tan 2A.

Answer

Given, $\tan A = \frac{1 - \cos B}{\sin B}$

To find the value for tan 2A,

Consider

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

[by using the formula for $\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$]

$$\tan 2A = \frac{2\left(\frac{1-\cos B}{\sin B}\right)}{1-\left(\frac{1-\cos B}{\sin B}\right)^2}$$

[by substituting the value of tan A as given in the problem]

$$\tan 2A = \frac{2\left(\frac{1-\cos B}{\sin B}\right)}{\frac{\sin^2 B - (1-\cos B)^2}{\sin^2 B}}$$
$$= \frac{2(1-\cos B)\sin B}{\sin^2 B - (1-\cos B)^2}$$
$$= \frac{2(1-\cos B)\sin B}{(1-\cos^2 B) - (1-\cos B)^2}$$
$$= \frac{2(1-\cos B)\sin B}{(1+\cos B)(1-\cos B) - (1-\cos B)^2}$$
$$= \frac{2(1-\cos B)\sin B}{(1-\cos B)[1+\cos B - 1+\cos B]}$$
$$= \frac{2(1-\cos B)\sin B}{(1-\cos B)2\cos B}$$
$$= \frac{2(1-\cos B)\sin B}{(1-\cos B)2\cos B}$$
$$= \frac{2(1-\cos B)\sin B}{(1-\cos B)2\cos B}$$
$$= \frac{\sin B}{\cos B}$$
$$= \tan B$$

Therefore, $\tan 2A = \tan B$

12. Question

If sin x + cos x = a, find the value of sin⁶ x + cos⁶ x.

Answer

Given, $\sin x + \cos x = a$ We need to find the value of the expression, $\sin^{6} x + \cos^{6} x = (\sin^{2} x)^{3} + (\cos^{2} x)^{3}$ $= (\sin^{2} x + \cos^{2} x)^{3} - 3 \sin^{2} x \cos^{2} x (\sin^{2} x + \cos^{2} x)$ [by using the formula $a^{3} + b^{3} = (a+b)^{3} - 3ab(a+b)$] $= (1)^{3} - 3 \sin^{2} x \cos^{2} x (1)$ [by using the formula $\sin^{2} x + \cos^{2} x = 1$] $= 1 - 3 \left\{ \frac{(\sin x + \cos x)^{2} - \sin^{2} x - \cos^{2} x}{2} \right\}^{2}$

$$= 1 - 3 \left\{ \frac{(-1)(1 + 0)(-1)(1 + 0)(-1)}{2} \right\}^{2}$$
$$= 1 - 3 \left\{ \frac{a^{2} - (\sin^{2}x + \cos^{2}x)}{2} \right\}^{2}$$

[by using the formula $\sin^2 x + \cos^2 x = 1$]

$$= 1 - 3 \left\{ \frac{a^2 - 1}{2} \right\}^2$$
$$= 1 - \frac{3}{4} (a^2 - 1)^2$$
$$= \frac{4 - 3(a^2 - 1)^2}{4}$$
$$= \frac{1}{4} \left\{ 4 - 3 (a^2 - 1)^2 \right\}$$

Hence $\sin^6 x + \cos^6 x = \frac{1}{4} \{ 4 - 3 (a^2 - 1)^2 \}$

13. Question

If sin x + cos x = a, find the value of $|\sin x - \cos x|$

Answer

Given, sin x + cos x = a To find the value of $|\sin x - \cos x|$ Consider square of $|\sin x - \cos x|$ $|\sin x - \cos x|^2 = |\sin x|^2 + |\cos x|^2 - 2|\sin x| |\cos x|$ [using the formula $(a + b)^2 = a^2 + b^2 + 2 ab$] $|\sin x - \cos x|^2 = |\sin x|^2 + |\cos x|^2 - 2|\sin x| |\cos x|$ $= (\sin^2 x + \cos^2 x) - [(\sin x + \cos x)^2 - \sin^2 x - \cos^2 x]$ $= (\sin^2 x + \cos^2 x) - [a^2 - (\sin^2 x + \cos^2 x)]$ [using the formula $\sin^2 x + \cos^2 x = 1$] $= 1 - a^2 + 1$ $= 2 - a^2$ $|\sin x - \cos x|^2 = 2 - a^2$

Taking square root on both sides.

$$\sqrt{|\sin x - \cos x|^2} = \sqrt{2 - a^2}$$

Hence $|\sin x - \cos x| = \sqrt{2 - a^2}$

MCQ

1. Question

Mark the Correct alternative in the following:

$$8\sin\frac{x}{8}\cos\frac{x}{2}\cos\frac{x}{4}\cos\frac{x}{8}$$
 is equal to

A.8 cos x

B. cos x

C. 8 sin x

D. sin x

Answer

Given expression, $8\sin\frac{x}{g}\cos\frac{x}{2}\cos\frac{x}{4}\cos\frac{x}{g}$

$$4\left(2\sin\frac{x}{8}\cos\frac{x}{8}\right)\cos\frac{x}{2}\cos\frac{x}{4}$$

[by rearranging terms]

$$4\left(\sin\frac{2x}{8}\right)\cos\frac{x}{2}\cos\frac{x}{4}$$

[using the formula $\sin 2\theta = 2\sin\theta\cos\theta$]

$$= 4\left(\sin\frac{x}{4}\right)\cos\frac{x}{2}\cos\frac{x}{4}$$
$$= 2\left(2\sin\frac{x}{4}\cos\frac{x}{4}\right)\cos\frac{x}{2}$$
$$= 2\left(\sin\frac{2x}{4}\right)\cos\frac{x}{2}$$
$$= \left(2\sin\frac{x}{2}\cos\frac{x}{2}\right)$$
$$= \sin x$$

Hence $8\sin\frac{x}{g}\cos\frac{x}{2}\cos\frac{x}{4}\cos\frac{x}{g} = \sin x$

2. Question

Mark the Correct alternative in the following:

$$\frac{\sec 8A - 1}{\sec 4A - 1}$$
 is equal to
A.
$$\frac{\tan 2A}{\tan 8A}$$

B.
$$\frac{\tan 8A}{\tan 2A}$$

C.
$$\frac{\cot 8A}{\cot 2A}$$

D. None of these

Answer

Given expression is $\frac{\sec 8A - 1}{\sec 4A - 1}$ $\frac{\sec 8A - 1}{\sec 4A - 1} = \frac{\frac{1}{\cos 8A} - 1}{\frac{1}{\cos 4A} - 1}$ [using $\sec \theta = \frac{1}{\cos \theta}$] $=\frac{\frac{1-\cos 8A}{\cos 8A}}{\frac{1-\cos 4A}{\cos 4A}}$ $= \frac{\cos 4A (1 - \cos 8A)}{\cos 8A (1 - \cos 4A)}$ $= \frac{\cos 4A \{1 - (1 - 2\sin^2 4A)\}}{\cos 8A \{1 - (1 - 2\sin^2 2A)\}}$ [using $\cos 2\theta = 1 - 2 \sin^2 \theta$] $= \frac{\cos 4A \ (2\sin^2 4A)}{\cos 8A \ (2\sin^2 2A)}$ $=\frac{\sin 4A (2\sin 4A\cos 4A)}{\cos 8A (2\sin^2 2A)}$ [$using sin 2\theta = 2sin \theta cos \theta$] $=\frac{2\sin 2A\cos 2A \ (\sin 8A)}{\cos 8A \ (2\sin^2 2A)}$ $= \frac{\cos 2A \ (\sin 8A)}{\cos 8A \ (\sin 2A)}$ $=\frac{\left(\frac{\sin 8A}{\cos 8A}\right)}{\left(\frac{\sin 2A}{\cos 2A}\right)}$ [using $\tan \theta = \frac{\sin \theta}{\cos \theta}$] $\frac{\sec 8A - 1}{\sec 4A - 1} = \frac{\tan 8A}{\tan 2A}$

3. Question

Mark the Correct alternative in the following:

The value of $\cos\frac{\pi}{65}\cos\frac{2\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65}$ is

A.
$$\frac{1}{8}$$

B. $\frac{1}{16}$
C. $\frac{1}{32}$

D. None of these

Answer

Given expression, $\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}$ Multiply and divide the expression with $2 \sin \frac{\pi}{65}$

$$=\frac{1}{2\sin\frac{\pi}{65}}\left\{\left(2\sin\frac{\pi}{65}\cos\frac{\pi}{65}\right)\cos\frac{2\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65}\right\}$$

[using the formula $\sin 2\theta = 2 \sin \theta \cos \theta$]

$$=\frac{1}{2\sin\frac{\pi}{65}}\left\{\sin\frac{2\pi}{65}\cos\frac{2\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65}\right\}$$

Multiply and divide the expression with 2

$$=\frac{1}{2^{2}\sin\frac{\pi}{65}}\left\{\left(2\sin\frac{2\pi}{65}\cos\frac{2\pi}{65}\right)\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65}\right\}$$

[using the formula $\sin 2\theta = 2 \sin \theta \cos \theta$]

$$=\frac{1}{2^{2}\sin\frac{\pi}{65}}\left\{\sin\frac{4\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65}\right\}$$

Multiply and divide the expression with 2

$$=\frac{1}{2^{3}\sin\frac{\pi}{65}}\left\{\left(2\sin\frac{4\pi}{65}\cos\frac{4\pi}{65}\right)\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65}\right\}$$

[using the formula $\sin 2\theta = 2 \sin \theta \cos \theta$]

$$=\frac{1}{2^{3}\sin\frac{\pi}{65}}\left\{\sin\frac{8\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65}\right\}$$

Multiply and divide the expression with 2

$$=\frac{1}{2^4 \sin\frac{\pi}{65}} \left\{ \left(2 \sin\frac{8\pi}{65} \cos\frac{8\pi}{65}\right) \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} \right\}$$

[using the formula $\sin 2\theta = 2 \sin \theta \cos \theta$]

$$=\frac{1}{2^4\sin\frac{\pi}{65}}\left\{\sin\frac{16\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65}\right\}$$

Multiply and divide the expression with 2

$$=\frac{1}{2^{5}\sin\frac{\pi}{65}}\left\{\left(2\sin\frac{16\pi}{65}\cos\frac{16\pi}{65}\right)\cos\frac{32\pi}{65}\right\}$$

[using the formula $\sin 2\theta = 2 \sin \theta \cos \theta$]

$$=\frac{1}{2^{5}\sin\frac{\pi}{65}}\left\{\sin\frac{32\pi}{65}\cos\frac{32\pi}{65}\right\}$$

Multiply and divide the expression with 2

$$= \frac{1}{2^{6} \sin \frac{\pi}{65}} \left\{ 2 \sin \frac{32\pi}{65} \cos \frac{32\pi}{65} \right\}$$
$$= \frac{1}{2^{6} \sin \frac{\pi}{65}} \left\{ \sin \frac{64\pi}{65} \right\}$$
$$= \frac{1}{2^{6} \sin \frac{\pi}{65}} \left\{ \sin \left(\pi - \frac{\pi}{65} \right) \right\}$$
$$= \frac{1}{2^{6} \sin \frac{\pi}{65}} \left\{ \sin \frac{\pi}{65} \right\}$$
$$= \frac{1}{2^{6}} = \frac{1}{64}$$

As $\cos{\frac{\pi}{65}}\cos{\frac{2\pi}{65}}\cos{\frac{4\pi}{65}}\cos{\frac{8\pi}{65}}\cos{\frac{16\pi}{65}}\cos{\frac{32\pi}{65}} = \frac{1}{64}$

Hence answer is option D.

4. Question

Mark the Correct alternative in the following:

If $\cos 2x + 2 \cos x = 1$ then, $(2 - \cos^2 x) \sin^2 x$ is equal to

A.1

B. -1

C. _√5

Answer

Given $\cos 2x + 2 \cos x = 1$, we need to find the expression,

 $(2 - \cos^{2} x) \sin^{2} x$ Consider cos 2x + 2 cos x = 1 $2\cos^{2} x - 1 + 2 \cos x - 1 = 0$ $2\cos^{2} x + 2\cos x - 2 = 0$ cos² x + cos x = 1 ------ (1) Now consider the expression $(2 - \cos^{2} x) \sin^{2} x = (2 - \cos^{2} x)(1 - \cos^{2} x)$ $= \{2 - (1 - \cos x)\} \{1 - (1 - \cos x)\}$ [from equation (1) cos² x = 1 - cos x] $= (1 + \cos x) (\cos x)$ $= \cos x + \cos^{2} x$ [from equation (1) cos² x + cos x = 1] Hence $(2 - \cos^2 x) \sin^2 x = 1$, so option A is the answer.

5. Question

Mark the Correct alternative in the following:

For all real values of x, cot x - 2 cot 2x is equal to

- A. tan 2x
- B. tan x
- C. cot 3x
- D. None of these

Answer

Given expression is cot x - 2 cot 2x for all real values of x

Consider $\cot x - 2 \cot 2x = \left(\frac{1}{\tan x}\right) - 2\left(\frac{1-\tan^2 x}{2\tan x}\right)$ [using $\cot x = \left(\frac{1}{\tan x}\right)$ and $\cot 2x = \left(\frac{1-\tan^2 x}{2\tan x}\right)$] $= \frac{1-1+\tan^2 x}{\tan x}$ $= \frac{\tan^2 x}{\tan x}$ = $\tan x$ Therefore $\cot x - 2 \cot 2x = \tan x$.

Option B is the answer.

6. Question

Mark the Correct alternative in the following:

The value of
$$2\tan\frac{\pi}{10} + 3\sec\frac{\pi}{10} - 4\cos\frac{\pi}{10}$$
 is

A.0

B. √5

C. 1

D. None of these

Answer

Given expression is $2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}$

Now

$$2\tan\frac{\pi}{10} + 3\sec\frac{\pi}{10} - 4\cos\frac{\pi}{10} = 2\left(\frac{\sin\frac{\pi}{10}}{\cos\frac{\pi}{10}}\right) + 3\left(\frac{1}{\cos\frac{\pi}{10}}\right) - 4\cos\frac{\pi}{10}$$
$$= \frac{2\sin\frac{\pi}{10} + 3 - 4\cos^2\frac{\pi}{10}}{\cos\frac{\pi}{10}}$$

Multiplying and dividing the whole expression with $\cos \frac{\pi}{10}$

$$= \frac{\cos\frac{\pi}{10} \left(2 \sin\frac{\pi}{10} + 3 - 4\cos^2\frac{\pi}{10}\right)}{\cos\frac{\pi}{10}\cos\frac{\pi}{10}}$$
$$= \frac{\left(2 \sin\frac{\pi}{10}\cos\frac{\pi}{10} + 3\cos\frac{\pi}{10} - 4\cos^3\frac{\pi}{10}\right)}{\cos^2\frac{\pi}{10}}$$

[using sin $2x = 2 \sin x \cos x$ formula]

$$=\frac{\sin\frac{2\pi}{10} - \left(4\cos^3\frac{\pi}{10} - 3\cos\frac{\pi}{10}\right)}{\cos^2\frac{\pi}{10}}$$

[using $\cos 3x = 4\cos^3 x - 3\cos x$ formula]

$$= \frac{\sin\frac{2\pi}{10} - \cos\frac{3\pi}{10}}{\cos^{2}\frac{\pi}{10}} = \frac{\sin\frac{2\pi}{10} - \sin\left(\frac{\pi}{2} - \frac{2\pi}{10}\right)}{\cos^{2}\frac{\pi}{10}}$$
$$= \frac{\sin\frac{2\pi}{10} - \sin\left(\frac{\pi}{2} - \frac{3\pi}{10}\right)}{\cos^{2}\frac{\pi}{10}}$$
[using $\cos x = \sin\left(\frac{\pi}{2} - x\right)$]
$$= \frac{\sin\frac{2\pi}{10} - \sin\left(\frac{2\pi}{10}\right)}{\cos^{2}\frac{\pi}{10}}$$

Therefore $2\tan\frac{\pi}{10} + 3\sec\frac{\pi}{10} - 4\cos\frac{\pi}{10} = 0$

The answer is option A.

7. Question

Mark the Correct alternative in the following:

If in a $\triangle ABC$, tan A + tan B + tan C = 0, then cot A cot B cot C =-

A.6

B. 1

D. None of these

Answer

Given ABC is a triangle, so $\angle A + \angle B + \angle C = 180^{\circ}$

Now applying tan on both sides

 $tan (A+B +C) = tan (180^{\circ})$

tan (A + B + C) = 0 ----- (1)

Also given $\tan A + \tan B + \tan C = 0$ ----- (2)

As per the formula of tan (A+B+C)

 $\tan(A + B + C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan B \tan C - \tan C \tan A}$ Now, $\tan(A + B + C) = \frac{0 - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan B \tan C - \tan C \tan A}$ [from equation (1)] $0 = \frac{-\tan A \tan B \tan C}{1 - \tan A \tan B - \tan B \tan C - \tan C \tan A}$ [from equation (2)]
By cross multiplying
-tan A tan B tan C = 0
tan A tan B tan C = 0
therefore $\frac{1}{\tan A \tan B \tan C} = 0$ Hence cot A cot B cot C = 0
The answer is option D.

8. Question

Mark the Correct alternative in the following:

If
$$\cos x = \frac{1}{2}\left(a + \frac{1}{a}\right)$$
, and $\cos 3x = \lambda \left(a^3 + \frac{1}{a^3}\right)$, then $\lambda = A \cdot \frac{1}{4}$
B. $\frac{1}{2}$
C. 1
D. None of these

Answer

Given $\cos x = \frac{1}{2} \left(a + \frac{1}{a} \right)$ and $\cos 3x = \lambda \left(a^3 + \frac{1}{a^3} \right)$ Consider the equation $\cos 3x = \lambda \left(a^3 + \frac{1}{a^3} \right)$

Now take the LHS of the equation,

$$\cos 3x = 4\cos^3 x - 3\cos x$$

[using the formula for $\cos 3x = 4\cos^3 x - 3\cos x$]

From the question we know, $\cos x = \frac{1}{2} \left(a + \frac{1}{a} \right)$

Substituting the known cos x values in the cos 3x expansion,

$$\cos 3x = 4 \left[\frac{1}{2} \left(a + \frac{1}{a} \right) \right]^3 - 3 \left[\frac{1}{2} \left(a + \frac{1}{a} \right) \right]$$
$$= 4 \left[\frac{1}{8} \left(a^3 + \frac{1}{a^3} + 3 a \frac{1}{a} \left(a + \frac{1}{a} \right) \right) \right] - 3 \left[\frac{1}{2} \left(a + \frac{1}{a} \right) \right]$$

$$= 4 \left[\frac{1}{8} \left(a^{3} + \frac{1}{a^{3}} \right) + \frac{3}{8} \left(a + \frac{1}{a} \right) \right] - 3 \left[\frac{1}{2} \left(a + \frac{1}{a} \right) \right]$$

$$= 4 \left[\frac{1}{8} \left(a^{3} + \frac{1}{a^{3}} \right) \right] + \frac{3 \times 4}{8} \left(a + \frac{1}{a} \right) - 3 \left[\frac{1}{2} \left(a + \frac{1}{a} \right) \right]$$

$$= 4 \left[\frac{1}{8} \left(a^{3} + \frac{1}{a^{3}} \right) \right] + \frac{3}{2} \left(a + \frac{1}{a} \right) - \frac{3}{2} \left(a + \frac{1}{a} \right)$$

$$= 4 \left[\frac{1}{8} \left(a^{3} + \frac{1}{a^{3}} \right) \right]$$

$$\cos 3x = \frac{1}{2} \left(a^{3} + \frac{1}{a^{3}} \right) - \dots (1)$$

If we compare the RHS of the cos3x equation with the now derived equation (1) we get,

$$\lambda\left(a^3 + \frac{1}{a^3}\right) = \frac{1}{2}\left(a^3 + \frac{1}{a^3}\right)$$

From the here we can clearly say that $\lambda = \frac{1}{2}$

Hence the answer is option B.

9. Question

Mark the Correct alternative in the following:

If 2 tan α = 3 tan β , then tan (α - β) =

A.
$$\frac{\sin 2\beta}{5 - \cos 2\beta}$$

B.
$$\frac{\cos 2\beta}{5 - \cos 2\beta}$$

C.
$$\frac{\sin 2\beta}{5 + \cos 2\beta}$$

D. None of these

Answer

Given, 2 tan α = 3 tan β

From here we get,
$$\tan \alpha = \frac{3}{2} \tan \beta$$
 ----- (1)

Now consider tan (α - β),

The expansion of tan $(\alpha - \beta)$ is given by

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

As we already know the value of tan α from equation (1), we have,

$$\tan(\alpha - \beta) = \frac{\left(\frac{3}{2}\tan\beta\right) - \tan\beta}{1 + \left(\frac{3}{2}\tan\beta\right)\tan\beta}$$
$$\tan(\alpha - \beta) = \frac{\left(\frac{3\tan\beta - 2\tan\beta}{2}\right)}{\left(\frac{2 + 3\tan^2\beta}{2}\right)}$$

$$= \frac{\tan \beta}{2 + 3\tan^2 \beta}$$
[by using $\tan \theta = \frac{\sin \theta}{\cos \theta}$]
$$= \frac{\left(\frac{\sin \beta}{\cos \beta}\right)}{2 + 3\left(\frac{\sin \beta}{\cos \beta}\right)^3}$$

$$= \frac{\sin \beta \cos \beta}{2 \cos^2 \beta + 3\sin^2 \beta}$$

$$= \frac{\sin \beta \cos \beta}{2 \cos^2 \beta + 3(1 - \cos^2 \beta)}$$

$$= \frac{\sin \beta \cos \beta}{2 \cos^2 \beta + 3 - 3\cos^2 \beta}$$

$$= \frac{\sin \beta \cos \beta}{3 - \cos^2 \beta}$$

Multiplying and dividing the equation with 2

 $=\frac{2\sin\beta\cos\beta}{2(3-\cos^2\beta)}$

[using $\sin 2\theta = 2 \sin \theta \cos \theta$]

 $= \frac{\sin 2\beta}{6-\; 2 cos^2\beta}$

In the denominator adding and subtracting 1

$$= \frac{\sin 2\beta}{6 - 2\cos^2\beta + 1 - 1}$$
$$= \frac{\sin 2\beta}{(6 - 1) - (2\cos^2\beta - 1)}$$

[using $\cos 2\theta = 2\cos^2 \theta - 1$]

 $\tan(\alpha - \beta) = \frac{\sin 2\beta}{5 - \cos 2\beta}$

Hence, in the question the answer matches with option A.

10. Question

Mark the Correct alternative in the following:

If
$$\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}$$
, then

A.tan 3 α = tan 2 β ok

B. tan 2 α = tan β

C. tan 2 α = tan α

D. None of these

Answer

Given, $\tan A = \frac{1 - \cos B}{\sin B}$

As there are 2 option in terms of tan 2A, let us consider tan 2A

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

[by using the formula for $\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$]

$$\tan 2A = \frac{2\left(\frac{1-\cos B}{\sin B}\right)}{1-\left(\frac{1-\cos B}{\sin B}\right)^2}$$

[by substituting the value of tan A as given in the problem]

$$\tan 2A = \frac{2\left(\frac{1-\cos B}{\sin B}\right)}{\frac{\sin^2 B - (1-\cos B)^2}{\sin^2 B}}$$
$$= \frac{2(1-\cos B)\sin B}{\sin^2 B - (1-\cos B)^2}$$
$$= \frac{2(1-\cos B)\sin B}{(1-\cos^2 B) - (1-\cos B)^2}$$
$$= \frac{2(1-\cos B)\sin B}{(1+\cos B)(1-\cos B) - (1-\cos B)^2}$$
$$= \frac{2(1-\cos B)\sin B}{(1-\cos B)[1+\cos B - 1+\cos B]}$$
$$= \frac{2(1-\cos B)\sin B}{(1-\cos B)2\cos B}$$
$$= \frac{2(1-\cos B)\sin B}{(1-\cos B)2\cos B}$$
$$= \frac{2(1-\cos B)\sin B}{(1-\cos B)2\cos B}$$
$$= \frac{\sin B}{\cos B}$$
$$= \tan B$$

Therefore, $\tan 2A = \tan B$

Hence the option B is the correct answer.

11. Question

Mark the Correct alternative in the following:

If sin
$$\alpha$$
 + sin β = a and cos α - cos β = b, then tan $\frac{\alpha - \beta}{2}$ =

A.
$$-\frac{a}{b}$$

B. $-\frac{b}{a}$
C. $\sqrt{a^2 + b^2}$

D. None of these

Answer

Given, sin α + sin β = a and cos α - cos β = b, then the value of

$$\tan \frac{\alpha - \beta}{2}$$

Consider $\sin \alpha + \sin \beta = a$

As per the expansion of $\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ Now , $\sin \alpha + \sin \beta = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right) = a$ ----- (1) Similarly, $\cos \alpha - \cos \beta = b$ As per the expansion of $\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$ Now $\cos \alpha - \cos \beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right) = b$ ------ (2)

By dividing equation (1) with (2) we get,

$$\frac{\sin \alpha + \sin \beta}{\cos \alpha - \cos \beta} = \frac{2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)}{-2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)} = \frac{a}{b}$$
$$= -\frac{\cos \left(\frac{\alpha - \beta}{2}\right)}{\sin \left(\frac{\alpha - \beta}{2}\right)} = \frac{a}{b}$$
$$= -\cot \left(\frac{\alpha - \beta}{2}\right) = \frac{a}{b}$$
$$[As \tan \theta = \frac{1}{\cot \theta}]$$
$$= \tan \left(\frac{\alpha - \beta}{2}\right) = -\frac{b}{a}$$

Therefore the answer is option B.

12. Question

Mark the Correct alternative in the following:

The value of
$$\left(\cot \frac{x}{2} - \tan \frac{x}{2}\right)^2 \left(1 - 2\tan x \cot 2x\right)$$
 is

A.1

B. 2

C. 3

D. 4

Answer

Given to find the value of $\left(\cot\frac{x}{2} - \tan\frac{x}{2}\right)^2 (1 - 2\tan x \cot 2x)$

We will solve the expression in two parts,

Now solving 1st term

$$\left(\cot\frac{x}{2} - \tan\frac{x}{2}\right)^2 = \left(\frac{1}{\tan\frac{x}{2}} - \tan\frac{x}{2}\right)^2$$

$$= \left(\frac{1}{\tan\frac{x}{2}} - \tan\frac{x}{2}\right)^2$$
$$= \left(\frac{1 - \tan^2\frac{x}{2}}{\tan\frac{x}{2}}\right)^2$$

If we multiply and divide the term by 2, we get,

$$= \left(\frac{2\left(1 - \tan^2 \frac{x}{2}\right)}{2\tan \frac{x}{2}}\right)^2$$
$$= 2^2 \left(\frac{1 - \tan^2 \frac{x}{2}}{2\tan \frac{x}{2}}\right)^2$$

[using the formula for $\cot 2x = \frac{1 - \tan^2 x}{2 \tan x}$ and $\cot x = \frac{1}{\tan x}$]

$$= 2^{2} \left(\frac{1}{\tan x}\right)^{2}$$
$$\left(\cot \frac{x}{2} - \tan \frac{x}{2}\right)^{2} = \frac{4}{\tan^{2} x} - \cdots - (1)$$

Solving the 2nd term

$$(1 - 2\tan x \cot 2x) = 1 - 2\tan x \left(\frac{1 - \tan^2 x}{2\tan x}\right)$$

[using the formula for $\cot 2x = \frac{1 - \tan^2 x}{2\tan x}$]
$$1 - 2\tan x \cot 2x = 1 - (1 - \tan^2 x)$$
$$= 1 - 1 + \tan^2 x$$
$$1 - 2\tan x \cot 2x = \tan^2 x - \cdots (2)$$
Now by combining (1) and (2) we get,

$$\left(\cot\frac{x}{2} - \tan\frac{x}{2}\right)^{2} (1 - 2\tan x \cot 2x) = \left(\frac{4}{\tan^{2}x}\right) (\tan^{2}x)$$
$$\left(\cot\frac{x}{2} - \tan\frac{x}{2}\right)^{2} (1 - 2\tan x \cot 2x) = 4$$

Hence the answer is option D.

13. Question

Mark the Correct alternative in the following:

The value of
$$\tan x \sin\left(\frac{\pi}{2} + x\right) \cos\left(\frac{\pi}{2} - x\right)$$
 is

A.1

B. -1

C.
$$\frac{1}{2}$$
sin 2x

Answer

Given to find the value of the expression $tan x sin(\frac{\pi}{2} + x) cos(\frac{\pi}{2} - x)$

 $\sin\left(\frac{\pi}{2} + x\right) = \sin x \text{ (as sine is positive in 2^{nd} quadrant)}$ $\cos\left(\frac{\pi}{2} - x\right) = \sin x \text{ (as cosine is positive in 1^{st} quadrant)}$ $\tan x \sin\left(\frac{\pi}{2} + x\right) \cos\left(\frac{\pi}{2} - x\right) = \tan x \cos x \sin x$ $= \frac{\sin x}{\cos x} \cos x \sin x$ $= \sin^2 x$ There for $\tan x \sin\left(\frac{\pi}{2} + x\right) \cos\left(\frac{\pi}{2} - x\right) = \sin^2 x$

Hence the answer is option D.

14. Question

Mark the Correct alternative in the following:

The value of
$$\sin^2\left(\frac{\pi}{18}\right) + \sin^2\left(\frac{\pi}{9}\right) + \sin^2\left(\frac{7\pi}{18}\right) + \sin^2\left(\frac{4\pi}{9}\right)$$
 is

A.1

B. 2

C. 4

D. None of these

Answer

Given to find the value of $\sin^2\left(\frac{\pi}{18}\right) + \sin^2\left(\frac{\pi}{9}\right) + \sin^2\left(\frac{7\pi}{18}\right) + \sin^2\left(\frac{4\pi}{9}\right)$ The angles can be modified as $\frac{7\pi}{18} = \frac{\pi}{2} - \frac{\pi}{9}$ and $\frac{4\pi}{9} == \frac{\pi}{2} - \frac{\pi}{18}$ $\sin^2\left(\frac{\pi}{18}\right) + \sin^2\left(\frac{\pi}{9}\right) + \sin^2\left(\frac{7\pi}{18}\right) + \sin^2\left(\frac{4\pi}{9}\right)$ $= \sin^2\left(\frac{\pi}{18}\right) + \sin^2\left(\frac{\pi}{9}\right) + \sin^2\left(\frac{\pi}{2} - \frac{\pi}{9}\right) + \sin^2\left(\frac{\pi}{2} - \frac{\pi}{18}\right)$ Using the identity $\sin(\theta) = \cos(\frac{\pi}{2} - \theta)$, we have $= \sin^2\left(\frac{\pi}{18}\right) + \sin^2\left(\frac{\pi}{9}\right) + \cos^2\left(\frac{\pi}{9}\right) + \cos^2\left(\frac{\pi}{18}\right)$ $= \left[\sin^2\left(\frac{\pi}{18}\right) + \cos^2\left(\frac{\pi}{9}\right)\right] + \left[\sin^2\left(\frac{\pi}{9}\right) + \cos^2\left(\frac{\pi}{18}\right)\right]$ [using the identity $\cos^2\theta + \sin^2\theta = 1$] = 1 + 1 = 2 $\sin^2\left(\frac{\pi}{18}\right) + \sin^2\left(\frac{\pi}{9}\right) + \sin^2\left(\frac{7\pi}{18}\right) + \sin^2\left(\frac{4\pi}{9}\right) = 2$

Hence the answer is option B.

15. Question

Mark the Correct alternative in the following:

If 5 sin α = 3 sin (α + 2 β) \neq 0, then tan (α + β) is equal to

A.2 tan β

B. 3 tan β

C. 4 tan β

D. 6 tan β

Answer

Given 5 sin α = 3 sin (α + 2 β) \neq 0, then the value of tan (α + β) is

Consider the given equation,

 $5 \sin \alpha = 3 \sin (\alpha + 2 \beta)$

$$\frac{\sin(\alpha+2\beta)}{\sin\alpha} = \frac{5}{3}$$

By applying componendo and dividendo $\frac{a}{b} = \frac{c}{d} \implies \frac{a+b}{a-b} = \frac{c+d}{c-d}$

We get

 $\frac{\sin(\alpha+2\ \beta)+\sin\alpha}{\sin(\alpha+2\ \beta)-\sin\alpha}=\frac{5+3}{5-3}$

[using $\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$ and $\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$ sum of angles]

$$\frac{2\sin\left(\frac{\alpha+2\beta+\alpha}{2}\right)\cos\left(\frac{\alpha+2\beta-\alpha}{2}\right)}{2\cos\left(\frac{\alpha+2\beta+\alpha}{2}\right)\sin\left(\frac{\alpha+2\beta-\alpha}{2}\right)} = \frac{8}{2}$$
$$\frac{2\sin\left(\frac{2(\alpha+\beta)}{2}\right)\cos\left(\frac{2\beta}{2}\right)}{2\cos\left(\frac{2(\alpha+\beta)}{2}\right)\sin\left(\frac{2\beta}{2}\right)} = 4$$
$$\frac{2\sin(\alpha+\beta)\cos(\beta)}{2\cos(\alpha+\beta)\sin(\beta)} = 4$$
$$\frac{\left[\frac{\sin(\alpha+\beta)}{\cos\beta}\right]}{\left[\frac{\sin\beta}{\cos\beta}\right]} = 4$$
$$\tan(\alpha+\beta)$$

 $\frac{\tan(\alpha + \beta)}{\tan \beta} = 4$

This clearly shows, tan $(\alpha + \beta) = 4 \tan \beta$

Hence the answer is option C.

16. Question

Mark the Correct alternative in the following:

The value of 2 cos x - cos 3x - cos 5x - 16 cos³ x sin² x is

A.2

B. 1

C. 0

D. -1

Answer

Given expression is 2 cos x - cos 3x - cos 5x - 16 cos³ x sin² x Consider the expression $2 \cos x - \cos 3x - \cos 5x - 16 \cos^3 x \sin^2$ $= 2 \cos x - (\cos 5x + \cos 3x) - 16 \cos^3 x \sin^2 x$ [using the sum of angles $\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$] $= 2\cos x - \left[2\cos\left(\frac{5x+3x}{2}\right)\cos\left(\frac{5x-3x}{2}\right)\right] - 16\cos^3 x \sin^2 x$ $= 2 \cos x - [2 \cos 4x \cos x] - 16\cos^3 x \sin^2 x$ $= 2 \cos x (1 - \cos 4x) - 16 \cos^3 x \sin^2 x$ [using the property $\cos 2\theta = 1 - 2 \sin^2 \theta$] $= 2 \cos x [1 - (1 - 2 \sin^2 2x)] - 16 \cos^3 x \sin^2 x$ $= 2 \cos x [2 \sin^2 2x] - 16 \cos^3 x \sin^2 x$ $= 4\cos x [2\sin x \cos x]^2 - 16\cos^3 x \sin^2 x$ [using sin $2\theta = 2 \sin \theta \cos \theta$] $= 4 \times 4 (\cos x \sin^2 x \cos^2 x) - 16\cos^3 x \sin^2 x$ $= 16\cos^3 x \sin^2 x - 16\cos^3 x \sin^2 x$ = 0 Hence $\cos x - \cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x = 0$

The answer is option C.

17. Question

Mark the Correct alternative in the following:

If A = $2 \sin^2 x - \cos 2x$, then A lies in the interval A.[-1, 3] B. [1, 2] C. [-2, 4] D. None of these **Answer** Given A = $2 \sin^2 x - \cos 2x$ [using $\cos 2x = 1 - 2 \sin^2 x$] so A = $2 \sin^2 x - \cos 2x = 2 \sin^2 x - [1 - 2 \sin^2 x]$ = $2 \sin^2 x - 1 + 2 \sin^2 x$] = $4 \sin^2 x - 1$ Now A = $2 \sin^2 x - \cos 2x = 4 \sin^2 x - 1$ As we know sin x lies between -1 and 1 $-1 \le \sin x \le 1$

 $0 \le \sin^2 x \le 1$

Multiplying the inequality by 4

$$0 \le 4 \sin^2 x \le 4$$

Subtracting 1 from the inequality

 $-1 \leq (4 \sin^2 x - 1) \leq 3$

From the above inequation, we can say that

 $A = (4 \sin^2 x - 1)$ belongs to the closed interval [-1,3]

Hence the answer is A.

18. Question

Mark the Correct alternative in the following:

The value of
$$\frac{\cos 3x}{2\cos 2x - 1}$$
 is equal to

A.cos x

B. sin x

C. tan x

D. None of these

Answer

Given expression is $\frac{\cos 3x}{2\cos 2x-1}$

Consider

$$\frac{\cos 3x}{2\cos 2x - 1} = \frac{4\cos^3 x - 3\cos x}{2\left[2\cos^2 x - 1\right] - 1}$$

[using the formulae $\cos 3x = 4 \cos^3 x - 3 \cos x$ and

 $\cos 2x = 2\cos^2 x - 1$]

$$\frac{\cos 3x}{2\cos 2x - 1} = \frac{\cos x (4\cos^2 x - 3)}{4\cos^2 x - 2 - 1}$$
$$= \frac{\cos x (4\cos^2 x - 3)}{4\cos^2 x - 3}$$

= cos x

Therefore $\frac{\cos 3x}{2\cos 2x-1} = \cos x \pi$

Hence the answer is option A.

19. Question

Mark the Correct alternative in the following:

If tan (/4 + x) + tan (π /4 - x) = λ sec 2x, then

A.3

B. 4

C. 1

D. 2

Answer

Given equation is

$$\tan\left(\frac{\pi}{4} + x\right) + \tan\left(\frac{\pi}{4} - x\right) = \lambda \sec 2x$$

Let us consider LHS

$$\tan\left(\frac{\pi}{4} + x\right) + \tan\left(\frac{\pi}{4} - x\right) = \left(\frac{\tan\frac{\pi}{4} + \tan x}{1 - \tan\frac{\pi}{4}\tan x}\right) + \left(\frac{\tan\frac{\pi}{4} - \tan x}{1 + \tan\frac{\pi}{4}\tan x}\right)$$

[using the formulae $tan(A + B) \frac{tanA + tanB}{1 - tanA tanB}$ and $tan(A - B) \frac{tanA - tanB}{1 + tanA tanB}$]

$$= \left(\frac{1+\tan x}{1-\tan x}\right) + \left(\frac{1-\tan x}{1+\tan x}\right)$$

[the value of tan $45^\circ = 1$]

$$= \frac{(1 + \tan x)^2 + (1 - \tan x)^2}{(1 + \tan x)(1 - \tan x)}$$

= $\frac{(1 + \tan^2 x + 2 \tan x) + (1 + \tan^2 x - 2 \tan x)}{(1 + \tan x)(1 - \tan x)}$
= $\frac{2(1 + \tan^2 x)}{(1 - \tan^2 x)}$
= $\frac{2(1 + \frac{\sin^2 x}{\cos^2 x})}{(1 - \frac{\sin^2 x}{\cos^2 x})}$
= $\frac{2(\frac{\cos^2 x + \sin^2 x}{\cos^2 x})}{(\frac{\cos^2 x - \sin^2 x}{\cos^2 x})}$

[using the formulae $\cos 2x = \cos^2 x - \sin^2 x$ and $\cos^2 x + \sin^2 x = 1$]

$$=\frac{2(1)}{(\cos 2x)}$$
$$= 2 \sec 2x$$

Now comparing with the LHS with RHS

$$\tan\left(\frac{\pi}{4} + x\right) + \tan\left(\frac{\pi}{4} - x\right) = 2 \sec 2x = \lambda \sec 2x$$

From here we can clearly say that the answer is option D.

20. Question

Mark the Correct alternative in the following:

The value of
$$\cos^2\left(\frac{\pi}{6} + x\right) - \sin^2\left(\frac{\pi}{6} - x\right)$$
 is

A. $\frac{1}{2}\cos 2x$

C.
$$-\frac{1}{2}\cos 2x$$

D. $\frac{1}{2}$

Answer

Given expression is $\cos^2\left(\frac{\pi}{6} + x\right) - \sin^2\left(\frac{\pi}{6} - x\right)$ [using the identity $\sin^2 x + \cos^2 x = 1$] $\cos^2\left(\frac{\pi}{6} + x\right) - \sin^2\left(\frac{\pi}{6} - x\right) = 1 - \sin^2\left(\frac{\pi}{6} + x\right) - \sin^2\left(\frac{\pi}{6} - x\right)$ $= 1 - \left[\sin^2\left(\frac{\pi}{6} + x\right) + \sin^2\left(\frac{\pi}{6} - x\right)\right]$

[using the formula $a^2 + b^2 = (a + b)^2 - 2ab$]

$$= 1 - \left[\left(\sin\left(\frac{\pi}{6} + x\right) + \sin\left(\frac{\pi}{6} - x\right) \right)^2 - 2\sin\left(\frac{\pi}{6} + x\right) \sin\left(\frac{\pi}{6} - x\right) \right]$$

[using the sum of angle formula $\sin A + \sin B = 2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$]

$$= 1 - \left[\left(2\sin\left(\frac{\frac{\pi}{6} + x + \frac{\pi}{6} - x}{2}\right) \cos\left(\frac{\frac{\pi}{6} + x - \frac{\pi}{6} + x}{2}\right) \right)^2 - 2\sin\left(\frac{\pi}{6} + x\right) \sin\left(\frac{\pi}{6} + x\right) \right]$$
$$= 1 - \left[\left(2\sin\left(\frac{\pi}{6}\right) \cos(x)\right)^2 + \left(-2\sin\left(\frac{\pi}{6} + x\right) \sin\left(\frac{\pi}{6} - x\right) \right) \right]$$

[Using the identity $\cos(A+B) - \cos(A-B) = -2\sin A \sin B$]

$$= 1 - \left[\left(2 \left(\frac{1}{2} \right) \cos(x) \right)^2 + \left(\cos\left(\frac{\pi}{6} + x + \frac{\pi}{6} - x \right) - \cos\left(\frac{\pi}{6} + x - \frac{\pi}{6} + x \right) \right) \right]$$

= $1 - \left[\cos^2 x + \cos\frac{\pi}{3} - \cos 2x \right]$
= $1 - \cos^2 x - \frac{1}{2} + \cos 2x$

[multiplying and dividing the term $\cos^2 x$ with 2]

$$= 1 - \frac{2\cos^2 x}{2} - \frac{1}{2} + \cos 2x$$
$$= \frac{1}{2} - \frac{2\cos^2 x}{2} + \cos 2x$$
$$= \cos 2x - \left(\frac{2\cos^2 x - 1}{2}\right)$$

[using the cos $2\theta = 2\cos^2 \theta - 1$]

$$= \cos 2x - \frac{1}{2}\cos 2x$$
$$= \frac{1}{2}\cos 2x$$

Hence the answer is option A.

21. Question

Mark the Correct alternative in the following:

 $\frac{\sin 3x}{1+2\cos 2x}$ is equal to

A.cos x

B. sin x

C. - cos x

D. sin x

Answer

Given expression $\frac{\sin 3x}{1+2\cos 2x}$

 $\frac{\sin 3x}{1+2\cos 2x} = \frac{3\sin x - 4\sin^3 x}{1+2(1-2\sin^2 x)}$

[Using the formulae $\sin 3x = 3\sin x - 4\sin^3 x$ and $\cos 2x = 1 - 2\sin^2 x$]

$$= \frac{3 \sin x - 4 \sin^3 x}{1 + 2 - 4 \sin^2 x}$$
$$= \frac{\sin x (3 - 4 \sin^2 x)}{3 - 4 \sin^2 x}$$
$$= \sin x$$
$$\frac{\sin 3x}{1 + 2 \cos 2x} = \sin x$$

Hence the answer is option B.

22. Question

Mark the Correct alternative in the following:

The value of $2 \sin^2 B + 4 \cos (A + B) \sin A \sin B + \cos 2 (A + B)$ is

A.0

B. cos 3 A

C. cos 2A

D. None of these

Answer

Given expression is

 $= 2 \sin^{2} B + \frac{\sin 2A \sin 2B}{2} - 4 \sin^{2} A \sin^{2} B + \cos (2A + 2B)$ $= 2 \sin^{2} B (1 - 2 \sin^{2} A) + \sin 2A \sin 2B + (\cos 2A \cos 2B - \sin 2A \sin 2B)$ [using cos (A+B) = cos A cos B - sin A sin B] $= 2 \sin^{2} B (1 - 2 \sin^{2} A) + \frac{\sin 2A \sin 2B}{2} + \cos 2A \cos 2B - \frac{\sin 2A \sin 2B}{2}$ [using cos 2A = 1 - 2 sin² x] $= 2 \sin^{2} B \cos 2A + \cos 2A \cos 2B$ $= \cos 2A (2 \sin^{2} B + \cos 2B)$ [using cos 2A = cos² x - sin² x] $= \cos 2A (2 \sin^{2} B + \frac{\cos^{2} B - \sin^{2} B}{2})$ [using the identity sin² x + cos² x = 1] $= \cos 2A (1)$ $= \cos 2A$ Hence $2 \sin^{2} B + 4 \cos (A + B) \sin A \sin B + \cos 2 (A + B) = \cos 2A$

The answer is option C.

23. Question

Mark the Correct alternative in the following:

The value of $\frac{2(\sin 2x + 2\cos^2 x - 1)}{\cos x - \sin x - \cos 3x + \sin 3x}$ is A.cos x B. sec x C. cosec x D. sin x **Answer** Given expression is $\frac{2(\sin 2x + 2\cos^3 x - 1)}{\cos x - \sin x - \cos 3x + \sin 3x}$ $\frac{2(\sin 2x + 2\cos^2 x - 1)}{\cos x - \sin x - \cos 3x + \sin 3x}$ [using cos 2A = cos² x - sin² x] = $\frac{2(\sin 2x + \cos 2x)}{\cos x - \sin x - \cos 3x + \sin 3x}$ [using cos 2A = cos² x - sin² x] = $\frac{2(\sin 2x + \cos 2x)}{(\sin 3x - \sin x) - (\cos 3x - \cos x)}$ [using sin A - sin B = $\cos \frac{A+B}{2} \sin \frac{A-B}{2}$ and $\cos A - \cos B = -2\sin \frac{A+B}{2} \sin \frac{A-B}{2}$] = $\frac{2(\sin 2x + \cos 2x)}{(2\cos \frac{3x + x}{2} \sin \frac{3x - x}{2}) - (-2\sin \frac{3x + x}{2} \sin \frac{3x - x}{2})}$ $= \frac{2(\sin 2x + \cos 2x)}{2\cos 2x \sin x + 2\sin 2x \sin x}$ $= \frac{2(\sin 2x + \cos 2x)}{2\sin x (\cos 2x + \sin 2x)}$ $= \frac{1}{\sin x}$ $= \operatorname{cosec} x$

Therefore $\frac{2 (\sin 2x + 2 \cos^2 x - 1)}{\cos x - \sin x - \cos 3x + \sin 3x} = \operatorname{cosec} x$

Answer is option C.

24. Question

Mark the Correct alternative in the following:

 $2(1 - 2 \sin^2 7x) \sin 3x$ is equal to

A.sin 17x - sin 11x

B. sin 11x - sin 17x

C. cos 17x - cos 11x

D. cos 17x + cos 11x

Answer

Given expression is $2(1 - 2 \sin^2 7x) \sin 3x$

 $2(1 - 2 \sin^2 7x) \sin 3x = 2 \cos 2(7x) \sin 3x$

[using cos $2A = 1 - 2\sin^2 A$]

= 2 cos 14x sin 3x

[using the sum of angles formula $\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{1A-B}{2}\right)$]

$$= 2\cos\left(\frac{17x+11x}{2}\right)\sin\left(\frac{17x-11x}{2}\right)$$

= sin (17x) - sin (11x)

Therefore $2(1 - 2 \sin^2 7x) \sin 3x = \sin (17x) - \sin (11x)$

The answer is option A.

25. Question

Mark the Correct alternative in the following:

If α and β are acute angles satisfying $\cos 2\alpha = \frac{3\cos 2\beta - 1}{3 - \cos 2\beta}$, then $\tan \alpha = \frac{3\cos 2\beta - 1}{3 - \cos 2\beta}$

A.
$$\sqrt{2} \tan \beta$$

B. $\frac{1}{\sqrt{2}} \tan \beta$

C. $\sqrt{2} \cot \beta$

D.
$$\frac{1}{\sqrt{2}} \cot \beta$$

Answer

Given for $\alpha < 90^\circ$ and $\beta < 90^\circ$, $\cos 2\alpha = \frac{3\cos 2\beta - 1}{3 - \cos 2\beta}$

Then tan $\boldsymbol{\alpha}$ is given by

Consider

 $\frac{\cos 2\alpha}{1} = \frac{2\cos 2\beta - 1}{3 - \cos 2\beta}$

[using componendo and dividend principle, if $\frac{a}{b} = \frac{c}{d} \implies \frac{a+b}{a-b} = \frac{c+d}{c-d}$]

 $\frac{\cos 2\alpha + 1}{\cos 2\alpha - 1} = \frac{(3\cos 2\beta - 1) + (3 - \cos 2\beta)}{(3\cos 2\beta - 1) - (3 - \cos 2\beta)}$

 $\frac{(1-2\sin^2\alpha)+1}{(2\cos^2\alpha-1)-1} = \frac{(2\cos 2\beta+2)}{(4\cos 2\beta-4)}$

 $[\text{ using } \cos 2x = 1 - 2\sin^2 x = 2\cos^2 x - 1]$

$$\frac{2(1-\sin^2\alpha)}{-2(1-\cos^2\alpha)} = \frac{2(\cos 2\beta + 1)}{4(\cos 2\beta - 1)}$$

[using $\cos 2x = \cos^2 x - \sin^2 x$]

$$-\frac{\cos^2\alpha}{\sin^2\alpha} = \frac{(\cos^2\beta - \sin^2\beta + 1)}{2(\cos^2\beta - \sin^2\beta - 1)}$$
$$-\frac{\cos^2\alpha}{\sin^2\alpha} = \frac{(\cos^2\beta + 1 - \sin^2\beta)}{-2(1 - \cos^2\alpha + \sin^2x)}$$

$$[\text{ using } \cos^2 x + \sin^2 x = 1]$$

$$-\frac{\cos^2\alpha}{\sin^2\alpha} = -\frac{2(\cos^2\beta)}{4(\sin^2\beta)}$$
$$\frac{1}{\tan^2\alpha} = \frac{1}{2\tan^2\beta}$$

 $\tan^2 \alpha = 2 \tan^2 \beta$

applying square root on both sides

$$\sqrt{\tan^2 \alpha} = \sqrt{2 \tan^2 \beta}$$

 $\tan \alpha = \sqrt{2} \tan \beta$

Hence the answer is option A.

26. Question

Mark the Correct alternative in the following:

If
$$\tan \frac{x}{2} = \sqrt{\frac{1-e}{1+e}} \tan \frac{\alpha}{2}$$
, then $\cos \alpha =$

 $A.1 - e \cos(\cos x + e)$

B.
$$\frac{1 + e \cos x}{\cos x - e}$$

C.
$$\frac{1 - e \cos x}{\cos x - e}$$

D.
$$\frac{\cos x - e}{1 - e \cos x}$$

Answer

Given
$$\tan \frac{x}{2} = \sqrt{\frac{1-e}{1+e}} \tan \frac{\alpha}{2}$$
, then $\cos \alpha$ is

Let

$$\tan\frac{\alpha}{2} = \sqrt{\frac{1+e}{1-e}}\tan\frac{x}{2}$$

By using the expansion of $\cos 2x$ in terms of $\tan x$

$$\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$

We get,

$$\begin{aligned} \cos \alpha &= \frac{1 - \left(\sqrt{\frac{1+e}{1-e}}\tan\frac{x}{2}\right)^2}{1 + \left(\sqrt{\frac{1+e}{1-e}}\tan\frac{x}{2}\right)^2} \\ &= \frac{1 - \left(\frac{1+e}{1-e}\tan^2\frac{x}{2}\right)}{1 + \left(\frac{1+e}{1-e}\tan^2\frac{x}{2}\right)} \\ &= \frac{1 - e - \left[(1+e)\tan^2\frac{x}{2}\right]}{1 - e + \left[(1+e)\tan^2\frac{x}{2}\right]} \\ &= \frac{1 - e - \tan^2\frac{x}{2} - e \tan^2\frac{x}{2}}{1 - e + \tan^2\frac{x}{2} + e \tan^2\frac{x}{2}} \\ &= \frac{1 - \tan^2\frac{x}{2} - e - e \tan^2\frac{x}{2}}{1 + \tan^2\frac{x}{2} - e + e \tan^2\frac{x}{2}} \\ &= \frac{\left(1 - \tan^2\frac{x}{2}\right) - e\left(1 + \tan^2\frac{x}{2}\right)}{\left(1 + \tan^2\frac{x}{2}\right) - e\left(1 - \tan^2\frac{x}{2}\right)} \end{aligned}$$

Dividing the numerator and denominator by $1 + \tan^2 \frac{x}{2}$

$$=\frac{\frac{\left(1-\tan^{2}\frac{x}{2}\right)}{1+\tan^{2}\frac{x}{2}}-\frac{e\left(1+\tan^{2}\frac{x}{2}\right)}{1+\tan^{2}\frac{x}{2}}}{\frac{\left(1+\tan^{2}\frac{x}{2}\right)}{1+\tan^{2}\frac{x}{2}}-\frac{e\left(1-\tan^{2}\frac{x}{2}\right)}{1+\tan^{2}\frac{x}{2}}}$$

[using the formula for cos 2x in terms of tan $x \cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$]

 $=\frac{\cos x - e}{1 - e\cos x}$

Hence the answer is option D.

27. Question

Mark the Correct alternative in the following:

If $(2^{n} + 1) x = \pi$, then $2^{n} \cos x \cos 2x \cos^{2} x \dots \cos 2^{n-1} x =$

A.-1

B. 1

C. 1/2

D. None of these

Answer

Given $(2^n - 1) x = \pi$

Then evaluate the expression

 $2^{n} \cos x \cos 2x \cos 2^{2} x \dots \cos 2^{n-1} x$

by taking a 2 from 2^n and multiplying and dividing by sin x, we get

 $= \frac{2^{n-1}}{\sin x} (2\sin x \cos x) \cos 2x \cos 2^2 x \dots \dots \cos 2^{n-1} x$

[by using the formula $\sin 2x = 2 \sin x \cos x$]

 $= \frac{2^{n-1}}{\sin x} (\sin 2x) \cos 2x \cos 2^2 x \dots \dots \cos 2^{n-1} x$

Now borrowing another 2 from 2ⁿ⁻¹

$$= \frac{2^{n-2}}{\sin x} (2 \sin 2x \cos 2x) \cos 2^2 x \dots \dots \cos 2^{n-1} x$$
$$= \frac{2^{n-2}}{\sin x} (\sin 4x) \cos 4x \dots \dots \cos 2^{n-1} x$$

These iterations repeat till we reach the last term

$$= \frac{2^{n-(n-1)}}{\sin x} \sin 2^{n-1} x \cos 2^{n-1} x$$
$$= \frac{2 \sin 2^{n-1} x \cos 2^{n-1} x}{\sin x}$$
$$= \frac{\sin 2^n x}{\sin x}$$

As already given that

 $2^{n} x + x = 180^{\circ}$

$$2^{n} x = 180^{\circ} - x$$

So substituting the same in the above solution

 $2^{n} \cos x \cos 2x \cos 2^{2} x \dots \dots \cos 2^{n-1} x = \frac{\sin(\pi - x)}{\sin x} = -\frac{\sin x}{\sin x} = 1$
So the answer is option B.

28. Question

Mark the Correct alternative in the following:

If $\tan x = t$ then $\tan 2x + \sec 2x$ is equal to

A. $\frac{1+t}{1-t}$ B. $\frac{1-t}{1+t}$ C. $\frac{2t}{1-t}$

D.
$$\frac{2t}{1+t}$$

Answer

Given tan x = t

then tan 2x + sex 2x =

[using the formulae for tan 2x and sec 2x in terms of tan x,

 $\tan 2x = \frac{2\tan x}{1-\tan^2 x}$ and $\sec 2x = \frac{1+\tan^2 x}{1-\tan^2 x}$]

Now

$$\tan 2x + \sec 2x = \frac{2 \tan x}{1 - \tan^2 x} + \frac{1 + \tan^2 x}{1 - \tan^2 x}$$
$$= \frac{2 \tan x + 1 + \tan^2 x}{1 - \tan^2 x}$$
$$= \frac{(1 + \tan x)^2}{(1 + \tan x)(1 - \tan x)}$$
$$= \frac{(1 + \tan x)}{(1 - \tan x)}$$

As already given $\tan x = t$

 $\tan 2x + \sec 2x = \frac{1+t}{1-t}$

Hence the answer is option A.

29. Question

Mark the Correct alternative in the following:

The value of $\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x$ is

A.cos 2x

B. sin 2x

C. cos 4x

D. None of these

Given expression is $\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x$ =[$(\cos^2 x)^2 + (\sin^2 x)^2 - 2 \cos^2 x \sin^2 x$] - 4 $\cos^2 x \sin^2 x$ [using the formula $a^2 + b^2 = (a+b)^2 - 2ab$] = $(\cos^2 x - \sin^2 x)^2 - 4 \cos^2 x \sin^2 x$ [using the formula $\cos 2x = \cos^2 x - \sin^2 x$] = $(\cos 2x)^2 - (2 \sin x \cos x)^2$ [using the formula $\sin 2x = 2 \sin x \cos x$] = $(\cos 2x)^2 - (\sin 2x)^2$ [using the formula $\cos 2x = \cos^2 x - \sin^2 x$] = $\cos 4x$ Therefore $\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x = \cos 4x$ The answer is option A.

30. Question

Mark the Correct alternative in the following:

The value of $\cos (36^{\circ} - A) \cos (36^{\circ} + A) + \cos(54^{\circ} - A) \cos (54^{\circ} + A)$ is

A.cos 2A

B. sin 2A

C. cos A

D. 0

Answer

Given expression $\cos (36^{\circ} - A) \cos (36^{\circ} + A) + \cos(54^{\circ} - A) \cos (54^{\circ} + A)$ In the above expression angle $\cos(54^{\circ} + A) = \sin[90^{\circ} - (54^{\circ} + A)]$ And $\cos(54^{\circ} - A) = \sin[90^{\circ} - (54^{\circ} + A)]$ [using $\cos \theta = \sin (90^{\circ} - \theta)$] Now substituting the same in the expression $= \cos (36^{\circ} - A) \cos (36^{\circ} + A) + \sin[90^{\circ} - (54^{\circ} - A)] \sin[90^{\circ} - (54^{\circ} + A)]$ $= \cos (36^{\circ} - A) \cos (36^{\circ} + A) + \sin (36^{\circ} + A) \sin (36^{\circ} - A)$ $= \cos (36^{\circ} + A) \cos (36^{\circ} - A) + \sin (36^{\circ} + A) \sin (36^{\circ} - A)$ [using $\cos (A - B) = \cos A \cos B + \sin A \sin B$] $= \cos [(36^{\circ} + A) - (36^{\circ} - A)]$ $= \cos (2A)$

Therefore the answer is option A.

31. Question

Mark the Correct alternative in the following:

The value of
$$\tan x \tan\left(\frac{\pi}{3} - x\right) \tan\left(\frac{\pi}{3} + x\right)$$
 is

A.cot 3x

B. 2 cot 3x

C. tan 3x

D. 3 tan 3x

Answer

Given expression is $\tan x \tan \left(\frac{\pi}{3} - x\right) \tan \left(\frac{\pi}{3} + x\right)$

 $[\text{using } \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \text{ and } \tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}]$

Then

$$\tan x \tan\left(\frac{\pi}{3} - x\right) \tan\left(\frac{\pi}{3} + x\right)$$
$$= \tan x \left(\frac{\tan \frac{\pi}{3} - \tan x}{1 + \tan \frac{\pi}{3} \tan x}\right) \left(\frac{\tan \frac{\pi}{3} + \tan x}{1 - \tan \frac{\pi}{3} \tan x}\right)$$
$$= \tan x \left(\frac{\sqrt{3} - \tan x}{1 + \sqrt{3} \tan x}\right) \left(\frac{\sqrt{3} + \tan x}{1 - \sqrt{3} \tan x}\right)$$

 $[\text{ using } a^2 - b^2 = (a-b)(a+b)]$

$$= \tan x \left(\frac{\left(\sqrt{3}\right)^2 - \tan^2 x}{1 - \left(\sqrt{3}\right)^2 \tan^2 x} \right)$$
$$= \tan x \left(\frac{3 - \tan^2 x}{1 - 3\tan^2 x} \right)$$
$$= \left(\frac{3 \tan x - \tan^3 x}{1 - 3\tan^2 x} \right)$$

[using $\tan 3x = \left(\frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}\right)$ formula]

= tan 3x

Therefore
$$\tan x \tan \left(\frac{\pi}{3} - x\right) \tan \left(\frac{\pi}{3} + x\right) = \tan 3x$$

The answer is option C.

32. Question

Mark the Correct alternative in the following:

The value
$$\tan x + \tan \left(\frac{\pi}{3} + x\right) + \tan \left(\frac{2\pi}{3} + x\right)$$
 of is

A.3 tan 3x

B. tan 3x

C. 3 cot 3x

D. cot 3x

Given $\tan x + \tan\left(\frac{\pi}{3} + x\right) + \tan\left(\frac{2\pi}{3} + x\right)$ [using $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$]

Then

$$\begin{aligned} \tan x + \tan\left(\frac{\pi}{3} + x\right) + \tan\left(\frac{2\pi}{3} + x\right) \\ &= \tan x + \left(\frac{\tan\frac{\pi}{3} + \tan x}{1 - \tan\frac{\pi}{3}\tan x}\right) + \left(\frac{\tan\frac{2\pi}{3} + \tan x}{1 - \tan\frac{2\pi}{3}\tan x}\right) \\ &= \tan x + \left(\frac{\sqrt{3} + \tan x}{1 - \sqrt{3}\tan x}\right) + \left(\frac{-\sqrt{3} + \tan x}{1 - (-\sqrt{3})\tan x}\right) \\ &= \tan x + \left(\frac{\tan x + \sqrt{3}}{1 - \sqrt{3}\tan x}\right) + \left(\frac{\tan x - \sqrt{3}}{1 + \sqrt{3}\tan x}\right) \\ &= \tan x + \frac{(\tan x + \sqrt{3})(1 + \sqrt{3}\tan x) + (\tan x - \sqrt{3})(1 - \sqrt{3}\tan x)}{(1 - \sqrt{3}\tan x)(1 + \sqrt{3}\tan x)} \\ &= \tan x + \frac{(\tan x + \sqrt{3})(1 + \sqrt{3}\tan x) + (\tan x - \sqrt{3})(1 - \sqrt{3}\tan x)}{(1 - \sqrt{3}\tan x)(1 + \sqrt{3}\tan x)} \\ &[\text{ using } a^2 - b^2 = (a-b)(a+b)] \\ &= \tan x \\ &+ \frac{(\tan x + \sqrt{3}\tan^2 x + \sqrt{3} + 3\tan x) + (\tan x - \sqrt{3}\tan^2 x - \sqrt{3} + 3\tan x)}{1 - 3\tan^2 x} \end{aligned}$$

$$= \frac{\tan x (1 - 3\tan^2 x) + 8 \tan x}{1 - 3\tan^2 x}$$

= $\frac{\tan x - 3\tan^3 x + 8 \tan x}{1 - 3\tan^2 x}$
= $\frac{9 \tan x - 3\tan^3 x}{1 - 3\tan^2 x}$
= $\frac{3(3 \tan x - \tan^3 x)}{1 - 3\tan^2 x}$
[using $\tan 3x = \left(\frac{3\tan x - \tan^2 x}{1 - 3\tan^2 x}\right)$ formula]

Therefore
$$\tan x + \tan\left(\frac{\pi}{3} + x\right) + \tan\left(\frac{2\pi}{3} + x\right) = 3 \tan 3x$$

The answer is option A.

33. Question

Mark the Correct alternative in the following:

The value of is $\frac{\sin 5\alpha - \sin 3\alpha}{\cos 5\alpha + 2\cos 4\alpha + \cos 3\alpha}$ A.cot $\alpha/2$

B. cot α

C. tan $\alpha/2$

D. None of these

Answer

Given

 $\sin 5\alpha - \sin 3\alpha$ $\cos 5\alpha + 2\cos 4\alpha + \cos 3\alpha$ [Using $\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$ $\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$] $=\frac{2\cos\left(\frac{5\alpha+3\alpha}{2}\right)\sin\left(\frac{5\alpha-3\alpha}{2}\right)}{2\cos\left(\frac{5\alpha+3\alpha}{2}\right)\cos\left(\frac{5\alpha-3\alpha}{2}\right)+2\cos 4\alpha}$ $=\frac{2\cos 4\alpha \sin \alpha}{2\cos 4\alpha \cos \alpha + 2\cos 4\alpha}$ $=\frac{2\cos 4\alpha \sin \alpha}{2\cos 4\alpha (\cos \alpha +1)}$ $=\frac{\sin\alpha}{(\cos\alpha+1)}$ [using $\sin 2x = \frac{2 \tan x}{1 + \tan^2 x}$ and $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$] $=\frac{\frac{2\tan\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}}}{\left(\frac{1-\tan^2\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}}\right)+1}$ $=\frac{2\tan\frac{\alpha}{2}}{1-\tan^2\frac{\alpha}{2}+1+\tan^2\frac{\alpha}{2}}$ $=\frac{2\tan\frac{\alpha}{2}x}{2}$ $= \tan \frac{\alpha}{2}$ Therefore $\frac{\sin 5\alpha - \sin 3\alpha}{\cos 5\alpha + 2\cos 4\alpha + \cos 3\alpha} = \tan \frac{\alpha}{2}$ Answer is option C.

34. Question

Mark the Correct alternative in the following:

$$\frac{\sin 5x}{\sin x}$$
 is equal to
A.16 $\cos^4 x - 12 \cos^2 x + 1$
B. 16 $\cos^4 x + 12 \cos^2 x + 1$
C. 16 $\cos^4 x - 12 \cos^2 x - 1$
D. 16 $\cos^4 x + 12 \cos^2 x - 1$

Given $\frac{\sin 5x}{\sin x}$ Let 5x = 3x + 2xThen $\frac{\sin 5x}{\sin x} = \frac{\sin (3x + 2x)}{\sin x}$ $[\text{using sin } (A+B) = \sin A \cos B + \cos A \sin B]$ $\sin 3x \cos 3x + \cos 3x \sin 2x$ sin x [using the formulae : $\sin 3x = 3\sin x - 4\sin^3 x$ $\cos 3x = 4 \cos^3 x - 3 \cos x$ $\cos 2x = 2\cos^2 x - 1$ $\sin 2x = 2 \sin x \cos x$] $=\frac{(3\sin x - 4\sin^3 x)(2\cos^2 x - 1) + (4\cos^3 x - 3\cos x)(2\sin x\cos x)}{\sin x}$ $=\frac{\sin x (3 - 4 \sin^2 x)(2 \cos^2 x - 1) + \sin x (4 \cos^3 x - 3 \cos x)(2 \cos x)}{1 + \sin x (4 \cos^3 x - 3 \cos x)(2 \cos x)}$ sin x $=\frac{\sin x \left[(3-4\sin^2 x)(2\cos^2 x-1)+(4\cos^3 x-3\cos x)(2\cos x)\right]}{2}$ $= (3 - 4 \sin^2 x)(2\cos^2 x - 1) + (4 \cos^3 x - 3\cos x)(2\cos x)$ $= (6\cos^2 x - 3 - 8\sin^2 x \cos^2 x + 4\sin^2 x) + (8\cos^4 x - 6\cos^2 x)$ $[\text{using sin}^2 x + \cos^2 x = 1]$ $= -3 - 8(1 - \cos^2 x) \cos^2 x + 4(1 - \cos^2 x) + 8\cos^4 x$ $= -3 - 8\cos^{2}x + 8\cos^{4}x + 4 - 4\cos^{2}x + 8\cos^{4}x$ $= 16 \cos^4 x - 12 \cos^2 x + 1$ Therefore the answer is option A.

35. Question

Mark the Correct alternative in the following:

If n = 1, 2, 3,, then $\cos \alpha \cos 2 \alpha \cos 4 \alpha \dots \cos 2^{n-1} \alpha$ is equal to

A.
$$\frac{\sin 2n \alpha}{2n \sin \alpha}$$

B.
$$\frac{\sin 2^{n} \alpha}{2^{n} \sin 2^{n-1} \alpha}$$

C.
$$\frac{\sin 4^{n-1} \alpha}{4^{n-1} \sin \alpha}$$

D.
$$\frac{\sin 2^{n} \alpha}{2^{n} \sin 2^{n-1} \alpha}$$

 $2^n \sin \alpha$

Answer

Given expression

 $\cos \alpha \cos 2 \alpha \cos 4 \alpha \dots \cos 2^{n-1} \alpha$

multiplying and dividing the expression by 2 sin $\boldsymbol{\alpha}$, we get,

$$=\frac{1}{2\sin\alpha}(2\sin\alpha\cos\alpha)\cos2\alpha\cos4\alpha\ldots\ldots\ldots\cos2^{n-1}\alpha$$

[using sin $2x = 2 \sin x \cos x$]

$$=\frac{1}{2\sin\alpha}(\sin 2\alpha)\cos 2\alpha\cos 4\alpha\ldots\ldots\ldots\ldots\cos 2^{n-1}\alpha$$

Now multiplying and dividing the expression with 2.

$$= \frac{1}{2^2 \sin \alpha} (2 \sin 2\alpha \cos 2\alpha) \cos 4\alpha \dots \dots \cos 2^{n-1} \alpha$$
$$= \frac{1}{2^2 \sin \alpha} (\sin 4\alpha) \cos 4\alpha \dots \dots \cos 2^{n-1} \alpha$$

Continuing this process for n-1 times we will get

$$=\frac{1}{2^{n-1}\sin\alpha}\sin 2^{n-1}\alpha\cos 2^{n-1}\alpha$$

Now repeating for the last time,

$$= \frac{1}{(2^{n-1} \times 2) \sin \alpha} (2 \sin 2^{n-1} \alpha \cos 2^{n-1} \alpha)$$
$$= \frac{1}{2^n \sin \alpha} (\sin 2^n \alpha)$$

This proves that

 $\cos \alpha) \cos 2\alpha \cos 4\alpha \dots \dots \dots \cos 2^{n-1} \alpha = \frac{\sin 2^n \alpha}{2^n \sin \alpha}$

Hence the answer is option D.

36. Question

Mark the Correct alternative in the following:

If
$$\tan x = \frac{a}{b}$$
, then b cos 2x + a sin 2x is equal to
A.a
B. b
C. $\frac{a}{b}$

Answer

Given $\tan x = \frac{a}{b}$

The value of the expression b cos $2x + a \sin 2x$ Now consider b cos $2x + a \sin 2x$ [by using $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$ and $\sin 2x = \frac{2 \tan x}{1 + \tan^2 x}$] b $\cos 2x + a \sin 2x = b \left(\frac{1 - \tan^2 x}{1 + \tan^2 x}\right) + a \left(\frac{2 \tan x}{1 + \tan^2 x}\right)$ As already given $\tan x = \frac{a}{b}$

Then

$$b\cos 2x + a\sin 2x = b\left(\frac{1 - \left(\frac{a}{b}\right)^{2}}{1 + \left(\frac{a}{b}\right)^{2}}\right) + a\left(\frac{2\frac{a}{b}}{1 + \left(\frac{a}{b}\right)^{2}}\right)$$

$$= b\left(\frac{b^{2} - a^{2}}{b^{2} + a^{2}}\right) + a\left(\frac{2\frac{a}{b}}{b^{2} + a^{2}}\right)$$

$$= b\left(\frac{b^{2} - a^{2}}{b^{2} + a^{2}}\right) + a\left(\frac{2ab}{b^{2} + a^{2}}\right)$$

$$= \left(\frac{b^{3} - a^{2}b}{b^{2} + a^{2}}\right) + \left(\frac{2a^{2}b}{b^{2} + a^{2}}\right)$$

$$= \left(\frac{b^{3} - a^{2}b + 2a^{2}b}{b^{2} + a^{2}}\right)$$

$$= \left(\frac{b^{3} + a^{2}b}{b^{2} + a^{2}}\right)$$

$$= \frac{b(b^{2} + a^{2})}{b^{2} + a^{2}}$$

$$= b$$

Hence $b \cos 2x + a \sin 2x = b$.

The answer is option B.

37. Question

Mark the Correct alternative in the following:

If
$$\tan \alpha = \frac{1}{7}$$
, $\tan \beta = \frac{1}{3}$, then $\cos 2\alpha$ is equal to

A.sin 2β

- B. sin 4β
- C. sin 3β
- D. $\cos 2\beta$

Answer

Given $\tan \alpha = \frac{1}{7}$ and $\tan \beta = \frac{1}{3}$

Now to find the value of cos 2α

[By using
$$\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$
]
 $\cos 2\alpha = \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha}$

$$\begin{bmatrix} \operatorname{as} \tan \alpha &= \frac{1}{7} \operatorname{is given} \end{bmatrix}$$

$$\cos 2\alpha = \frac{1 - \left(\frac{1}{7}\right)^2}{1 + \left(\frac{1}{7}\right)^2}$$

$$= \frac{49 - 1}{49 + 1}$$

$$= \frac{48}{50} = \frac{24}{25}$$
Hence $\cos 2\alpha = \frac{24}{25}$
The same value is obtained for sin 4 β .
[By sin 2x = 2 sinx cosx]
sin 4 α = 2 sin 2 α cos 2 α
[using sin 2x = $\frac{2 \tan x}{1 + \tan^2 x}$ and $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$]
We have
$$\sin 4\beta = 2\left(\frac{2 \tan \beta}{1 + \tan^2 \beta}\right)\left(\frac{1 - \tan^2 \beta}{1 + \tan^2 \beta}\right)$$
As $\tan \beta = \frac{1}{3}$
sin $4\beta = 2\left(\frac{2 \left(\frac{1}{3}\right)}{1 + \left(\frac{1}{3}\right)^2}\right)\left(\frac{1 - \left(\frac{1}{3}\right)^2}{1 + \left(\frac{1}{3}\right)^2}\right)$

$$= 2\left(\frac{6}{9 + 1}\right)\left(\frac{9 - 1}{9 + 1}\right)$$

$$= 2\left(\frac{48}{100}\right) = \frac{48}{50} = \frac{24}{25}$$

As the value of cos 2α and sin 4α are the same, the answer is option B.

38. Question

Mark the Correct alternative in the following:

The value of $\cos^2 48^\circ - \sin^2 12^\circ$ is

A.
$$\frac{\sqrt{5}+1}{8}$$

B.
$$\frac{\sqrt{5}-1}{8}$$

C.
$$\frac{\sqrt{5}+1}{5}$$
 D.
$$\frac{\sqrt{5}+1}{2\sqrt{2}}$$

Given

 $\cos^2 48^\circ - \sin^2 12^\circ$

 $= \left(\frac{\cos(96^{\circ}) + 1}{2}\right) - \left(\frac{1 - \cos(24^{\circ})}{2}\right)$

 $=\left(\frac{\cos(96^{\circ})+1-1+\cos(24^{\circ})}{2}\right)$

 $=\frac{1}{2}\left[2\cos\left(\frac{96^{\circ}+24^{\circ}}{2}\right)\cos\left(\frac{96^{\circ}-24^{\circ}}{2}\right)\right]$

Therefore $\cos^2 48^\circ - \sin^2 12^\circ = \frac{1+\sqrt{5}}{8}$

Hence the answer is option A.

 $=\left(\frac{\cos(96^\circ)+\cos(24^\circ)}{2}\right)$

 $=\cos\left(\frac{120^{\circ}}{2}\right)\cos\left(\frac{72^{\circ}}{2}\right)$

 $= \cos(60^\circ)\cos(36^\circ)$

 $=\frac{1}{2}(\frac{1+\sqrt{5}}{4})$

 $=\frac{1+\sqrt{5}}{8}$

[by using the formula $\cos 2x = 2\cos^2 x - 1$ and $\cos 2x = 1 - 2\sin^2 x$]

 $\cos^2 48^\circ - \sin^2 12^\circ = \left(\frac{\cos(2 \times 48^\circ) + 1}{2}\right) - \left(\frac{1 - \cos(2 \times 12^\circ)}{2}\right)$

[by using the formula $\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$]