RD Sharma

 Solutions
Class 11 Maths

$$
\begin{gathered}
\text { Chapter } 23 \\
\text { Ex } 23.18
\end{gathered}
$$

Straight lines Ex 23.18 Q1

$$
\begin{aligned}
& \text { Let the required equation be } a x+b y=c \text { but here it passes through } \\
& \text { origin }(0,0) \text {. } \\
& \therefore \quad c=0 \\
& \therefore \text { Equaiton is } a x+b y=0 \\
& \text { Slope of the line }\left(m_{1}\right)=\frac{-a}{b} \text { and } m_{2}=\frac{-\sqrt{3}}{1} \\
& \Rightarrow \quad \text { Angle between } \sqrt{3} x+y=11 \text { and } a x+b y=0 \text { is } 45^{\circ} \\
& \therefore \quad \tan 45^{\circ}=\frac{m_{1} \pm m_{2}}{1 \mp m_{1} m_{2}} \\
& \qquad \frac{-a}{b} \pm(-\sqrt{3}) \\
& \quad 1=\frac{1 \mp \frac{a}{b} \times \sqrt{3}}{} \\
& \quad 1-\frac{\sqrt{3} a}{b}=\frac{-a}{b}-\sqrt{3} \text { and } 1+\frac{a}{b} \sqrt{3}=\frac{-a}{b}+\sqrt{3} \\
& b-\sqrt{3} a=-a-\sqrt{3} b \text { and } b+a \sqrt{3}=-a+b \sqrt{3} \\
& \\
& \quad a(1-\sqrt{3})=b(-\sqrt{3}-1) \text { and } a(\sqrt{3}+1)=b(\sqrt{3}-1) \\
& \\
& \frac{a}{b}-\frac{1-\sqrt{3}}{\sqrt{3}-1}=\frac{(\sqrt{3}-1)^{2}}{2}=2-\sqrt{3} \\
& \quad \text { or } \\
& \frac{a}{b}=\frac{\sqrt{3}-1}{\sqrt{3}+1}=-2-\sqrt{3}
\end{aligned}
$$

\therefore Required lines are $\frac{y}{x}=\sqrt{3} \pm 2$ or $y=(\sqrt{3} \pm 2) x$

Straight lines Ex 23.18 Q2

Let the required equation be $y=m x+c$

But, $c=0$ as it passes through origin $(0,0)$

Equation of the lines is $y=m x$.

Slope of $x+y+\sqrt{3} y=\sqrt{3} x=a$
or $\quad(\sqrt{3}+1) x+(1-\sqrt{3}) y=a$ is

$$
\frac{\sqrt{3}+1}{\sqrt{3}-1}=\frac{4-2 \sqrt{3}}{2}=2-\sqrt{3} .
$$

The angle between $x+y+\sqrt{3} y-\sqrt{3}=a$ and $y=m x$ is 75°

$$
\begin{aligned}
& \tan \left(75^{\circ}\right)=\frac{m_{1} \pm m_{2}}{1 \mp m_{1} m_{2}} \\
& \tan \left(30^{\circ}+45^{\circ}\right)=\frac{m \pm(2-\sqrt{3})}{1-m(2-\sqrt{3})} \\
& \frac{\frac{1}{\sqrt{3}}+1}{1-\frac{1}{\sqrt{3}} \times 1}=\frac{m \pm 2-\sqrt{3}}{1-m(2-\sqrt{3})} \\
& 2+\sqrt{3}=\frac{m+2-\sqrt{3}}{1+m(\sqrt{3}-2)} \text { and } 2+\sqrt{3}=\frac{m+\sqrt{3}-2}{1+m(2-\sqrt{3})} \\
& \frac{1}{m}=0 \quad \text { or } \quad m=-\sqrt{3} \\
& y=m x \quad y=-\sqrt{3} x \text { and } x=0 \text { are the required equatins. }
\end{aligned}
$$

Straight lines Ex 23.18 Q3

Given equation is $6 x+5 y-8=0$.
Slope of given line $=m=-\frac{6}{5}$
Equations of required line is,
$y+1=\frac{-\frac{6}{5}-1}{1+\frac{6}{5}}(x-2)$

$$
\begin{aligned}
& y+1=\frac{-11}{11}(x-2) \\
& y+1=-x+2 \\
& x+y-1=0 \\
& y+1=\frac{-\frac{6}{5}+1}{1-\frac{6}{5}}(x-2) \\
& y+1=\frac{-1}{-1}(x-2) \\
& y+1=x-2 \\
& x-y=3
\end{aligned}
$$

Straight lines Ex 23.18 Q4

The required equation is

$$
y-k=m^{\prime}(x-h)
$$

And this line is inclined at $\tan ^{-1} m$ to straight line $y=m x+c$.

$$
\text { Slope }=m=\tan \theta
$$

Passing through (h, k)

$$
\left(x_{2}, y_{1}\right)
$$

\therefore Equation of line is

$$
\begin{equation*}
y-y_{1}=m\left(x-x_{1}\right) \tag{i}
\end{equation*}
$$

Also, $\tan \theta=\left|\frac{m-m^{\prime}}{1+m m^{\prime}}\right|$
Here, $m=m^{\prime}$

$$
\begin{aligned}
& \tan \theta=\frac{m-m}{1+m^{2}} \text { or }\left|\frac{-m-m}{1-m^{2}}\right| \\
& =0 \text { or } \frac{+2 m}{1-m^{2}}
\end{aligned}
$$

Substituting in (i)

$$
\Rightarrow \quad \begin{aligned}
& y-k=0 \\
& y=k \\
& y-k=\frac{+2 m}{1-m^{2}}(x-h)
\end{aligned}
$$

$$
\left(1-m^{2}\right)(y-k)=+2 m(x-h)
$$

Straight lines Ex 23.18 Q5

$$
\begin{aligned}
\text { Here, } & x_{1}=2, y_{1}=3, \alpha=45^{\circ} \\
& m=\text { slope of line } 3 x+y-5=0 \\
& =\frac{- \text { coeff of } x}{\text { coeff of } y}=-3
\end{aligned}
$$

The equations of the required line are

$$
\begin{aligned}
& y-y_{1}=\frac{-3-\tan 45^{\circ}}{1+(-3) \tan 45^{\circ}}(x-2) \\
& y-3=\frac{-3-1}{1+(-3)(1)}(x-2) \\
& y-3=\frac{-4}{2}(x-2)=2 x-4 \\
& 2 x-y-1=0
\end{aligned}
$$

Also, $\quad y-3=\frac{-3+\tan 45^{\circ}}{1-(-3) \tan 45}(x-2)$
$y-3=\frac{-3+1}{1+3}(x-2)$
$y-3=\frac{-2}{4}(x-2)=\frac{-x}{2}+1$
$x+2 y-8=0$

Straight lines Ex 23.18 Q6

Let the isosceles right triangle be.

$$
\begin{aligned}
& A C=3 x+4 y=4 \\
& c(2,2)
\end{aligned}
$$

Then, slope of $A C=\frac{-3}{4}$

$$
A B=B C \quad[\because \text { It is an iso scales right triangle }]
$$

Then, angle between $(A B$ and $A C)$ and $(B C$ and $A C)$ is 45°.

$$
\begin{aligned}
& \tan \frac{\pi}{4}=\frac{m_{1}-\left(\frac{-3}{4}\right)}{1+\left(\frac{-3}{4}\right) m_{1}} \quad \quad\left[\text { when } m_{1}=\text { slope of } B C\right] \\
& 1=\frac{m_{1}+\frac{3}{4}}{1-\frac{3}{4} m} \\
& 4-3 m_{1}=4 m_{1}+3 \\
& 7 m_{1}=1 \quad m_{1}=\frac{1}{7}
\end{aligned}
$$

and, $A B \perp B C$
$\therefore($ slope of $A B) \times($ slope of $B C)=-1$

$$
\begin{aligned}
& m_{2} \times \frac{1}{7}=-1 \\
& m_{2}=-7
\end{aligned}
$$

The equation of $B C$ is

$$
\begin{aligned}
& (y-2)=\frac{1}{7}(x-2) \\
& 7 y-14=x-2 \\
& x-7 y+12=0
\end{aligned}
$$

and

The equation of $A B$ is

$$
\begin{aligned}
& (y-2)=-7(x-2) \\
& y-2=-x+14 \\
& y+7 x-16=0
\end{aligned}
$$

Straight lines Ex 23.18 Q7

Let $C(2+\sqrt{3}, 5)$ be one vertex and $x=y$ be the opposite side of equilateral triangle $A B C$.

The other two sides makes an angle of 60° with other two sides. slope of $x-y=0$ is 1 .

$$
\begin{aligned}
& y-5=\frac{1 \pm \tan 60^{\circ}}{1 \mp \tan 60^{\circ}}(x-2-\sqrt{3}) \\
& y-5=\frac{1+\sqrt{3}}{1-\sqrt{3}}(x-2-\sqrt{3}) \text { and } y-5=\frac{1-\sqrt{3}}{1+\sqrt{3}}(x-2-\sqrt{3}) \\
& y-5=(\sqrt{3}-2)(x-2-\sqrt{3}) \text { and } y-5=(\sqrt{3}-2)(x-2-\sqrt{3}) \\
& y+(2+\sqrt{3}) x=12+4 \sqrt{3} \text { and } y+(2-\sqrt{3}) x=6
\end{aligned}
$$

Hence proved the $2^{\text {nd }}$ side of $\triangle A B C$ is $y+(2-\sqrt{3}) x=6$
and the $3^{\text {rd }}$ side is $y+(2+\sqrt{3}) x=12+4 \sqrt{3}$.

Straight lines Ex 23.18 Q8

Let $A B C D$ be a square whose diagnal $B D$ is $4 x+7 y=12$
Then, slope of $B D=\frac{-4}{7}$
Let slope of $A B=m$
Then, $\tan 45^{\circ}=\frac{m+\frac{4}{7}}{1-\frac{4}{7} m}$
$7-4 m=7 m+4$
$11 m=3$
$\therefore \quad m=\frac{3}{11}$
\therefore Slope of $B C=\frac{-1}{\text { slope of } A B}$

$$
=\frac{-11}{3}
$$

\therefore Equation of $A B$ is

$$
\begin{aligned}
& (y-2)=\frac{3}{11}(x-1) \\
& 11 y-22=3 x-3 \\
& 3 x-11 y+19=0
\end{aligned}
$$

and
Equation of $B C$ is

$$
\begin{aligned}
& (y-2)=\frac{-11}{3}(x-1) \\
& 11 x+3 y-17=0
\end{aligned}
$$

