Very Short Answer Type Questions
 [1 MARK]

Que 1. A transversal intersects two lines in such a way that the two interior angles on the same side of transversal are equal. Will the two lines always be parallel?

Sol. The two lines will not be always parallel as the sum of the two equal angles will not always be 180°. Lines will be parallel when each of the equal angles is equal to 90°
Que 2. For what value of $x+y$ in Rig. 6.4 will $A B C$ be a line?

Sol. For $A B C$ to be a line, the sum of two adjacent angles must be 180°, i.e., $x+y$ must be equal to 180°.

Que 3. In Fig. 6.5, which of the two lines are parallel?

Sol. $\quad l \| m$, because angles on the same side of the transversal are supplementary, i.e., $128^{0}+52^{0}=180^{\circ}$. Therefore p is not parallel to q, because $105^{\circ}+74^{\circ}=180^{\circ}$.

Que 4. In Fig. 6.6, find the value of \boldsymbol{x} for which the lines \boldsymbol{l} and \boldsymbol{m} are parallel.
Sol. Two lines are parallel when angles on the same side of transversal are supplementary i.e.,

$$
x+55^{0}=180^{\circ} \Rightarrow x=180^{0}-55^{\circ} \Rightarrow x=125^{0}
$$

Que 5. Two lines l and m are perpendicular to the same line n. Are l and m perpendicular to each other?

Sol. No, they are parallel.
Que 6. Can a triangle have two obtuse angles? Give reason.
Sol. No, because sum of angles of a triangle cannot be more than 180°.
Que 7. Can a triangle have all the angles less than 60° ? Give reason.
Sol. No, because the angle sum will be less than 180°
Que 8. How many triangles can be drawn having its angles as $60^{\circ}, \mathbf{9 0}^{\circ}, 30^{0}$?
Sol. Infinitely many triangles.
Que 9. Find the angle whose complement is equal to the angle itself.
Sol. Let the measure of an angle be x, then the measure of its complement is also x. We know that the sum of the measures of complementary angles is 90°.

Therefore, $x+x=90^{\circ}$

$$
\Rightarrow \quad 2 x=90^{\circ} \quad \Rightarrow \quad x=45^{\circ}
$$

Que 10. Find the measure of an angle whose supplement is equal to the angle itself.

Sol. Let the measure of an angle be x, then measure of its supplement is also x. Since the sum of supplementary angles is 180°.

$$
\begin{array}{ll}
\therefore & x+x=180^{\circ} \quad \Rightarrow \quad 2 x=180^{\circ} \\
\Rightarrow & x=90^{\circ}
\end{array}
$$

Short Answer Type Questions - I [2 MARKS]

Que 1. In Fig. 6.7, if $l \| m$, then find the value of x.

Sol. : $\quad l \| m$

$$
\begin{array}{lll}
\therefore & \angle 1=60^{\circ} & \text { (Corresponding angle) } \\
\text { Now, } \angle x+40^{\circ}=\angle 1 & \text { (Exterior angle property) }
\end{array}
$$

$$
\Rightarrow \quad \angle x=60^{\circ}-40^{\circ}=20^{\circ}
$$

Que 2. In Fig. 6.9, find the value of x.

Sol. $2 x+3 x+4 x=180^{0} \quad$ (Straight angle)

$$
\begin{aligned}
& \Rightarrow \quad 9 x=180^{\circ} \\
& \therefore \quad x=20^{\circ} .
\end{aligned}
$$

Que 3. If the ratio between two complementary angles is $2: 3$, then find the angles.
Sol. Let the two complementary angles be $2 x$ and $3 x$.
$\therefore 2 x+3 x=90^{\circ} \Rightarrow 5 x=90^{\circ} \Rightarrow x=18^{\circ}$
\therefore The angles are $2 \times 18^{0}=36^{\circ}$ and $3 \times 18^{0}=54^{0}$.
Que 4. If the difference between two supplementary angles is $40^{\mathbf{0}}$, then find the angles.
Sol. Let the two supplementary angles be x and $x+40^{\circ}$.

$$
\begin{aligned}
& \therefore \quad x+x+40^{0}=180^{\circ} \quad \Rightarrow \quad 2 x=180^{\circ}-40^{0} \\
& \Rightarrow \quad 2 x=140^{\circ} \quad \Rightarrow \quad x=70^{\circ} \\
& \text { Also } \quad x+40^{\circ}=70^{0}+40^{\circ}=110^{\circ} .
\end{aligned}
$$

Que 5. In Fig. 6.10, if $\boldsymbol{m} \| n$, then find the value of \boldsymbol{x}.

Sol. $100^{\circ}+x=180^{\circ} \quad$ (Cointerior angles are supplementary)

$$
\Rightarrow \quad x=180^{\circ}-100^{\circ}=80^{\circ} .
$$

Que 6. An exterior angle of a triangle is $110^{\mathbf{0}}$ and its two interior opposite angles are equal. Find each of these equal angles.

Sol. Let each of the interior opposite angles be x.
\therefore An exterior angle is equal to sum of its two interior opposite angles.
Then $x+x=100^{0}$

$$
\text { or } x=\frac{110^{0}}{2}=55^{0}
$$

Que 7. In a $\triangle A B C, \angle A+\angle B=110^{\circ}, \angle C+\angle A=135^{\circ}$. Find $\angle A$.
Sol. Given $\angle A+\angle B=110^{\circ}, \angle C+\angle A=135^{\circ}$
On adding, we get
$\angle A+\angle B+\angle C+\angle A=110^{\circ}+135^{\circ}$
$\Rightarrow \quad 180^{\circ}+\angle A=245^{\circ}$
(Using angle sum property of Δ)
$\Rightarrow \quad \angle A=245^{\circ}-180^{\circ}=65^{\circ}$.

Short Answer Type Questions - II
 [3 MARKS]

Que 1. For what value of x will the lines l and m be parallel to each other? [Fig. 6.11].

Sol. $\quad l \| m$ only when a pair of corresponding angles is equal.

$$
\begin{array}{ll}
\therefore & 7 x-20=3 x+20 \\
& 7 x-3 x=20+20 \\
\Rightarrow & 4 x=40 \\
\Rightarrow & x=\frac{40^{0}}{4}=10^{0}
\end{array}
$$

Que 2. In Fig. 6.12, $\angle A O C$ and $\angle B O C$ form a linear pair. If $a-b=20^{\circ}$, find the values of a and b.

Sol. $a+b=180^{0} \quad$ (Linear pair)
$a-b=20^{0}$
(Given)
Adding (i) and (ii), we get

$$
2 a=200^{\circ} \Rightarrow a=\frac{200^{0}}{2} a=100^{0}
$$

Putting the value of a in equation (i), we get

$$
100^{\circ}+b=180^{\circ} \quad \Rightarrow \quad b=80^{\circ}
$$

Que 3. In Fig. 6.13, $O D$ is the bisector of $\angle A O C, O E$ is the bisector of $\angle B O C$ and $O D \perp O E$. Show that the points A, O and B are collinear.

Sol. Since $O D$ and $O E$ are the bisectors of angles $\angle A O C$ and $\angle B O C$ respectively

$$
\begin{array}{lc}
\therefore & \angle A O D=\angle C O D \text { and } \angle B O E=\angle C O E \\
\text { Also } & \angle D O E=90^{\circ} \\
\text { Now, } \angle A O C+\angle B O C=\angle A O D+\angle C O D+\angle B O E+\angle C O E \\
& =\angle C O D+\angle C O D+\angle C O E+\angle C O E \\
\Rightarrow & \angle A O C+\angle B O C=2 \angle C O D+2 \angle C O E=2(\angle C O D+\angle C O E) \\
& =2 \angle D O E=2 \times 90^{\circ}=180^{\circ}
\end{array}
$$

Hence, points A, O and B are collinear.
Que 4. In Fig. 6.14, if $x+y=w+z$, then prove that $A O B$ is a line.

Sol. As sum of all the angles about a point is equal to 360°
Therefore,

$$
x+y+z+w=360^{\circ}
$$

$$
\Rightarrow \quad(x+y)+(z+q)=360^{\circ}
$$

Also, $\quad z+w=x+y$ (Given)

$$
\begin{array}{llll}
\therefore & (x+y)+(x+y)=360^{0} & \Rightarrow & 2 x+2 y=360^{\circ} \\
\Rightarrow & 2(x+y)=360^{\circ} & \Rightarrow & (x+y)=180^{\circ}
\end{array}
$$

$\therefore A O B$ is a straight line.

Que 5. In Fig. 6.15, lines $X Y$ and $M N$ intersect at O. If $\angle P O Y=90^{\circ}$ and $a: b=2: 3$, find c.

Sol. $\quad \angle P O X+\angle P O Y=180^{\circ}$

$$
\begin{array}{lr}
\Rightarrow & \angle P O X+90^{\circ}=180^{\circ} \\
\therefore & \angle P O X=90^{\circ}
\end{array}
$$

Let $a=2 x$ and $b=3 x$

$$
\begin{array}{ll}
\therefore & 2 x+3 x=90^{0} \\
\Rightarrow & 5 x=90^{0} \\
\therefore & a=2 \times 18^{0}=36^{0} \text { and } b=3 \times 18^{0}=54^{0}
\end{array}
$$

Since, $X O$ stands on $M N$

$$
\begin{array}{ll}
\therefore & b+c=180^{0} \quad \Rightarrow \quad 54^{0}+c=180^{\circ} \\
\Rightarrow & c=180^{\circ}-54^{0}=126^{\circ}
\end{array}
$$

Que 6. In Fig. 6.16, if $O P \| R S, \angle O P Q=110^{\circ}$ and $\angle Q R S=130^{\circ}$, then determine $\angle P Q R$.

Sol. Produce $O P$ TO intersect $R Q$ at point N.
Now, $O P \| R S$ and transversal $R N$ intersects them at N and R respectively

$$
\begin{array}{ll}
\therefore & \angle R N P=\angle S R N \\
\Rightarrow & \angle R N P=130^{\circ} \\
\therefore & \angle P N Q=180^{\circ}-130^{\circ}=50^{\circ} \\
& \angle O P Q=\angle P N Q+\angle P Q N \quad \text { (Alternate interior angles) } \\
\Rightarrow & 110^{\circ}=50^{\circ}+\angle P Q N \\
\Rightarrow & \angle P Q N=110^{\circ}-50^{\circ}=60^{\circ}=\angle P Q R
\end{array}
$$

Que 7. In Fig. 6.17, $A B \| C D$. Find the value of x.

Sol. Through O, draw a line POQ parallel to AB, [Fig. 6.18]
Now $P Q \| A B$ and $C D \| A B$
So, $C D \| P Q$
$\because \quad A B \| P Q$ and $A O$ is a transversal
We have,

$$
\begin{array}{cc}
& \angle A O Q+\angle O A B=180^{\circ} \quad \text { (Cointerior angle } \\
\Rightarrow & \angle A O Q+130^{\circ}=180^{\circ} \\
\Rightarrow & \angle A O Q=180^{\circ}-120^{\circ}=60^{\circ} \\
\therefore & \angle A O C=\angle A O Q+\angle Q O C=50^{\circ}+60^{\circ}=110^{\circ}
\end{array}
$$

Que 8. In Fig. 6.19, $A B \| C D$. Determine x.

Sol. Through O, draw a line l parallel to both $A B$ and $C D$.
Then,

$$
\angle 1=\angle A B O=30^{\circ}
$$

(Alternate interior angles)
And

$$
\angle 2=\angle D C O=45^{\circ}
$$

(Alternate interior angles)
Now, $\quad \angle B O C=\angle 1+\angle 2 \Rightarrow \angle B O C=30^{\circ}+45^{\circ}=75^{\circ}$
So,

$$
x=360^{\circ}-\angle B O C=360^{0}-75^{\circ}=285^{\circ}
$$

Hence,

$$
x=285^{\circ}
$$

Que 9. In Fig. 6.20, find x if $A B\|C D\| E F$.

Sol. As $E F \| C D$ and $E C$ is the transversal

$$
\begin{array}{ll}
\therefore & \angle D C E+\angle F E C=180^{\circ} \quad \text { (Cointerior angles are supplementary) } \\
& \angle D C E+140^{\circ}=180^{\circ} \\
\Rightarrow & \angle D C E=180^{\circ}-140^{\circ}=40^{\circ} \\
\text { Also, } & \angle B C D=\angle A B C \\
\therefore & \angle B C D=60^{\circ} \Rightarrow \quad X+\angle D C E=60^{\circ} \\
\Rightarrow & x=60^{\circ}-40^{\circ}=20^{\circ}
\end{array} \quad \text { (Alternate interior angles) }
$$

Que 10. The angles of a triangle are in the ratio 3: 7: 8. Find the angles of the triangle.

Sol. Let the three angles of the triangle be $3 x, 7 x$ and $8 x$.
Then, $3 x+7 x+8 x=180^{\circ} \quad($ By angle sum property of Δ)
$\Rightarrow \quad 18 x=180^{\circ}$ or $x=10^{0}$
$\therefore \quad$ The angles of triangle are
$3 \times 10^{0}=30^{0}, 7 \times 10^{0}=70^{0}, 8 \times 10^{0}=80^{0}$
Hence, the angles of triangle are $30^{\circ}, 70^{\circ}$ and 80°

Que 11. In Fig. 6.21, if $A B \| C D, \angle A P Q=50^{\circ}$ and $\angle P R D=127^{\circ}$, find x and y.

Sol. As $A B \| C D$ and $P Q$ is a transversal.
$\therefore \quad \angle A P Q=\angle P Q R$
(Alternate interior angles)
$\Rightarrow \quad 50^{0}=x$
Also $\angle A P R=\angle P R D \quad$ (Alternate interior angles)
$\Rightarrow \quad 50^{0}+\angle Q P R=127^{\circ}$
$\Rightarrow \quad 50^{0}+y=127^{0}$
Or $\quad y=127^{0}-50^{0}=77^{0}$
Hence,

$$
x=50^{\circ}, y=77^{0}
$$

Que 12. In Fig. 6.22, $P O Q$ is a line. Ray OR is perpendicular to line PQ. $O S$ is another ray lying between rays $O P$ and $O R$. Prove that $\angle R O S=\frac{1}{2}(\angle Q O S-\angle P O S)$.

Sol. As $R O \perp P Q$
$\therefore \quad \angle P O R=\angle Q O R=90^{\circ}$
Now, $\angle Q O S=\angle Q O R+\angle R O S$
$\Rightarrow \quad \angle Q O S=90^{\circ}+\angle R O S$
Since $\angle P O R=90^{\circ} \Rightarrow \angle P O S+\angle R O S=90^{\circ}$

$$
\angle P O S=90^{\circ}-\angle R O S
$$

Subtracting (ii) from (i), we get

$$
\begin{aligned}
& \angle Q O S-\angle P O S=90^{\circ}+\angle R O S-\left(90^{\circ}-\angle R O S\right) \\
& \angle Q O S-\angle P O S=2 \angle R O S \\
& \angle R O S=\frac{1}{2}(\angle Q O S-\angle P O S)
\end{aligned}
$$

Que 13. In Fig. 6.23, if $A B \| D E, \angle B A C=35^{\circ}$ and $\angle C D E=50^{\circ}$, find $\angle D C E$.
Sol. Since $A B \| D E$

$$
\therefore \quad \angle A E D=\angle B A E=35^{\circ} \quad \text { (Alternate interior angles) }
$$

In $\triangle C D E$

$$
\begin{aligned}
& \angle C E D+\angle E D C+\angle D C E=180^{\circ} \\
& 35^{\circ}+50^{\circ}+\angle D C E=180^{\circ} \\
& 85^{\circ}+\angle D C E=180^{\circ} \\
& \angle D C E=180^{\circ}-85^{\circ} \quad \therefore \angle D C E=95^{\circ}
\end{aligned}
$$

Que 14. In Fig. 6.24, $A B \| D C$ AND $A D \| B C$. Prove that $\angle D A B=\angle D C B$.
Sol. As $A B \| D C$ and $B C$ is a transversal intersecting them at B and C respectively.

$$
\begin{equation*}
\therefore \quad \angle A B C+\angle D C B=180^{\circ} \tag{i}
\end{equation*}
$$

Also $A D \| B C$ and $A B$ is a transversal intersecting them at A and B respectively.

$$
\begin{equation*}
\therefore \quad \angle D A B+\angle A B C=180^{\circ} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we get

$$
\begin{array}{ll}
& \angle A B C+\angle D C B=\angle D A B+\angle A B C \\
\Rightarrow & \angle D C B=\angle D A B \\
\text { Hence, } & \angle D A B=\angle D C B
\end{array}
$$

Que 15. In Fig. 6.25, if $P Q \perp P S, P Q \| S R, \angle S Q R=28^{\circ}$ and $\angle Q R T=65^{\circ}$, then find the values of x and y.

Sol. As $P Q \| S R$ AND $Q R$ IS A TRANSVERSAL

$$
\begin{array}{cc}
\therefore & \angle P Q R=\angle Q R T \\
\Rightarrow & x+28^{0}=65^{\circ} \\
\Rightarrow & x=65^{\circ}-28^{0} \\
\therefore & x=37^{0}
\end{array}
$$

Now, in $\triangle P Q S$, we have

$$
\begin{array}{cc}
& \angle Q P S+\angle P Q S+\angle P S Q=180^{\circ} \\
\Rightarrow & 90^{\circ}+37^{0}+y=180^{\circ} \\
\Rightarrow & 127^{0}+y=180^{\circ} \\
\Rightarrow & y=180^{\circ}-127^{0} \\
& \therefore
\end{array}
$$

Long Answer Type Questions
 [4 MARKS]

Que 1. If a transversal intersects two parallel lines, prove that the bisectors of any pair of corresponding angles so formed are parallel.

Sol. Given: A transversal $E F$ cuts two parallel lines $A B$ and CD at point G and H respectively. $G L$ and $H M$ are respectively the bisectors of a pair of corresponding angles $\angle E G B$ and $\angle G H D$ respectively [Fig. 6.26].

To prove: $G L \| H M$
Proof: Since $A B \| C D$ and $E F$ is a transversal

$$
\begin{array}{lll}
\therefore & \angle E G B=\angle G H D & \text { (Corresponding angles) } \\
\Rightarrow & \frac{1}{2} \angle E G B=\frac{1}{2} \angle G H D & \\
\Rightarrow & \angle E G L=\angle G H M &
\end{array}
$$

But these are corresponding angles formed by the lines $G L$ and $H M$
$\therefore G L \| H M$

Que 2. In Fig. 6.27, prove that $\angle A D C=\angle A+\angle B+\angle C$.

Sol. Join B and D and produce $B D$ to E (Fig. 6.28). Since the exterior angle of a triangle is equal to sum of the two interior opposite angles.

Therefore, in $\triangle A B D$

$$
\begin{array}{ll}
x & =w+\angle A \\
\ln \triangle C B D, & y \tag{ii}
\end{array}=z+\angle C
$$

Adding (i) and (ii), we get

$$
\begin{aligned}
& x+y=w+\angle A+z+\angle C \\
& x+y=w+z+\angle A+\angle C \\
& x+y=\angle B+\angle A+\angle C
\end{aligned}
$$

Hence, $\angle A D C=\angle A+\angle B+\angle C$

Que 3. In Fig. 6.29, $D E \| Q R$ and $A P$ and $B P$ are bisectors of $\angle E A B$ and $\angle R B A$ respectively. Find $\angle A P B$.
Sol. Since interior angles on the same side of transversal are supplementary

$$
\begin{array}{lr}
\therefore & \angle E A B+\angle R B A=180^{\circ} \\
\Rightarrow & \frac{1}{2} \angle E A B+\frac{1}{2} \angle R B A=\frac{1}{2} \times 180^{\circ} \tag{i}
\end{array}
$$

As $A P$ and BP are bisectors of $\angle E A B$ and $\angle R B A$, respectively

$$
\begin{equation*}
\therefore \quad \angle 1=\frac{1}{2} \angle E A B \text { and } \angle 2=\frac{1}{2} \angle R B A \tag{ii}
\end{equation*}
$$

From (i) and (ii), we get

$$
\begin{equation*}
\angle 1+\angle 2=90^{\circ} \tag{iii}
\end{equation*}
$$

In $\triangle \mathrm{APB}$, we have

$$
\begin{aligned}
& \angle 1+\angle 2+\angle A P B=180^{\circ} \\
\Rightarrow \quad & 90^{\circ}+\angle A P B=180^{\circ} \quad[\text { Using (iii)] }
\end{aligned}
$$

Que 4. Prove that the sum of the angles of a triangle is 180°.
Sol. Given: $\angle 1+\angle 2+\angle 3=180^{\circ}$
To prove: $\angle 1+\angle 2+\angle 3=180^{\circ}$
Construction: Through A, draw a line $X Y \| B C$ (Fig. 6.30).

Proof: Since $X Y \| B C$ and $A B$ is the transversal
$\therefore \quad \angle 4=\angle 2$
(Alternate interior angles)
Similarly, $X Y \| B C$ and $A C$ is the transversal
$\therefore \quad \angle 5=\angle 3$
Adding (i) and(ii), we get

$$
\angle 4+\angle 5=\angle 2+\angle 3
$$

Adding $\angle 1$ on both the sides

$$
\angle 4+\angle 1+\angle 5=\angle 1+\angle 2+\angle 3
$$

But $\angle 4+\angle 1+\angle 5=180^{\circ} \quad(\therefore X A Y$ is a straight line)
$\therefore \quad \angle 1+\angle 2+\angle 3=180^{\circ}$
Hence, the sum of the angles of a triangle is 180°

Que 5. If the bisector of angles $\angle B$ and $\angle C$ of a triangle $A B C$ meet at a point O, then prove that $\angle B O C=90^{\circ}+\frac{1}{2} \angle A$.
Sol. In $\triangle A B C$ (Fig. 6.31), we have

$$
\begin{array}{cc}
& \angle A+\angle B+\angle C=180^{\circ} \\
& \quad\left(\because \text { Sum of the angles of a } \triangle \text { is } 180^{\circ}\right) \\
\Rightarrow & \frac{1}{2} \angle A+\frac{1}{2} \angle B+\frac{1}{2} \angle C=\frac{180^{\circ}}{2} \\
\Rightarrow & \frac{1}{2} \angle A+\angle 1+\angle 2=90^{\circ} \\
\therefore & \angle 1+\angle 2=90^{\circ}-\frac{1}{2} \quad \ldots(i) \tag{i}
\end{array}
$$

Now, in $\triangle O B C$, we have:

$$
\begin{array}{ll}
& \angle 1+\angle 2+\angle B O C=180^{\circ} \quad\left(\because \text { Sum of the angles of } \triangle \text { is } 180^{\circ}\right) \\
\Rightarrow & \angle B O C=180^{\circ}-(\angle 1+\angle 2) \\
\Rightarrow & \angle B O C=180^{\circ}-\left(90^{\circ}-\frac{1}{2} \angle A\right) \quad \angle B O C=180^{\circ}-90^{\circ}+\frac{1}{2} \angle A \\
\therefore & \angle B O C=90^{\circ}+\frac{1}{2} \angle A
\end{array} \quad \text { [Using (i)] }
$$

Que 6. In $\triangle A B C$ (Fig. 6.32), the sides $A B$ and $\triangle A B C$ are produced to points E and D respectively. If bisectors $B O$ and $C O$ of $\angle C B E$ and $\angle B C D$ respectively meet at point O, then prove that $\angle B O C=90^{\circ}-\frac{1}{2} \angle A$.

Sol. As $\angle A B C$ and $\angle C B E$ form a linear pair

$$
\therefore \quad \angle A B C+\angle C B E=180^{\circ}
$$

As BO is the bisector of $\angle C B E$
$\therefore \quad \angle C B E=2 \angle 1$
Therefore,

$$
\angle A B C+2 \angle 1=180^{\circ}
$$

$$
\Rightarrow \quad 2 \angle 1=180^{\circ}
$$

$$
\begin{equation*}
\Rightarrow \quad \angle 1=90^{\circ}-\frac{1}{2} \angle A B C \tag{i}
\end{equation*}
$$

Again, $\angle A C B$ and $\angle B C D$ form a linear pair

$$
\therefore \quad \angle A C B+\angle B C D=180^{\circ}
$$

As, $C O$ is the bisector of $\angle B C D$, therefore, $\angle B C D=2 \angle 2$
So, $\angle A C B+2 \angle 2=180^{\circ}$

$$
\begin{array}{ll}
\Rightarrow & 2 \angle 2=180^{\circ}-180^{\circ}-\angle A C B \\
\Rightarrow & \angle 2=90^{\circ}-\frac{1}{2} \angle A C B
\end{array}
$$

In $\triangle O B C$, we have

$$
\angle 1+\angle 2+\angle B O C=180^{\circ} \quad \text { (Angle sum property of triangle) }
$$

From, (i), (ii) and (iii), We have

$$
90^{\circ}-\frac{1}{2} \angle A B C+90^{\circ}-\frac{1}{2} \angle A C B+\angle B O C=180^{\circ}
$$

Now, in $\triangle A B C$, we have

$$
\begin{array}{ll}
& \angle A+\angle B+\angle C=180^{\circ} \\
\text { Or } & \angle B+\angle C=180^{\circ}-\angle A
\end{array}
$$

From (iv) and (V), we have

$$
\begin{aligned}
& \qquad 180^{\circ}-\frac{1}{2}\left(180^{\circ}-\angle A\right)+\angle B O C=180^{\circ} \\
& \Rightarrow \quad \angle B O C=180^{\circ}-180^{\circ}+\frac{1}{2}\left(180^{\circ}-\angle A\right. \\
& \Rightarrow \quad B O C=\frac{1}{2}\left(180^{\circ}-\angle A\right. \\
& \text { Hence, } \quad \angle B O C=90^{\circ}-\frac{1}{2} \angle A
\end{aligned}
$$

HOTS (Higher Order Thinking Skills)

Que 1. If Fig. 6.33, $\angle Q>\angle R, P A$ is the bisector
Of $\angle \mathrm{QPR}$ and $\mathrm{PM} \perp \mathrm{QR}$. Prove that $\angle \mathrm{APM}=\frac{1}{2}(\angle \mathrm{Q}-\angle \mathrm{R})$.

Fig. 6.33
Sol. Since PA is the bisector of $\angle \mathrm{QPR}$

$$
\begin{equation*}
\therefore \quad \angle Q P A=\angle A P R \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{PQM}$, we have

$$
\begin{align*}
& \angle \mathrm{PQM}+\angle \mathrm{PMQ}+\angle \mathrm{QPM}=180^{\circ} \quad \text { (Angle sum property) } \\
\Rightarrow & \angle \mathrm{PQM}+90^{\circ}+\angle \mathrm{QPM}=180^{\circ} \\
\Rightarrow & \angle \mathrm{PQM}+90^{\circ}-\angle \mathrm{QPM} \tag{ii}
\end{align*}
$$

In \triangle PMR, we have

$$
\begin{array}{cc}
& \angle \mathrm{PMR}+\angle \mathrm{PRM}+\angle \mathrm{RPM}=180^{\circ} \\
\Rightarrow & 90^{\circ}+\angle \mathrm{PRM}+\angle \mathrm{RPM}=180^{\circ} \\
\Rightarrow & \angle \mathrm{PRM}=180^{\circ}-90^{\circ}-\angle \mathrm{RPM} \\
\Rightarrow & \angle \mathrm{R}=90^{\circ}-\angle \mathrm{RPM} \tag{iii}
\end{array}
$$

Subtracting (iii) from (ii), we get

$$
\begin{aligned}
\angle Q-\angle R & =\left(90^{\circ}-\angle Q P M\right)-\left(90^{\circ}-\angle R P M\right) \\
\angle Q-\angle R & =\angle R P M-\angle Q P M \\
\angle Q-\angle R & =(\angle R P A+\angle A P M)-(\angle Q P A-\angle A P M) \ldots \text { (iv) } \\
\angle Q-\angle R & =\angle Q P A+\angle A P M-\angle Q P A+\angle A P M \quad[\text { Using (i)] } \\
\Rightarrow \quad \angle Q-\angle R & =2 \angle A P M
\end{aligned}
$$

Hence, $\angle A P M=\frac{1}{2}(\angle Q-\angle R)$.
Que 2. In Fig. 6.34, the side QR of $\triangle P Q R$ is produced to point S. If the bisector of $\angle P Q R$ and $\angle P R S$ meet at point T. then prove that $\angle Q T R=\frac{1}{2} \angle Q P R$.

Fig. 6.34
Sol. Given: $A \Delta P Q R$, whose side $Q R$ is produced to S. The bisectors of $\angle P Q R$ and $\angle P R S$ meet at point T.

To prove: $\angle \mathrm{PRS}=\frac{1}{2} \angle \mathrm{QPR}$
Proof: Side QR of $\triangle \mathrm{PQR}$ is produced to S .

$$
\begin{array}{ll}
\therefore & \angle \mathrm{PRS}=\angle \mathrm{P}+\angle \mathrm{Q} \Rightarrow \frac{1}{2} \angle \mathrm{PRS}=\frac{1}{2} \angle \mathrm{P}+\frac{1}{2} \angle \mathrm{Q} \\
\Rightarrow & \angle \mathrm{TRS}=\frac{1}{2} \angle \mathrm{P}+\frac{1}{2} \angle \mathrm{Q} \tag{i}
\end{array}
$$

Again, side QR of $\Delta T Q R$ is produced to S

$$
\begin{array}{ll}
\therefore & \angle \mathrm{TRS}=\angle \mathrm{QTR}+\angle \mathrm{RQT} \\
\Rightarrow & \angle \mathrm{TRS}=\angle \mathrm{T}+\frac{1}{2} \angle \mathrm{Q}
\end{array}
$$

From (i) and (ii), we get

$$
\begin{aligned}
& \frac{1}{2} \angle \mathrm{P}+\frac{1}{2} \angle \mathrm{Q}=\angle \mathrm{T}+\frac{1}{2} \angle \mathrm{Q} \\
\Rightarrow \quad & \angle \mathrm{~T}=\frac{1}{2} \angle \mathrm{P} \text { or } \angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}
\end{aligned}
$$

Que 3. Prove that a triangle must have atleast two acute angles.

Sol. Let us assume a triangle $A B C$ which has only one acute angle (say $\angle A$)
Then we have the following three cases:
(i) The other two angles ($\angle \mathrm{B}$ and $\angle \mathrm{C}$) are right angle.

Then $\angle A+\angle B+\angle C=\angle A+90^{\circ}+90^{\circ}=\angle A+180^{\circ}>180^{\circ}$ which is not possible.
(ii) The other two angles ($\angle \mathrm{B}$ and $\angle \mathrm{C}$) are obtuse angles.

Then $\angle A+\angle B+\angle C>180^{\circ}$ which is not possible.
(iii) One angle (say $\angle \mathrm{B}$) is right and the other angle ($\angle \mathrm{C}$) is obtuse.

Then $\angle A+\angle B+\angle C>180^{\circ}$ which is not possible as we know that sum of the three angles of a triangle is 180° by angle sum property of a triangle.

Thus, a triangle must have atleast two acute angles.

Value Based Questions

Que 1. Teacher held two sticks $A B$ and $C D$ of equal length in her hands and marked their mid points M and N respectively. She then asked the students whether AM is equal to ND or not. Aprajita answered yes. Is Aprajita correct? State the axiom of Euclid that supports her answer. Which values of Aprajita are depicted here?

Fig. 5
Sol. Yes, Things which are halves of the same things are equal to one another. Curiosity, knowledge, truthfulness.

Que 2. For her records, a teacher asked the students about their heights. Manav said his height is same as that of Arnav. Raghav also answered the same, way that his height is same as that of Arnav. She then asked the students to relate the height of Manav and Raghav. Arnav answered they both have same height. Is Arnav correct? If yes, state Euclid's axiom which supports his answer.
Which values of Arnav are depicted here?
Sol. Yes, Things which are equal to the same thing are equal to one another. Knowledge, curiosity, truthfulness.

Que 3. The number of members of society A who participated in 'Say No to Crackers' campaign is double the number of members from society B. Also, the number of members from society C is double the number of members from society B. Can you relate the number of participants from society A and C ? Justify your answer using Euclid's axiom. Which values are depicted here?

Sol. The number of participants from society A and C is equal. Things which are double of the same thing are equal to one another. Social service, helpfulness, cooperation, environmental concern.

Que 4. In a society, the number of persons using CNG instead of petrol for their vehicles has increased by 15 and now the number is 25 . Form a linear equation to find the original number of persons using CNG and solve it using Euclid's axiom.
Which values are depicted in the question?

Sol. $\mathrm{X}+15=25$
$\Rightarrow x+15-15=25-15$ (Using Euclid's third axiom)
$\Rightarrow \mathrm{x}=10$
Environmental care, responsible citizens, futuristic.
Que 5. Teacher asked the students to find the value of x in the following figure if I|| m . Shalini answered 35°. Is she correct? Which values are depicted here?

Fia. 6
Sol. $\angle 1=3 x+20$ (Vertically opposite angles)
$\therefore 3 \mathrm{x}+202 \mathrm{x}-15=180^{\circ} \quad$ (Co-interior angles are supplementary)
$\Rightarrow 5 x+5=180^{\circ} \Rightarrow 5 x=180^{\circ}-5^{\circ}$
$\Rightarrow \quad 5 \mathrm{x}=175^{\circ} \quad \Rightarrow x=\frac{175}{5}=35^{\circ}$
Yes, Knowledge, truthfulness.
Que 6. For spreading the message 'Save Environment Save Future' a rally was organised by some students of a school. They were given triangular cardboard pieces which they divided into two parts by drawing bisectors of base angles (say $\angle B$ and $\angle C$) intersecting at O in the given figure. Prove that $\angle B O C=90+$ $\frac{1}{2} \angle A$
Which values are depicted by these students?

Fig. 7
Sol. In $\triangle A B C$, we have

$$
\angle A+\angle B+\angle C=180^{\circ} \quad(\because \text { sum of the angles of a } \Delta \text { is }
$$

180°)

$$
\Rightarrow \quad \frac{1}{2} \angle A+\frac{1}{2} \angle B+\frac{1}{2} \angle C=\frac{180^{\circ}}{2}
$$

$$
\begin{array}{lr}
\Rightarrow & \frac{1}{2} \angle A+\angle 1+\angle 2=90^{\circ} \\
\therefore & \angle 1+\angle 2=90^{\circ}-\frac{1}{2} \angle A \tag{i}
\end{array}
$$

Now, in \triangle OBC, we have:

$$
\angle 1+\angle 2+\angle B O C=180^{\circ} \quad\left[\because \text { sum of the angles of } \Delta \text { is } 180^{\circ}\right]
$$

$$
\Rightarrow \quad \angle \mathrm{BOC}=180^{\circ}-(\angle 1+\angle 2)
$$

$$
\Rightarrow \quad \angle \mathrm{BOC}=180^{\circ}-\left(90^{\circ}-\frac{1}{2} \angle A\right) \quad[\text { using (i)] }
$$

$$
\Rightarrow \quad \angle \mathrm{BOC}=180^{\circ}-90^{\circ}+\frac{1}{2} \angle A
$$

$$
\therefore \quad \angle \mathrm{BOC}=90^{\circ}+\frac{1}{2} \angle A
$$

Environmental care, social, futuristic.
Que 7. Three bus stops situated at A, B and C in the figure are operated by handicapped persons. These 3 bus stops are equidistant from each other. OB is the bisector of $\angle A B C$ and $O C$ is the bisector of $\angle A C B$.
(a) Find $\angle B O C$.
(b) Do you think employment provided to handicapped persons is important for the development of the society? Express your views with relevant points.

Fig. 9
Sol. (a) Since, A, B, C are equidistant from each other.
$\therefore \quad \angle A B C$ is an equilateral triangle.
$\Rightarrow \quad \angle A B C=\angle A B C=60^{\circ}$
$\Rightarrow \quad \angle \mathrm{OBC}=\angle \mathrm{OCB}=\frac{1}{2} \times 60^{\circ}=30^{\circ} \quad(\because \mathrm{OB}$ and OC are angle bisectors $)$
Now, $\angle B O C=180^{\circ}-\angle O B C-\angle O C B \quad$ (Using angle sum property of triangle)
$\Rightarrow \quad \angle B O C=180^{\circ}-30^{\circ}-30^{\circ}=120^{\circ}$
(b) Yes, employment provided to the handicapped persons is important for the development of the society as they would become independent, self-reliant, confident, social, helpful and useful members of the society.

Que 8. A group of children prepared some decorative pieces in the shape of a star for the orphans in an orphanage. Show that $\angle A+\angle B+\angle C+\angle D+\angle E+$ $\angle F=360^{\circ}$
Which values of the children are depicted here?

Fig. 10
Sol. In \triangle AEC,
$\angle A+\angle E+\angle C=180^{\circ} \quad \ldots$ (i) (Angle sum property of a triangle)
Similarly, in $\triangle B D F$,
$\angle B+\angle D \angle F=180^{\circ}$
Adding (i) and (ii), we get
$\angle A+\angle B+\angle C+\angle D+\angle E+\angle F=360^{\circ}$
Social, caring, cooperative, hardworking.
Que 9. For annual day, Sakshi and Nidhi were asked to make one rangoli each on two different places. They started it with triangles (say ABC and $\triangle P Q R$) and their medians (AM and PN). If two sides (AB and BC) and a median (AM) of one triangle are respectively equal to two sides (PQ and QR) and a median (PN) of other triangle, prove that the two triangles ($\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$) are congruent. Which values of the girls are depicted here?

Sol. In $\triangle A B C$ and $\triangle P Q R$

Fig. 11

$$
\begin{aligned}
& \mathrm{BC}=\mathrm{QR} \\
\Rightarrow & \frac{1}{2} B C=\frac{1}{2} Q R \\
\Rightarrow & \mathrm{BM}=\mathrm{QN}
\end{aligned}
$$

In triangle $A B M$ and $P Q N$, we have
$A B=P Q$
$B M=Q N$
$A M=P N$
$\therefore \quad \triangle A B M \cong \triangle P Q N$
$\Rightarrow \quad \angle B=\angle Q$
Now, in triangles $A B C$ and $P Q R$, we have

$$
A B=P Q
$$

$$
\angle B=\angle \mathrm{Q}
$$

$$
B C=Q R
$$

$\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$
(Given)
(Proved above)
(Given)
(SSS congruence criterion)
(CPCT)

Participation, beauty, hardworking.
Que 10. Triangular pieces of cardboards were cut out by some people who were organising 'No Pollution' campaign in their area. If the three angles of one cutout are respectively equal to the three angles of the other cutout, can we say the two cutouts are congruent? Justify your answer. Which values of these people are depicted here?

Sol. The two cutouts may not be congruent. For example all equilateral triangles have equal angles but may have different sides.
Environmental concern, cooperative, caring, social.
Que 11. Anya wants to prepare a poster on education of girlchild for a campaign. She takes a triangular sheet and divides it into three equal parts by drawing its medians which intersect at the point G (see Fig. 12).
Show that $\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\triangle \mathrm{AGB})=(\triangle \mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\triangle A B C)$

Fig. 12
Do you think education of a girl child is important for the development of a society? Justify your answer.

Sol. Given: $A \triangle A B C$ in which medians $A D, B E$ and $C F$ intersects at G.
Proof: $(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{BGC})=\operatorname{ar}(\triangle \mathrm{CGA})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$
Proof: In $\triangle A B C, A D$ is the median. As a median of a triangle divides it into two triangles of equal area.

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ACD}) \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{GBC}, \mathrm{GD}$ is the median

$\therefore \quad$ aq $(\Delta \mathrm{GBD})=\operatorname{ar}(\Delta \mathrm{GCD})$

Subtracting (ii) from (i), we get
$\operatorname{ar}(\triangle \mathrm{ABD})-\operatorname{ar}(\triangle \mathrm{GBD})=\operatorname{ar}(\mathrm{ACD})-\operatorname{ar}(\triangle \mathrm{GCD})$

$$
\begin{equation*}
\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{AGC}) \tag{iii}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\operatorname{ar}(\Delta \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{BGC}) \tag{iv}
\end{equation*}
$$

From (iii) and (iv), we get
$\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{BGC})=\operatorname{ar}(\triangle \mathrm{AGC})$
But, $\quad \operatorname{ar}(\triangle \mathrm{AGB})+\operatorname{ar}(\triangle \mathrm{BGC})+\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\triangle \mathrm{ABC})$
From (v) and (vi), we get
$3 \operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{ABC})$
$\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{AGB})=\frac{1}{3} \operatorname{ar}(\triangle A B C)$
Hence,

$$
\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\Delta \mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})
$$

Yes, for the development of a society, education of each girl child is essential. An educated society always progresses.

