Very Short Answer Type Questions [1 MARK]

Que 1. In $\triangle A B C$, if $\angle C>\angle B$, then which two sides of the triangle can you relate? State the relation. [Fig. 7.5]

Sol. $A B>A C$
Que 2. If $A B=P Q, B C=Q R$ and $A C=P R$, then write the congruence relation between the triangles. [Fig.7.6]

Sol. $\triangle A B C \cong \triangle P Q R$
Que 3. It is given that $\triangle A B C \cong \triangle D E F$. Is it true to say that $\boldsymbol{A B}=\boldsymbol{E F}$? Justify your answer.

Sol. No, $A B$ and $E F$ are not corresponding sides in triangles $A B C$ and $D E F$, Here, $A B$ corresponds to DE.

Que 4. In triangles $A B C$ and $P Q R, \angle A=\angle Q$ and $\angle B=\angle R$. Which side of $\triangle P Q R$ should be equal to side $A B$ of $\triangle A B C$ so that the two triangles are congruent? Give reason for your answer.

Sol. In triangles $A B C$ and $Q R P$

$$
\begin{array}{ll}
\angle A=\angle Q & \text { (Given) } \\
\angle B=\angle R & \text { (Given) }
\end{array}
$$

If $A B=Q R$,
Then $\triangle A B C \cong \triangle Q R P$ (By ASA).
Que 5. In triangles $A B C$ and $P Q R, \angle A=\angle Q$ and $\angle B=\angle R$. Which side of $\triangle P Q R$ should be equal to side $B C$ of $\triangle A B C$ so that two triangles are congruent? Give reason for your answer.

Sol. RP, they will be congruent by AAS congruence criterion.
Que 6. In $\triangle P Q R, \angle P=70^{\circ}$ and $\angle Q=30^{\circ}$. Which side of this triangle is the longest?

Sol. PQ.

Short Answer Type Questions - I
 [2 MARKS]

Que 1. In Fig. 7.8, $\triangle P Q R, P Q=P R$ and $\angle Q=65^{\circ}$. Then find $\angle R$.

Sol. In $\triangle \mathrm{PQR}, \mathrm{PQ}=\mathrm{PR}$, So $\angle Q=65^{\circ}=\angle R$
[Angles opposite to equal sides of a triangle are equal.]
Que 2. If the corresponding angles of two triangles are equal, then they are always congruent. State true or false and justify your answer.

Sol. False, because two equilateral triangles with sides 3 cm and 6 cm respectively have all angles equal, but the triangles are not congruent.

Que 3. In the Fig. 7.9, PM is the bisector of $\angle P$ and $P Q=P R$. Then $\triangle P Q M$ and $\Delta P R M$ are congruent by which criterion?

Sol. In $\triangle P Q M$ and $\triangle P R M$

$$
P Q=P R \text { and } \angle Q P M=\angle R P M \quad \text { (Given) }
$$

$P M$ is common.
So, $\quad \triangle P Q M \cong \triangle \mathrm{PQM}$
(By SAS rule)

Que 4. In Fig. $7.10 \triangle P Q R$, if $\angle Q=40^{\circ}$ and $\angle R=72^{\circ}$, then find the shortest and the largest sides of the triangle.

Sol. In $\triangle P Q R$, we know

$$
\angle Q=40^{\circ} \text { and } \angle R=72^{\circ}
$$

Then, $\angle P=180^{\circ}-\left(72^{0}+40^{\circ}\right)=68^{0}$
In $\triangle \mathrm{PQR}$,
$P Q$ is largest side [Because side opposite to largest angle is largest]
PR is shortest side [Because side opposite to shortest angle is shortest]
Que 5. In Fig. 7.11, if $A B=A C$ and $B D=D C$, then find $\angle A D B$.

Sol. $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ADC}$

$$
\begin{array}{ll}
A B=A C, B D=D C & {[\text { Given }]} \\
A D=A D & {[\text { Common }]}
\end{array}
$$

So,
$\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$
[By SSS congruence rule]
$\Rightarrow \quad \angle A D B=\angle A D C \quad$ [CPCT]
But $\angle A D B+\angle A D C=180^{\circ}$
[Linear pair]

$$
\Rightarrow \quad \angle A D B+\angle A D B=180^{\circ}
$$

$$
\Rightarrow \quad 2 \angle A D B=180^{\circ} \Rightarrow \angle A D B=90^{\circ}
$$

Que 6. Is it possible to construct a triangle with lengths of its sides $5 \mathrm{~cm}, 3 \mathrm{~cm}$ and 8cm? Give reason for your answer.

Sol. No, since sum of two sides is equal to third side. ($5 \mathrm{~cm}+\mathrm{cm}=8 \mathrm{~cm}$)
Que 7. Is it possible to construct a triangle with lengths of its sides as $7 \mathrm{~cm}, 8 \mathrm{~cm}$ and 5 cm ? Give reason for your answer.

Sol. Yes, because in each case sum of two sides is greater than the third side.
Que 8. In $\triangle A B C, \angle A=65^{\circ}$ and $\angle C=30^{\circ}$. Which side of this triangle is the longest? Give reason for your answer.

Sol. $\angle B=180^{0}-65^{0}-30^{0}=85^{0}$
$\because A C$ is the longest side as side opposite to the larger angle is longer.
Que 9. In Fig. 7.12, $P Q=P R$ and $\angle Q=\angle R$. Prove that $\triangle P Q S \cong \triangle P R T$.

Sol. In $\triangle P Q S$ and $\triangle P R T$

$$
\begin{array}{ll}
P Q=P R \quad \text { (Given) } \\
\angle Q=\angle R \quad \text { (Given) }
\end{array}
$$

And $\quad \angle P=\angle P \quad$ (Common)
Therefore $\triangle P Q S \cong \triangle \mathrm{PRT} \quad$ (ASA Congruence criterion)

Que 10. $A D$ is a median of the $\triangle A B C$ (Fig.7.13). Is it true that $A B+B C+C A>$ $2 A D$? Give reason for your answer.

Sol. Yes, since the sum of two sides of a triangle is greater than the third side.
Therefore, $\quad A B+B D>A D$

$$
\begin{equation*}
A C+C D>A D \tag{i}
\end{equation*}
$$

Adding (i) and (ii), we get

$$
\begin{aligned}
& A B+A C+(B D+C D)>A D+A D \\
& \Rightarrow A B+B C+C A>2 A D
\end{aligned}
$$

Que 11. In quadrilateral $A C B D, A C=A D$ and $A B$ bisects $\angle A$ (in Fig.7.14). Show that $\triangle A B C \cong \triangle A B D$. What can you say about $B C$ and $B D$?

Sol. In triangle $A B C$ and $A B D$, we have,

$$
\begin{array}{ll}
A C=A D & \text { (Given) } \\
\angle C A B=\angle B A D & (\therefore A B \text { bisects } \angle A) \\
A B=A B & (\text { Common })
\end{array}
$$

And by SAS congruence criterion, we have

$$
\begin{equation*}
\triangle A B C \cong \triangle \mathrm{ABD} \quad \Rightarrow B C=B D \tag{CPCT}
\end{equation*}
$$

Que 12. $A B C$ is an isosceles triangle in which altitude $B E$ and $C F$ are drawn to equal sides $A C$ and $A B$ respectively (Fig.7.15). Show that these altitudes are equal.

Sol. Let $B E \perp A C$ and $C F \perp A B$.
In triangles $A B E$ and $A C F$, we have

	$\angle A E B=\angle A F C$	$\left(\because\right.$ Each $\left.90^{\circ}\right)$
	$\angle A=\angle A$	$($ Common)
And	$A B=A C$	(Given)

By $A A S$ criterion of congruence, we have

$$
\begin{equation*}
\triangle A B E \cong \triangle A C F \tag{CPCT}
\end{equation*}
$$

So, $\quad B E=C F$
Que 13. In Fig. (7.16) $A B C D$ is a square and P is the midpoint of $A D . B P$ and $C P$ are joined. Prove that $\angle P C B=\angle P B C$.

Sol. In triangles $P A B$ and $P D C$,

$$
\begin{array}{rc}
P A=P D & \text { (Given } \\
A B=C D & \text { (Side of square) } \\
\angle P A B=\angle P D C=90^{\circ} & \text { (By RHS }, \triangle P A B \cong \triangle \mathrm{PDC} \\
\therefore \quad P C=P B \Rightarrow \angle P C B=\angle P B C
\end{array}
$$

Que 1. In Fig. 7.17, it is given that $A B=C F, E F=B D$ and $\angle A F E=\angle C B D$. Prove that $\triangle A F E \cong \triangle C B D$.

Sol. In triangles $A F E$ and $C B D$, we have

$$
A B=C F
$$

Adding $B F$ on both the sides

$$
\begin{gathered}
A B+B F=C F+B F \\
A F=B C
\end{gathered}
$$

Now in triangles $A F E$ and $C B D$, we have $A F=C B$ (Proved above)

$$
\angle A F E=\angle C B D
$$

And $E F=B D$
$\therefore \quad \triangle A F E \cong \triangle C B D$
(Given)
(Given)
(SAS congruence criterion)

Que 2. Prove that angles opposite to equal sides of a triangle are equal.

Sol. Given: A $\triangle A B C$ in which $A B=A C$.
To prove: $\angle B=\angle C$
Construction: Draw $A D$, the bisector of $\angle A$, to meet BC at D .
Proof: In $\triangle A B D$ and $\triangle A C D$, we have

$$
\begin{array}{cl}
A B=A C & \text { (Given) } \\
\angle B A D=\angle C A D & \text { (By Construction) }
\end{array}
$$

$$
\begin{array}{ll}
\quad A D=A D & \text { (Common) } \\
\therefore \quad \triangle A B D \cong \triangle A C D & \text { (SAS Congruence criterion) } \\
\text { Hence, } \angle B=\angle C & \text { (CPCT) }
\end{array}
$$

Que 3. In Fig. 7.19, $A D$ and $B C$ are equal perpendicular to a line segment $A B$. Show that $C D$ bisects $A B$.

Sol. In $\triangle O A D$ and $\triangle O B C$, we have

$$
\begin{array}{ll}
\angle A O D=\angle B O C & (\text { Vertically opposite angles) } \\
\angle O A D=\angle O B C & \left(\text { Each } 90^{\circ}\right)
\end{array}
$$

And, $A D=B C$

$$
\begin{array}{lll}
\therefore & \triangle A O D \cong \triangle \mathrm{BOC} & \\
\Rightarrow & O A=O B & \text { (AAS congruence criterion) } \tag{CPCT}\\
\Rightarrow & \text { (CPCT) }
\end{array}
$$

Thus, CD bisects $A B$.
Que 4. In Fig. 7.20, $A B C$ and $D B C$ are two isosceles triangles on the same base $B C$. Show that $\angle A B D=\angle A C D$.

Sol. In $\triangle A B C$, we have, $A B=A C$
$\Rightarrow \angle A C B=\angle A B C \quad$ (Angles opposite to equal sides) ...(i)
In $\triangle D B C$, we have

$$
B D=C D
$$

$\Rightarrow \angle D C B=\angle D B C$ (Angles opposite to equal sides)
Adding (i) and (ii), we get

$$
\begin{gathered}
\angle A C B+\angle D C B=\angle A B C+\angle D B C \\
\angle A C D=\angle A B D \\
\text { Hence, } \quad \angle A B D=\angle A C D
\end{gathered}
$$

Que 5. In Fig. 7.21, sides $A B$ and $A C$ of $\triangle A B C$ are extended to points P and Q respectively. Also, $\angle P B C<\angle Q C B$. Show that $A C>A B$.

Sol. We have,

$$
\begin{array}{lll}
\angle A B C+\angle P B C=180^{\circ} & & \text { (Linear Pair) }
\end{array} \ldots \text {..(i) }
$$

From (i) and (ii), we have

$$
\angle A C B+\angle Q P B C=\angle A C B+\angle Q C B
$$

But $\angle P B C<\angle Q C B$
(Given)
$\therefore \quad \angle A B C>\angle A C B$
$\Rightarrow \quad A C>A B \quad(\because$ Side opposite to greater angle is larger)
Que 6. S is any point on side $Q R$ of a $\triangle P Q R$. Show that: $P Q+Q R+R P>2 P S$.

Sol. Since sum of the two sides of a triangle is greater than the third side
$\therefore \ln \triangle P Q S$, we have

$$
\begin{equation*}
P Q+Q S>P S \tag{i}
\end{equation*}
$$

Similarly, in $\triangle P R S$, we have

$$
\begin{equation*}
R S+R P>P S \tag{ii}
\end{equation*}
$$

Adding (i) and (ii), we get

$$
\begin{aligned}
& P Q+Q S+R S+R P>P S+P S \\
\Rightarrow \quad & P Q+(Q S+R S)+R P>2 P S \\
\Rightarrow \quad & P Q+Q R+R P>2 P S
\end{aligned}
$$

Que 7. In Fig. 7.23, T is a point on side $Q R$ of $\triangle P Q R$ and S is a point such that $R T=S T$. Prove that $P Q+P R>Q S$.

Sol. In $\triangle P Q R$, we have

$$
\begin{array}{rll}
& P Q+P R>Q R & \\
\Rightarrow & P Q+P R>Q T+R T & (\because Q R=Q T+R T) \\
\Rightarrow & P Q+P R>Q T+S T & (\because R T=S T) \tag{i}
\end{array}
$$

In Δ QST, we have

$$
\begin{equation*}
Q T+S T>Q S \tag{ii}
\end{equation*}
$$

From (i) and (ii), we have

$$
P Q+P R>Q S
$$

Que 8. Prove that each angle of an equilateral triangle is $\mathbf{6 0}^{\mathbf{0}}$.
Sol. Given: $\mathrm{A} \triangle A B C$ in which $A B=B C=C A$ (Fig. 7.24)
To prove: $\angle A=\angle B=\angle C=60^{\circ}$
Proof: $A B=A C$
$\Rightarrow \quad \angle C=\angle B \quad$ (Angles opposite to equal sides are equal)
Also, $\quad B A=B C$
$\Rightarrow \quad \angle C=\angle A \quad$ (Angles opposite to equal sides are equal)
From (i) and (ii), we have

$$
\angle A=\angle B=\angle C
$$

Now, $\angle A+\angle B+\angle C=180^{\circ} \quad \Rightarrow \angle A+\angle A+\angle A=180^{\circ}$
$\Rightarrow \quad 3 \angle A=180^{\circ} \quad \Rightarrow \angle A=60^{\circ}$
Hence, $\quad \angle A=\angle B=\angle C=60^{\circ}$
Que 9. Show that in a quadrilateral $A B C D, A B+B C+C D+D A>A C+B D$.
Sol. Since the sum of any two sides of a triangle is greater than the third side.
Therefore, in $\triangle A B C$, we have

$$
\begin{equation*}
A B+B C>A C \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{BCD}$, we have

$$
\begin{equation*}
B C+C D>B D \tag{iii}
\end{equation*}
$$

In $\triangle C D A$, we have

$$
\begin{equation*}
C D+D A>A C \tag{iv}
\end{equation*}
$$

Adding: (i), (ii), (iii) and (iv), we get

$$
\begin{array}{ll}
& 2 A B+2 B C+2 C D+2 D A>2 A C+2 B D \\
\Rightarrow & 2(A B+B C+C D+D A)>2(A C+B D) \\
\Rightarrow & A B+B C+C D+D A>A C+B D
\end{array}
$$

LONG ANSWER QUESTIONS

[4 Marks]
Que 1. Prove that if in two angles and the included side of one triangle are equal to two angles and the included side of the other triangle, then two triangles are congruent.

Sol. Given: two triangles $A B C$ and $D E F$
Such that $\angle B=\angle E, \angle C=\angle F$ and $B C=E F$.
To prove: $\triangle A B C \cong \triangle \mathrm{DEF}$
Proof: For proving the congruence of two triangles, three cases arise.

(i)

(ii)

Fig. 7.26
Case I: When $A B=D E$
In this case

$$
\begin{aligned}
& A B=D E \text { and } \angle B=\angle E \\
& B C=E F
\end{aligned}
$$

$$
\therefore \quad \Delta \mathrm{ABC} \cong \triangle \mathrm{DEF} \quad \text { (SAS congruence criterion) }
$$

Case II: When $A B<E D$
In this case, take a point P on $E D$ such that $P E=A B$. Join $F P$.

Fig. 7.27
In triangles $A B C$ and $P E F$, we have

$$
A B=P E
$$

(By supposition)

	$\angle B=\angle E$	(Given)
And	$B C=E F$	(Given)
\therefore	$\triangle \mathrm{ABC} \cong \triangle \mathrm{PEF}$	(SAS criterion of congruence)
\Rightarrow	$\angle \mathrm{ACB}=\angle \mathrm{PFE}$	(CPCT)
But	$\angle \mathrm{ACB}=\angle \mathrm{DFE}$	(Given)
\therefore	$\angle \mathrm{PFE}=\angle \mathrm{DFE}$	

This is possible only when P and D coincide.
Therefore, AB must be equal to DE .
Thus, in triangle $A B C$ and $D E F$, we have

	$A B=D E$	(Proved above)
	$\angle B=\angle$	(Given)
and	$B C=E F$	(Given)
$\therefore \triangle A B C \cong \triangle D E F$	(SAS congruence criterion)	

Case III: When AB > ED

Fig. 7.28
In this case, take a point M on ED produced such that $M E=A B$. Join $F M$. Now, repeating the arguments as given in case (II), we can conclude that $A B=D E$ and

So,

$$
\Delta \mathrm{ABC} \cong \triangle \mathrm{DEF}
$$

Hence, in all the three cases, we have
$\Delta \mathrm{ABC} \cong \triangle \mathrm{DEF}$
Que 2. If the bisector of an angle of a triangle bisects the opposite side, prove that the triangle is isosceles.

Sol. Given: $A \triangle A B C$ in which $A D$ is the bisector of $\angle A$ which meets $B C$ in D such that $B D=D C$ To prove: $A B=A C$
Construction: Produce $A D$ to E such that $A D=D E$ and then join $C E$.
Proof: $\ln \triangle A B D$ and $\triangle E C D$, we have

$$
\begin{align*}
& B D=C D \tag{Given}\\
& A D=E D
\end{align*}
$$

(By construction)
and
Therefore,
So,
and
Also,
$\angle A D B=\angle E D C$
$\triangle \mathrm{ABD} \cong \triangle \mathrm{ECD}$
$A B=E C$
$\angle B A D=\angle C E D$
$\angle B A D=\angle C A D$
(Vertically opposite angles)
(SAS congruence criterion)
(CPCT)
(CPCT)
(Given)

Fig. 7.29

Therefore, from (ii) and (iii)

So,

$$
\angle C A D=\angle C E D
$$

$$
\begin{equation*}
\mathrm{AC}=\mathrm{EC} \tag{iv}
\end{equation*}
$$

(Sides opposite to equal angles)
From (i) and (iv), we get

$$
A B=A C
$$

Que 3. In Fig. 7.30, two sides $A B$ and $B C$ and median $A M$ of two triangle $A B C$ are respectively equal to sides $P Q$ and $Q R$ and median $P N$ of $\triangle P Q R$. Show that $\triangle A B C \cong \triangle P Q R$.

Fig. 7.30

Sol. In $\triangle A B C$ and $\triangle P Q R$,

$$
\mathrm{BC}=\mathrm{QR}
$$

(Given)
$\Rightarrow \quad \frac{1}{2} B C=\frac{1}{2} Q R$
$\Rightarrow \quad \mathrm{BM}=\mathrm{QN}$
$A B=P Q$
$B M=Q N$

$$
\mathrm{AM}=\mathrm{PN}
$$

In triangle ABM and PQN, we have
(Given)
(Proved above)
(Given)

$$
\begin{array}{lll}
\therefore & \triangle A B M \cong \triangle P Q N & \text { (SSS congruence criterion) } \\
\Rightarrow & \angle B=\angle Q & \text { (CPCT) }
\end{array}
$$

Now, in triangle $A B C$ and $P Q R$, we have

$$
\begin{array}{rll}
\angle \mathrm{B} & =\angle Q & \\
\mathrm{BC}=\mathrm{QR} & \text { (Proved above) } \\
\therefore \quad \Delta \mathrm{ABC} \cong \triangle \mathrm{PQR} & & \text { (Given) } \\
& \text { (SAS congruence criterion) }
\end{array}
$$

Que 4. $\triangle A B C$ is an isosceles triangle in which $A B=A C$. Side $B A$ is produced to D such that $A D=$ $A B$. Show that $\angle B C D$ is a right angle.

Sol.

Fig. 7.31

Given: $A \triangle A B C$ in which $A B=A C$, side $B A$ is produced to D such that
$A D=A B$
Construction: Join CD
To prove: $\angle B C D$, we have
Proof: In $\triangle A B C$, we have

$A B=A C$	(Given)
$\therefore \quad \angle A C B=\angle A B C \quad$	(Angles opposite to equal sides) (i)

Also, $\quad A B=A D \Rightarrow A C=A D$
In $\triangle A D C$, we have $A D=A C$
$\Rightarrow \quad \angle A C D=\angle A D C \quad$ (Angles opposite to equal sides)
Adding (i) and (ii), we get
$\angle A C B+\angle A C D=\angle A B C+\angle A D C$
$\angle B C D=\angle A B C+\angle B D C$

Adding $\angle B C D$ on both sides

$$
\begin{aligned}
& \angle B C D+B C D=\angle A B C+\angle B D C+\angle B C D \\
\Rightarrow & 2 \angle B C D=180^{\circ} \quad \Rightarrow \angle B C D=90^{\circ}
\end{aligned}
$$

Hence, $\angle B C D$ is a right angle
Que 5. A triangle $A B C$ is right-angled at A. $A L$ is drawn perpendicular to $B C$. Prove that $\angle B A L=$ $\angle A C B$.

Sol.

Fig. 7.32
In $\triangle A B C$, we have

$$
\begin{array}{cc}
& \angle A+\angle B+\angle C=180^{\circ} \\
\Rightarrow & 90^{\circ}+\angle B+\angle C=180^{\circ} \\
\Rightarrow & \angle B+\angle C=90^{\circ} \\
\Rightarrow & \angle C=90^{\circ}-\angle B \tag{i}
\end{array}
$$

In $\triangle \mathrm{ABL}$, we have

$$
\begin{gather*}
\angle A L B+\angle B A L+\angle B=180^{\circ} \\
9 \quad \begin{array}{cc}
& \angle 0^{\circ}+\angle B A L+\angle B=180^{\circ} \\
\angle B A L=90^{\circ}-\angle B \quad & \ldots . \text {.(ii) }
\end{array} \Rightarrow \angle B A L+\angle B=90^{\circ} .
\end{gather*}
$$

From (i) and (ii), we get

$$
\angle B A L=\angle A C B
$$

Que 6. $A B C$ and DBC are two triangles on the same base $B C$ such that A and D lie on the opposite sides of $B C, A B=A C$ and $D B=D C$. Show that $A D$ is the perpendicular bisector of $B C$.

Sol.

Fig. 7.33
Let $A D$ intersect $B C$ at O
Then we have to prove $\angle A O B=\angle A O C=90^{\circ}$
and $B O=O C$
In $\triangle A B D$ and $\triangle A C D$

$$
\begin{array}{lll}
& A B=A C & \text { (Given) } \\
& A D=D A & \text { (Common) } \\
& B D=D C & \text { (Given) } \\
\therefore & \triangle A B D \cong \triangle A C D & \text { (By SSS congruence) } \\
\Rightarrow \quad \angle 1=\angle 2 &
\end{array}
$$

Now, in $\triangle A O B$ and $\triangle A O C$

$$
A B=A C
$$

(Given)
$A O=O A$
$\angle 1=\angle 2$
$\therefore \quad \triangle \mathrm{AOB} \cong \triangle \mathrm{AOC}$
$\Rightarrow \quad B O=O C$ and $\angle A O C$
But $\angle A O B+\angle A O C=180^{\circ} \quad$ (Linear Pair)
$\Rightarrow \quad \angle A O B+\angle A O B=180^{\circ}$
$\Rightarrow \angle A O B=90^{\circ}$
Hence, $A D \perp B C$ and $A D$ bisects $B C$, i.e., $A D$ is the perpendicular bisector of $B C$.

Que 7. $\triangle A B C$ is a right triangle such that $A B=A C$ and bisector of angle C intersects the side $A B$ at D. Prove that $A C+A D=B C$.

Sol.

Fig. 7.34
Let $A B=A C=X$
By Pythagoras theorem

$$
B C=\sqrt{A B^{2}+A C^{2}}=\sqrt{x^{2}+x^{2}} \Rightarrow B C=\sqrt{2 x}
$$

Again by Bisector theorem

$$
\begin{aligned}
& \quad \frac{A C}{B C}=\frac{A D}{B D} \Rightarrow \frac{B C}{A C}=\frac{B D}{A D} \\
& \Rightarrow \frac{B C}{A C}+1=\frac{B D}{A D}+1 \Rightarrow \frac{B C+A C}{A C}=\frac{B D+A D}{A D} \\
& \Rightarrow \frac{B C+A C}{A C}=\frac{A B}{A D} \Rightarrow \frac{\sqrt{2 x}+x}{x}=\frac{x}{A D} \\
& \Rightarrow \frac{\sqrt{2}+1}{1}=\frac{x}{A D} \Rightarrow A D=\frac{x}{\sqrt{2}+1} \\
& \therefore A C+A D=x+\frac{x}{\sqrt{2}+1}=\frac{\sqrt{2 x}+x+x}{\sqrt{2}+1}=\frac{\sqrt{2 x}+2 x}{\sqrt{2}+1}=\frac{\sqrt{2 x}(1+\sqrt{2})}{(\sqrt{2}+1}=\sqrt{2 x}=B C
\end{aligned}
$$

HOTS (Higher Order Thinking Skills)

Que 1. Prove that sum of any two sides of a triangle is greater than twice the median with respect to the third side.

Sol. Given: $\mathrm{A} \triangle \mathrm{ABC}$ in which AD is a median.
To prove: $A B+A C>2 A D$
Construction: Produce AD to E such that

$$
A D=D E . \text { Join } E C
$$

Proof: In triangles ADB and EDC, we have

$$
A D=D E \quad(\text { By construction })
$$

Fig.7.35
$B D=D C \quad(\therefore A D$ is the median $)$
and, $\quad \angle A D B=\angle E D C \quad$ (Vertically opposite angles)
$\therefore \quad \Delta \mathrm{ADB} \cong \triangle \mathrm{EDC} \quad$ (SAS congruence criterion)
$\Rightarrow \quad \mathrm{AB}=\mathrm{EC} \quad$ (CPCT)
In Δ AFC, we have

$$
\begin{equation*}
A C+E C>A E \tag{ii}
\end{equation*}
$$

[As sum of the two sides of a triangle is greater than the third side]
Also, $\quad \mathrm{AE}=2 \mathrm{AD} \quad$ (by construction)
Using (i) and (iii) in (ii), we get

$$
A C+A B>2 A D
$$

Que 2. $A B C$ is a triangle with $\angle B=2 \angle C$. D is a point on $B C$ such that $A D$ bisects $\angle B A C$ and $A D=$ $C D$. Prove that $\angle B A C=72^{\circ}$.

Sol. Given, In $\triangle A B C, \angle B=2 \angle C, A D=C D$
And $A D$ bisects $\angle B A C$.
Since $A D=C D \quad \Rightarrow \quad \angle C=\angle D A C$
But $\angle B=2 \angle C \quad \Rightarrow \quad \angle B=2 \angle D A C$
$\Rightarrow \quad \angle B=\angle A=x$ (say) $\quad[\therefore$ AD in bisector of $\angle B A C]$

$$
\begin{array}{lcll}
\text { Now, } & \angle A+\angle B+\angle C=180^{\circ} & \text { [Angle Sum Property] } \\
& x+x+\frac{\angle B}{2}=180^{\circ} & \\
\Rightarrow & 2 x+\frac{x}{2}=180^{\circ} & \Rightarrow & \frac{4 x+x}{2}=180^{\circ} \\
\Rightarrow & \frac{5 x}{2}=180^{\circ} \quad \Rightarrow & x=\frac{180^{\circ} \times 2}{5} \\
\Rightarrow & \angle A=72^{\circ} \quad \Rightarrow & \angle B A C=72^{\circ}
\end{array}
$$

Que 3. O is a point in the interior of a square $A B C D$ such that $O A B$ is an equilateral triangle. Show that $\triangle O C D$ is an isosceles triangle.
Sol. Given: $\triangle \mathrm{OAB}$ is an equilateral triangle
To prove: \triangle COD is an isosceles triangle
Since $\triangle A O B$ is an equilateral triangle
$\therefore \quad \angle O A B=\angle O B A=60^{\circ}$
Also, $\angle D A B=\angle C B A=90^{\circ}$
...(ii) (\because ABCD is a square)
Subtracting (i) from (ii), we get
$\angle D A B-\angle O A B=\angle C B A-\angle O B A=90^{\circ}-60^{\circ}$
i.e., $\angle D A O=\angle C B O=30^{\circ}$

Now, in $\triangle A O D$ and $\triangle B O C$

	$A O=B O$	(given)
	$\angle D A O=\angle C B O$	(proved above)
	$A D=B C$	(ABCD is a square)
\therefore	$\triangle A O D \cong \triangle B O C$	(By SAS congruence)
$\Rightarrow \quad$	$D O=O C$	(CPCT)

Since, in $\triangle C O D, C O=O D$
$\therefore \quad \triangle C O D$ is an isosceles triangle.

Que 4. Prove that in a triangle, other than an equilateral triangle, angle opposite the longest side is greater than $\frac{2}{3}$ of a right angle.

Sol. Let $\triangle A B C$ be a triangle in which $A C$ is longest side.
$\Rightarrow \quad \angle B$ is largest angle
$\Rightarrow \quad \angle B>\angle A$
And $\angle B>\angle C$
Adding (i) and (ii), we get
$\Rightarrow \quad \angle B+\angle B>\angle A+\angle C$

Fig. 7.38
$\Rightarrow \quad 2 \angle B>\angle A+\angle C$
$\Rightarrow \quad 2 \angle B+\angle B>\angle A+\angle B+\angle C$
$\Rightarrow \quad 3 \angle B>180^{\circ} \quad \Rightarrow \quad \angle B>60^{\circ}$
$\Rightarrow \quad \angle B>\frac{2}{3} x$ right angle. $\quad\left[\right.$ Note: $60^{\circ}=\frac{2}{3} \times 90^{\circ}$]

Value Based Questions

Que 1. Teacher held two sticks $A B$ and $C D$ of equal length in her hands and marked their mid points M and N respectively. She then asked the students whether AM is equal to ND or not. Aprajita answered yes. Is Aprajita correct? State the axiom of Euclid that supports her answer. Which values of Aprajita are depicted here?

Fig. 5
Sol. Yes, Things which are halves of the same things are equal to one another. Curiosity, knowledge, truthfulness.

Que 2. For her records, a teacher asked the students about their heights. Manav said his height is same as that of Arnav. Raghav also answered the same, way that his height is same as that of Arnav. She then asked the students to relate the height of Manav and Raghav. Arnav answered they both have same height. Is Arnav correct? If yes, state Euclid's axiom which supports his answer.
Which values of Arnav are depicted here?
Sol. Yes, Things which are equal to the same thing are equal to one another. Knowledge, curiosity, truthfulness.

Que 3. The number of members of society A who participated in 'Say No to Crackers' campaign is double the number of members from society B. Also, the number of members from society C is double the number of members from society B. Can you relate the number of participants from society A and C ? Justify your answer using Euclid's axiom. Which values are depicted here?

Sol. The number of participants from society A and C is equal. Things which are double of the same thing are equal to one another. Social service, helpfulness, cooperation, environmental concern.

Que 4. In a society, the number of persons using CNG instead of petrol for their vehicles has increased by 15 and now the number is 25 . Form a linear equation to find the original number of persons using CNG and solve it using Euclid's axiom.
Which values are depicted in the question?

Sol. $\mathrm{X}+15=25$
$\Rightarrow x+15-15=25-15$ (Using Euclid's third axiom)
$\Rightarrow \mathrm{x}=10$
Environmental care, responsible citizens, futuristic.
Que 5. Teacher asked the students to find the value of x in the following figure if I|| m . Shalini answered 35°. Is she correct? Which values are depicted here?

Fia. 6
Sol. $\angle 1=3 x+20$ (Vertically opposite angles)
$\therefore 3 \mathrm{x}+202 \mathrm{x}-15=180^{\circ} \quad$ (Co-interior angles are supplementary)
$\Rightarrow 5 x+5=180^{\circ} \Rightarrow 5 x=180^{\circ}-5^{\circ}$
$\Rightarrow \quad 5 \mathrm{x}=175^{\circ} \quad \Rightarrow x=\frac{175}{5}=35^{\circ}$
Yes, Knowledge, truthfulness.
Que 6. For spreading the message 'Save Environment Save Future' a rally was organised by some students of a school. They were given triangular cardboard pieces which they divided into two parts by drawing bisectors of base angles (say $\angle B$ and $\angle C$) intersecting at O in the given figure. Prove that $\angle B O C=90+$ $\frac{1}{2} \angle A$.
Which values are depicted by these students?

Fig. 7
Sol. In $\triangle A B C$, we have

$$
\begin{aligned}
& \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \quad\left(\because \text { sum of the angles of a } \Delta \text { is } 180^{\circ}\right) \\
\Rightarrow \quad & \frac{1}{2} \angle A+\frac{1}{2} \angle B+\frac{1}{2} \angle C=\frac{180^{\circ}}{2}
\end{aligned}
$$

$$
\begin{array}{lr}
\Rightarrow & \frac{1}{2} \angle A+\angle 1+\angle 2=90^{\circ} \\
\therefore & \angle 1+\angle 2=90^{\circ}-\frac{1}{2} \angle A
\end{array}
$$

Now, in $\triangle O B C$, we have:

$$
\angle 1+\angle 2+\angle B O C=180^{\circ} \quad\left[\because \text { sum of the angles of } \Delta \text { is } 180^{\circ}\right]
$$

$$
\begin{array}{ll}
\Rightarrow & \angle \mathrm{BOC}=180^{\circ}-(\angle 1+\angle 2) \\
\Rightarrow & \angle \mathrm{BOC}=180^{\circ}-\left(90^{\circ}-\frac{1}{2} \angle A\right) \quad \text { [using (i)] } \\
\Rightarrow & \angle \mathrm{BOC}=180^{\circ}-90^{\circ}+\frac{1}{2} \angle A \\
\therefore & \angle \mathrm{BOC}=90^{\circ}+\frac{1}{2} \angle A
\end{array}
$$

Environmental care, social, futuristic.
Que 7. Three bus stops situated at A, B and C in the figure are operated by handicapped persons. These 3 bus stops are equidistant from each other. OB is the bisector of $\angle A B C$ and $O C$ is the bisector of $\angle A C B$.
(a) Find $\angle B O C$.
(b) Do you think employment provided to handicapped persons is important for the development of the society? Express your views with relevant points.

Fig. 9
Sol. (a) Since, A, B, C are equidistant from each other.
$\therefore \quad \angle A B C$ is an equilateral triangle.
$\Rightarrow \quad \angle \mathrm{ABC}=\angle \mathrm{ABC}=60^{\circ}$
$\Rightarrow \quad \angle \mathrm{OBC}=\angle \mathrm{OCB}=\frac{1}{2} \times 60^{\circ}=30^{\circ} \quad(\because \mathrm{OB}$ and OC are angle bisectors $)$
Now, $\angle B O C=180^{\circ}-\angle O B C-\angle O C B \quad$ (Using angle sum property of triangle)
$\Rightarrow \quad \angle B O C=180^{\circ}-30^{\circ}-30^{\circ}=120^{\circ}$
(b) Yes, employment provided to the handicapped persons is important for the development of the society as they would become independent, self-reliant, confident, social, helpful and useful members of the society.

Que 8. A group of children prepared some decorative pieces in the shape of a star for the orphans in an orphanage. Show that $\angle A+\angle B+\angle C+\angle D+\angle E+$ $\angle F=360^{\circ}$
Which values of the children are depicted here?

Fig. 10
Sol. In \triangle AEC,
$\angle A+\angle E+\angle C=180^{\circ}$
.. (i) (Angle sum property of a triangle)
Similarly, in $\triangle \mathrm{BDF}$,
$\angle B+\angle D \angle F=180^{\circ}$
Adding (i) and (ii), we get
$\angle A+\angle B+\angle C+\angle D+\angle E+\angle F=360^{\circ}$
Social, caring, cooperative, hardworking.
Que 9. For annual day, Sakshi and Nidhi were asked to make one rangoli each on two different places. They started it with triangles (say $A B C$ and $\triangle P Q R$) and their medians (AM and PN). If two sides (AB and BC) and a median (AM) of one triangle are respectively equal to two sides (PQ and QR) and a median (PN) of other triangle, prove that the two triangles ($\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$) are congruent. Which values of the girls are depicted here?

Sol. In $\triangle A B C$ and $\triangle P Q R$

Fig. 11

$$
\begin{array}{rlrl}
& \mathrm{BC}=\mathrm{QR} \\
\Rightarrow & & \frac{1}{2} B C=\frac{1}{2} Q R
\end{array}
$$

$$
\Rightarrow \quad \mathrm{BM}=\mathrm{QN}
$$

In triangle ABM and PQN , we have

$$
\begin{array}{rlrl}
\mathrm{AB} & =\mathrm{PQ} & & \text { (Given) } \\
\mathrm{BM} & =\mathrm{QN} & & \text { (Proved above) } \\
& & & \text { (Given) } \\
& & & \text { PN } \\
\therefore \quad \triangle A B M & \cong \triangle P Q N & & \text { (SSS congruence criterion) } \\
\Rightarrow \quad & \angle B & =\angle Q & \\
\Rightarrow \quad \text { (CPCT) }
\end{array}
$$

Now, in triangles $A B C$ and $P Q R$, we have

$$
\begin{array}{cl}
& \mathrm{AB}=\mathrm{PQ} \\
\angle B=\angle \mathrm{Q} & \text { (Given) } \\
& \text { (Proved above) } \\
\therefore \quad \mathrm{BC}=\mathrm{QR} & \text { (Given) } \\
\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR} & \text { (SSS congruence criterion) }
\end{array}
$$

Participation, beauty, hardworking.
Que 10. Triangular pieces of cardboards were cut out by some people who were organising 'No Pollution' campaign in their area. If the three angles of one cutout are respectively equal to the three angles of the other cutout, can we say the two cutouts are congruent? Justify your answer.
Which values of these people are depicted here?
Sol. The two cutouts may not be congruent. For example all equilateral triangles have equal angles but may have different sides.
Environmental concern, cooperative, caring, social.
Que 11. Anya wants to prepare a poster on education of girlchild for a campaign. She takes a triangular sheet and divides it into three equal parts by drawing its medians which intersect at the point G (see Fig. 12).

Show that $\operatorname{ar}(\triangle A G C)=\operatorname{ar}(\triangle A G C)=\operatorname{ar}(\triangle A G B)=(\triangle B G C)=\frac{1}{3} \operatorname{ar}(\triangle A B C)$

Fig. 12
Do you think education of a girl child is important for the development of a society? Justify your answer.

Sol. Given: $A \triangle A B C$ in which medians $A D, B E$ and $C F$ intersects at G.
Proof: $(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{BGC})=\operatorname{ar}(\triangle \mathrm{CGA})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$

Proof: In $\triangle A B C, A D$ is the median. As a median of a triangle divides it into two triangles of equal area.

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ACD}) \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{GBC}, \mathrm{GD}$ is the median
$\therefore \quad$ aq $(\Delta \mathrm{GBD})=\operatorname{ar}(\Delta \mathrm{GCD})$
Subtracting (ii) from (i), we get
$\operatorname{ar}(\triangle \mathrm{ABD})-\operatorname{ar}(\triangle \mathrm{GBD})=\operatorname{ar}(\mathrm{ACD})-\operatorname{ar}(\triangle G C D)$

$$
\begin{equation*}
\operatorname{ar}(\Delta \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{AGC}) \tag{iii}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\operatorname{ar}(\Delta \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{BGC}) \tag{iv}
\end{equation*}
$$

From (iii) and (iv), we get

$$
\begin{equation*}
\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{BGC})=\operatorname{ar}(\Delta \mathrm{AGC}) \tag{v}
\end{equation*}
$$

But, $\quad \operatorname{ar}(\triangle \mathrm{AGB})+\operatorname{ar}(\triangle \mathrm{BGC})+\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\triangle \mathrm{ABC})$
From (v) and (vi), we get
$3 \operatorname{ar}(\triangle A G B)=\operatorname{ar}(\triangle A B C)$
$\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{AGB})=\frac{1}{3} \operatorname{ar}(\triangle A B C)$
Hence,

$$
\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\Delta \mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\Delta \mathrm{ABC})
$$

Yes, for the development of a society, education of each girl child is essential. An educated society always progresses.

