Very Short Answer Type Questions
 [1 mark]

Que 1. If a triangle and a parallelogram are on the same base and between the same parallels, then find the ratio of the area of the triangle to the area of parallelogram.
Sol. The area of a triangle is half the area of a parallelogram, if they are on the same base and between the same parallel lines.
$\therefore \frac{\text { Area of Triangle }}{\text { Area of parallelogram }}=\frac{1}{2}=1: 2$
Que 2. The area of a rhombus is $10 \mathbf{~ c m}^{2}$. If one of its diagonal is $4 \mathbf{c m}$, then find the other diagonal.

Sol. Area of a rhombus $=\frac{1}{2} d_{1} d_{2}$
$\Rightarrow 10=\frac{1}{2} \times 4 x d_{2}$
$\Rightarrow \mathrm{d}_{2}=5 \mathrm{~cm}$
Que 3. In Fig. 9.6, $A B C D$ is a parallelogram and P is the point of intersection of its diagonals $A C$ and $B D$. If the area of $\triangle A P B$ is $10 \mathbf{~ c m}^{2}$, then find the area of parallelogram ABCD.

Fig. 9.6
Sol. $\operatorname{ar}(\triangle \mathrm{APB})=\frac{1}{4} \operatorname{ar}\left(\|^{g m} \quad A B C D\right)$
$\Rightarrow \operatorname{ar}\left(\|{ }^{\mathrm{gm}} \mathrm{ABCD}\right)=4 \times 10=40 \mathrm{~cm}^{2}$
Que 4. What is the area of trapezium?
Sol. Area of trapezium $=\frac{1}{2} \times$ Sum of the parallel sides \times height.
Que 5. What is the formula of area of triangle?
Sol. Area of triangle $=\frac{1}{2} \times$ base x altitude .

Que 6. The area of parallelogram $A B C D$ is $25 \mathrm{~cm}^{2}$. What is the area of $\triangle \mathrm{ABCD}$? Sol. Area of $\triangle \mathrm{ABC}=\frac{25}{2}=12.5 \mathrm{~cm}^{2}\left(\because\right.$ Area of $\triangle \mathrm{ABC}=\frac{1}{2}$ Area of $\left.\square \mathrm{ABCD}\right)$

Short Answer Type Questions - I
 [2 marks]

Que 1. The diagonal of a square is $\mathbf{1 0} \mathbf{~ c m}$. Find its area.
Sol. Diagonal of a square $=\sqrt{2 a}$
$\Rightarrow \quad 10=\frac{10}{\sqrt{2}}$
Area of the square $=\mathrm{a}^{2}=\left(\frac{10}{\sqrt{2}}\right)^{2}=\frac{100}{2}=50 \mathrm{~cm}^{2}$
Que 2. The area of a stapezium is $39 \mathrm{~cm}^{2}$. The distance between its parallel sides is $\mathbf{6 ~ c m}$. If one of the parallel sides is 5 cm , then find the other parallel side.

Sol. Area of a trapezium $=\frac{1}{2} \mathrm{x}$ sum of parallel sides x height
$\Rightarrow 39=\frac{1}{2}(5+x) \times 6($ Let other side be $x)$
$\Rightarrow 13=5+x \Rightarrow x=8 \mathrm{~cm}$
Que 3. In parallelogram PQRS, $\mathrm{PQ}=10 \mathrm{~cm}$. The altitudes corresponding to the sides PQ and SP are respectively 6 cm and 8 cm . Find SP.

Fig. 9.7
Sol. Area of parallelogram = base x height
$\therefore \operatorname{ar}\left(\|^{g m} P Q R S\right)=P Q \times S M$

$$
=10 \times 6=60 \mathrm{~cm}^{2} \ldots(i)
$$

Also ar $\left(\|^{g m} P Q R S\right)=S P \times Q N$

$$
\begin{equation*}
=S P \times 8 \tag{ii}
\end{equation*}
$$

From (i) and (ii), we have
$60=\mathrm{SP} \times 8 \Rightarrow S P=\frac{60}{8}=7.5 \mathrm{~cm}$.

Que 4. In Fig. 9.8, if P is any point on the median $A D$ of a $\triangle A B C$, Then or $(\triangle A B P)=\operatorname{ar}(\triangle A C P)$. Write true or false and justify your answer.

Fig. 9.8

Sol. True. As median of a triangle divides it into two triangles of equal area

$$
\begin{align*}
& \therefore \operatorname{ar}(\triangle \mathrm{ADB})=\operatorname{ar}(\triangle \mathrm{ADC}) \tag{i}\\
& \text { and } \operatorname{ar}(\triangle \mathrm{PDB})=\operatorname{ar}(\triangle \mathrm{PDC})
\end{align*}
$$

Subtracting (ii) from (i), we have $\operatorname{ar}(\triangle \mathrm{ADB})-\operatorname{ar}(\triangle \mathrm{PDB})=\operatorname{ar}(\triangle \mathrm{ADC})-\operatorname{ar}(\triangle \mathrm{PDC})$

$$
\operatorname{ar}(\triangle \mathrm{ABP})=\operatorname{ar}(\triangle \mathrm{ACP})
$$

Que 5. In $\triangle A B C$, if L and M are the points on $A B$ and $A C$, respectively such that $L M|\mid B C$. Prove that ar ($\triangle \mathrm{LOB}$) $=\mathrm{ar}(\triangle \mathrm{MOB})$.

Fig. 9.9

Sol. Given in $\triangle A B C, L$ and M are points on $A B$ and $A C$ respectively such that $L M \|$ BC.
To Prove: $\operatorname{ar}(\Delta \mathrm{LOB})=\operatorname{ar}(\Delta \mathrm{MOC})$
Proof: We know that, triangle on the same base and between the same parallels are equal in area.
Hence $\triangle \mathrm{LBC}$ and $\triangle \mathrm{MBC}$ lie on the same base $B C$ and between the same parallel $B C$ and LM.
So, $\operatorname{ar}(\triangle \mathrm{LBC})=\operatorname{ar}(\mathrm{MBC})$
$\Rightarrow \operatorname{ar}(\triangle L O B)+\operatorname{ar}(\triangle B O C)=\operatorname{ar}(\triangle M O C)+\operatorname{ar}(\triangle B O C)$
On eliminating ar ($\triangle B O C$) from both sides, we get
$\operatorname{ar}(\triangle L O B)=a r(\triangle M O C)$
Hence proved.

Que 6. Prove that median of a triangle divides in into two triangles of equal

 area.

Fig. 9.10
Sol. Draw $A M \perp B C$, as $A D$ is median
$\therefore B D=D C$
$\frac{\operatorname{ar}(\triangle A B D)}{\operatorname{ar}(\triangle A C D}=\frac{\frac{1}{2} B D \times A M}{\frac{1}{2} D C \times A M}=\frac{\frac{1}{2} B D \times A M}{\frac{1}{2} B D \times A M}=1$
$\therefore \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ACD})$
Que 7. Prove that median of a triangle divides it into two triangles of equal area.

Fig. 9.11

Sol. Area of parallelogram PQRS = Area Of parallelogram PQBA

[Parallelograms on the same base $P Q$ and between the same parallels PC and SB]
$8 \times 4=$ Area of parallelogram PQBA
$32 \mathrm{~cm}^{2}=$ Area of parallelogram PQBA
Again,
\because Area of parallelogram PQBA $=2($ Area of $\triangle A B C)$
[Area of triangle is half of area of parallelogram, if they are on the same base and between the same parallel.]
$\therefore \quad 16 \mathrm{~cm}^{2}=$ Area of $\triangle \mathrm{ABC}$

Que 8. D and E are mid-Point of $B C$ hence $A D$ respectively. If area of $\triangle A B C=$ $10 \mathrm{~cm}^{2}$, find area of $\triangle E B D$.

Fig. 9.12

Sol. $\because \mathrm{D}$ is the midpoint of BC hence $A D$ is the median.
\therefore Area of $\triangle \mathrm{ABD}=\frac{1}{2}$ area of $\triangle \mathrm{ABC}$ [Median divides a triangle into two triangles of equal area]

Area of $\triangle \mathrm{ABD}=\frac{1}{2} \times 10 \mathrm{~cm}^{2}$

$$
=5 \mathrm{~cm}^{2}
$$

Again, $B E$ in the median of $\triangle A B D$.
$\therefore \quad$ Area of $\triangle E B D=\frac{1}{2}$ area of $\triangle \mathrm{ABD}$

$$
\begin{aligned}
& =\frac{1}{2} \times 5 \\
& =2.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Que 9. $A B C D$ is a parallelogram. P is any point on CD. If area $(\triangle D P A)=15 \mathbf{c m}^{2}$ and area $(\triangle A P C)=20 \mathrm{~cm}^{2}$, find the area $(\triangle A P B)$.

Fig. 9.13
Sol. area $(\triangle \mathrm{ADC})=\operatorname{area}(\triangle \mathrm{ADP})+\operatorname{area}(\triangle \mathrm{APC})$

$$
=15+20
$$

$$
=35 \mathrm{~cm}^{2}
$$

But, area $(\triangle \mathrm{APB})=\frac{1}{2}$ (area of parallelogram ABCD)
$=\frac{1}{2}[2($ area of $\Delta A D C)]$
[As diagonal divides a parallelogram into equal areas]

$$
=\frac{1}{2} \times 2(35)=35 \mathrm{~cm}^{2}
$$

Que 10. The medians $B E$ and $C F$ of a $\triangle A B C$ interest at G. prove that area $(\Delta G B C)=$ area of quadrilateral AFGE

Fig. 9.14

Sol. area $(\triangle \mathrm{FBC})=\frac{1}{2}$ area $(\triangle \mathrm{ABC})$
[Median divides the triangles into triangles of equal area]
area $(\triangle \mathrm{EBC})=\frac{1}{2}$ area $(\triangle \mathrm{ABC})$
From equation (i) and (ii),
area $(\triangle \mathrm{FBC})=\operatorname{area}(\Delta \mathrm{EBC})$
subtract area ($\triangle \mathrm{BGC}$) from both sides
area $(\Delta \mathrm{FBC})-\operatorname{area}(\Delta \mathrm{BGC})=$ area $(\Delta \mathrm{EBC})-\operatorname{area}(\Delta \mathrm{BGC})$
$\therefore \quad$ area $(\triangle \mathrm{FGB})=\operatorname{area}(\triangle \mathrm{EGC})$
$\operatorname{area}(\triangle \mathrm{ABE})=\operatorname{area}(\triangle \mathrm{BEC})$
[$\because \mathrm{BE}$ is median]
area $(\triangle \mathrm{BFG})+$ area (Quadrilateral AFGE) $=$ area $(\triangle \mathrm{BGC})+$ area $(\Delta G E C)$
$\Rightarrow \quad$ area (Quadrilateral AFGE$)=\operatorname{area}(\Delta \mathrm{BGC}) \quad$ [From equation (iii)]

Que 11. $A B C$ and BDE are two equilateral triangles such that D is the mid-point of $B C$. Then prove that area $(\triangle B D E)=\frac{1}{4}$ area $(\triangle A B C)$

Fig. 9.15
Sol. Let the side of triangle, $\mathrm{BC}=\mathrm{a} \quad \Rightarrow \mathrm{BD}=\frac{a}{2}$
Area $(\triangle \mathrm{BDE})=\frac{\sqrt{3}}{4}\left(\frac{a}{2}\right)^{2}$
$=\frac{\sqrt{3}}{4} \frac{a^{2}}{4}=\frac{1}{4}\left(\frac{\sqrt{3}}{4} a^{2}\right)$
area $(\triangle \mathrm{BDE})=\frac{1}{4}$ area $(\triangle \mathrm{ABC})$
Que 12. PQRS is parallelogram whose area is $180 \mathrm{~cm}^{2}$ and A is any point on the diagonal Qs. The area of $\Delta \mathrm{ASR}=90 \mathrm{~cm}^{2}$. Find this statement is true or false.

Fig. 9.16

Sol. As diagonal of the parallelogram divides it into triangles equal area.
\therefore area $(\triangle \mathrm{SRQ})=\frac{1}{2}$ area (PQRS)
area $(\triangle \mathrm{SRQ})=\frac{1}{2} \times 180$

$$
=90 \mathrm{~cm}^{2}
$$

But area $(\triangle \mathrm{ASR})=90 \mathrm{~cm}^{2}$ (Given)
This is not possible unless area ($\Delta \mathrm{SRQ}$)
So, the given statement is false.

Short Answer Type Questions - II

[3 marks]

Que 1. O is any point on the diagonals PR of parallelogram PQRS. Prove that $\operatorname{ar}(\triangle \mathrm{PSO})=\operatorname{ar}(\triangle \mathrm{PQO})$.

Fig. 9.17
Sol. Join SQ. Since diagonals of a parallelogram bisect each other. Therefore, M is the mid-point of $P R$ as well as SQ.
In $\Delta \mathrm{SOQ}, \mathrm{OM}$ is a median
$\therefore(\Delta \mathrm{SOM})=\operatorname{ar}(\Delta \mathrm{QOM})$
In $\triangle S P Q, P M$ is the median
$\therefore \operatorname{ar}(\triangle P S M)=\operatorname{ar}(\triangle \mathrm{PQM})$
Adding (i) and (ii), we get

$$
\begin{equation*}
\operatorname{ar}(\Delta \mathrm{SOM})+\operatorname{ar}(\Delta \mathrm{PSO})=\operatorname{ar}(\Delta \mathrm{PQO}) \tag{ii}
\end{equation*}
$$

$$
\operatorname{ar}(\Delta \mathrm{PSO})=\operatorname{ar}(\Delta \mathrm{PQO})
$$

Que 2. In Fig. 9.18, x and Y are points on the side LN of the triangle LMN such that $L X=X Y=Y N$. Through X, a line is drawn parallel to $L M$ to meet $M N$ at Z. Prove that ar $(\triangle L Z Y)=\operatorname{ar}(\square M Z Y X)$.

Fig. 9.17
Sol. Since, $\Delta L X Z$ and $\Delta M X Y$ lie on the same base $X Z$ and between the same parallels XZ and LM.

$$
\therefore \quad \operatorname{ar}(\Delta L X Z)=\operatorname{ar}(\Delta M X Z)
$$

Adding ar ($\triangle X Y Z$) to both sides, we get

$$
\begin{array}{cc}
& \operatorname{ar}(\Delta \mathrm{LXZ})+\operatorname{ar}(\Delta \mathrm{XYZ})=\operatorname{ar}(\Delta \mathrm{MXZ})+\operatorname{ar}(\Delta \mathrm{XYZ}) \\
\Rightarrow \quad & \operatorname{ar}(\Delta \mathrm{LYZ})=\operatorname{ar}(\square \mathrm{MZYX})
\end{array}
$$

Que 3. In a triangle $A B C, E$ is the mid-point of median AD. Show that ar ($\triangle B E D$) $=\frac{1}{4} \operatorname{ar}(\triangle B E D)=\frac{1}{4} \operatorname{ar}(\triangle A B C)$.

Fig. 9.19

Sol. As median of a triangle divides it into two triangles of equal area and $B E$ and $A D$ are the is a medians of the $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ABC}$ respectively

$$
\begin{align*}
& \therefore \quad \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ADC}) \\
& \Rightarrow \quad \operatorname{ar}(\triangle B E D)=\frac{1}{2} \operatorname{ar}(\triangle A B D) \tag{i}
\end{align*}
$$

And $\quad \operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$ \qquad from (i) and (ii), we have

$$
\operatorname{ar}(\triangle \mathrm{BED})=\frac{1}{2}\left(\frac{1}{2} \operatorname{ar}(\triangle A B C)\right)=\frac{1}{4} \operatorname{ar}(\triangle A B C)
$$

Que 4. In Fig. 9.20, $A P\|B Q\| C R$. Prove that $\operatorname{ar}(\triangle A Q C)=\operatorname{ar}(\triangle P B R)$.

Fig. 9.20
Sol. Since $\triangle \mathrm{ABQ}$ and $\triangle \mathrm{PBQ}$ are on the same base BQ and between the same parallels $A P$ and $B Q$.
$\therefore \operatorname{ar}(\triangle \mathrm{ABQ})=\operatorname{Ar}(\triangle \mathrm{PBQ}) \ldots .$. (i)
Similarly, $\triangle \mathrm{BCQ}$ and $\triangle \mathrm{BRQ}$ are on the same base BQ and between the same parallels $B Q$ and $C R$.
$\therefore \operatorname{ar}(\triangle \mathrm{BCQ})=\operatorname{ar}(\Delta \mathrm{BRQ})$
Adding (i) and (ii), we get

$$
\begin{equation*}
\operatorname{ar}(\triangle \mathrm{ABQ})+\operatorname{ar}(\triangle \mathrm{BCQ})=\operatorname{ar}(\Delta \mathrm{PBQ})+\operatorname{ar}(\Delta B R Q) \tag{ii}
\end{equation*}
$$

$\Rightarrow \operatorname{ar}(\triangle \mathrm{AQC})=\operatorname{ar}(\Delta \mathrm{PBR})$

Que 5. In a parallelogram, $A B C D, E, F$ are any two points on the sides $A B$ and $B C$ respectively. Show that ar $(\triangle A D F)=\operatorname{ar}(\triangle D C E)$

Fig. 9.20

Sol. Since $\triangle A D F$ and parallelogram $A B C D$ are on the same base $A D$ and between the same parallels $A D$ and $B C$.
$\therefore \operatorname{ar}(\triangle A D F)=\frac{1}{2} \operatorname{ar}\left(\|{ }^{g m} A B C D\right)$
Also, $\triangle D C E$ and $\|^{g m} \mathrm{ABCD}$ are on the same base DC and between the same parallels $D C$ and $A B$.
$\therefore \operatorname{ar}(\triangle \mathrm{DCE})=\frac{1}{2} \operatorname{ar}\left(| |^{g m} A B C D\right)$
From (i) and (ii), we get
$\operatorname{ar}(\triangle \mathrm{ADF})=\operatorname{ar}(\triangle \mathrm{DCE})$
Que 6. $A B C D$ is a trapezium in which $A B|\mid D C$. $D C$ is produced to E such that $C E=A B$, Prove that ar $(\triangle A B D)=(\triangle B C E)$.

Fig. 9.22
Sol. Produce BA to M Such that $\mathrm{DM} \perp \mathrm{BM}$ and draw $\mathrm{BN} \perp \mathrm{DC}$.
Now, $\operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{2}(A B \times D M)$

$$
\begin{equation*}
\operatorname{Ar}(\triangle \mathrm{BCE})=\frac{1}{2}(\mathrm{CE} \times \mathrm{BN}) \tag{i}
\end{equation*}
$$

Since, triangle ABD and BCE are between the same parallels, Therefore,
$D M=B N$
Also, $A B=C E \quad$ (Given)

From (iii) and (iv), we get
$\frac{1}{2}(A B \times D M)=\frac{1}{2}(C E \times B N)$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{BCE})$ (Using (i) and (ii)
Que 7. In Fig. 9.23, $A B C D$ is a parallelogram in which $B C$ is produced to E such that $C E=B C$. $A E$ intersects $C D$ at F. If area of $\triangle B D F=3 \mathbf{c m}^{2}$, find the area of parallelogram ABCD.

Fig. 9.23

Sol. In $\triangle \mathrm{ADF}$ and $\triangle \mathrm{ECF}$, we have

$$
\begin{aligned}
& \angle A D F=\angle E C F \\
& A D=C E \\
& \angle D F A=\angle C F E \\
& \therefore \quad \triangle A D F \cong \triangle E C F \\
& \Rightarrow \quad \operatorname{ar}(\triangle A D F)=\operatorname{ar}(\triangle E C F) \\
& \text { Also, } \quad \mathrm{DF}=\mathrm{CF} \\
& \text { (Alternate interior angles) } \\
& \text { (} \because \mathrm{AD}=\mathrm{BC} \text { and =CE) } \\
& \text { (Vertically opposite angles) } \\
& \text { (AAS congruence criterion) } \\
& \text { (CPCT) } \\
& \Rightarrow \mathrm{BF} \text { is the median in } \triangle \mathrm{BCD} \\
& \Rightarrow \quad \operatorname{ar}(\triangle B C D)=2 \operatorname{ar}(\triangle B D F) \\
& \Rightarrow \quad \operatorname{ar}(\triangle B C D)=2 \times 3 \mathrm{~cm}^{2}=6 \mathrm{~cm}^{2} \\
& \operatorname{ar}\left(\left|\left.\right|^{g m} \mathrm{ABCD}\right)=2 \operatorname{ar}(\triangle \mathrm{BCD})\right. \\
& 2 \times 6 \mathrm{~cm}^{2}=12 \mathrm{~cm}^{2}
\end{aligned}
$$

Long Answer Type Questions

[4 Marks]

Que 1. In Fig. 9.24, $A B C D$ is a parallelogram. Point P and Q on $B C$ trisects $B C$. Prove that ar $(\triangle A P Q)=(\triangle D P Q)=\frac{1}{6}$ ar $\left(\left.\right|^{g m} A B C D\right)$.

Fig. 9.24

Sol. Through P and Q, draw PR and QS parallel to $A B$ [Fig. 9.25]. Now, PQSR is a parallelogram and its base $P Q=\frac{1}{3} B C$.

Fig. 9.25
Since $\triangle A P Q$ and $\triangle D P Q$ are on the same base $P Q$, and between the same parallel $A D$ and $B C$.
$\therefore \quad \operatorname{ar}(\triangle \mathrm{APQ})=\operatorname{ar}(\triangle \mathrm{DPQ})$
Since $\triangle A P Q$ and $\triangle P Q S R$ are on the same base $P Q$, and between same parallel $P Q$ and $A D$.

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle \mathrm{APQ})=\frac{1}{2} \operatorname{ar}\left(\|^{\mathrm{gm}} \mathrm{PQRS}\right) \tag{ii}
\end{equation*}
$$

\qquad

Now, $\quad \frac{\operatorname{ar}\left(\|^{g m} A B C D\right)}{\operatorname{ar}\left(\|^{g m} P Q R S\right)}=\frac{B C \times h e i g h t}{P Q \times h e i g h t}$

$$
\begin{equation*}
=\frac{3 P Q}{P Q}\left(\because \text { height of the two } \|^{g m} \text { is same }\right) \tag{iii}
\end{equation*}
$$

$\Rightarrow \quad \operatorname{ar}\left(\|^{g m} P Q R S\right)=\frac{1}{3} \operatorname{ar}\left(\|^{g m} A B C D\right)$
Using equation (ii) and (iii), we have

$$
\operatorname{ar}(\triangle A P Q)=\frac{1}{2} \operatorname{ar}\left(\|^{g m} P Q R S\right)=\frac{1}{2} \times \frac{1}{3} \operatorname{ar}\left(\|^{g m} A B C D\right)
$$

Hence, $\operatorname{ar}(\triangle \mathrm{APQ})=\operatorname{ar}(\triangle \mathrm{DPQ})=\frac{1}{6} \operatorname{ar}\left(\|^{g m} A B C D\right)$.
Que 2. $A B C D$ is a quadrilateral [Fig. 9.26]. Aline through D, parallel to $A C$ meets $B C$ produced in P. Prove ar $(\triangle A B P)=\operatorname{ar}(q u a d . ~ A B C D)$.

Fig. 9.26
Sol. Given: A quadrilateral ABCD in which DP\|AC
To Prove: ar $(\triangle A B P)=$ ar (quad. $A B C D$)
Proof: $\triangle A C P$ and $\triangle A C D$ are on same base $A C$ and between same parallels $A C$ and DP.
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ACP})=\operatorname{ar}(\triangle \mathrm{ACD})$
Adding, ar ($\triangle \mathrm{ABC}$) on both sides,
$\Rightarrow \operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle A C P)=\operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle A C D)$

$$
\operatorname{ar}(\triangle \mathrm{ABP})=(\text { quad } . \mathrm{ABCD})
$$

Que 3. In Fig. 9.27, $A B C D$ is a parallelogram and $B C$ is produced to point Q such that $B C=C Q$. If $A Q$ intersects $D C$ at P. Show that ar $(\triangle B P C)=\operatorname{ar}(\triangle D P Q)$.

Fig. 9.27

Sol. Join AC. As triangle APC and BPC are on the same base PC and between the same parallels PC and $A B$.
Therefore,
In Fig. 9.28, $\operatorname{ar}(\triangle \mathrm{APC})=\operatorname{ar}(\triangle \mathrm{BPC})$
Since $A B C D$ is a Parallelogram,

Fig. 9.28
$\therefore \quad \mathrm{AD}=\mathrm{BC} \quad$ (Opposite sides of parallelogram)
Also, $\quad \mathrm{CQ}=\mathrm{BC} \quad$ (Given)
$\Rightarrow \quad A D=C Q$
Now, $A D \| C Q$ and $A D=C Q$
\therefore ACQD is a parallelogram.
As diagonals of a parallelogram bisect each other.
$\therefore \quad A P=P Q$ and $C P=D P$
In $\triangle A P C$ and $\triangle D P Q$, we have

$$
A P=P Q
$$

$\angle A P C=\angle D P Q \quad$ Vertically opposite angles)
and $\quad P C=P D$
$\therefore \quad \triangle \mathrm{APC} \cong \triangle \mathrm{DPQ} \quad$ (SAS congruence criterion)
$\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{APC})=\operatorname{ar}(\triangle \mathrm{DPQ})$
From (i) and (ii), we get $\operatorname{ar}(\triangle \mathrm{BPC})=\operatorname{ar}(\triangle \mathrm{DPQ})$

HOTS (Higher Order Thinking Skills)

Que 1. In Fig. 9.29, ABCD and AEFD are two parallelograms. Prove that ar ($\triangle P E A$) $=\operatorname{ar}$ (\triangle QFD).

Fig. 9.29

Sol. In triangles PEA and QFD, we have

$$
\begin{array}{cl}
\angle \mathrm{APE}=\angle \mathrm{DQF} & \text { (Corresponding angles) } \\
& \mathrm{AE}=\mathrm{DF} \\
\angle \mathrm{AEP}=\angle \mathrm{DFQ} & \text { (Opposite sides of \|gm AEFD) } \\
\therefore \quad \triangle \mathrm{PEA} \cong \triangle \mathrm{QFD} & \text { (Corresponding angles) } \\
& \text { (AAS congruence criterion) }
\end{array}
$$

As congruent triangles have equal area.

$$
\therefore \quad \operatorname{ar}(\triangle \mathrm{PEA})=\operatorname{ar}(\Delta \mathrm{QFD})
$$

Que 2. In Fig. 9.30, ABCDE is any pentagon. BP drawn parallel to AC meets DC produced at P and EQ drawn parallel to AD meets $C D$ produced at Q. Prove that $\operatorname{ar}(A B C D E)=\operatorname{ar}(A P Q)$.

Fig. 9.30

Sol. Since, $\triangle A B C$ and $\triangle A P C$ are on the same base $A C$ and between the same parallels $B P$ and $A C$

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{APC}) \tag{i}
\end{equation*}
$$

(Triangles on the same base and between the same parallels are equal in area)
Similarly, EQ || AD
$\therefore \quad \operatorname{ar}(\triangle \mathrm{AED})=\operatorname{ar}(\mathrm{AQD})$
Adding (i) and (ii), and then adding ar ($\triangle \mathrm{ACD}$) to both the sides, we get
$\operatorname{Ar}(\triangle \mathrm{ABC})+\operatorname{ar}(\triangle \mathrm{AED})+\operatorname{ar}(\triangle \mathrm{ACD})=\operatorname{ar}(\triangle \mathrm{APC})+\operatorname{ar}(\triangle \mathrm{AQD})+\operatorname{ar}(\triangle \mathrm{ACD})$
$\Rightarrow \quad \operatorname{ar}(\mathrm{ABCDE})=\operatorname{ar}(\mathrm{APQ})$.
Que 3. In Fig. 9.31, X and Y are the mid-point of $A C$ and $A B$ respectively, QP || BC and CYQ and BXP are straight lines. Prove that ar $(\triangle A B P)=\operatorname{ar}(\triangle A C Q)$.

Fig. 9.31

Sol. As X and Y are the mid-point of $A C$ and $A B$ respectively.
$\therefore \quad X Y|\mid B C$
Since $\triangle B Y C$ and $\Delta B X Y$ are on the same base $B C$ and between the same parallels $X Y$ and $B C$.

$$
\begin{array}{lc}
\therefore & \operatorname{ar}(\Delta \mathrm{BYC})=\operatorname{ar}(\Delta \mathrm{BXC}) \\
\Rightarrow & \operatorname{ar}(\Delta \mathrm{BYC})-\operatorname{ar}(\Delta \mathrm{BOC})=\operatorname{ar}(\Delta \mathrm{BXC})-\operatorname{ar}(\Delta \mathrm{BOC}) \\
\Rightarrow & \operatorname{ar}(\Delta \mathrm{BOY})=\operatorname{ar}(\Delta \mathrm{COX}) \\
\Rightarrow & \operatorname{ar}(\Delta \mathrm{BOY})+\operatorname{ar}(\Delta \mathrm{XOY})=\operatorname{ar}(\Delta \mathrm{COX})+\operatorname{ar}(\Delta \mathrm{XOY}) \\
\Rightarrow & \operatorname{ar}(\Delta \mathrm{BXY})=\operatorname{ar}(\Delta \mathrm{CXY}) \tag{i}
\end{array}
$$

Since quadrilaterals XYAP and XYQA are on the same base XY and between the same parallels $X Y$ and $P Q$.

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(X Y A P)=\operatorname{ar}(X Y Q A) \tag{ii}
\end{equation*}
$$

Adding (i) and (ii), we get

$$
\operatorname{Ar}(\triangle \mathrm{BXY})+\operatorname{ar}(\mathrm{XYAP})=\operatorname{ar}(\triangle \mathrm{CXY})+\operatorname{ar}(\mathrm{XYQA})
$$

$$
\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{ABP})=\operatorname{ar}(\triangle \mathrm{ACQ})
$$

Que 4. If the medians of a $\triangle A B C$ intersect at G. Show that $\operatorname{Ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$

Sol. Give: A Δ ABC in which medians AD, BE and CF intersect at G.
To prove:
$\operatorname{Ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{BGC})=\operatorname{ar}(\triangle \mathrm{CGA})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$
Proof: In $\triangle A B C, A D$ is the median.
As a median of a triangle divides it into two triangles of equal area.

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A C D) \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{GBC}, \mathrm{GD}$ is the median

$$
\begin{equation*}
\therefore \quad \operatorname{Ar}(\Delta G B D)=\operatorname{ar}(\Delta G C D) \tag{ii}
\end{equation*}
$$

Subtracting (ii) from (i), we get

$$
\begin{gather*}
\operatorname{Ar}(\triangle \mathrm{ABD})-\operatorname{ar}(\triangle \mathrm{GBD})=\operatorname{ar}(\triangle \mathrm{ACD})-\operatorname{ar}(\triangle \mathrm{GCD}) \\
\operatorname{ar}(\mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{AGC}) \tag{iii}
\end{gather*}
$$

Similarly,

$$
\begin{equation*}
\operatorname{ar}(\Delta \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{BGC}) \tag{iv}
\end{equation*}
$$

From (iii) and (iv), we get

$$
\begin{equation*}
\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{BGC})=\operatorname{ar}(\Delta \mathrm{AGC}) \tag{v}
\end{equation*}
$$

But, $\quad \operatorname{ar}(\triangle A G B)+\operatorname{ar}(\triangle B G C)+\operatorname{ar}(\Delta A G C)=\operatorname{ar}(\triangle A B C)$
From (v) and (vi), we get

$$
\begin{equation*}
3 \operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{ABC}) \tag{vi}
\end{equation*}
$$

$\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{AGB})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$
Hence, $\quad \operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\triangle \mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$

Value Based Questions

Que 1. Teacher held two sticks $A B$ and $C D$ of equal length in her hands and marked their mid points M and N respectively. She then asked the students whether AM is equal to ND or not. Aprajita answered yes. Is Aprajita correct? State the axiom of Euclid that supports her answer. Which values of Aprajita are depicted here?

Fig. 5
Sol. Yes, Things which are halves of the same things are equal to one another. Curiosity, knowledge, truthfulness.

Que 2. For her records, a teacher asked the students about their heights. Manav said his height is same as that of Arnav. Raghav also answered the same, way that his height is same as that of Arnav. She then asked the students to relate the height of Manav and Raghav. Arnav answered they both have same height. Is Arnav correct? If yes, state Euclid's axiom which supports his answer.
Which values of Arnav are depicted here?
Sol. Yes, Things which are equal to the same thing are equal to one another. Knowledge, curiosity, truthfulness.

Que 3. The number of members of society A who participated in 'Say No to Crackers' campaign is double the number of members from society B. Also, the number of members from society C is double the number of members from society B. Can you relate the number of participants from society A and C ? Justify your answer using Euclid's axiom. Which values are depicted here?

Sol. The number of participants from society A and C is equal. Things which are double of the same thing are equal to one another. Social service, helpfulness, cooperation, environmental concern.

Que 4. In a society, the number of persons using CNG instead of petrol for their vehicles has increased by 15 and now the number is 25 . Form a linear equation to find the original number of persons using CNG and solve it using Euclid's axiom.
Which values are depicted in the question?

Sol. $\mathrm{X}+15=25$
$\Rightarrow x+15-15=25-15$ (Using Euclid's third axiom)
$\Rightarrow \mathrm{x}=10$
Environmental care, responsible citizens, futuristic.
Que 5. Teacher asked the students to find the value of x in the following figure if $\mathrm{I} \mid \mathrm{m}$. Shalini answered 35°. Is she correct? Which values are depicted here?

Fia. 6
Sol. $\angle 1=3 x+20$ (Vertically opposite angles)

$$
\begin{array}{ll}
\therefore 3 x+202 x-15=180^{\circ} & \text { (Co-interior angles are supplementary) } \\
\Rightarrow 5 x+5=180^{\circ} & \Rightarrow 5 x=180^{\circ}-5^{\circ} \\
\Rightarrow \quad 5 \mathrm{x}=175^{\circ} & \Rightarrow x=\frac{175}{5}=35^{\circ}
\end{array}
$$

Yes, Knowledge, truthfulness.
Que 6. For spreading the message 'Save Environment Save Future' a rally was organised by some students of a school. They were given triangular cardboard pieces which they divided into two parts by drawing bisectors of base angles (say $\angle B$ and $\angle C$) intersecting at O in the given figure. Prove that $\angle B O C=90+$ $\frac{1}{2} \angle A$
Which values are depicted by these students?

Fig. 7
Sol. In $\triangle A B C$, we have

$$
\begin{aligned}
& \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \quad\left(\because \text { sum of the angles of a } \Delta \text { is } 180^{\circ}\right) \\
\Rightarrow \quad & \frac{1}{2} \angle A+\frac{1}{2} \angle B+\frac{1}{2} \angle C=\frac{180^{\circ}}{2}
\end{aligned}
$$

$$
\begin{array}{lr}
\Rightarrow & \frac{1}{2} \angle A+\angle 1+\angle 2=90^{\circ} \\
\therefore & \angle 1+\angle 2=90^{\circ}-\frac{1}{2} \angle A \tag{i}
\end{array}
$$

Now, in \triangle OBC, we have:

$$
\angle 1+\angle 2+\angle B O C=180^{\circ} \quad\left[\because \text { sum of the angles of } \Delta \text { is } 180^{\circ}\right]
$$

$$
\Rightarrow \quad \angle B O C=180^{\circ}-(\angle 1+\angle 2)
$$

$$
\Rightarrow \quad \angle \mathrm{BOC}=180^{\circ}-\left(90^{\circ}-\frac{1}{2} \angle A\right) \quad[\text { using (i) }]
$$

$$
\Rightarrow \quad \angle \mathrm{BOC}=180^{\circ}-90^{\circ}+\frac{1}{2} \angle A
$$

$$
\therefore \quad \angle \mathrm{BOC}=90^{\circ}+\frac{1}{2} \angle A
$$

Environmental care, social, futuristic.
Que 7. Three bus stops situated at A, B and C in the figure are operated by handicapped persons. These 3 bus stops are equidistant from each other. OB is the bisector of $\angle A B C$ and $O C$ is the bisector of $\angle A C B$.
(a) Find $\angle B O C$.
(b) Do you think employment provided to handicapped persons is important for the development of the society? Express your views with relevant points.

Fig. 9
Sol. (a) Since, A, B, C are equidistant from each other.
$\therefore \quad \angle A B C$ is an equilateral triangle.
$\Rightarrow \quad \angle A B C=\angle A B C=60^{\circ}$
$\Rightarrow \quad \angle \mathrm{OBC}=\angle \mathrm{OCB}=\frac{1}{2} \times 60^{\circ}=30^{\circ} \quad(\because \mathrm{OB}$ and OC are angle bisectors $)$
Now, $\angle \mathrm{BOC}=180^{\circ}-\angle \mathrm{OBC}-\angle \mathrm{OCB} \quad$ (Using angle sum property of triangle)
$\Rightarrow \quad \angle B O C=180^{\circ}-30^{\circ}-30^{\circ}=120^{\circ}$
(b) Yes, employment provided to the handicapped persons is important for the development of the society as they would become independent, self-reliant, confident, social, helpful and useful members of the society.

Que 8. A group of children prepared some decorative pieces in the shape of a star for the orphans in an orphanage. Show that $\angle A+\angle B+\angle C+\angle D+\angle E+$ $\angle F=360^{\circ}$
Which values of the children are depicted here?

Fig. 10
Sol. In \triangle AEC,
$\angle A+\angle E+\angle C=180^{\circ} \quad \ldots$ (i) (Angle sum property of a triangle)
Similarly, in $\triangle \mathrm{BDF}$,
$\angle B+\angle D \angle F=180^{\circ}$
Adding (i) and (ii), we get
$\angle A+\angle B+\angle C+\angle D+\angle E+\angle F=360^{\circ}$
Social, caring, cooperative, hardworking.
Que 9. For annual day, Sakshi and Nidhi were asked to make one rangoli each on two different places. They started it with triangles (say ABC and $\triangle P Q R$) and their medians ($A M$ and PN). If two sides ($A B$ and $B C$) and a median (AM) of one triangle are respectively equal to two sides (PQ and QR) and a median (PN) of other triangle, prove that the two triangles ($\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$) are congruent. Which values of the girls are depicted here?

Sol. In $\triangle A B C$ and $\triangle P Q R$

Fig. 11

$$
B C=Q R
$$

$$
\begin{array}{lr}
\Rightarrow & \frac{1}{2} B C=\frac{1}{2} Q R \\
\Rightarrow & \mathrm{BM}=\mathrm{QN}
\end{array}
$$

In triangle $A B M$ and $P Q N$, we have

$$
\begin{aligned}
& \mathrm{AB} & =\mathrm{PQ} & \\
\mathrm{BM} & =\mathrm{QN} & & \text { (Given) } \\
& & & \text { (Proved above) } \\
& & & \text { (Given) } \\
\therefore & \triangle P N & & \text { (SSS congruence criterion) } \\
\Rightarrow \quad \triangle A B M & \cong \triangle P Q N & & \text { (CPCT) }
\end{aligned}
$$

Now, in triangles $A B C$ and $P Q R$, we have

$$
\begin{array}{cl}
& \mathrm{AB}=\mathrm{PQ} \\
\angle B=\angle \mathrm{Q} & \text { (Given) } \\
& \text { (Proved above) } \\
\therefore \quad \mathrm{BC}=\mathrm{QR} & \text { (Given) } \\
\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR} & \text { (SSS congruence criterion) }
\end{array}
$$

Participation, beauty, hardworking.
Que 10. Triangular pieces of cardboards were cut out by some people who were organising 'No Pollution' campaign in their area. If the three angles of one cutout are respectively equal to the three angles of the other cutout, can we say the two cutouts are congruent? Justify your answer. Which values of these people are depicted here?

Sol. The two cutouts may not be congruent. For example all equilateral triangles have equal angles but may have different sides.
Environmental concern, cooperative, caring, social.
Que 11. Anya wants to prepare a poster on education of girlchild for a campaign. She takes a triangular sheet and divides it into three equal parts by drawing its medians which intersect at the point G (see Fig. 12).

Show that $\operatorname{ar}(\triangle A G C)=\operatorname{ar}(\triangle A G C)=\operatorname{ar}(\triangle A G B)=(\triangle B G C)=\frac{1}{3} \operatorname{ar}(\triangle A B C)$

Fig. 12
Do you think education of a girl child is important for the development of a society? Justify your answer.

Sol. Given: $A \triangle A B C$ in which medians $A D, B E$ and $C F$ intersects at G.
Proof: $(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{BGC})=\operatorname{ar}(\triangle \mathrm{CGA})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$

Proof: In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the median. As a median of a triangle divides it into two triangles of equal area.
$\therefore \quad \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ACD})$
In $\triangle \mathrm{GBC}, \mathrm{GD}$ is the median
$\therefore \quad$ aq $(\Delta \mathrm{GBD})=\operatorname{ar}(\Delta \mathrm{GCD})$
Subtracting (ii) from (i), we get

$$
\operatorname{ar}(\triangle \mathrm{ABD})-\operatorname{ar}(\triangle \mathrm{GBD})=\operatorname{ar}(\mathrm{ACD})-\operatorname{ar}(\triangle \mathrm{GCD})
$$

$$
\begin{equation*}
\operatorname{ar}(\Delta \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{AGC}) \tag{iii}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\operatorname{ar}(\Delta \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{BGC}) \tag{iv}
\end{equation*}
$$

From (iii) and (iv), we get

$$
\begin{equation*}
\operatorname{ar}(\Delta \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{BGC})=\operatorname{ar}(\Delta \mathrm{AGC}) \tag{v}
\end{equation*}
$$

But, $\quad \operatorname{ar}(\triangle \mathrm{AGB})+\operatorname{ar}(\triangle \mathrm{BGC})+\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\triangle \mathrm{ABC})$
From (v) and (vi), we get
$3 \operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{ABC})$
$\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{AGB})=\frac{1}{3} \operatorname{ar}(\triangle A B C)$
Hence,

$$
\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{AGC})=\operatorname{ar}(\Delta \mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\Delta \mathrm{ABC})
$$

Yes, for the development of a society, education of each girl child is essential. An educated society always progresses.

