Very Short Answer Type Questions

[1 mark]

Que 1. What is the relationship between chord of a circle and a perpendicular to it from the centre?

Sol. Perpendicular line from the centre bisect the chord.
Que 2. What is the minimum number of points required to determine a unique circle?

Sol. Three.
Que 3. In Fig. 10.5. if $\angle A B C=30^{\circ}$, then find $\angle A O C$.

Fig. 10.5

Sol. $\angle A O C=\angle A B C=2 \times 30^{\circ}=60^{\circ}$
Que 4. In Fig. 10.6, PQRS is a cyclic quadrilateral. If $\angle Q R S=110^{\circ}$, then find $\angle S P Q$.

Fig. 10.6
Sol. $\angle \mathrm{QRS}+\angle S P Q=180^{\circ}$ Opposite angles of cyclic quadrilateral)
$110^{\circ}+\angle S P Q=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{SPQ}=180^{\circ}-110^{\circ}=70^{\circ}$

Que 5. In Fig. 10.7, if $\angle B A C=75^{\circ}$, find $\angle B D C$.

Fig. 10.7
Sol. Angles in the same segment are equal
$\therefore \angle B A C=\angle B D C=75^{\circ}$
Que 6. If a circle is divided into eight equal parts, find the angle subtended by each arc at the centre.

Sol. Angles subtended by each arc at the centre of the circle $=\frac{1}{8} \times 360^{\circ}=45^{\circ}$
Que 7. If $A O B$ is a diameter of a circle [Fig. 10.8] and C is appoint on the circle, then prove that $A C^{2}+B C^{2}=A B^{2}$.

Fig. 10.8

Sol. As, $\angle \mathrm{C}=90^{\circ} \quad$ (Angles in the semicircle)
$\therefore \quad A C^{2}+\mathrm{BC}^{2}=A B^{2} \quad$ (By Pythagoras Theorem)
Que 8. Two chords $A B$ and $C D$ of a circle are each at a distance 4 cm from the centre. Then prove that $A B=C D$.

Sol. Since chords equidistance from the centre of the circle are equal.
$\therefore \quad \mathrm{AB}=\mathrm{CD}$

Short Answer Type Questions - I
 [2 marks]

Que 1. In Fig. 10.9, O is the centre of the circle. If $\angle A C B=30^{\circ}$, then find $\angle A B C$.

Fig. 10.9
Sol. $\angle \mathrm{CAB}=90^{\circ}$ (Angles in the semi-circle is 90°)
In $\triangle \mathrm{ABC}$

$$
\begin{array}{rlrl}
& \angle \mathrm{ABC}+\angle \mathrm{BCA}+\angle \mathrm{CAB} & =180^{\circ} \\
\angle \mathrm{ABC}+30^{\circ}+90^{\circ} & =180^{\circ} \\
\angle \mathrm{ABC}=180^{\circ}-120^{\circ} \\
\Rightarrow \quad \angle \mathrm{ABC}=60^{\circ}
\end{array}
$$

Que 2. In Fig. 10.10, if O is the centre of the circle then find $\angle A O B$.

Fig. 10.10

Sol. $\quad \mathrm{OA}=\mathrm{OC} \quad$ (radii of the same circle)
$\therefore \quad \angle O C A=\angle O A C \Rightarrow \angle O C A=20^{\circ}$
Also, $\quad \mathrm{OB}=\mathrm{OC}$

$$
\therefore \quad \angle O C B=\angle O B C \Rightarrow \angle O C B=30^{\circ}
$$

$$
\text { Now, } \angle A C B=20^{\circ}+30^{\circ}=50^{\circ}
$$

$$
\angle A O B=2 \angle A C B=2 \times 50^{\circ}=100^{\circ}
$$

Que 3. In Fig. 10.11, find the value of x and y.

Fig. 10.11

Sol. $y=2 \angle A B C \Rightarrow y=2 \times 65^{\circ} \Rightarrow y=130^{\circ}$
$O A=O B \quad$ (radii of the same circle)
$\therefore \quad \angle \mathrm{OBA}=\angle \mathrm{OAB} \quad \Rightarrow \angle \mathrm{OBA}=\mathrm{x}$
In $\triangle \mathrm{OAB}$,
$\angle \mathrm{OA}+\angle O B A+\mathrm{y}=180^{\circ}$
$x+x+130^{\circ}=180^{\circ}$
or

$$
2 x=50^{\circ} \text { or } x=25^{\circ}
$$

Que 4. In Fig. 10.12, $A B C D$ is a cyclic quadrilateral in which $A B \| C D$. If $\angle B=$ 65°, then find other angles.

Fig. 10.12

Sol. $\angle B+\angle D=180^{\circ}$ (Opposite angles of cyclic quadrilateral)
$\Rightarrow \quad 65^{\circ}+\angle D=180^{\circ}-65^{\circ}=115^{\circ}$
Since $A B \| C$ and $B C$ is the transversal

$$
\begin{array}{lc}
\therefore & \angle B+\angle C=180^{\circ} \Rightarrow 65^{\circ}+\angle C=180^{\circ} \\
\Rightarrow & \angle C=180^{\circ}-65^{\circ} \\
\Rightarrow & \angle C=115^{\circ} \\
\text { Now, } & \angle A+115^{\circ}=180^{\circ} \quad \text { (Opposite angles of cyclin quadrilateral) } \\
& 60^{\circ}+\angle A E C=180^{\circ} \\
\Rightarrow & \angle A E C=180^{\circ}-60^{\circ}=120^{\circ}
\end{array}
$$

Que 5. In Fig. 10.15, $\angle A B C=45^{\circ}$, prove that $O A \perp O C$.

Fig. 10.15
Sol. As the angle subtended by an arc at the centre s twice the angle subtended by it at any point on the remaining part of the circle. Therefor,

$$
\begin{aligned}
& \quad \angle A O C=2 \angle A B C \\
& \Rightarrow \\
& \\
& \text { Hence, } \mathrm{OA} \perp \mathrm{OC}
\end{aligned}
$$

Que 6. In Fig. 10.16, $\angle A O C=120^{\circ}$. Find $\angle B D C$.

Fig. 10.16

Sol. $\angle A O C+\angle B O C=180^{\circ} \quad$ (Linear pair)
$\Rightarrow 120^{\circ}+\angle B O C=180^{\circ}$
$\angle B O C=180^{\circ}-120^{\circ}=60^{\circ}$
Now, $\quad \angle B O C=2 \angle B D C$
$\Rightarrow \quad 60^{\circ}=2 \angle B D C$
$\Rightarrow \quad \angle B D C=30^{\circ}$

Que 7. In Fig. 10.17, O is the centre of a circle, find the value of x.

Fig. 10.17

Sol. In \triangle APB,

	$\angle A P B=90^{\circ}$	(Angle in the semi-circle)
$\angle \mathrm{APB}+\angle \mathrm{ABP}+\angle \mathrm{BAP}=180^{\circ}$		
$90^{\circ}+40^{\circ}+\angle B A P=180^{\circ}$		
\Rightarrow	$\angle B A P=180^{\circ}$	
\Rightarrow	$\angle B A P=50^{\circ}$	
Now,	$\begin{gathered} \angle \mathrm{BQP}=\angle \mathrm{BAF} \\ x=50^{\circ} \end{gathered}$	ngles in the same segment)

Que 8. Find the length of a chord which is at a distance of 12 cm from the centre of a circle of radius 13 cm .

Fig. 10.18

Sol. Let $A B$ be a chord of circle with centre O and radius 13 cm Draw $O M \perp A B$ and join OA.
In the right triangle OMA, we have

$$
\mathrm{OA}^{2}=\mathrm{OM}^{2}+\mathrm{AM}^{2}
$$

$\Rightarrow \quad 13^{2}=12^{2}+\mathrm{AM}^{2}$
$\Rightarrow \quad \mathrm{AM}^{2}=169-144=25$

As the perpendicular from the centre of a chord bisects the chord. Therefore, $A B=2 A M=2 \times 5=10 \mathrm{~cm}$.

Que 9. The radius of a circle is $13 \mathbf{c m}$ and the length of one of its chords is $\mathbf{2 4}$ cm . Find the distance of the chord from the centre.

Fig. 10.19
Sol. Let PQ be a chord of a circle with centre O and radius 13 cm such that $P Q=24$ cm.

From O , draw $\mathrm{OM} \perp \mathrm{PQ}$ and join OP .
As, the Perpendicular from the centre of a circle to a chord bisects the chord.
$\therefore \quad \mathrm{PM}=\mathrm{MQ}=\frac{1}{2} \mathrm{PQ}=\frac{1}{2} \times 24$
$\Rightarrow P M=12 \mathrm{~cm}$
In $\triangle P M P$, we have

$$
\begin{array}{ll}
& \mathrm{OP}^{2}=\mathrm{OM}^{2}+\mathrm{PM}^{2} \\
& 13^{2}=\mathrm{OM}^{2}+12^{2} \\
\Rightarrow \quad & \mathrm{OM}^{2}=169-144=25 \\
\Rightarrow \quad & \mathrm{OM}=5 \mathrm{~cm}
\end{array}
$$

Hence, the distance of the chord from the centre is 5 cm .
Que 10. In Fig. 10.20, two circles intersects at two points A and B. AD and AC are diameters to the circles. Prove that B lies on the line segment $D C$.

Fig. 10.20

Sol. Join $A B \angle A B D=90^{\circ}$
(Angles in a semicircle
Similarly, $\quad \angle A B C=90^{\circ}$
So, $\angle A B D+\angle A B C=90^{\circ}+90^{\circ}=180^{\circ}$
Therefore, DBC is a line i.e., B lies on the light segment DC.

Que 11. In Fig. 10.21, AOB is a diameter of the circle and C, D, E are any three points on the semi-circle. Find the value of $\angle A C D+\angle B E D$.

Fig. 10.21
Sol. Join BC,
Then, $\angle \mathrm{ACB}=90^{\circ}$ (Angle in the semi-circle)
Since DCBE is a cyclic quadrilateral.

$$
\angle B C D+\angle B E D=180^{\circ}
$$

Adding $\angle A C B$ both the sides, we get

$$
\angle B C D+\angle B E D+\angle A C B=\angle A C B+180^{\circ}
$$

$$
(\angle \mathrm{BCD}+\angle \mathrm{ACB})+\angle \mathrm{BED}=90^{\circ}+180^{\circ}
$$

$$
\angle A C D+\angle B E D=270^{\circ}
$$

Que 12. In Fig. 10.22, A, B, C and D are four points on a circle. AC and BD intersect at point E such that $\angle B E C=130^{\circ}$ and $\angle E C D=20^{\circ}$. Find $\angle B A C$.

Fig. 10.22
Sol. Since the exterior angle of a triangle is equal to the sum of the interior opposite angles,

$$
\begin{array}{lll}
\therefore & \angle B E C=\angle E C D+\angle C D E & \\
\Rightarrow & 130^{\circ}=20^{\circ}+\angle C D E & \\
\Rightarrow & \angle C D E=130^{\circ}-20^{\circ}=110^{\circ} \\
& \angle B D C=110^{\circ} & \\
\text { Now, } & \angle B A C=\angle B D C \quad \text { (Angles in the same segment) } \\
\therefore & \angle B A C=110^{\circ} \quad
\end{array}
$$

Que 13. In Fig. 10.23, $\angle A C B=40^{\circ}$. Find $\angle O A B$.

Fig. 10.23
Sol. Since $\quad O A=O B \quad$ (Radii of the same circle)
$\therefore \quad \angle O A B=\angle O B A$
As the angle form by the act at the centre is twice the angle formed at any point in remaining part of the circle.

$$
\begin{aligned}
& \therefore \quad \angle \mathrm{OAB}=2 \angle \mathrm{ACB}=2 \times 40^{\circ} \\
& \Rightarrow \quad \angle A O B=80^{\circ} \\
& \text { In } \triangle \mathrm{AOB} \text {, we have } \\
& \angle A O B+\angle O A B+\angle O B A=180^{\circ} \\
& 80^{\circ}+\angle \mathrm{OAB}+\angle \mathrm{OAB}=180^{\circ} \quad(\because \angle \mathrm{OBA}=\angle O A B) \\
& \Rightarrow \quad 2 \angle \mathrm{OAB}=100^{\circ} \quad \Rightarrow \angle \mathrm{OAB}=50^{\circ}
\end{aligned}
$$

Que 14. In Fig. 10.24, $\angle B A C=30^{\circ}$. Show that $B C$ is equal to the radius of the circumcircle of $\triangle A B C$ whose centre is 0 .

Fig. 10.24
Sol. $\angle B O C=2 \angle B A C$
$\Rightarrow \angle B O C=2 \times 30^{\circ}=60^{\circ}$
Also, $\mathrm{OC}=\mathrm{OB}$
(Radii of the same circle)
$\therefore \quad \angle O C B=\angle O B C$
In $\triangle O B C$, we have

$$
\begin{gathered}
\angle \mathrm{OBC}+\angle \mathrm{OCB}+\angle \mathrm{BOC}=180^{\circ} \\
\\
\\
\Rightarrow \quad 2 \angle \mathrm{OBC}+\angle \mathrm{OBC}+60^{\circ}=180^{\circ} \\
\Rightarrow \quad 120^{\circ} \Rightarrow \angle \mathrm{OBC}=60^{\circ}
\end{gathered}
$$

So, $\quad \angle O B C=\angle O C B=\angle B O C=60^{\circ}$
$\therefore \quad \triangle \mathrm{BOC}$ is an equilateral triangle.
$\therefore \quad \mathrm{OB}=\mathrm{BC}=\mathrm{OC}$
Hence, $B C$ is equal to the radius of the circumcircle.
Que 15. In Fig. 10.25, a line intersect two concentric circles with O at A, B, C and D, Prove that $A B=C D$.

Fig. 10.25
Sol. Let OP be perpendicular from O on line I.
Since the perpendicular from the centre of a circle to a chord, bisects the chord. Therefore,

$$
\begin{align*}
\mathrm{AP} & =\mathrm{DP} \tag{i}\\
\mathrm{BP} & =\mathrm{CP} \tag{ii}
\end{align*}
$$

Subtracting (ii) from (i), we get

Fig. 10.26

Que 16. In Fig. 10.27, RS is diameter of the circle, NM is parallel to RS and $\angle M R S=29^{\circ}$, find $\angle R N M$.

Fig. 10.27

Sol. In the Given figure $\angle \mathrm{RMS}=90^{\circ}$
(Angle in the semi-circle as RS is diameter)
$\therefore \quad \angle \mathrm{RSM}=180^{\circ}-\left(29^{\circ}+90^{\circ}\right)=61^{\circ}$
$\angle R N M+\angle \angle R S M=180^{\circ}$
(Opposite angles if cyclin quadrilateral are supplementary)
$\angle \mathrm{RNM}+61^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{RNM}=119^{\circ}$
Que 17. On a common hypotenuse $A B$, two right triangle $A C B$ and $A D B$ are situated on opposite sides. Prove that $\angle B A C=\angle B D C$.

Fig. 10.28

We have $\angle \mathrm{ACB}=\angle \mathrm{ADB} \quad\left(\right.$ Each $\left.90^{\circ}\right)$
$\Rightarrow \angle A C B+\angle A D B=90^{\circ}+90^{\circ} 180^{\circ}$
$\Rightarrow \mathrm{ACBD}$ is a cyclic quadrilateral
$\Rightarrow \angle \mathrm{BAC}=\angle \mathrm{BDC} \quad$ (Angles in the same segment)

Que 18. If the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at P and Q, then prove that $\operatorname{arc} P X A \cong \operatorname{arc} P Y B$.

Fig. 10.29

Sol. Let $A B$ be a chord of a circle having centre at O . Let PQ be the \perp bisector of the chord $A B$ intersects it say at M.
\perp Bisectors of the chord passes through the centre of the circle, i.e., O .
Join AP and BP.
In $\triangle \mathrm{APM}$ and $\triangle \mathrm{BPM}$

$$
\begin{array}{cll}
& \mathrm{AM}=\mathrm{MB} & \text { (Given) } \\
& \angle \mathrm{PMA}=\angle \mathrm{PMB} & \left(90^{\circ}\right. \text { each) } \\
& \mathrm{PM}=\mathrm{PM} & \text { (Common) } \\
\therefore \quad & \triangle \mathrm{APM} \cong \triangle \mathrm{BPM} & \text { (SAS) } \\
& \quad \mathrm{PA}=\mathrm{PB} & \text { (CPCT) }
\end{array}
$$

Hence. Arc PXA $\cong \operatorname{arc} P Y B$
Que 19. In Fig. 10.30, P is the centre of the circle. Prove that $\angle X P Z=2(\angle X Y Z+$ $\angle Y X Z$)

Fig. 10.30

Sol. Since arc $X Y$ subtends $\angle X P Y$ at the centre and $\angle X Z Y$ at a point Z in the remaining part of the circle.

$$
\begin{equation*}
\therefore \quad \angle X P Y=2 \angle X Z Y \tag{i}
\end{equation*}
$$

Similarly, arc $Y Z$ subtends $\angle Y P Z$ at the centre and $\angle Y X Z$ at a point Y in the remaining part of the circle.
$\therefore \quad \angle Y P Z=2 \angle Y X Z$
Adding (i) and (ii),

$$
\begin{gathered}
\angle X P Y+\angle Y P Z=2 \angle X Y Z+2 \angle Y X Z \\
\angle X P Z=2(\angle X Z Y+\angle Y X Z)
\end{gathered}
$$

Hence Prove.
Que 20. If $B M$ and $C N$ are the perpendiculars, drawn on the sides $A B$ and $A C$ of the $\triangle A B C$, then prove that the points B, C, M and N are cyclic.

Fig. 10.31

Sol. Let us consider BC as a diameter of the circle.
Angles subtended by the diameter in a semicircle is 90°.
Given,
$\angle B N C=\angle B M C=90^{\circ}$
So, the points M and N should be on the same circle.
Hence, BCMN form a cyclin quadrilateral.
Que 21. In Fig. 10.32, $\angle A D C=130^{\circ}$ and chord $B C=$ chord $B E$. Find $\angle C B E$.

Fig. 10.32
Sol. Consider the points A, B, C and D. They formed a cyclin quadrilateral.
$\therefore \quad \angle A D C+\angle A B C=180^{\circ}$ (Opposite angles of cyclin quadrilateral)
$130^{\circ}+\angle A B C=180^{\circ}$ $\angle A B C=50^{\circ}$
In $\triangle \mathrm{BOC}$ and $\triangle \mathrm{BOE}$,
$B C=B E$ (Equal chords) OC = OE (Radii) $\mathrm{OB}=\mathrm{OB}$ (Common) $\triangle \mathrm{BOC} \cong \triangle \mathrm{BOE} \quad$ (SSS rule)
$\therefore \quad \angle O B C=\angle O B E=50^{\circ}$
(CPCT)

$$
\begin{aligned}
\therefore \quad \angle \mathrm{CBE} & =\angle \mathrm{CBO}+\angle \mathrm{EBO} \\
& =50^{\circ}+50^{\circ}=100^{\circ}
\end{aligned}
$$

Que 22. In Fig. 10.33, if $O A=10 \mathrm{~cm}, A B=16 \mathrm{~cm}$ and $O D \perp$ to $A B$. Find the value of CD.

Fig. 10.33

Sol. As OD is \perp to $A B$
$\Rightarrow \quad A C=C B$
(\perp from the centre to the chord bisects the chord)

$$
\therefore \quad \mathrm{AC}=\frac{A B}{2}=8 \mathrm{~cm}
$$

In right $\triangle \mathrm{OCA}$,

$$
\therefore \quad O C=\sqrt{36}
$$

$$
\begin{aligned}
& O A^{2}=\mathrm{AC}^{2}+\mathrm{OC}^{2} \\
& (10)^{2}=8^{2}+O C^{2} \\
& O C^{2}=100-64 \\
& \mathrm{OC}^{2}=36 \\
& O C=6 \mathrm{~cm} \\
& C D=O D-O C \\
& =10-6=4 \mathrm{~cm} . \quad[\because \mathrm{OA}=\mathrm{OD}=10 \mathrm{~cm} \text { (radii) }]
\end{aligned}
$$

Short Answer Type Questions - II
 [3 marks]

Que 1. In Fig. 10.34, $A B C D$ is a cyclic quadrilateral in which $A B \| C D$. If $\angle=65^{\circ}$, then find other angles.

Fig. 10.34

Sol. $\angle B+\angle D=180^{\circ}$ (OPP. angles of cyclin quadrilateral)

$$
\begin{aligned}
& \Rightarrow \quad 65^{\circ}+\angle \mathrm{D}=180^{\circ} \\
& \Rightarrow \angle \mathrm{D}=180^{\circ}-65^{\circ}=115^{\circ}
\end{aligned}
$$

Since $A B|\mid C D$ and $B C$ is the transversel

$$
\left.\begin{array}{lr}
\therefore & \angle B+\angle C=180^{\circ} \Rightarrow 65^{\circ}+\angle C=180^{\circ} \\
\Rightarrow & \angle C=180^{\circ}-65^{\circ} \Rightarrow \quad \angle C=115^{\circ} \\
\text { Now, } & \angle A+115^{\circ}=180^{\circ} \quad(\text { Opposite angles of cyclin quadrilateral }) \\
\Rightarrow & \angle A=180^{\circ}-115^{\circ} \Rightarrow
\end{array} \angle A=65^{\circ}\right)
$$

Que 2. In Fig. 10.35, $\angle O A B=30^{\circ}$ and $\angle O C B=57^{\circ}$. Find $\angle B O C$ and $\angle A O C$.

Fig. 10.35
Sol. Since,

$$
O C=O B
$$ (Radii of the same circle)

$$
\angle O B C=\angle O C B
$$

$$
\Rightarrow \quad \angle O B C=57^{\circ}
$$

In $\triangle O B C$, we have

$$
\begin{array}{rlrl}
& \angle O B C+\angle B O C+\angle O C B & =180^{\circ} \\
& & 57^{\circ}+\angle B O C+57^{\circ} & =180^{\circ} \\
\Rightarrow & \angle B O C & =66^{\circ}
\end{array}
$$

In $\triangle \mathrm{OAB}$, we have

$$
\begin{array}{ccrl}
& & \angle O A B+\angle O B A+\angle A O B=180^{\circ} \quad(\because A O=O B \\
& & \therefore \angle O A B=\angle O B A) \\
\Rightarrow & \angle A O B & =180^{\circ}-60^{\circ}+30^{\circ}+\angle A O B=180^{\circ} \\
\Rightarrow & \angle A O C & =120^{\circ} \\
& \angle A O C= & \angle A O B-\angle B O C \\
& =120^{\circ}-66^{\circ}=54^{\circ}
\end{array}
$$

Que 3. In Fig. 10.36, $A D$ is a diameter of the circle. If $\angle B C D=150^{\circ}$, calculate $\begin{array}{ll}\text { (i) } \angle B A D & \text { (ii) } \angle A D B\end{array}$

Fig. 10.36
Sol. Join BD
Now, ABCD is a cyclic quadrilateral
$\therefore \angle B A D+\angle B C D=180^{\circ}$ (Opposite angles of a cyclin quadrilateral)
$\Rightarrow \angle B A D+150^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{BAD}=180^{\circ}-150^{\circ}=30^{\circ}$
(ii) $\angle \mathrm{ABD}=90^{\circ} \quad$ (Angle in a semi-circle)

Now, in $\triangle A B D$, we have

$$
\begin{aligned}
& \angle \mathrm{ABD}+\angle \mathrm{BAD}+\angle \mathrm{ADB}=180^{\circ} \\
& 90^{\circ}+30^{\circ}+\angle \mathrm{ADB}=180^{\circ} \\
\Rightarrow \quad & \angle \mathrm{ADB}=180^{\circ}-120^{\circ}=60^{\circ}
\end{aligned}
$$

Que 4. In Fig. 10.37, RS is diameter of the circle, PM is parallel to RS and $\angle \mathrm{MRS}$ $=29^{\circ}$, find $\angle R P M$.

Fig. 10.37
Sol. In the given figure $\quad \angle R M S=90^{\circ}$
(Angles in the semi-circle as RS is diameter)
$\therefore \quad \angle \mathrm{RSM}=180^{\circ}-\left(30^{\circ}+90^{\circ}\right)=60^{\circ}$
$\angle \mathrm{RPM}+\angle \mathrm{RSM}=180^{\circ}$
(Opposite angles of cyclin quadrilateral are supplementary)

$$
\angle R P M+60^{\circ}=180^{\circ}
$$

$\Rightarrow \quad \angle R P M=120^{\circ}$
Que 5. If circle are drawn talking two sides of a triangle as diameter, prove that the point of intersection of these circles lie on the third side.

Fig. 10.38
Sol. Given: Two circles are drawn on sides $A B$ and $A C$ of a $\triangle A B C$ as diameters.
The circles intersects at D.
To prove: D lies on BC
Construction: Join A and D
Proof: $\quad \angle A D B=90^{\circ} \quad$ (Angles in the semi-circle)(i)
and $\quad \angle A D C=90^{\circ} \quad$ (Angles in the semi-circle) $\ldots .$. (ii)
Adding (i) and (ii), we get
$\angle A D B+\angle A D C=90^{\circ}+90^{\circ}$
$\Rightarrow \angle \mathrm{ADB}+\angle \mathrm{ADC}=180^{\circ}$
$\Rightarrow B D C$ is a straight line.
Hence, D lies on third side BC.

Que 6. In Fig. 10.39, O is the circumcenter of the triangle $A B C$ and D is the midpoint of the base $B C$. Prove that $\angle B O D=\angle A$.

Fig. 10.39
Sol. As line drawn through the centre of a circle bisecting a chord is perpendicular to the chord.

```
\therefore OD \perp BC
```

In the right triangles $O B D$ and $O C D$, We have

From (i) and (ii), we have
$\therefore \quad \angle B O D=\angle A$
Que 7. ABCD is a parallelogram. The circle through A, B and C intersect $C D$ (Produce if necessary) at E. Prove that $A E=A D$.

Fig. 10.40

```
Sol. }\angle\textrm{ABC}+\angleAEC=18\mp@subsup{0}{}{\circ}\quad\mathrm{ (Opposite angles of cyclin quadrilateral) .....(i)
    \angleADE + \angleADC = 180
But }\angle\textrm{ADC}=\angle\textrm{ABC}\quad\mathrm{ (Opposite angles of |gm)
```

$\therefore \quad \angle \mathrm{ADE}+\angle \mathrm{ABC}=180^{\circ}$

From equations (i) and (ii), we have

```
    \(\angle A B C+\angle A E C=\angle A D E+\angle A B C\)
\(\Rightarrow \quad \angle A E C=\angle A D E\)
\(\Rightarrow \quad \mathrm{AD}=\mathrm{AE}\) (Sides opposite to equal angles)
```

Que 8. If diagonals of a cyclin quadrilateral are diameter of the circle through the vertices of the quadrilateral, prove that it is a rectangle.

Fig. 10.41

Sol. Let, $A B C D$ be a cyclin quadrilateral such that its diagonal $A C$ and $B D$ are the diameters of the circle through the vertices A, B, C and D.
As angle in a semi-circle is 90°
$\therefore \quad \angle A B C=90^{\circ}$ and $\angle A D C=90^{\circ}$
$\angle D A B=90^{\circ}$ and $\angle B C D=90^{\circ}$
So, $\angle A B C=\angle B C D=\angle C D A=\angle D A B=90^{\circ}$
Hence, $A B C D$ is a rectangle.
Que 9. In Fig. 10.42, $A B$ is a diameter of the circle, $C D$ is a chord equal to the radius of the circle. AC and BD when extended intersect at point E. Prove that

Fig. 10.42

Sol. Join OC, OD and BC
In \triangle OCD, we have

$$
O C=O D=C D \text { (Each equal to radius) }
$$

$\therefore \quad \triangle \mathrm{ODC}$ is an equilateral triangle.
$\Rightarrow \quad \angle C O D=60^{\circ}$
Also, $\quad \angle C O D=2 \angle C B D$
$\Rightarrow \quad 60^{\circ}=2 \angle \mathrm{CBD} \quad \Rightarrow \quad \angle \mathrm{CBD}=30^{\circ}$
Since $\angle A C B$ is angle in a semi-circle.
$\angle A C B=90^{\circ}$
$\Rightarrow \quad \angle B C E=180^{\circ}-\angle A C B=180^{\circ}-90^{\circ}=90^{\circ}$
Thus, in $\triangle \mathrm{BCE}$, we have

$$
\angle B C E=90^{\circ} \text { and } \angle C B E=30^{\circ}
$$

$\therefore \quad \angle \mathrm{BCE}+\angle \mathrm{CEB}+\angle \mathrm{CBE}=180^{\circ}$
$\Rightarrow \quad 90^{\circ}+\angle \mathrm{CEB}+30^{\circ}=180^{\circ} \Rightarrow \angle \mathrm{CEB}=60^{\circ}$
Hence,
$\angle A E B=\angle C E B=60^{\circ}$
Que 10. In Fig. 10.43 two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively. Prove that $\angle A C P=\angle Q C D$.

Fig. 10.43
Sol. As angles in the same segment of circle are equal

	$\angle A B P=\angle A C P$
$\angle A B P=\angle Q B D$	$\ldots \ldots . .(\mathrm{i})$
Also,	$\angle Q C D=\angle Q B D$

$$
\begin{equation*}
\therefore \quad \angle A B P=\angle Q C D \tag{ii}
\end{equation*}
$$

From (i) and (ii), we have
$\angle A C P=\angle Q C D$

Que 11. A circle has radius $\sqrt{2} \mathrm{~cm}$. It is divided into two segment by a chord of length 2 cm . Prove that the angle subtended by chord a point in major segment is 45°.

Fig. 10.44

Sol. Given: A chord $A B$ of length 2 cm and radius of the circle is $\sqrt{2} \mathrm{~cm}$ Proof: In $\triangle A O B$,

$$
\mathrm{OA}^{2}+\mathrm{OB}^{2}=(\sqrt{2})^{2}+(\sqrt{2})^{2}=2+2=4=A B^{2}
$$

$\Rightarrow \quad \triangle \mathrm{AOB}$ is a right triangle right angled at O .
i.e. $\quad \angle A O B=90^{\circ}$

As the angle subtended by an arc at the centre is double the angle subtended by it at remaining part of the circle.

$$
\begin{array}{ll}
\therefore & \angle A O B=2 \angle A C B \\
\Rightarrow & \angle A C B=\frac{1}{2} \times 90^{\circ}=45^{\circ}
\end{array}
$$

Que 12. Two congruent circles intersect each other at point A and B. Through A any line segment $P A Q$ is drawn so that P, Q lie on the two circles. Prove that

$$
B P=B Q .
$$

Fig. 10.45

Sol. Let, O and O' be the centres of two congruent circles. As, AB is the common chord of these circles.
$\therefore \quad \mathrm{ACB}=\mathrm{ADB}$
As congruent arcs subtend equal angles at the centre.

$$
\begin{aligned}
& \angle \mathrm{AOB}=\angle \mathrm{AO} O^{\prime} \mathrm{B} \\
\Rightarrow & \frac{1}{2} \angle A O B=\frac{1}{2} \angle A O^{\prime} B \\
\Rightarrow & \angle \mathrm{BPA}=\angle \mathrm{BQA} \\
\Rightarrow & \mathrm{BP}=\mathrm{BQ} \quad \text { (Sides opposite to equal angles) }
\end{aligned}
$$

Que 13. Two circles with centre O and O^{\prime} intersect at two points A and B. A line $P Q$ is drawn parallel to $O O^{\prime}$ through B intersecting the circles at P and Q.
Prove that $P Q=200$.
Sol. Construction: Draw two circles having centres O and O'
intersecting at point A and B.
Draw a parallel line PQ to OO'
Join OO', OP, O'Q, OM and O,N

Fig. 10.46

To Prove: $\quad \mathrm{PQ}=200^{\prime}$
Proof: In \triangle OPB
$\mathrm{BM}=\mathrm{MP}$
(\perp from the centre to the circle bisects the chord)
Similarly in $\triangle \mathrm{O}, \mathrm{BQ}$
$B N=N Q$
(\perp from the centre to the circle bisects the chord)
Adding (i) and (ii),

$$
\mathrm{BM}+\mathrm{BN}=\mathrm{PM}+\mathrm{NQ}
$$

Adding $\mathrm{BM}+\mathrm{BN}$ to both the sides

$$
\begin{gather*}
\mathrm{BM}+\mathrm{BN}+\mathrm{BM}+\mathrm{BN}=\mathrm{BM}+\mathrm{PM}+\mathrm{NQ}+\mathrm{BN} \\
2 \mathrm{BM}+2 \mathrm{BN}=\mathrm{PQ} \\
2(\mathrm{BM}+\mathrm{BN})=\mathrm{PQ} \tag{iii}
\end{gather*}
$$

Again,
$\mathrm{OO}^{\prime}=\mathrm{MN} \quad[$ As OO' NM is a rectangle]
$\Rightarrow \quad 200^{\prime}=P Q$
Hence Proved.

Que 14. The circumcenter of the $\triangle A B C$ is O. Prove that $\angle O B C+\angle B A C=90^{\circ}$
Sol.

Fig. 10.47
O is the centre of circumscribed circle.

$$
\begin{array}{lc}
& O B=O C=\text { radii } \\
\Rightarrow & \angle O B C=\angle O C B=x \\
\therefore & x+x+\angle B O C=180^{\circ} \quad(\text { Angle sum property of } \triangle O B C) \\
& \\
& 2 x+\angle B O C=180^{\circ} \\
\text { Also, } & \angle B O C=180^{\circ}-2 x \\
\Rightarrow & \angle B O C=2 \angle B A C \\
\therefore & \angle B A C+\angle O B C=(90-x)+x \\
& \angle B A C+\angle O B C=90^{\circ}
\end{array}
$$

Long Answer Type Questions

[5 Marks]

Que 1. Two chords $A B$ and $C D$ of length 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between $A B$ and $C D$ is $\mathbf{c m}$, find the radius of the circle.

Sol.

Fig. 10.48
Let, r be the radius of given circle and its centre be O. Draw $O M \perp A B$ and $O N \perp C D$ Since, $O M \perp A B, O N \perp C D$ and $A B \| C D$
Therefore, points M, O and N are collinear. So, $M N=6 \mathrm{~cm}$
Let, $\quad \mathrm{OM}=\mathrm{xcm}$. Then, $\mathrm{ON}=(6-\mathrm{x}) \mathrm{cm}$.
Join $O A$ and $O C$. Then $O A=O C=r$.
As the perpendicular from the centre to a chord of the circle bisects the chord.

$$
\begin{aligned}
& \therefore \quad \mathrm{AM}=\mathrm{BM}=\frac{1}{2} A B=\frac{1}{2} \times 5=2.5 \mathrm{~cm} \\
& \mathrm{CN}=\mathrm{DN}=\frac{1}{2} C D=\frac{1}{2} \times 11=5.5 \mathrm{~cm} .
\end{aligned}
$$

In right triangles OAM and OCN, we have

$$
\begin{align*}
& \mathrm{OA}^{2}=\mathrm{OM}^{2}+\mathrm{AM}^{2} \text { and } \mathrm{OC}^{2}=\mathrm{ON}^{2}+\mathrm{CN}^{2} \\
& \mathrm{r}^{2}=\mathrm{x}^{2}+\left(\frac{5}{2}\right)^{2} \tag{i}\\
& \mathrm{r}^{2}=(6-\mathrm{x})^{2}+\left(\frac{11}{2}\right)^{2} \tag{ii}
\end{align*}
$$

From (i) and (ii), we have

$$
\begin{gathered}
\\
\\
\\
\\
\mathrm{X}^{2}+\left(\frac{5}{5}\right)^{2}=(6-x)^{2}+\left(\frac{11}{2}\right)^{2} \\
\Rightarrow \quad \\
\mathrm{X}^{2}+\frac{25}{4}=36+x^{2}-12 x+\frac{121}{4} \\
\Rightarrow \quad \\
48 x=24=144+4 x^{2}-48 x+121 \\
\Rightarrow \quad
\end{gathered} \quad x=\frac{240}{48} \quad \Rightarrow x=5
$$

Putting the value of x in equation (i), we get

$$
\begin{aligned}
& r^{2}=5^{2}+\left(\frac{5}{2}\right)^{2} \Rightarrow r^{2}=25+\frac{25}{4} \\
\Rightarrow \quad & r^{2}=\frac{125}{4} \Rightarrow r=\frac{5 \sqrt{5}}{2} \mathrm{~cm}
\end{aligned}
$$

Que 2. Three girls Reshma, Salma and Mandeep are playing a game by standing on a circle of radius 5 cm drawn in a park. Reshma throws a ball to Salma, Salma to Mandeep to Reshma. If the distance between Reshma and Salma and between Salma and Mandeep is 6 cm each, what is the distance between Reshma and Mandeep?

Sol.

Fig. 10.49

Let R, S and M represent the position of Reshma, Salma and Mandeep respectively. Clearly \triangle RSM is an isosceles triangle as

$$
R S=S M=6 m
$$

Join OS which intersects RM at A.
In \triangle ROS and $\triangle \mathrm{MOS}$

$$
\begin{array}{lll}
& \mathrm{OR}=\mathrm{OM} & \text { (Radii of the same circle) } \\
& \mathrm{OS}=\mathrm{OS} & \text { (Common) } \\
& \mathrm{RS}=\mathrm{SM} & \text { (Each } 6 \mathrm{~cm} \text {) } \\
\therefore & \triangle \mathrm{ROS} \cong \Delta \mathrm{MOS} & \\
\therefore & \angle \mathrm{RSO}=\angle \mathrm{MSO} & \\
\therefore & \text { (By SSS congruence criterion) } \\
& & \text { (CPCT) }
\end{array}
$$

In \triangle RAS and \triangle MAS

$$
\begin{equation*}
A S=A S \tag{Common}
\end{equation*}
$$

$$
\begin{array}{lcc}
\therefore & \angle R S A=\angle M S A & (\because \angle R S O=\angle M S O) \\
\therefore & R S=M S & \text { (Given) } \\
\therefore & \triangle R A S \cong \triangle M A S & \text { (By SAS congruence criterion) } \\
& \angle R A S=\angle M A S & \text { (CPCT) }
\end{array}
$$

$$
\left.\therefore \quad \angle \mathrm{RAS}+\angle \mathrm{MAS}=180^{\circ} \text { (Linear pair }\right)
$$

$$
\Rightarrow \quad \angle \mathrm{RAS}=\angle \mathrm{MAS}=90^{\circ}
$$

$$
\text { Let } \quad O A=x m \Rightarrow A S=(5-x) m
$$

In right triangle RAS,

$$
\mathrm{RS}^{2}=\mathrm{RA}^{2}+\mathrm{AS}^{2}
$$

$$
\begin{equation*}
\Rightarrow \quad 6^{2}=R^{2}+(5-x)^{2} \tag{i}
\end{equation*}
$$

$\Rightarrow \quad R A^{2}=6^{2}-(5-x)^{2}$
In right triangle RAO,

$$
\begin{array}{rlrl}
& & \mathrm{RO}^{2} & =\mathrm{RA}^{2}+\mathrm{OA}^{2} \\
\Rightarrow & 5^{2} & =\mathrm{RA}^{2}+\mathrm{x}^{2} \\
\Rightarrow & & \mathrm{RA}^{2} & =5^{2}-\mathrm{x}^{2} \tag{ii}
\end{array}
$$

From equation (i) and (ii), we get

$$
\begin{aligned}
& 6^{2}-(5-x)^{2}=5^{2}-x^{2} \\
& 6^{2}-5^{2}=(5-x)^{2} \\
& 36-25=25+x^{2}-10 x-x^{2} \\
& 11=25-10 x \Rightarrow \quad 10 x=14 \quad \Rightarrow=1.4 m
\end{aligned}
$$

From equation (ii), we have

$$
\begin{aligned}
& R A^{2}=5^{2}-(1.4)^{2}=25-1.96 \\
& R A^{2}=23.04 \quad \Rightarrow \quad R A=\sqrt{23.04}
\end{aligned}
$$

As the Perpendicular from the centre of a bisects the chord.

$$
\begin{aligned}
\therefore \quad & R M=2 R A \\
& R M=2 \times 4.8=9.6 \mathrm{~m}
\end{aligned}
$$

Hence, distance between Reshma and Mandeep is 9.6 m .
Que 3. The length of two parallel chords of a circle are $\mathbf{6 c m}$ and 8 cm . If the smaller chord is at a distance of 4 cm from the centre, what is the distance of other chord from the centre?

Sol.

Fig. 10.50

Let, $A B$ and $C D$ be two parallel chords of a circle with centre O such that $A B=6 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$. Draw $\mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{ON} \perp \mathrm{CD}$.
As $A B \| C D$ and $O M \perp A B, O N \perp C D$. Therefore, Points O, N and M are collinear. As the perpendicular from the centre of a circle to the chord bisects the chord.
Therefore,

$$
\begin{aligned}
& A M=\frac{1}{2} A B=\frac{1}{2} \times 6=3 \mathrm{~cm} \\
& C N=\frac{1}{2} C D=\frac{1}{2} \times 8=4 \mathrm{~cm}
\end{aligned}
$$

In right triangle OAM, we have

$$
\begin{aligned}
& \mathrm{OA}^{2}=\mathrm{OM}^{2}+\mathrm{AM}^{2} \\
& \mathrm{OA}^{2}=4^{2}+3^{2} \quad \Rightarrow \mathrm{OA}^{2}=25 \Rightarrow \mathrm{OA}=5 \mathrm{~cm}
\end{aligned}
$$

Also,

$$
O A=O C
$$

(Radii of the same circle)
$\Rightarrow \quad \mathrm{OC}=5 \mathrm{~cm}$
In right triangle OCN, we have

$$
\begin{array}{lll}
& \mathrm{OC}^{2}=\mathrm{ON}^{2}+\mathrm{CN}^{2} & \\
\Rightarrow & 5^{2}=\mathrm{ON}^{2}+4^{2} & \Rightarrow \mathrm{ON}^{2}=5^{2}-4^{2} \\
\Rightarrow & \mathrm{ON}^{2}=9 & \Rightarrow \mathrm{ON}=3 \mathrm{~cm}
\end{array}
$$

Que 4. $A C$ and $B D$ are chords of a circle that bisect each other. Prove that AC and $B D$ are diameter and $A B C D$ is a rectangle.

Fig. 10.51

Sol. Let AC and BD bisect each other at point O. Then,

$$
\begin{equation*}
O A=O C \text { and } \quad O B=O D \tag{i}
\end{equation*}
$$

In triangles AOB and COD, we have

$$
\begin{aligned}
& O A=O C \\
& O B=O D
\end{aligned}
$$

and $\quad \angle A O B=\angle C O D \quad$ (Vertically opposite angles)
$\therefore \quad \triangle \mathrm{AOB} \cong \triangle \mathrm{COD} \quad$ (SAS congruence criterion)
$\Rightarrow \quad \mathrm{AB}=\mathrm{CD} \quad$ (CPCT)
$\Rightarrow \quad A B \cong C D$

Similarly

$$
\begin{equation*}
B C=D A \tag{iii}
\end{equation*}
$$

$\Rightarrow \quad B C \cong D A$
From (ii) and (ii), we have

$$
A B+B C \cong C D+D A
$$

$\Rightarrow \quad A B C=C D A$
$\Rightarrow A C$ divides the circle into two equal parts.
$\Rightarrow A C$ is the diameter of the circle. Similarly, we can prove that $B D$ is also a diameter of the circle.
Since $A C$ and $B D$ are diameter of the circle.
$\therefore \quad \angle A B C=90^{\circ}=\angle A D C$
Also, $\angle B A D=90^{\circ}=\angle B C D$
Also, $\quad \mathrm{AB}=\mathrm{CD}$ and $\mathrm{BC}=\mathrm{DA} \quad$ (Proved above)
Hence, $A B C D$ is a rectangle.
Que 5. If two intersecting chords of a circle make equal angles with the diameter passing through their point of intersection, prove that the chords are equal.

Sol.

Fig. 10.52
Given: $A B$ and $C D$ are two chords of a circle with centre O, intersecting at point E.
$P Q$ is a diameter through E, such that $\angle A E Q=\angle D E Q$.
To prove: $A B=C D$
Construction: Draw $O L \perp A B$ and $O M \perp C D$
Proof: $\angle \mathrm{LOE}+\angle \mathrm{LEO}+\angle \mathrm{OLE}=180^{\circ} \quad$ (Angle sum property of a triangle)
$\Rightarrow \quad \angle \mathrm{LOE}+\angle \mathrm{LEO}+90^{\circ} 180^{\circ}$

$$
\begin{equation*}
\angle \mathrm{LOE}+\angle \mathrm{LEO}=90^{\circ} \tag{i}
\end{equation*}
$$

Similarly $\quad \angle \mathrm{MOE}+\angle \mathrm{MEO}+\angle \mathrm{OME}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{MOE}+\angle \mathrm{MEO}+90^{\circ}=180^{\circ}$
$\angle \mathrm{MOE}+\angle \mathrm{MEO}=90^{\circ}$
From (i) and (ii) we get

$$
\begin{equation*}
\angle \mathrm{LOE}+\angle \mathrm{LEO}=\angle \mathrm{MOE}+\angle \mathrm{MEO} \tag{iii}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\angle \mathrm{LEO}=\angle \mathrm{MEO} \quad \text { (Given) } \tag{iv}
\end{equation*}
$$

From (iii) and (iv) we get

$$
\angle \mathrm{LOE}=\angle \mathrm{MOE}
$$

Now in triangle OLE and OME

$$
\begin{array}{lcl}
& \angle \mathrm{LEO}=\angle \mathrm{MEO} & \text { (Given) } \\
\therefore & \angle \mathrm{LOE}=\angle \mathrm{MOE} & \text { (Proved above) } \\
\therefore & \mathrm{EO}=\mathrm{EO} & \text { (Common) } \\
\therefore & \Delta \mathrm{OLE} \cong \triangle \mathrm{OME} & \text { (ASA congruence criterion) } \\
& \mathrm{OL}=\mathrm{OM} & \text { (CPCT) }
\end{array}
$$

Thus, chords $A B$ and $C D$ are equidistance from the centre are equal.
$\therefore \quad A B=C D$

Que 6. If the non-parallel sides of a trapezium are equal, prove that it is cyclin.

Sol.

Fig. 10.53

Given: A trapezium $A B C D$ in which $A B \| C D$ and $A D=B C$
To prove: $A B C D$ is a cyclin trapezium.
Construction: Draw $D E \perp A B$ and $C F \perp A B$
In right triangle $A E D$ and $B F C$, We have

	$A D=B C$	(Given)
	$\angle D E A=\angle C F B$	(Each equal to 90°
and,	$D E=C F$	(Distance between two parallel lines)
\Rightarrow	$\triangle D E A \cong \triangle C F B$	(RHS congruence criterion)
\Rightarrow	$\angle A=\angle B$	$(C P C T)$
\Rightarrow	$\angle A D E=\angle B C F$	(CPCT)
\Rightarrow	$\angle C=\angle B C F+90^{\circ}=\angle A D E+90^{\circ}=\angle A D C$	
	$\angle C=\angle D$	

$\Rightarrow \quad \angle \mathrm{C}=\angle \mathrm{BCF}+90^{\circ}=\angle \mathrm{ADE}+90^{\circ}=\angle \mathrm{ADC}$

Now, in quadrilateral $A B C D$, we have
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ} \quad$ (By Angle sum property)
$\Rightarrow \quad 2 \angle A+2 \angle C=360^{\circ} \quad$ (From (i) and (iii)
$\Rightarrow \quad \angle A+\angle C=180^{\circ}$
Hence, quadrilateral $A C B D$ is cyclin.

Que 7. Prove that quadrilateral formed by angle bisectors of a cyclin

 quadrilateral is also cyclin.Sol.

Fig. 10.54
Given: A cyclin quadrilateral $A B C D$ in which the angle bisectors $A R, C P$ and $D P$ of internal angles A, B, C and D respectively form a quadrilateral PQRS.

To prove: PQRS is a cyclin quadrilateral.
Proof: In $\triangle A R B$, we have
$\frac{1}{2} \angle A+\frac{1}{2} \angle B+\angle R=180^{\circ}$
\ldots...(i) $(\because A R, B R$ are bisectors of $\angle A \angle B)$

In \triangle DPC, We have

$$
\begin{equation*}
\frac{1}{2} \angle D+\frac{1}{2} \angle C+\angle P=180^{\circ} \tag{ii}
\end{equation*}
$$

$$
\text { (} \because \mathrm{DP}, \mathrm{CP} \text { are bisectors of } \angle \mathrm{D} \text { and } \angle \mathrm{C} \text { respectively) }
$$

Adding (i) and (ii), we get

$$
\begin{aligned}
& \frac{1}{2} \angle A+\frac{1}{2} \angle B+\angle R+\frac{1}{2} \angle D+\frac{1}{2} \angle C+\angle P=180^{\circ}+180^{\circ} \\
& \angle P+\angle R=360^{\circ}-\frac{1}{2}(\angle A+\angle B+\angle C+\angle D) \\
& \angle P+\angle R=360^{\circ}-\frac{1}{2} \times 360^{\circ}=360^{\circ}-180^{\circ} \\
& \Rightarrow \quad \angle \mathrm{P}+\angle \mathrm{R}=180^{\circ}
\end{aligned}
$$

As the sum of a pair of opposite angles of quadrilateral PQRS is 180°. Therefore, quadrilateral PQRS is cyclin.

Que 8. If two circles intersects at two points, prove that their centres lie on the perpendicular bisector of the common chord.

Sol.

Fig. 10.55

Given: Two circles, with centres O and O^{\prime} intersect at two points A and B. $A B$ is the common chord of the two circles and OO' is the line segment joining the centres of the two circles. Let OO' intersect $A B$ at P.

To prove: OO^{\prime} is the perpendicular bisector of AB .
Construction: Join OA, OB, O' A and O' B
Proof: In triangles OAO' and OBO', we have

$O O^{\prime}=O O^{\prime}$	(Common)
$O A=O B$	(Radii of the same circle)
$O^{\prime} A=O^{\prime} B$	(Radii of the same circle)
$O^{\prime} \cong \triangle O B O^{\prime}$	(SSS congruence criterion)
$O^{\prime}=\angle B O O^{\prime}$	(CPCT)

$\begin{array}{lll}\Rightarrow & \triangle O A O^{\prime} \cong \triangle O B O^{\prime} & \text { (SSS congruence criterion) } \\ \Rightarrow & \angle A O O^{\prime}=\angle B O O^{\prime} & \text { (CPCT) }\end{array}$
l.e., $\quad \angle A O P=\angle B O P$

In triangle AOP and BOP, we have

	$\mathrm{OP}=\mathrm{OP}$	(Common)
	$\angle A O P=\angle B O P$	(Proved above)
	$\mathrm{OA}=\mathrm{OB}$	(Radio of the same circle)
\therefore	$\triangle \mathrm{AOR} \cong \triangle \mathrm{BOP}$	(By SAS congruence criterion)
\Rightarrow	$A P=B P$	(CPCT)
And	$\angle \mathrm{APO}=\angle \mathrm{BPO}$	(CPCT)
But	$\angle \mathrm{APO}+\angle \mathrm{BPO}=180^{\circ}$	(Linear)
\therefore	$\angle \mathrm{APO}+\angle \mathrm{APO}=180^{\circ} \quad \Rightarrow$	$2 \angle \mathrm{APO}=180^{\circ}$
\Rightarrow	$\angle A P O=90^{\circ}$	
Thus,	$\mathrm{AP}=\mathrm{BP}$ and $\angle \mathrm{A}$	$\mathrm{O}=\angle \mathrm{BPO}=90^{\circ}$
Hence,	e perpendicular bisectors of	

HOTS (Higher Order Thinking Skills)

Que 1. $A B$ and $A C$ are two chords of a circle of radius r such that $A B=2 A C$. If P and q are the distances of $A B$ and $A C$ from the centre. Prove that $4 q^{2}=p^{2}+3 r^{2}$.

Fig. 10.56
Sol. Draw $\mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{ON} \perp \mathrm{AC}$
Join OA.
In right $\triangle \mathrm{OAM}$,

$$
\begin{array}{ll}
& \mathrm{OA}^{2}=\mathrm{OM}^{2}+\mathrm{AM}^{2} \\
\Rightarrow & \mathrm{r}^{2}=\mathrm{p}^{2}+\left(\frac{1}{2} A B\right)^{2} \\
\Rightarrow \quad(\because \mathrm{OM} \perp \mathrm{AB}, \therefore \mathrm{OM} \text { bisects } \mathrm{AB}) \tag{i}\\
\Rightarrow \quad & \frac{1}{4} \mathrm{AB}^{2}=\mathrm{r}^{2}-\mathrm{p}^{2} \quad \text { or } \quad \mathrm{AB}^{2}=4 \mathrm{r}^{2}-4 \mathrm{p}^{2}
\end{array}
$$

In right $\triangle \mathrm{OAN}$,

$$
\begin{array}{lll}
& \mathrm{OA}^{2}=\mathrm{ON}^{2}+\mathrm{AN}^{2} \\
\Rightarrow & \mathrm{r}^{2}=\mathrm{q}^{2}+\left(\frac{1}{2} A C\right)^{2} & (\because \mathrm{ON} \perp \mathrm{AC}, \therefore \mathrm{ON} \text { bisects } \mathrm{AC}) \\
\Rightarrow & \frac{1}{4} \mathrm{AC}^{2}=\mathrm{r}^{2}-\mathrm{q}^{2} & \text { or } \quad \frac{1}{4}\left(\frac{1}{2} A B\right)^{2}=\mathrm{r}^{2}-\mathrm{q}^{2} \quad(\because \mathrm{AB}=2 \mathrm{AC}) \\
\Rightarrow \quad & \frac{1}{16} A B^{2}=\mathrm{r}^{2}-\mathrm{q}^{2} \quad \text { or } \quad A B^{2}=16 r^{2}-16 \mathrm{p}^{2} \quad \ldots \text { (ii) } \tag{ii}
\end{array}
$$

From (i) and (ii), we have

$$
4 r^{2}-4 p^{2}=16 r^{2}-16 q^{2}
$$

Or

$$
r^{2}-p^{2}=4 r^{2}-4 q^{2}
$$

Or

$$
4 q^{2}=3 r^{2}+p^{2}
$$

Que 2. Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords $A D$ and $C E$ with the circle. Prove that $\angle A B C$ is
equal to half the difference of the angles subtended by the chords AC and DE at the center.

Fig. 10.57
Sol. Given: $A D=C E$
To prove: $\angle \mathrm{ABC}=\frac{1}{2}(\angle \mathrm{DOE}-\angle \mathrm{AOC})$
In $\triangle \mathrm{AOD}$ and $\triangle \mathrm{COE}$

	$\mathrm{AD}=\mathrm{CE}$	(Given)
	$\mathrm{AO}=\mathrm{OC}$ and $\mathrm{DO}=\mathrm{OE}$	(Radii of same circle)
\therefore		$\triangle \mathrm{AOD} \cong \triangle \mathrm{COE}$

But $\mathrm{OA}=\mathrm{OD}$ and $\mathrm{OC}=\mathrm{OE} \quad \Rightarrow \quad \angle 1=\angle 2$ and $\angle 3=\angle 4$
From (i) and (ii), we have

$$
\angle 1=\angle 2=\angle 3=\angle 4 \text { (= } x \text { say) }
$$

Also, $O A=O C$ and $O D=O E$
$\Rightarrow \quad \angle 7=\angle 8$ (= z say) and $\angle 5=\angle 6$ (=y say)
Now, ADEC is a cyclic quadrilateral
$\Rightarrow \quad \angle D A C+\angle D E C=180^{\circ}$
$\Rightarrow \quad x+\mathrm{z}+x+\mathrm{y}=180^{\circ} \Rightarrow \quad \mathrm{y}=180^{\circ}-2 x-\mathrm{z}$
In \triangle DOE, $\angle D O E=180^{\circ}-2 y$
And in $\triangle A O C, \angle A O C=180^{\circ}-2 z$

$$
\begin{align*}
\therefore \quad \angle D O E-\angle A O C & =\left(180^{\circ}-2 y\right)-\left(180^{\circ}-2 z\right)=2 z-2 y \\
& =2 z-2\left(180^{\circ}-2 x-z\right) \quad \text { (Using (iii)) } \\
& =4 z+4 x-360^{\circ} \quad \ldots \text { (iv } \tag{iv}
\end{align*}
$$

Again, $\angle \mathrm{BAC}+\angle \mathrm{CAD}=180^{\circ} \quad \Rightarrow \quad \angle \mathrm{BAC}=180^{\circ}-(z+x)$

Similarly, $\angle \mathrm{BAC}=180^{\circ}-(z+x)$
In $\triangle A B C, \angle A B C=180^{\circ}-\angle B A C-\angle B C A$

$$
\begin{align*}
& =180^{\circ}-2\left[180^{\circ}-(z+x)\right] \quad(\text { Using }(v) \text { and }(v i)) \\
& =2 z+2 x-180^{\circ}=\frac{1}{2}\left(4 z+4 x-360^{\circ}\right) \tag{vii}
\end{align*}
$$

From (iv) and (vii), we have

$$
\angle \mathrm{BAC}=\frac{1}{2}(\angle \mathrm{DOE}-\angle \mathrm{AOC})
$$

Que 3. Bisectors of angles A, B and C of a triangle $A B C$ intersects its circumcircle at D, E and F respectively. Prove that angles of triangle DEF are $90^{\circ}-\frac{A}{2}, 90^{\circ}-\frac{B}{2}$ and $90^{\circ}-\frac{C}{2}$.

Sol. We have $\angle B E D=\angle B A D$
(Angles in the same segment)
$\Rightarrow \quad \angle \mathrm{BED}=\frac{1}{2} \angle \mathrm{~A}$
Also, $\angle \mathrm{BEF}=\angle \mathrm{BCF}$ (Angles in the same segment)
$\Rightarrow \quad \angle B E F=\frac{1}{2} \angle C$
From (i) and (ii) $\angle \mathrm{BED}+\angle \mathrm{BEF}=\frac{1}{2} \angle \mathrm{~A}+\frac{1}{2} \angle \mathrm{C}$

$$
\begin{array}{ll}
& \angle D E F= \\
\Rightarrow & \angle D E F=\frac{1}{2}(\angle A+\angle C) \\
\Rightarrow & \angle D E F=90^{\circ}-\frac{1}{2} \angle B
\end{array}
$$

Value Based Questions

Que 1. Teacher held two sticks $A B$ and $C D$ of equal length in her hands and marked their mid points M and N respectively. She then asked the students whether AM is equal to ND or not. Aprajita answered yes. Is Aprajita correct? State the axiom of Euclid that supports her answer. Which values of Aprajita are depicted here?

Fig. 5

Sol. Yes, Things which are halves of the same things are equal to one another. Curiosity, knowledge, truthfulness.

Que 2. For her records, a teacher asked the students about their heights. Manav said his height is same as that of Arnav. Raghav also answered the same, way that his height is same as that of Arnav. She then asked the students to relate the height of Manav and Raghav. Arnav answered they both have same height. Is Arnav correct? If yes, state Euclid's axiom which supports his answer.
Which values of Arnav are depicted here?
Sol. Yes, Things which are equal to the same thing are equal to one another. Knowledge, curiosity, truthfulness.

Que 3. The number of members of society A who participated in 'Say No to Crackers' campaign is double the number of members from society B. Also, the number of members from society C is double the number of members from society B. Can you relate the number of participants from society A and C ? Justify your answer using Euclid's axiom. Which values are depicted here?

Sol. The number of participants from society A and C is equal. Things which are double of the same thing are equal to one another. Social service, helpfulness, cooperation, environmental concern.

Que 4. In a society, the number of persons using CNG instead of petrol for their vehicles has increased by 15 and now the number is 25 . Form a linear equation to find the original number of persons using CNG and solve it using Euclid's axiom.
Which values are depicted in the question?

Sol. $\mathrm{X}+15=25$
$\Rightarrow x+15-15=25-15$ (Using Euclid's third axiom)
$\Rightarrow \mathrm{x}=10$
Environmental care, responsible citizens, futuristic.
Que 5. Teacher asked the students to find the value of x in the following figure if $I|\mid \mathbf{m}$.
Shalini answered 35°. Is she correct? Which values are depicted here?

Fia. 6
Sol. $\angle 1=3 x+20$ (Vertically opposite angles)
$\therefore 3 \mathrm{x}+202 \mathrm{x}-15=180^{\circ}$ (Co-interior angles are supplementary)
$\Rightarrow 5 x+5=180^{\circ} \Rightarrow 5 x=180^{\circ}-5^{\circ}$
$\Rightarrow \quad 5 \mathrm{x}=175^{\circ} \quad \Rightarrow x=\frac{175}{5}=35^{\circ}$
Yes, Knowledge, truthfulness.
Que 6. For spreading the message 'Save Environment Save Future' a rally was organised by some students of a school. They were given triangular cardboard pieces which they divided into two parts by drawing bisectors of base angles (say $\angle B$ and $\angle C$) intersecting at O in the given figure. Prove that $\angle B O C=90+$ $\frac{1}{2} \angle A$
Which values are depicted by these students?

Fig. 7
Sol. In $\triangle A B C$, we have

$$
\angle A+\angle B+\angle C=180^{\circ}
$$

(\because sum of the angles of a Δ is
180°)

$$
\begin{array}{lc}
\Rightarrow & \frac{1}{2} \angle A+\frac{1}{2} \angle B+\frac{1}{2} \angle C=\frac{180^{\circ}}{2} \\
\Rightarrow & \frac{1}{2} \angle A+\angle 1+\angle 2=90^{\circ} \\
\therefore & \angle 1+\angle 2=90^{\circ}-\frac{1}{2} \angle A \tag{i}
\end{array}
$$

Now, in \triangle OBC, we have:

$$
\begin{array}{lc}
& \angle 1+\angle 2+\angle \mathrm{BOC}=180^{\circ} \quad\left[\because \text { sum of the angles of } \triangle \text { is } 180^{\circ}\right] \\
\Rightarrow & \angle \mathrm{BOC}=180^{\circ}-(\angle 1+\angle 2) \\
\Rightarrow & \left.\angle \mathrm{BOC}=180^{\circ}-\left(90^{\circ}-\frac{1}{2} \angle A\right) \quad \text { [using (i) }\right] \\
\therefore & \angle B O C=180^{\circ}-90^{\circ}+\frac{1}{2} \angle A \\
\Rightarrow & \angle B O C=90^{\circ}+\frac{1}{2} \angle A
\end{array}
$$

Environmental care, social, futuristic.
Que 7. Three bus stops situated at A, B and C in the figure are operated by handicapped persons. These 3 bus stops are equidistant from each other. OB is the bisector of $\angle A B C$ and $O C$ is the bisector of $\angle A C B$.
(a) Find $\angle B O C$.
(b) Do you think employment provided to handicapped persons is important for the development of the society? Express your views with relevant points.

Fig. 9
Sol. (a) Since, A, B, C are equidistant from each other.
$\therefore \quad \angle A B C$ is an equilateral triangle.
$\Rightarrow \quad \angle A B C=\angle A B C=60^{\circ}$
$\Rightarrow \quad \angle \mathrm{OBC}=\angle \mathrm{OCB}=\frac{1}{2} \times 60^{\circ}=30^{\circ} \quad(\because \mathrm{OB}$ and OC are angle bisectors $)$
Now, $\angle B O C=180^{\circ}-\angle O B C-\angle O C B \quad$ (Using angle sum property of triangle)
$\Rightarrow \quad \angle B O C=180^{\circ}-30^{\circ}-30^{\circ}=120^{\circ}$
(b) Yes, employment provided to the handicapped persons is important for the development of the society as they would become independent, self-reliant, confident, social, helpful and useful members of the society.

Que 8. A group of children prepared some decorative pieces in the shape of a star for the orphans in an orphanage. Show that $\angle A+\angle B+\angle C+\angle D+\angle E+$ $\angle F=360^{\circ}$
Which values of the children are depicted here?

Fig. 10
Sol. In \triangle AEC,
$\angle A+\angle E+\angle C=180^{\circ}$
... (i) (Angle sum property of a triangle)
Similarly, in $\triangle B D F$,
$\angle B+\angle D \angle F=180^{\circ}$
Adding (i) and (ii), we get
$\angle A+\angle B+\angle C+\angle D+\angle E+\angle F=360^{\circ}$
Social, caring, cooperative, hardworking.
Que 9. For annual day, Sakshi and Nidhi were asked to make one rangoli each on two different places. They started it with triangles (say ABC and $\triangle P Q R$) and their medians (AM and PN). If two sides (AB and BC) and a median (AM) of one triangle are respectively equal to two sides (PQ and QR) and a median (PN) of other triangle, prove that the two triangles ($\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$) are congruent. Which values of the girls are depicted here?

Sol. In $\triangle A B C$ and $\triangle P Q R$

Fig. 11

$$
B C=Q R
$$

$$
\begin{array}{lr}
\Rightarrow & \frac{1}{2} B C=\frac{1}{2} Q R \\
\Rightarrow & \mathrm{BM}=\mathrm{QN}
\end{array}
$$

In triangle $A B M$ and $P Q N$, we have

$$
\begin{aligned}
& \mathrm{AB} & =\mathrm{PQ} & \\
\mathrm{BM} & =\mathrm{QN} & & \text { (Given) } \\
& & & \text { (Proved above) } \\
& & & \text { (Given) } \\
\therefore & \triangle P N & & \text { (SSS congruence criterion) } \\
\Rightarrow \quad \triangle A B M & \cong \triangle P Q N & & \text { (CPCT) }
\end{aligned}
$$

Now, in triangles $A B C$ and $P Q R$, we have

$$
\begin{array}{cl}
& \mathrm{AB}=\mathrm{PQ} \\
\angle B=\angle \mathrm{Q} & \text { (Given) } \\
& \text { (Proved above) } \\
\therefore \quad \mathrm{BC}=\mathrm{QR} & \text { (Given) } \\
\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR} & \text { (SSS congruence criterion) }
\end{array}
$$

Participation, beauty, hardworking.
Que 10. Triangular pieces of cardboards were cut out by some people who were organising 'No Pollution' campaign in their area. If the three angles of one cutout are respectively equal to the three angles of the other cutout, can we say the two cutouts are congruent? Justify your answer. Which values of these people are depicted here?

Sol. The two cutouts may not be congruent. For example all equilateral triangles have equal angles but may have different sides.
Environmental concern, cooperative, caring, social.
Que 11. Anya wants to prepare a poster on education of girlchild for a campaign. She takes a triangular sheet and divides it into three equal parts by drawing its medians which intersect at the point G (see Fig. 12).

Show that $\operatorname{ar}(\triangle A G C)=\operatorname{ar}(\triangle A G C)=\operatorname{ar}(\triangle A G B)=(\triangle B G C)=\frac{1}{3} \operatorname{ar}(\triangle A B C)$

Fig. 12
Do you think education of a girl child is important for the development of a society? Justify your answer.

Sol. Given: $A \triangle A B C$ in which medians $A D, B E$ and $C F$ intersects at G.
Proof: $(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{BGC})=\operatorname{ar}(\triangle \mathrm{CGA})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$

Proof: In $\triangle A B C, A D$ is the median. As a median of a triangle divides it into two triangles of equal area.

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle A C D) \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{GBC}, \mathrm{GD}$ is the median
$\therefore \quad$ aq $(\Delta \mathrm{GBD})=\operatorname{ar}(\Delta \mathrm{GCD})$
Subtracting (ii) from (i), we get
$\operatorname{ar}(\triangle \mathrm{ABD})-\operatorname{ar}(\triangle \mathrm{GBD})=\operatorname{ar}(\mathrm{ACD})-\operatorname{ar}(\triangle G C D)$

$$
\begin{equation*}
\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{AGC}) \tag{iii}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\operatorname{ar}(\Delta \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{BGC}) \tag{iv}
\end{equation*}
$$

From (iii) and (iv), we get

$$
\begin{equation*}
\operatorname{ar}(\Delta \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{BGC})=\operatorname{ar}(\Delta \mathrm{AGC}) \ldots(\mathrm{v} \tag{v}
\end{equation*}
$$

But, $\quad \operatorname{ar}(\triangle \mathrm{AGB})+\operatorname{ar}(\triangle \mathrm{BGC})+\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\triangle \mathrm{ABC})$
From (v) and (vi), we get
$3 \operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{ABC})$
$\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{AGB})=\frac{1}{3} \operatorname{ar}(\triangle A B C)$
Hence,

$$
\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{AGC})=\operatorname{ar}(\Delta \mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\Delta \mathrm{ABC})
$$

Yes, for the development of a society, education of each girl child is essential. An educated society always progresses.

