Very Short Answer Type Questions

[1 mark]

Que 1. Can we construct an angle of 67.5° ? Justify for your answer.
Sol. Yes, because $67.5^{\circ}=\frac{135^{\circ}}{2}=\frac{1}{2}\left(90^{\circ}+45^{\circ}\right)$ which can be constructed.
Que 2. An angle of 42.5° can be constructed. State true or false and give reason for your answer.

Sol. False, because $42.5^{\circ}=\frac{1}{2} \times 85^{\circ}$ and 85° cannot be constructed.
Que 3. Can we construct an angle of 52.5° ? Justify for your answer.
Sol. Yes, because $52.5^{\circ}=\frac{1}{4} \times 210^{\circ}$ and $210^{\circ}=180^{\circ}+30^{\circ}$ which can be constructed.
Que 4. The construction of a $\triangle A B C$, given that $B C=5 \mathrm{Cm}, \angle B=45^{\circ}$ is not possible when difference of $A B$ and $A C$ is equal to 5.2 cm . Why?

Sol. Since one side of the triangle becomes greater than the sum of the other two sides.

Short Answer Type Questions - I
 [2 marks]

Que 1. A triangle $A B C$ can be constructed in which $B C=5 \mathrm{~cm}, \angle C=30^{\circ}$ and $A C$ $-A B=3.8 \mathrm{~cm}$. State true or false and give reason.

Sol. True, because $A C-A B<B C$ or $A C<A B+B C$.
Que 2. A triangle $A B C$ can be constructed in which $\angle B=105^{\circ}, \angle C 90^{\circ}$ and $A B+$ $B C+A C=10 \mathrm{~cm}$. State true or false and give reason.

Sol. False, because $\angle B+\angle C=105^{\circ}+90^{\circ}=195^{\circ}>180^{\circ}$
Que 3. A triangle $A B C$ can be constructed in which $\angle B=60^{\circ}, \angle C=45^{\circ}$ and $A B+$ $B C+C A=12 \mathbf{c m}$. Write true of false and give reason for your answer.

Sol. True, because $\angle B+\angle C=60^{\circ}+45^{\circ}=105^{\circ}<180^{\circ}$.

Short Answer Type Questions - II

[3 marks]

Que 1. Draw a line segment 5.8 cm long draw its perpendicular bisector.

Sol. Steps of construction

Fig. 11.1
(i) Draw a line segment $A B=5.8 \mathrm{~cm}$.
(ii) Talking A as centre and radius more $\frac{1}{2} A B$, draw two arcs, one on either side of AB.
(iii) Taking B as centre and the same radius draw two arcs, cutting the previously drawn arcs at points C and D respectively.
(iv) Join CD, intersecting $A B$ at point P. Then, line CPD is the required perpendicular bisector of $A B$.

Que 2. Construct an angle of 60°

Sol. Steps of construction

Fig. 11.2
(i) Draw a ray AB .
(ii) Taking A as centre and any convenient radius, draw an arc intersecting ray AB at point D.
(iii) Taking D as centre and same radius, draw an arc intersecting the previous arc at E.
(iv) Draw the ray $A C$ passing through E. Then, $\angle C A B$ is the required angle of 60°.

Justification

Join DE
In \triangle ADE, we have

$$
A D=D E=E A \quad \text { (Arcs of the same radii) }
$$

$\Rightarrow \quad \triangle \mathrm{ADE}$ is an equilateral triangle
$\Rightarrow \quad \angle B A C=60^{\circ}$
Que 3. Construct an angle of 30°.

Sol. Steps of construction

Fig. 11.3
(i) Draw a ray $A B$
(ii) Taking A as centre and any convenient radius, draw an arc intersecting AB at D .
(iii) With the same radius and D as centre, draw an intersecting the previous arc at E.
(iv) Taking E and D as centre and convenient radius (more than $\frac{1}{2}$ ED), draw two arcs intersecting each other at F.
(v) Draw the ray $A C$ passing through F. Then $\angle C A B$ is the required angle of 30°.

Que 4. Construct an angle of 15°.

Sol. Steps of construction

Fig. 11.4
(i) Construct an $\angle E A B=60^{\circ}$.
(ii) Bisect $\angle E A B$, so that $\angle E A F=\angle F A B=30^{\circ}$.
(iii) Bisect $\angle \mathrm{FAB}$, so that $\angle \mathrm{CAB}=\angle \mathrm{FAC}=15^{\circ}$.

Hence $\angle C A B=15^{\circ}$.

Que 5. Construct an angle of 90° at the initial point of a given ray and give the justification.

Sol. Steps of Construction

Fig. 11.5
(i) Draw a ray AB .
(ii) Taking A as centre and some convenient radius draw an arc which intersect $A B$, say at point D.
(iii) Taking D as centre and with the same radius as before draw an arc intersecting the previously drawn arc, say at point E.
(iv) Taking E as centre and with the same radius draw an arc intersecting the drawn arc, say at point F.
(v) With E and F as centres, and some convenient radius (more than $\frac{1}{2} E F$), draw two arcs intersecting each other at G.
(vi) Draw ray AC passing through G. Then $\angle C A B$ is the required angle of 90°.

Justification

By construction

$$
A D=D E=E A
$$

$\therefore \quad \triangle E A D$ is an equilateral triangle. So $\angle E A D=60^{\circ}$
Again

$$
\mathrm{AE}=\mathrm{ED}=\mathrm{FA} .
$$

$\therefore \quad \triangle \mathrm{FAE}$ is equilateral triangle. So $\angle \mathrm{FAE}=60^{\circ}$
As AG bisects $\angle F A E$, So $\angle G A E=30^{\circ}$
Now, $\quad \angle \mathrm{CAB}=\angle \mathrm{GAE}+\angle \mathrm{EAD}=30^{\circ}+60^{\circ}=90^{\circ}$

Que 6. Construct an angle of 45°.

Sol. Steps of Construction

Fig. 11.6
(i) Draw a ray AB .
(ii) Construct $\angle \mathrm{CAB}=90^{\circ}$ as given in previous problem.
(iii) Draw DA the bisector of $\angle \mathrm{CAB}$. Then $\angle \mathrm{DAB}=45^{\circ}$

Que 7. Construct an angle of $22 \frac{1^{\circ}}{2}$.

Sol. Steps of Construction

Fig. 11.7
(i) Draw $\angle \mathrm{BAC}=90^{\circ}$.
(ii) Draw $A D$, the bisector of $\angle B A C$, then $\angle B A D=45^{\circ}$.
(iii) Draw $A E$, the bisector of $\angle \mathrm{DAB}$, then $\angle \mathrm{EAB}=22 \frac{1^{\circ}}{2}$

Que 8. Construct an angle of 75°.

Sol. Steps of Construction

Fig. 11.8
(i) Draw ray AB .
(ii) Construct $\angle \mathrm{BAC}=60^{\circ}$.
(iii) Construct $\angle \mathrm{BAD}=90^{\circ}$.
(iv) Bisect $\angle \mathrm{CAD}$, so that $\angle \mathrm{CAE}=\angle \mathrm{EAD}=15^{\circ}$.
(v) We obtain $\angle \mathrm{BAE}=\angle \mathrm{BAC}+\angle \mathrm{CAE}=60^{\circ}+15^{\circ}=75^{\circ}$.

Que 9. Construct an angle of 105°.
Sol. Steps of Construction

Fig. 11.9
(i) Draw ray AB .
(ii) Construct $\angle B A C=120^{\circ}$.
(iii) Construct $\angle \mathrm{BAD}=90^{\circ}$.
(iv) Draw $A E$, the bisector of $\angle C A D$, then $\angle D A E=15^{\circ}$.

So, we obtain
$\angle B A E=\angle B A D+\angle D A E=90^{\circ}+15^{\circ}=105^{\circ}$.
Que 10. Construct an angle of 123°.

Sol. Steps of Construction

Fig. 11.10
(i) Construct $\angle \mathrm{BAC}=90^{\circ}$, Then $\angle \mathrm{CAD}=90^{\circ}$.
(ii) Draw $A E$, the bisector of $\angle C A D$, then $\angle C A E=45^{\circ}$.

So, we obtain
$\angle B A E=\angle B A C+\angle C A E=90^{\circ}+45^{\circ}=135^{\circ}$.

Que 11. Construct an equilateral triangle, gives its side any justify the construction.

Sol. Steps of Construction

Fig. 11.11
(i) Draw a ray $A X$ with initial point A.
(ii) Taking A as centre and radius equal to length of side of the triangle draw an arc intersecting the ray $A X$ at B.
(iii) Taking B as centre and the same radius draw an arc intersecting the arc drawn in step (ii) at C.
(iv) Join $A C$ and $B C$ to obtain the required triangle.

Justification

Arcs $A B, A C$ and $B C$ are of the same radii
$\therefore \quad A B=B C=C A$

Long Answer Type Questions

[4 Marks]

Que 1. Construct a triangle $A B C$ in which $B C=7 \mathrm{~cm}, \angle B=75^{\circ}$ and $A B+A C=$ 13 cm .

Sol. Steps of Construction

Fig. 11.12
(i) $\mathrm{Draw} \mathrm{BC}=7 \mathrm{~cm}$.
(ii) Construct $\angle Y B C=75^{\circ}$.
(iii) From ray $B Y$, cut-off line segment $B D=A B+A C=13 \mathrm{~cm}$.
(iv) Join CD.
(v) Draw the perpendicular bisector of $C D$ meeting $B Y$ at A.
(vi) Join $A C$ to obtain the required triangle $A B C$.

Justification

Since A lied on the perpendicular bisector of CD.
$\therefore \quad A C=A D$
Now $B D=13 \mathrm{~cm}$
$\Rightarrow B A+A D=13 \mathrm{~cm}$
$\Rightarrow B A+A C=13 \mathrm{~cm}$
Hence, $\triangle A B C$ is the required triangle.

Que 2. Construct a triangle $P Q R$ in which $Q R=6 \mathrm{~cm}, \angle Q=60^{\circ}$ and $P R-P Q=2$ cm.

Sol. Steps of Construction

Fig. 11.13
(i) $\operatorname{Draw} \mathrm{QR}=6 \mathrm{~cm}$.
(ii) Construct $\angle Y Q R=60^{\circ}$.
(iii) Produce $Y Q$ to Y^{\prime} to form line $Y Q Y^{\prime}$.
(iv) From ray QY', cut-off line segment $Q S=2 \mathrm{~cm}$.
(v) Join SR.
(vi) Draw perpendicular bisector of $R S$ which intersect $Q Y$ at P.
(vii) Join PR to obtain required $\triangle P Q R$.

Justification

As P lies on the perpendicular bisector of RS .
Therefore, $\quad \mathrm{PR}=\mathrm{PS}=\mathrm{PQ}+\mathrm{QS}=\mathrm{PQ}+2 \mathrm{~cm}$
$\Rightarrow \quad P R-P Q=2 \mathrm{~cm}$
Hence, $\triangle \mathrm{PQR}$ is the required triangle.

Que 3. Construct a triangle $A B C$ in which $B C=8 \mathrm{~cm}, \angle B=45^{\circ}$ and $A B-A C=$ 3.5 cm .

Sol. Steps of Construction

Fig. 11.14
(i) $\mathrm{Draw} \mathrm{BC}=8 \mathrm{~cm}$.
(ii) Construct $\angle Y B C=45^{\circ}$
(iii) From ray BY, cut-off line segment
$\mathrm{BD}=3.5 \mathrm{~cm}$.
(iv) Join CD.
(v) Draw perpendicular bisector of CD intersecting BY at A.
(vi) Join $A C$ to obtain the required triangle $A B C$.

Justification

As A lies on the perpendicular bisector of $C D$. Therefore,

$$
A D=A C
$$

Now, $\quad B D=3.5 \mathrm{~cm}$
$\Rightarrow \quad \mathrm{AB}-\mathrm{AD}=3.5 \mathrm{~cm}$
$\Rightarrow \quad A B-A C=3.5 \mathrm{~cm}$
Hence, $\triangle A B C$ is the required triangle.

Que 4. Construct a triangle $X Y Z$ in which $\angle Y=30^{\circ}, \angle Z=90^{\circ}$ and $X Y+Y Z+Z X=$ 11 cm .

Sol. Steps of Construction

Fig. 11.15
(i) Draw a line segment $A B=11 \mathrm{~cm}$.
(ii) At A, construct an angle of 30° and B construct an angle of 90°.
(iii) Bisect these angles. Let bisector of these angles intersect at point X.
(iv) Draw perpendicular bisector $C D$ of $X A$ to intersect $A B$ at Y and $E F$ of $X B$ to intersect $A B$ at Z.
(v) Join $X Y$ and $X Y$ to obtain requires $\triangle X Y Z$.

Justification

Since Y lies on the perpendicular bisector of $X B$. Therefore,

$$
\begin{aligned}
& Z B=Z X \\
& \Rightarrow \quad \angle Z B X=\angle Z X B \\
& \text { Now, } \\
& A B=A Y+Y Z+Z B \quad \Rightarrow \quad A B=X Y+Y Z+Z X
\end{aligned}
$$

In $\triangle X A Y$, we have

$$
\angle X Y Z=\angle Y X A+\angle Y A X=2 \angle Y A X=\angle A
$$

In XBZ, we have

$$
\angle X Z Y=\angle Z B X+\angle Z X B=2 \angle Z B X=\angle B
$$

Que 5. Construct a right triangle whose base is 12 cm and sum of its hypotenuse and other side is 18 cm .

Sol. Steps of Construction

Fig. 11.16
(i) Draw $\mathrm{BC}=12 \mathrm{~cm}$.
(ii) Construct $\angle \mathrm{CBY}=90^{\circ}$
(iii) From ray $B Y$, cut-off line segment $B D=10 \mathrm{~cm}$.
(iv) Join CD.
(v) Draw $A C$ to obtain the required $\triangle \mathrm{ABC}$.

Justification

Since A lies on the perpendicular bisector of CD.
Therefore,

$$
A D=A C
$$

Now,

$$
B D=B A+A D
$$

\Rightarrow
$B D=A B+A C$
Hence, $\triangle A B C$ is the required triangle.

HOTS (Higher Order Thinking Skills)

Que 1. Construct an equilateral triangle if it's altitude is $\mathbf{6 ~ c m}$.

Fig. 11.17

Sol. Steps of Construction

(i) Draw a line XY.
(ii) Construct perpendicular PD at any point D on the line $X Y$.
(iii) From point D, cut-off line segment $A D=6 \mathrm{~cm}$.
(iv) Construct $\angle \mathrm{BAD}=\angle \mathrm{CAD}=30^{\circ}$. Then ABC is the required triangle.

Justification

As $\angle A=\angle B A D+\angle C A D=30^{\circ}+30^{\circ}=60^{\circ}$ and $A D \perp B C$ therefore, $\triangle A B C$ is an equilateral triangle with altitude $A D=6 \mathrm{~cm}$.

Value Based Questions

Que 1. Teacher held two sticks $A B$ and $C D$ of equal length in her hands and marked their mid points M and N respectively. She then asked the students whether AM is equal to ND or not. Aprajita answered yes. Is Aprajita correct? State the axiom of Euclid that supports her answer. Which values of Aprajita are depicted here?

Fig. 5
Sol. Yes, Things which are halves of the same things are equal to one another. Curiosity, knowledge, truthfulness.

Que 2. For her records, a teacher asked the students about their heights. Manav said his height is same as that of Arnav. Raghav also answered the same, way that his height is same as that of Arnav. She then asked the students to relate the height of Manav and Raghav. Arnav answered they both have same height. Is Arnav correct? If yes, state Euclid's axiom which supports his answer.
Which values of Arnav are depicted here?
Sol. Yes, Things which are equal to the same thing are equal to one another. Knowledge, curiosity, truthfulness.

Que 3. The number of members of society A who participated in 'Say No to Crackers' campaign is double the number of members from society B. Also, the number of members from society C is double the number of members from society B. Can you relate the number of participants from society A and C ? Justify your answer using Euclid's axiom. Which values are depicted here?

Sol. The number of participants from society A and C is equal. Things which are double of the same thing are equal to one another. Social service, helpfulness, cooperation, environmental concern.

Que 4. In a society, the number of persons using CNG instead of petrol for their vehicles has increased by 15 and now the number is 25 . Form a linear equation to find the original number of persons using CNG and solve it using Euclid's axiom.
Which values are depicted in the question?

Sol. $\mathrm{X}+15=25$
$\Rightarrow x+15-15=25-15$ (Using Euclid's third axiom)
$\Rightarrow \mathrm{x}=10$
Environmental care, responsible citizens, futuristic.
Que 5. Teacher asked the students to find the value of \mathbf{x} in the following figure if I|| m .
Shalini answered 35°. Is she correct? Which values are depicted here?

Fia. 6
Sol. $\angle 1=3 x+20$ (Vertically opposite angles)
$\therefore 3 \mathrm{x}+202 \mathrm{x}-15=180^{\circ} \quad$ (Co-interior angles are supplementary)
$\Rightarrow 5 x+5=180^{\circ} \Rightarrow 5 x=180^{\circ}-5^{\circ}$
$\Rightarrow \quad 5 \mathrm{x}=175^{\circ} \quad \Rightarrow x=\frac{175}{5}=35^{\circ}$
Yes, Knowledge, truthfulness.
Que 6. For spreading the message 'Save Environment Save Future' a rally was organised by some students of a school. They were given triangular cardboard pieces which they divided into two parts by drawing bisectors of base angles (say $\angle B$ and $\angle C$) intersecting at O in the given figure. Prove that $\angle B O C=90+$ $\frac{1}{2} \angle A$
Which values are depicted by these students?

Fig. 7
Sol. In $\triangle A B C$, we have

$$
\begin{aligned}
& \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \quad\left(\because \text { sum of the angles of a } \Delta \text { is } 180^{\circ}\right) \\
& \Rightarrow \quad \frac{1}{2} \angle A+\frac{1}{2} \angle B+\frac{1}{2} \angle C=\frac{180^{\circ}}{2}
\end{aligned}
$$

$$
\begin{array}{lr}
\Rightarrow & \frac{1}{2} \angle A+\angle 1+\angle 2=90^{\circ} \\
\therefore & \angle 1+\angle 2=90^{\circ}-\frac{1}{2} \angle A \tag{i}
\end{array}
$$

Now, in $\triangle \mathrm{OBC}$, we have:

$$
\begin{array}{lc}
& \angle 1+\angle 2+\angle B O C=180^{\circ} \quad\left[\because \text { sum of the angles of } \triangle \text { is } 180^{\circ}\right] \\
\Rightarrow & \angle B O C=180^{\circ}-(\angle 1+\angle 2) \\
\Rightarrow & \angle B O C=180^{\circ}-\left(90^{\circ}-\frac{1}{2} \angle A\right) \quad \text { [using (i)] } \\
\therefore & \angle B O C=180^{\circ}-90^{\circ}+\frac{1}{2} \angle A \\
\Rightarrow & \angle B O C=90^{\circ}+\frac{1}{2} \angle A
\end{array}
$$

Environmental care, social, futuristic.
Que 7. Three bus stops situated at A, B and C in the figure are operated by handicapped persons. These 3 bus stops are equidistant from each other. OB is the bisector of $\angle A B C$ and $O C$ is the bisector of $\angle A C B$.
(a) Find $\angle B O C$.
(b) Do you think employment provided to handicapped persons is important
for the development of the society? Express your views with relevant points.

Fig. 9
Sol. (a) Since, A, B, C are equidistant from each other.
$\therefore \quad \angle A B C$ is an equilateral triangle.
$\Rightarrow \quad \angle A B C=\angle A B C=60^{\circ}$
$\Rightarrow \quad \angle \mathrm{OBC}=\angle \mathrm{OCB}=\frac{1}{2} \times 60^{\circ}=30^{\circ} \quad(\because \mathrm{OB}$ and OC are angle bisectors $)$
Now, $\angle B O C=180^{\circ}-\angle O B C-\angle O C B \quad$ (Using angle sum property of triangle)
$\Rightarrow \quad \angle \mathrm{BOC}=180^{\circ}-30^{\circ}-30^{\circ}=120^{\circ}$
(b) Yes, employment provided to the handicapped persons is important for the development of the society as they would become independent, self-reliant, confident, social, helpful and useful members of the society.

Que 8. A group of children prepared some decorative pieces in the shape of a star for the orphans in an orphanage. Show that $\angle A+\angle B+\angle C+\angle D+\angle E+$ $\angle F=360^{\circ}$
Which values of the children are depicted here?

Fig. 10
Sol. In \triangle AEC,
$\angle A+\angle E+\angle C=180^{\circ} \quad \ldots$ (i) (Angle sum property of a triangle)
Similarly, in $\triangle B D F$,
$\angle B+\angle D \angle F=180^{\circ}$
Adding (i) and (ii), we get
$\angle A+\angle B+\angle C+\angle D+\angle E+\angle F=360^{\circ}$
Social, caring, cooperative, hardworking.
Que 9. For annual day, Sakshi and Nidhi were asked to make one rangoli each on two different places. They started it with triangles (say ABC and $\triangle P Q R$) and their medians (AM and PN). If two sides (AB and BC) and a median (AM) of one triangle are respectively equal to two sides (PQ and QR) and a median (PN) of other triangle, prove that the two triangles ($\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$) are congruent. Which values of the girls are depicted here?

Sol. In $\triangle A B C$ and $\triangle P Q R$

Fig. 11

$$
\begin{aligned}
& \mathrm{BC}=\mathrm{QR} \\
\Rightarrow & \frac{1}{2} B C=\frac{1}{2} Q R \\
\Rightarrow & \mathrm{BM}=\mathrm{QN}
\end{aligned}
$$

In triangle $A B M$ and $P Q N$, we have
$A B=P Q$
$B M=Q N$
$A M=P N$
$\therefore \quad \triangle A B M \cong \triangle P Q N$
$\Rightarrow \quad \angle B=\angle Q$
Now, in triangles $A B C$ and $P Q R$, we have

$$
A B=P Q
$$

$$
\angle B=\angle \mathrm{Q}
$$

$$
B C=Q R
$$

$\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$
(Given)
(Proved above)
(Given)
(SSS congruence criterion)
(CPCT)

Participation, beauty, hardworking.
Que 10. Triangular pieces of cardboards were cut out by some people who were organising 'No Pollution' campaign in their area. If the three angles of one cutout are respectively equal to the three angles of the other cutout, can we say the two cutouts are congruent? Justify your answer. Which values of these people are depicted here?

Sol. The two cutouts may not be congruent. For example all equilateral triangles have equal angles but may have different sides.
Environmental concern, cooperative, caring, social.
Que 11. Anya wants to prepare a poster on education of girlchild for a campaign. She takes a triangular sheet and divides it into three equal parts by drawing its medians which intersect at the point G (see Fig. 12).
Show that $\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\triangle \mathrm{AGB})=(\triangle \mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\triangle A B C)$

Fig. 12
Do you think education of a girl child is important for the development of a society? Justify your answer.

Sol. Given: $A \triangle A B C$ in which medians $A D, B E$ and $C F$ intersects at G.
Proof: $(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{BGC})=\operatorname{ar}(\triangle \mathrm{CGA})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$
Proof: In $\triangle A B C, A D$ is the median. As a median of a triangle divides it into two triangles of equal area.

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ACD}) \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{GBC}, \mathrm{GD}$ is the median

$\therefore \quad \mathrm{aq}(\Delta \mathrm{GBD})=\operatorname{ar}(\Delta \mathrm{GCD})$

Subtracting (ii) from (i), we get
$\operatorname{ar}(\triangle \mathrm{ABD})-\operatorname{ar}(\triangle \mathrm{GBD})=\operatorname{ar}(\mathrm{ACD})-\operatorname{ar}(\triangle G C D)$

$$
\begin{equation*}
\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{AGC}) \tag{iii}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\operatorname{ar}(\Delta \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{BGC}) \tag{iv}
\end{equation*}
$$

From (iii) and (iv), we get
$\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{BGC})=\operatorname{ar}(\triangle \mathrm{AGC})$
But, $\quad \operatorname{ar}(\triangle \mathrm{AGB})+\operatorname{ar}(\triangle \mathrm{BGC})+\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\triangle \mathrm{ABC})$
From (v) and (vi), we get
$3 \operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{ABC})$
$\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{AGB})=\frac{1}{3} \operatorname{ar}(\triangle A B C)$
Hence,

$$
\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\Delta \mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})
$$

Yes, for the development of a society, education of each girl child is essential. An educated society always progresses.

