RD Sharma

 SolutionsClass 11 Maths

$$
\begin{gathered}
\text { Chapter } 29 \\
\text { Ex } 29.4
\end{gathered}
$$

Limits Ex 29.4 Q1

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sqrt{1+x+x^{2}}-1}{x} \\
&=\lim _{x \rightarrow 0} \frac{\left(\sqrt{1+x+x^{2}}-1\right)}{x} \frac{\left(\sqrt{1+x+x^{2}}+1\right)}{\left(\sqrt{1+x+x^{2}}+1\right)} \\
&=\lim _{x \rightarrow 0} \frac{\left(\left(1+x+x^{2}\right)-1\right)}{x\left(\sqrt{1+x+x^{2}}+1\right)} \\
&=\lim _{x \rightarrow 0} \frac{x(1+x)}{x\left(\sqrt{1+x+x^{2}}+1\right)} \\
&=\lim _{x \rightarrow 0} \frac{1+x}{\sqrt{1+x+x^{2}}+1} \\
&=\frac{1+0}{\sqrt{1+0+0}+1} \\
&=\frac{1}{1+1} \\
&=\frac{1}{2}
\end{aligned}
$$

Limits Ex 29.4 Q2

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{2 x}{\sqrt{a+x}-\sqrt{a-x}} \\
& =\lim _{x \rightarrow 0} \frac{2 x}{(\sqrt{a+x}-\sqrt{a-x})} \times \frac{\sqrt{a+x}+\sqrt{a-x}}{(\sqrt{a+x}+\sqrt{a-x})} \\
& =\lim _{x \rightarrow 0} \frac{2 x(\sqrt{a+x}+\sqrt{a-x})}{((a+x)-(a-x))} \\
& =\lim _{x \rightarrow 0} \frac{2 x(\sqrt{a+x}+\sqrt{a-x})}{2 x} \\
& =\lim _{x \rightarrow 0}(\sqrt{a+x}+\sqrt{a-x}) \\
& =\sqrt{a}+\sqrt{a} \\
& =2 \sqrt{a}
\end{aligned}
$$

Limits Ex 29.4 Q3

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sqrt{a^{2}+x^{2}}-a}{x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{\left(\sqrt{a^{2}+x^{2}}-a\right)}{x^{2}} \times \frac{\left(\sqrt{a^{2}+x^{2}}+a\right)}{\left(\sqrt{a^{2}+x^{2}}+a\right)} \\
& =\lim _{x \rightarrow 0} \frac{\left(a^{2}+x^{2}-a^{2}\right)}{x^{2} \sqrt{a^{2}+x^{2}}+a} \\
& =\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}\left(\sqrt{a^{2}+x^{2}}+a\right)} \\
& =\lim _{x \rightarrow 0} \frac{1}{\sqrt{a^{2}+x^{2}}+a} \\
& =\frac{1}{a+a} \\
& =\frac{1}{2 a}
\end{aligned}
$$

Limits Ex 29.4 Q4

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{2 x} \\
& =\lim _{x \rightarrow 0} \frac{(\sqrt{1+x}-\sqrt{1-x})}{2 x} \times \frac{(\sqrt{1+x}+\sqrt{1-x})}{(\sqrt{1+x}+\sqrt{1-x})} \\
& =\lim _{x \rightarrow 0} \frac{(1+x)-(1-x)}{2 x(\sqrt{1+x}+\sqrt{1-x})} \\
& =\lim _{x \rightarrow 0} \frac{2 x}{2 x(\sqrt{1+x}+\sqrt{1-x})} \\
& =\lim _{x \rightarrow 0} \frac{1}{(\sqrt{1+x}+\sqrt{1-x})} \\
& =\frac{1}{\sqrt{1}+\sqrt{1}} \\
& =\frac{1}{2}
\end{aligned}
$$

Limits Ex 29.4 Q5

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{\sqrt{3-x}-1}{2-x} \\
& =\lim _{x \rightarrow 2} \frac{(\sqrt{3-x}-1)}{2-x} \times \frac{(\sqrt{3-x}+1)}{(\sqrt{3-x}+1)} \\
& =\lim _{x \rightarrow 2} \frac{(3-x)-1}{(2-x)(\sqrt{3-x}+1)} \\
& =\lim _{x \rightarrow 2} \frac{(2-x)}{(2-x)(\sqrt{3-x}+1)} \\
& =\lim _{x \rightarrow 2} \frac{1}{(\sqrt{3-x}+1)} \\
& =\frac{1}{\sqrt{3-2}+1}=\frac{1}{1+1} \\
& =\frac{1}{2}
\end{aligned}
$$

Limits Ex 29.4 Q6

$$
\begin{aligned}
& \lim _{x \rightarrow 3} \frac{x-3}{\sqrt{x-2}-\sqrt{4-x}} \\
& =\lim _{x \rightarrow 3} \frac{x-3}{(\sqrt{x-2}-\sqrt{4-x})} \times \frac{(\sqrt{x-2}+\sqrt{4-x})}{(\sqrt{x-2}+\sqrt{4-x})} \\
& =\lim _{x \rightarrow 3} \frac{(x-3)(\sqrt{x-2}+\sqrt{4-x})}{(x-2)-(4-x)} \\
& =\lim _{x \rightarrow 3} \frac{(x-3)(\sqrt{x-2}+\sqrt{4-x})}{x-2-4+x} \\
& =\lim _{x \rightarrow 3} \frac{(x-3)(\sqrt{x-2}+\sqrt{4-x})}{2(x-3)} \\
& =\frac{1}{2} \lim _{x \rightarrow 3}(\sqrt{x-2}+\sqrt{4-x}) \\
& =\frac{1}{2}(\sqrt{3-2}+\sqrt{4-3}) \\
& =\frac{1}{2}(\sqrt{1}+\sqrt{1}) \\
& =\frac{1}{2}(1+1)=\frac{2}{2} \\
& =1
\end{aligned}
$$

Limits Ex 29.4 Q7

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{x}{(\sqrt{1+x}-\sqrt{1-x})} \\
&=\lim _{x \rightarrow 0} \frac{x}{(\sqrt{1+x}-\sqrt{1-x})} \times \frac{(\sqrt{1+x}+\sqrt{1-x})}{(\sqrt{1+x}+\sqrt{1-x})} \\
&=\lim _{x \rightarrow 0} \frac{x(\sqrt{1+x}+\sqrt{1-x})}{(\sqrt{1+x})^{2}-(\sqrt{1-x})^{2}} \\
&=\lim _{x \rightarrow 0} \frac{x(\sqrt{1+x}+\sqrt{1-x})}{1+x-1+x} \\
&=\lim _{x \rightarrow 0} \frac{x(\sqrt{1+x}+\sqrt{1-x})}{2 x} \\
&=\frac{1}{2} \lim _{x \rightarrow 0}\left(\frac{\sqrt{1+x}+\sqrt{1-x}}{x}\right) x \\
&=\frac{1}{2} \lim _{x \rightarrow 0}(\sqrt{1+x}+\sqrt{1-x}) \\
&=\frac{1}{2}(\sqrt{1}+\sqrt{1}) \\
&=\frac{2}{2}=1
\end{aligned}
$$

Limits Ex 29.4 Q8

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{(\sqrt{5 x-4}-\sqrt{x})}{x-1} \\
&=\lim _{x \rightarrow 1} \frac{(\sqrt{5 x-4}-\sqrt{x})}{x-1} \times \frac{(\sqrt{5 x-4}+\sqrt{x})}{(\sqrt{5 x-4}+\sqrt{x})} \\
&=\lim _{x \rightarrow 1} \frac{((5 x-4)-x)}{(x-1)(\sqrt{5 x-4}+\sqrt{x})} \\
&=4 \lim _{x \rightarrow 1} \frac{(x-1)}{(x-1)(\sqrt{5 x-4}+\sqrt{x})} \\
&=4 \lim _{x \rightarrow 1} \frac{1}{\sqrt{5 x-4}+\sqrt{x}} \\
&=4 \times \frac{1}{\sqrt{5-4}+\sqrt{1}} \\
&=4 \times \frac{1}{\sqrt{1}+\sqrt{1}} \\
&=\frac{4}{2}=2
\end{aligned}
$$

Limits Ex 29.4 Q9

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{(x-1)}{\left(\sqrt{x^{2}+3}-2\right)} \\
&=\lim _{x \rightarrow 1} \frac{(x-1) \times\left(\sqrt{x^{2}+3}+2\right)}{\left(\sqrt{x^{2}+3}-2\right)\left(\sqrt{x^{2}+3}+2\right)} \\
&=\lim _{x \rightarrow 1} \frac{(x-1)\left(\sqrt{x^{2}+3}+2\right)}{\left(x^{2}+3-4\right)} \\
&=\lim _{x \rightarrow 1} \frac{(x-1)\left(\sqrt{x^{2}+3}+2\right)}{\left(x^{2}-1\right)} \\
&=\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+3}+2}{x+1}
\end{aligned}
$$

Putting the value $x=1$

$$
\begin{aligned}
\Rightarrow \quad & \frac{\sqrt{1+3}+2}{1+1} \\
& =\frac{2+2}{2} \\
& =\frac{4}{2}=2
\end{aligned}
$$

Limits Ex 29.4 Q10

$$
\begin{aligned}
& \lim _{x \rightarrow 3} \frac{(\sqrt{x+3}-\sqrt{6})}{\left(x^{2}-9\right)} \\
&=\lim _{x \rightarrow 3} \frac{(\sqrt{x+3}-\sqrt{6})(\sqrt{x+3}-\sqrt{6})}{(x-3)(x+3)} \frac{(\sqrt{x+3}+\sqrt{6})}{(x+3)-6)} \\
&=\lim _{x \rightarrow 3} \frac{((x-3)(x+3)(\sqrt{x+3}+\sqrt{6})}{(x-3)} \\
&=\lim _{x \rightarrow 3} \frac{(x-3)}{(x-3)(x+3)(\sqrt{x+3}+\sqrt{6})} \\
&=\lim _{x \rightarrow 3} \frac{1}{(x+3)(\sqrt{x+3}+\sqrt{6})} \\
&=\frac{1}{(3+3) \sqrt{3+3}+\sqrt{6}} \\
&=\frac{1}{6(\sqrt{6}+\sqrt{6})}=\frac{1}{6 \times 2 \sqrt{6}} \\
&=\frac{1}{12 \sqrt{6}}
\end{aligned}
$$

Limits Ex 29.4 Q11

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{(\sqrt{5 x-4}-\sqrt{x})}{\left(x^{2}-1\right)} \\
&=\lim _{x \rightarrow 1} \frac{(\sqrt{5 x-4}-\sqrt{x})}{(x-1)(x+1)} \times \frac{(\sqrt{5 x-4}+\sqrt{x})}{(\sqrt{5 x-4}+\sqrt{x})} \\
&=\lim _{x \rightarrow 1} \frac{((5 x-4)-x)}{(x-1)(x+1)(\sqrt{5 x-4}+\sqrt{x})} \\
&=\lim _{x \rightarrow 1} \frac{4(x-1)}{(x-1)(x+1)(\sqrt{5 x-4}+\sqrt{x})} \\
&=\lim _{x \rightarrow 1} \frac{4}{(x+1)(\sqrt{5 x-4}+\sqrt{x})} \\
&=\frac{4}{(1+1)(\sqrt{5-4}+\sqrt{1})} \\
&=\frac{4}{2(1+1)} \\
&=\frac{4}{4}=1
\end{aligned}
$$

Limits Ex 29.4 Q12

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{(\sqrt{1+x}-1)}{x} \\
&=\lim _{x \rightarrow 0} \frac{(\sqrt{1+x}-1)}{x} \times \frac{(\sqrt{1+x}+1)}{(\sqrt{1+x}+1)} \\
&=\lim _{x \rightarrow 0} \frac{(1+x-1)}{\times(\sqrt{1+x}+1)} \\
&=\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{1+x}+1)} \\
&=\lim _{x \rightarrow 0} \frac{1}{(\sqrt{1+x}+1)} \\
&=\frac{1}{\sqrt{1}+1}=\frac{1}{2}
\end{aligned}
$$

Limits Ex 29.4 Q13

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+1}-\sqrt{5}}{(x-2)} \\
&=\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+1}-\sqrt{5}}{(x-2)} \times \frac{\left(\sqrt{x^{2}+1}+\sqrt{5}\right)}{\left(\sqrt{x^{2}+1}+\sqrt{5}\right)} \\
&=\lim _{x \rightarrow 2} \frac{\left(x^{2}+1-5\right)}{(x-2)\left(\sqrt{x^{2}+1}+\sqrt{5}\right)} \\
&=\lim _{x \rightarrow 2} \frac{(x+2)(x-2)}{(x-2)\left(\sqrt{x^{2}+1}+\sqrt{5}\right)} \\
&=\lim _{x \rightarrow 2} \frac{(x+2)}{\left(\sqrt{x^{2}+1}+\sqrt{5}\right)}
\end{aligned}
$$

$$
=\frac{(2+2)}{\sqrt{4+1}+\sqrt{5}}
$$

$$
=\frac{4}{2 \sqrt{5}}=\frac{2}{\sqrt{5}}
$$

