RD Sharma Solutions Class 11 Maths Chapter 32 Ex 32.1

First arrange the given numbers in ascending order write these numbers in ascending order 3011, 2780, 3020, 2354, 3541, 4150, 5000 we get 2354, 2780, 3011, 3020, 3541, 4150, 5000 Clearly, the middle number is median, 3020 Calculation of Mean Deviations

$$\begin{array}{cccc} x_i & \left| d_i \right| = \left| x_i - 3020 \right| \\ 3011 & 9 \\ 2780 & 240 \\ 3020 & 0 \\ 2354 & 666 \\ 3541 & 521 \\ 4150 & 1130 \\ 5000 & 1980 \\ Total & d_i = \sum \left| x_i - 3020 \right| = 4546 \\ M.D = \frac{\sum d_i}{n} = \frac{4546}{7} = 649.428 \end{array}$$

Statistics Ex 32.1 Q1(ii)

Clearly, the middle observations are 46 and 48. So, median=47

-	
	34
	38
	42
	44
Ĺ	46
Γ	48
	54
	55
	63
	70

We have,

$$\sum |x_i - 47| = \sum d_i = 86$$

M.D = $\frac{1}{n} \sum |d_i| = \frac{1}{10} [86] = 8.6$

Statistics Ex 32.1 Q1(iii)

Arranging the observations in ascending order of magnitude, we have

30	
34	
38	
40	
42	
44	
50	
51	
60	
66	

Clearly, the middle observations are 42 and 44. So, median=43 We have,

 $\Sigma |x_i - 43| = \Sigma d_i = 87$ M.D = $\frac{1}{n} \Sigma |d_i| = \frac{1}{10} [87] = 8.7$

Statistics Ex 32.1 Q1(iv)

Arranging the observations in ascending order of magnitude, we have

22
24
25
27
28
29
30
31
41
42

Clearly, the middle observations are 28 and 29 . So, median=28.5 Calculation of Mean Deviation

X-values	Deviation from Median
22	6.5
24	4.5
30	1.5
27	1.5
29	0.5
31	2.5
25	3.5
28	0.5
41	12.5
42	13.5
Total	47

X-values	Deviation from Median
38	9.5
70	22.5
48	0.5
34	13.5
63	15.5
42	5.5
55	7.5
44	3.5
53	5.5
47	0.5
Total	84

Calculation of Mean Deviation

We have,

$$\sum |x_i - 47.5| = \sum d_i = 84$$

$$\therefore \qquad \text{M.D} = \frac{1}{n} \sum |d_i| = \frac{1}{10} [84] = 8.4$$

Statistics Ex 32.1 Q2(i)

 $Mean = \frac{1}{n} \sum |x_i| = \frac{80}{8} = 10$

Calculation of Mean Deviation

X-values	Deviation From Mean
4	6
7	3
8	2
9	1
10	0
12	2
13	3
17	7
Total	24

We have,

$$\sum |x_i - 10| = \sum d_i = 24$$

M.D = $\frac{1}{n} \sum |d_i| = \frac{1}{8} [24] = 3$

Statistics Ex 32.1 Q2(ii)

$$Mean = \frac{1}{n} \sum |x_i| = \frac{168}{12} = 14$$

Calculation of Mean Deviation

X-values	Deviation From Mean
13	1
17	3
16	2
14	0
11	3
13	1
10	4
16	2
11	3
18	4
12	2
17	3
Total	28

We have,

$$\sum |x_i - 14| = \sum d_i = 28$$

:.
$$M.D = \frac{1}{n} \sum |d_i| = \frac{1}{12} [28] = 2.33$$

Statistics Ex 32.1 Q2(iii)

 $Mean = \frac{1}{n} \sum |x_i| = \frac{500}{10} = 50$

Calculation of Mean Deviation

X-values	Deviation From Mean
38	12
70	20
48	2
40	10
42	8
55	5
63	13
46	4
54	4
44	6
Total	84

We have,

$$\sum |x_i - 50| = \sum d_i = 84$$

:. M.D = $\frac{1}{n} \sum |d_i| = \frac{1}{10} [84] = 8.4$

Statistics Ex 32.1 Q2(iv)

$$Mean = \frac{1}{n} \sum |x_i| = \frac{500}{10} = 50$$

Calculation of Mean Deviation

X-values	Deviation From Mean
38	12
70	20
48	2
40	10
42	8
55	5
63	13
46	4
54	4
44	6
Total	84

We have,

$$\sum |x_i - 50| = \sum d_i = 72$$

$$\therefore \qquad \text{M.D} = \frac{1}{n} \sum |q_i| = \frac{1}{10} [72] = 7.2$$

Statistics Ex 32.1 Q2(v)

First arrange the given numbers in ascending order write these numbers in ascending order 57, 64, 43, 67, 49, 59, 44, 47, 61, 59 we get 43, 44, 47, 49, 57, 59, 59, 61, 64, 67 Let X be the mean of given data, we get $X = \frac{43+44+47+49+57+59+59+61+64+67}{10} = 55$

Calculation of Mean Deviations from mean

x _i	$ d_i = x_i - 55 $
43	12
44	11
47	8
49	6
57	2
59	4
59	4
61	6
64	9
67	12
Total	74
$M.D = \frac{\sum d_i}{n}$	$=\frac{74}{10}=7.4$

Statistics Ex 32.1 Q3

Arrange the given data for income group I in assending order, middle observation is 4400. So, median = 4400.

Mean deviation for group I

	×i	$ d_i = x_i - 4400 $		
	4000	400		
	4200	200		
	4400	0		
	4600	200		
	4800	400		
	Total	$\sum d_i = 1000$		
ſ	M.D. = $\frac{1}{n}\sum d_i = \frac{1000}{5} = 200$			

Arrange the given data for income group II in assending order, middle observation is 4400. So, median = 4400.

Mean deviation for group II

	×i	$ d_i = x_i - 4400 $		
	3800	600		
	4000	400		
	4200	200		
	4400	0		
	4600	200		
	4800	400		
	5800	1400		
	Total	$\sum d_i = 3200$		
	M.D. = $\frac{1}{n} \sum \mathbf{d}_i = \frac{3200}{7} = 457$.			

Note: Answer given in the book is incorrect.

Statistics Ex 32.1 Q4

First arrange the given numbers in ascending order write these numbers in ascending order 40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2 we get 15.2, 27.9, 30.2, 32.5, 40.0, 52.3, 52.8, 55.2, 72.9, 79.0 Clearly, Median = $\frac{40.0+52.3}{2} = 46.15$ Let \overline{X} be the mean of given data, we get $\overline{X} = \frac{15.2+27.9+30.2+32.5+40.0+52.3+52.8+55.2+72.9+79.0}{45.8} = 45.8$ Calculation of Mean Deviations from mean and median $|d_i| = |x_i - 46.15|$ $|d_i| = |x_i - 45.8|$ X; 40.0 6.15 5.8 52.3 6.15 6.5 55.2 9.05 9.4 72.9 26.75 27.152.8 6.65 7 79.0 32.85 33.2 32.5 13.65 13.3 15.2 30.95 30.6 27.9 19.25 17.9 30.2 15.95 15.6 Total 167.4 166.4 (i) M.D = $\frac{\sum d_i}{n} = \frac{167.4}{10} = 16.74$ (ii) M.D = $\frac{\sum d_i}{n} = \frac{166.4}{10} = 16.64$

14

Mean =
$$\frac{1}{n} \sum |x_i| = \frac{455}{10} = 45.5$$

X-values	Deviation From Mean
34	11.5
66	20.5
30	15.5
38	7.5
44	1.5
50	4.5
40	5.5
60	14.5
42	3.5
51	5.5
Total	90

We have,

 $\sum |x_i - 45.5| = \sum d_i = 90$ $\therefore \qquad M.D = \frac{1}{n} \sum |d_i| = \frac{1}{10} [90] = 9$

Now,

 \overline{X} - M.D = 45.5 - 9 = 36.5 \overline{X} + M.D = 45.5 + 9 = 54.5

 \therefore 6 observations lie between \overline{X} – M.D and \overline{X} + M.D.

Statistics Ex 32.1 Q5(ii)

Mean =
$$\frac{1}{n} \sum |x_i| = \frac{299}{10} = 29.9$$

X-values	Deviation From Mean
22	7.9
24	5.9
30	0.1
27	2.9
29	0.9
31	1.1
25	4.9
28	1.9
41	11.1
42	12.1
Total	48.8

We have,

$$\sum |x_i - 29.9| = \sum d_i = 48.8$$

$$\therefore \qquad M.D = \frac{1}{n} \sum |d_i| = \frac{1}{10} [48.8] = 4.88$$

Now,
$$\overline{X} - M.D = 29.9 - 4.88 = 25.02$$

 $\overline{X} + M.D = 29.9 + 4.88 = 34.78$

 \therefore 5 observations lie between \overline{X} - M.D and \overline{X} + M.D.

Statistics Ex 32.1 Q5(iii)

 $\mathsf{Mean} = \frac{1}{n} \sum |x_i| = \frac{494}{10} = 49.4$

38	11.4
70	20.6
48	1.4
34	15.4
63	13.6
42	7.4
55	5.6
44	5.4
53	3.6
47	2.4
	86.8

We have,

$$\sum |x_i - 49.4| = \sum d_i = 86.8$$

$$M.D = \frac{1}{n} \sum |d_i| = \frac{1}{10} [86.8] = 8.68$$

Now, $\overline{X} - M.D = 49.4 - 8.68 = 40.72$ $\overline{X} + M.D = 49.4 + 8.68 = 58.08$

 \therefore 6 observations lie between \overline{X} - M.D and \overline{X} + M.D.

Statistics Ex 32.1 Q6

$$\sigma = \sqrt{\frac{1}{n} \sum (x_i - \bar{x})^2}$$

$$\sigma' = \sqrt{\frac{1}{n} \sum x_i^2 - \bar{x}^2}$$

$$(x_i - \bar{x})^2 = x_i^2 + \bar{x}^2 - 2x_i \bar{x}$$

$$\sum 2x_i \bar{x} = 2\bar{x} \sum x_i = 2n\bar{x}^2$$

$$\frac{1}{n} \sum (x_i - \bar{x})^2 = \frac{\sum (x_i^2 + \bar{x}^2 - 2x_i \bar{x})}{n}$$

$$= \frac{\sum x_i^2 + \sum \bar{x}^2 - \sum 2x_i \bar{x}}{n}$$

$$= \frac{1}{n} \sum x_i^2 + \frac{n\bar{x}^2 - 2n\bar{x}^2}{n}$$

$$= \frac{1}{n} \sum x_i^2 - \bar{x}^2$$