RD Sharma

 Solutions
Class 11 Maths

$$
\begin{gathered}
\text { Chapter } 32 \\
\text { Ex } 32.5
\end{gathered}
$$

Statistics Ex 32.5 Q1

\times	f	$f \times$	x-mean	$(x \text {-mean })^{2}$	$f(x \text {-mean })^{2}$
4.5	1	4.5	-33.14	1098.45	1098.45
14.5	5	72.5	-23.14	535.59	2677.96
24.5	12	294	-13.14	172.73	2072.82
34.5	22	759	-3.14	9.88	217.31
44.5	17	756.5	6.86	47.02	799.35
54.5	9	490.5	16.86	284.16	2557.47
64.5	4	258	26.86	721.31	2885.22
	$\mathrm{~N}=\mathbf{7 0}$	2635			$\mathbf{1 2 3 0 8 . 5 7}$

Here, $\quad N=70, \quad \sum f_{j} x_{j}=2635$

$$
\bar{x}=\frac{1}{N}\left(\Sigma f_{j} x_{i}\right)=\frac{2635}{70}=37.64
$$

We have, $\sum f_{i}\left(x_{i}-\bar{x}\right)^{2}=12308.57$

$$
\begin{aligned}
& \operatorname{var}(x)=\frac{1}{N}\left[\Sigma f_{i}\left(x_{i}-\bar{x}\right)^{2}\right]=\frac{12308.57}{70}=175.84 \\
& S D .=\sqrt{\operatorname{var}(x)}=\sqrt{175.84}=13.26
\end{aligned}
$$

Statistics Ex 32.5 Q2

X	F	Fx	x -mean	$\mathrm{F}(\mathrm{x}-$ mean $)$	$(x-\text { mean })^{2}$	$F(x-\text { mean })^{2}$
0	51	0	-6	-306	36	1836
1	203	203	-5	-1015	25	5075
2	383	766	-4	-1532	16	6128
3	525	1575	-3	-1575	9	4725
4	532	2128	-2	-1064	4	2128
5	408	2040	-1	-408	1	408
6	273	1638	0	0	0	0
7	139	973	1	139	1	139
8	43	344	2	86	4	172
9	27	243	3	81	9	243
10	10	100	4	40	16	160
11	4	44	5	20	25	100
12	2	24	6	12	36	72
	2600	10078		-5522		21186

Here, $\quad N=2600, \quad \Sigma f_{j} x_{j}=10078$

$$
\bar{x}=\frac{1}{N}\left(\Sigma f_{i} x_{i}\right)=\frac{10078}{2600}=3.88
$$

Since,

$$
\begin{aligned}
\operatorname{var}(x) & =h^{2}\left(\frac{1}{N} \sum f_{1}(x-\text { mean })^{2}-\left\{\frac{1}{N} \sum f_{1}(x-\text { mean })_{4}\right\}^{2}\right) \\
\sigma^{2} & =1\left(\frac{21186}{2600}-\left(\frac{-5522}{2600}\right)^{2}\right) \\
\sigma^{2} & =8.14846-4.51072 \\
\sigma^{2} & =5.64
\end{aligned}
$$

Statistics Ex 32.5 Q3

i)

x_{i}	Cum Freq	f_{i}	$f_{i} x_{i}$	$f_{i} x_{i}^{2}$
10	15	15	150	1500
20	32	17	340	6800
30	51	19	570	17100
40	78	27	1080	43200
50	97	19	950	47500
60	109	12	720	43200
		$N=109$	Total $=3810$	Total $=159300$

Mean $=\frac{3810}{109}=34.95$
$V a r=\frac{159300}{109}-(34.95)^{2}=239.96$
$S D=\sqrt{239.96}=15.49$
ii)

x_{i}	f_{i}	$f_{i} x_{i}$	$f_{i} x_{i}{ }^{2}$
2	1	2	4
3	6	18	54
4	6	24	96
5	8	40	200
6	8	48	288
7	2	14	98
8	2	16	128
9	3	27	243
10	0	0	0
11	2	22	242
12	1	12	144
13	0	0	0
14	0	0	0
15	0	0	0
16	1	16	256

$$
N=40 \quad \text { Total }=239 \quad \text { Total }=1753
$$

Mean $=\frac{239}{40}=5.975$
$\operatorname{Var}=\frac{1753}{40}-(5.975)^{2}=8.12$
$S D=\sqrt{8.12}=2.85$

Statistics Ex 32.5 Q4

(i)

x	\mathbf{f}	$\mathbf{f x}$	x-mean	$(x \text {-mean })^{\mathbf{2}}$	$\mathbf{f (x - m e a n) ^ { \mathbf { 2 } }}$
3	7	21	-9.79	95.88	671.13
8	10	80	-4.79	22.96	229.60
13	15	195	0.21	0.04	0.65
18	10	180	5.21	27.13	271.26
23	6	138	10.21	104.21	625.26
	48	614			$\mathbf{1 7 9 7 . 9 2}$

Here, $N=48$, and $\Sigma f_{i} x_{i}=614$

$$
\bar{x}=\frac{1}{N}\left(\sum f_{i} X_{j}\right)=\frac{614}{48}=12.79
$$

$$
\Sigma f_{i}\left(x_{i}-\bar{x}\right)^{2}=1797.92
$$

$$
\operatorname{var}(x)=\frac{1}{N}\left[\sum f_{i}\left(x_{i}-\bar{x}\right)^{2}\right]=\frac{1797.92}{48}=37.46
$$

$$
S . D .=\sqrt{\operatorname{var}(x)}-\sqrt{37.46}=6.12
$$

ii)

x_{i}	f_{i}	$f_{i} x_{i}^{2}$
2	4	16
3	9	81
4	16	256
5	14	350
6	11	396
7	6	294
	$N=60$	Total $=1393$

Mean $=\frac{8+27+64+70+66+42}{60}=\frac{277}{60}=4.62$
$\operatorname{Var}=\frac{1393}{60}-(4.62)^{2}=1.88$
$S D=\sqrt{1.88}=1.37$

