RD Sharma

 Solutions
Class 11 Maths

$$
\begin{gathered}
\text { Chapter } 33 \\
\text { Ex } 33.4
\end{gathered}
$$

Probability Ex 33.4 Q1(a)

Given,

$$
\begin{aligned}
& P(A)=0.4 \\
& P(B)=0.5
\end{aligned}
$$

$\therefore A$ and B are mutually exclusive events, then $P(A \cap B)=0$
Now,
(i) $\quad P(A \cup B)=P(A)+P(B)$

$$
=0.4+0.5
$$

$$
=0.9
$$

$$
P(A \cup B)=0.9
$$

(ii) $\quad P(\bar{A} \cap \bar{B})=1-P(A \cup B)$

$$
\begin{aligned}
= & 1-0.9 \\
& =0.1 \\
p(\bar{A} \cap \bar{B}) & =0.1
\end{aligned}
$$

(iii) $\quad P(\bar{A} \cap B)=P(B)-P(A \cap B)$

$$
=0.5-0
$$

$$
P(\bar{A} \cap B)=0.5
$$

(iv) $\quad P(A \cap \bar{B})=P(A)-P(A \cap B)$
$=0.4-0$
$=0.4$
$\therefore \quad P(A \cap \bar{B})=0.4$

Probability Ex 33.4 Q1(b)

Given,

$$
\begin{aligned}
& P(A)=0.54 \\
& P(B)=0.69 \\
& P(A \cap B)=0.35
\end{aligned}
$$

(i) $\quad P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$$
=0.54+0.69-0.35
$$

$$
=1.23-0.35
$$

$$
P(A \cup B)=0.88
$$

(ii) $\quad P(\bar{A} \cap \bar{B})=1-P(A \cup B)$

$$
=1-0.88
$$

$$
=0.12
$$

$$
p(\bar{A} \cap \bar{B})=0.12
$$

(iii) $\quad P(A \cap \bar{B})=P(A)-P(A \cap B)$
$=0.54-0.35$
$=0.19$
$P(A \cap \bar{B})=0.19$
(iv) $\quad P(B \cap \bar{A})=P(B)-P(A \cap B)$

$$
=0.69-0.35
$$

$$
=0.34
$$

$\therefore \quad P(B \cap \bar{A})=0.34$

Probability Ex 33.4 Q1(c)

(i) Given,

$$
\begin{aligned}
& P(A)=\frac{1}{3}, \quad P(A \cap B)=\frac{1}{15} \\
& P(B)=\frac{1}{5}, \quad P(A \cup B)=\ldots \\
& \because P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
&=\frac{1}{3}+\frac{1}{5}-\frac{1}{15} \\
&=\frac{5+3-1}{15} \\
&=\frac{8-1}{15}=\frac{7}{15} \\
& \therefore \quad P(A \cup B)=\frac{7}{15}
\end{aligned}
$$

(ii) Given,

$$
\begin{gathered}
P(A)=0.35, \quad P(B)=\ldots \\
P(A \cap B)=0.25, \quad P(A \cup B)=0.6 \\
\because P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
0.6=0.35+P(B)-0.25 \\
0.6=0.10+P(B) \\
P(B)=0.6-0.1 \\
P(B)=0.5
\end{gathered}
$$

(iii) Given,

$$
\begin{gathered}
P(A)=0.5, \quad P(B)=0.35 \\
P(A \cap B)=\ldots, \quad P(A \cup B)=0.7 \\
\because P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
0.7=0.5+0.35-P(A \cap B) \\
0.7=0.85-P(A \cap B) \\
P(A \cap B)=0.85-0.7 \\
P(A \cap B)=0.15
\end{gathered}
$$

Probability Ex 33.4 Q2

We know by addition theorem on probability

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& \Rightarrow \quad 0.5=0.3+0.4-P(A \cap B) \\
& P(A \cap B)=0.3+0.4-0.5 \\
&=0.7-0.5 \\
&=0.2 \\
& \therefore \quad P(A \cap B)=0.2
\end{aligned}
$$

Probability Ex 33.4 Q3

We know by addition theorem on probability

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
& =0.5+0.3-0.2 \\
& =0.8-0.2 \\
& =0.6
\end{aligned}
$$

$\therefore P(A \cup B)=0.6$

Probability Ex 33.4 Q4

We know,

$$
\begin{aligned}
& P(A \cup B)=0.8 \\
& P(A \cap B)=0.3 \\
& P(\bar{A})=0.5 \\
\Rightarrow \quad & 1-P(A)=0.5 \\
\Rightarrow \quad & P(A)=1-0.5=0.5
\end{aligned}
$$

Now, by addition theorem on probabiltiy

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& 0.8=0.5+P(B)-0.3 \\
& 0.8=P(B)+0.2 \\
& P(B)=0.8-0.2 \\
&=0.6 \\
& \therefore P(B)=0.6
\end{aligned}
$$

Probability Ex 33.4 Q5

Given,

$$
\begin{aligned}
& P(A)=\frac{1}{2} \\
& P(B)=\frac{1}{3}
\end{aligned}
$$

$\therefore A$ and B are mutually exclusive events, then $P(A \cap B)=0$

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B) \\
& =\frac{1}{2}+\frac{1}{3} \\
& =\frac{3+2}{6} \\
& =\frac{5}{6}
\end{aligned}
$$

$$
\therefore P(A \cup B)=\frac{5}{6}
$$

Probability Ex 33.4 Q6

$$
\begin{aligned}
& P(\bar{A}): P(B)=8: 3 \\
& \Rightarrow \quad \frac{1-P(A)}{P(A)}=\frac{8}{3} \\
& \Rightarrow \quad P(A)=\frac{3}{11} \\
& P(\bar{B}): P(B)=5: 2 \\
& \Rightarrow \quad \frac{1-P(B)}{p(B)}=\frac{5}{2} \\
& \Rightarrow \quad \frac{1}{P(B)}=\frac{5}{2}+1=\frac{7}{2} \\
& \Rightarrow \quad P(B)=\frac{2}{7} \\
& \because A, B \text { and } C \text { are mutually exhaustive } \\
& \therefore \quad A \cup B \cup C=S \\
& \Rightarrow \quad P(A \cup B \cup C)=P(S) \\
& \Rightarrow \quad P(A)+P(B)+P(C)=1 \\
& P(C)=1-\{P(A)+P(B)\} \\
& =1-\left(\frac{3}{11}+\frac{2}{7}\right) \\
& =1-\frac{43}{77} \\
& =\frac{34}{77} \\
& \Rightarrow \quad p(\bar{C})=1-p(C) \\
& =1-\frac{34}{77} \\
& =\frac{43}{77}
\end{aligned}
$$

\therefore Odds against C is

$$
\begin{aligned}
P(\bar{C}): P(C) & =\frac{43}{77}: \frac{34}{77} \\
& =43: 34
\end{aligned}
$$

Probability Ex 33.4 Q7

let chance in favour of other be x

$$
\begin{aligned}
& \text { So } x+\frac{2}{3} x=1 \\
& x=\frac{3}{5}
\end{aligned}
$$

Odds in favour of other $=\frac{\frac{3}{5}}{\frac{2}{5}}=\frac{3}{2}=3: 2$

Probability Ex 33.4 Q8

$\because 1$ card is drawn from a well shuffled deck of 52 cards

$$
\therefore \quad S={ }^{52} C_{1}=52
$$

Now,
The favourable events is that drawn card is either spade or a king

Let $A=$ Event of choosing shade
$\Rightarrow \quad{ }^{13} C_{1}=13$
$B=$ Event of choosing a king
$\Rightarrow \quad{ }^{4} C_{1}=4$
Also, king can be of spade

$$
\therefore \quad(A \cap B)=1
$$

$$
\therefore \quad P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

$$
=\frac{13}{52}+\frac{4}{52}-\frac{1}{52}
$$

$$
=\frac{16}{52}
$$

$$
=\frac{4}{13}
$$

Probability Ex 33.4 Q9

Since two dice is thrown,

$$
\therefore \quad S=6^{2}=36
$$

Let A be the event of choosing doublet
$=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$
$\Rightarrow \quad P(A)=\frac{6}{36}=\frac{1}{6}$
B the event of choosing total of 9 .

$$
\begin{aligned}
& \{(3,6),(4,5),(5,4),(6,3)\} \\
& =P(8)=\frac{4}{36}=\frac{1}{9}
\end{aligned}
$$

\therefore Probability of choosing neither a doublet nor a total of 9.

$$
\begin{equation*}
=P(\overline{A \cap B})=1-P(A \cup B) \tag{i}
\end{equation*}
$$

Now,

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
& =\frac{1}{6}+\frac{1}{9}+0 \\
& =\frac{3+2}{18} \\
& =\frac{5}{18}
\end{aligned}
$$

Now,

$$
P(A \cup B)=\frac{5}{18}
$$

\therefore (i) simplies $P(\overline{A \cap B})=1-\frac{5}{8}$

$$
=\frac{13}{18}
$$

