RD SHARMA

Solutions

Class 10 Maths

Chapter 5

Ex 5.2

Evaluate each of the following:

Q 1. $\sin 45^{\circ} 45^{\circ} \sin 30^{\circ} 30^{\circ}+\cos 45^{\circ} 45^{\circ} \cos 30^{\circ} 30^{\circ}$

Solution:

$\sin 45^{\circ} 45^{\circ} \sin 30^{\circ} 30^{\circ}+\cos 45^{\circ} 45^{\circ} \cos 30^{\circ} 30^{\circ}$
[1]
We know that by trigonometric ratios we have ,

$$
\begin{array}{ll}
\sin 45^{\circ}=1 \sqrt{2} \sin 45^{\circ}=\frac{1}{\sqrt{2}} & \sin 30^{\circ}=12 \sin 30^{\circ}=\frac{1}{2} \\
\cos 45^{\circ}=1 \sqrt{2} \cos 45^{\circ}=\frac{1}{\sqrt{2}} & \cos 30^{\circ}=\sqrt{3} 2 \cos 30^{\circ}=\frac{\sqrt{3}}{2}
\end{array}
$$

Substituting the values in equation 1 , we get

$$
\begin{aligned}
& 1 \sqrt{2} \cdot 12+1 \sqrt{2} \cdot \sqrt{3} 2 \frac{1}{\sqrt{2}} \cdot \frac{1}{2}+\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} \\
& =1 \sqrt{2} \cdot \sqrt{3} 2 \sqrt{2} \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2 \sqrt{2}} \\
& =\sqrt{3}+12 \sqrt{2} \frac{\sqrt{3}+1}{2 \sqrt{2}}
\end{aligned}
$$

Q 2. $\sin 60^{\circ} 60^{\circ} \cos 30^{\circ} 30^{\circ}+\cos 60^{\circ} 60^{\circ} \sin 30^{\circ} 30^{\circ}$

Solution:

$\sin 60^{\circ} 60^{\circ} \cos 30^{\circ} 30^{\circ}+\cos 60^{\circ} 60^{\circ} \sin 30^{\circ} 30^{\circ}$

By trigonometric ratios we have,
$\sin 60^{\circ}=\sqrt{3} 2 \sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\sin 30^{\circ}=12 \sin 30^{\circ}=\frac{1}{2}$
$\cos 30^{\circ}=\sqrt{3} 2 \cos 30^{\circ}=\frac{\sqrt{3}}{2} \quad \cos 60^{\circ}=12 \cos 60^{\circ}=\frac{1}{2}$

Substituting the values in equation 1 , we get
$=\sqrt{3} 2 \cdot \sqrt{3} 2+12 \cdot 12 \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{1}{2} \cdot \frac{1}{2}$
$=34+14 \frac{3}{4}+\frac{1}{4}=44 \frac{4}{4}=1$

Q 3. $\cos 60^{\circ} 60^{\circ} \cos 45^{\circ} 45^{\circ}-\sin 60^{\circ} 60^{\circ} \sin 45^{\circ} 45^{\circ}$

Solution:

$\cos 60^{\circ} 60^{\circ} \cos 45^{\circ} 45^{\circ}-\sin 60^{\circ} 60^{\circ} \sin 45^{\circ} 45^{\circ}$

We know that by trigonometric ratios we have ,
$\cos 60^{\circ}=12 \cos 60^{\circ}=\frac{1}{2} \quad \cos 45^{\circ}=1 \sqrt{2} \cos 45^{\circ}=\frac{1}{\sqrt{2}}$
$\sin 60^{\circ}=\sqrt{3} 2 \sin 60^{\circ}=\frac{\sqrt{3}}{2} \quad \sin 45^{\circ}=1 \sqrt{2} \sin 45^{\circ}=\frac{1}{\sqrt{2}}$
Substituting the values in equation 1 , we get
$12 \cdot 1 \sqrt{2}-\sqrt{3} 2 \cdot 1 \sqrt{2} \frac{1}{2} \cdot \frac{1}{\sqrt{2}}-\frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}}$
$=1-\sqrt{3} 2 \sqrt{2} \frac{1-\sqrt{3}}{2 \sqrt{2}}$
Q.4: $\sin ^{2} 30^{\circ}+\sin ^{2} 45^{\circ}+\sin ^{2} 60^{\circ}+\sin ^{2} 90^{\circ} \sin ^{2} 30^{\circ}+\sin ^{2} 45^{\circ}+\sin ^{2} 60^{\circ}+\sin ^{2} 90^{\circ}$

Solution:

$\sin ^{2} 30^{\circ}+\sin ^{2} 45^{\circ}+\sin ^{2} 60^{\circ}+\sin ^{2} 90^{\circ} \sin ^{2} 30^{\circ}+\sin ^{2} 45^{\circ}+\sin ^{2} 60^{\circ}+\sin ^{2} 90^{\circ}$
We know that by trigonometric ratios we have,
$\sin 30^{\circ}=12 \sin 30^{\circ}=\frac{1}{2} \quad \sin 45^{\circ}=1 \sqrt{2} \sin 45^{\circ}=\frac{1}{\sqrt{2}}$
$\sin 60^{\circ}=\sqrt{3} 2 \sin 60^{\circ}=\frac{\sqrt{3}}{2} \quad \sin 90^{\circ} \sin 90^{\circ}=1$
Substituting the values in equation 1 , we get
$=[12]^{2}+[1 \sqrt{2}]^{2}+[\sqrt{3} 2]^{2}+1\left[\frac{1}{2}\right]^{2}+\left[\frac{1}{\sqrt{2}}\right]^{2}+\left[\frac{\sqrt{3}}{2}\right]^{2}+1$
$=14+12+34+1 \frac{1}{4}+\frac{1}{2}+\frac{3}{4}+1$
$=52 \frac{5}{2}$

Q 5. $\cos ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} 90^{\circ} \cos ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} 90^{\circ}$

Solution:

$\cos ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} 90^{\circ} \cos ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} 90^{\circ}$
We know that by trigonometric ratios we have,
$\cos 30^{\circ}=\sqrt{3} 2 \cos 30^{\circ}=\frac{\sqrt{3}}{2} \quad \cos 45^{\circ}=1 \sqrt{2} \cos 45^{\circ}=\frac{1}{\sqrt{2}}$
$\cos 60^{\circ}=12 \cos 60^{\circ}=\frac{1}{2}$ $\cos 90^{\circ} \cos 90^{\circ}=0$

Substituting the values in equation 1 , we get
$[\sqrt{3} 2]^{2}+[1 \sqrt{2}]^{2}+[12]^{2}+0\left[\frac{\sqrt{3}}{2}\right]^{2}+\left[\frac{1}{\sqrt{2}}\right]^{2}+\left[\frac{1}{2}\right]^{2}+0$
$=34+12+14 \frac{3}{4}+\frac{1}{2}+\frac{1}{4}$
$=32 \frac{3}{2}$

Q 6. $\boldsymbol{\operatorname { t a n }}^{\mathbf{2}} \mathbf{3} 0^{\circ}+\tan ^{\mathbf{2}} \mathbf{4} 5^{\circ}+\tan ^{2} \mathbf{6} \mathbf{0}^{\circ} \tan ^{2} 30^{\circ}+\tan ^{2} 45^{\circ}+\tan ^{2} 60^{\circ}$

Solution:

$$
\begin{equation*}
\tan ^{2} 30^{\circ}+\tan ^{2} 45^{\circ}+\tan ^{2} 60^{\circ} \tan ^{2} 30^{\circ}+\tan ^{2} 45^{\circ}+\tan ^{2} 60^{\circ} \tag{1}
\end{equation*}
$$

We know that by trigonometric ratios we have,
$\tan 30^{\circ}=1 \sqrt{3} \tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$\tan 60^{\circ}=\sqrt{3} \tan 60^{\circ}=\sqrt{ } \overline{3}$
$\tan 45^{\circ}=1 \tan 45^{\circ}=1$
Substituting the values in equation 1 , we get
$[1 \sqrt{3}]^{2}+[\sqrt{3}]^{2}+1\left[\frac{1}{\sqrt{3}}\right]^{2}+[\sqrt{3}]^{2}+1$
$=13+3+1 \frac{1}{3}+3+1$
$=133 \frac{13}{3}$

Q 7. $\mathbf{2} \sin ^{2} \mathbf{3} 0^{\circ}-3 \cos ^{2} \mathbf{4} 5^{\circ}+\tan ^{2} 60^{\circ} 2 \sin ^{2} 30^{\circ}-3 \cos ^{2} 45^{\circ}+\tan ^{2} 60^{\circ}$

Solution:

$2 \sin ^{2} 30^{\circ}-3 \cos ^{2} 45^{\circ}+\tan ^{2} 60^{\circ} 2 \sin ^{2} 30^{\circ}-3 \cos ^{2} 45^{\circ}+\tan ^{2} 60^{\circ}$
We know that by trigonometric ratios we have ,
$\sin 30^{\circ}=12 \sin 30^{\circ}=\frac{1}{2} \quad \cos 45^{\circ}=1 \sqrt{2} \cos 45^{\circ}=\frac{1}{\sqrt{2}}$
$\tan 60^{\circ}=\sqrt{3} \tan 60^{\circ}=\sqrt{3}$
Substituting the values in equation 1 , we get
$=2(12)^{2}-3(1 \sqrt{2})^{2}+(\sqrt{3})^{2} 2\left(\frac{1}{2}\right)^{2}-3\left(\frac{1}{\sqrt{2}}\right)^{2}+(\sqrt{3})^{2}$
$=2(14)-3(12)+32\left(\frac{1}{4}\right)-3\left(\frac{1}{2}\right)+3$
$=1-3+62 \frac{1-3+6}{2}$
$=2$

Q8: $\sin ^{2} 30^{\circ} \cos ^{2} 45^{\circ}+4 \tan ^{2} 30^{\circ}+12 \sin ^{2} 90^{\circ}-2 \cos ^{2} 90^{\circ}+124 \cos ^{2} 0^{\circ}$

$\sin ^{2} 30^{\circ} \cos ^{2} 45^{\circ}+4 \tan ^{2} 30^{\circ}+\frac{1}{2} \sin ^{2} 90^{\circ}-2 \cos ^{2} 90^{\circ}+\frac{1}{24} \cos ^{2} 0^{\circ}$

Solution:

$\sin ^{2} 30^{\circ} \cos ^{2} 45^{\circ}+4 \tan ^{2} 30^{\circ}+12 \sin ^{2} 90^{\circ}-2 \cos ^{2} 90^{\circ}+124 \cos ^{2} 0^{\circ}$
$\sin ^{2} 30^{\circ} \cos ^{2} 45^{\circ}+4 \tan ^{2} 30^{\circ}+\frac{1}{2} \sin ^{2} 90^{\circ}-2 \cos ^{2} 90^{\circ}+\frac{1}{24} \cos ^{2} 0^{\circ}$
We know that by trigonometric ratios we have ,
$\sin 30^{\circ}=12 \sin 30^{\circ}=\frac{1}{2} \quad \cos 45^{\circ}=1 \sqrt{2} \cos 45^{\circ}=\frac{1}{\sqrt{2}} \tan 30^{\circ}=1 \sqrt{3} \tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$\sin 90^{\circ} \sin 90^{\circ}=1$
$\cos 90^{\circ} \cos 90^{\circ}=0$
$\cos 0^{\circ} \cos 0^{\circ}=1$
Substituting the values in equation 1 , we get

$$
\begin{aligned}
& {[12]^{2} \cdot[1 \sqrt{2}]^{2}+4[1 \sqrt{3}]^{2}+12[1]^{2}-2[0]^{2}+124[1]^{2}\left[\frac{1}{2}\right]^{2} \cdot\left[\frac{1}{\sqrt{2}}\right]^{2}+4\left[\frac{1}{\sqrt{3}}\right]^{2}+\frac{1}{2}[1]^{2}-2[0]^{2}+\frac{1}{24}[1]^{2}} \\
& =18+43+12+124 \frac{1}{8}+\frac{4}{3}+\frac{1}{2}+\frac{1}{24} \\
& =4824 \frac{48}{24}=2
\end{aligned}
$$

Solution:

$4\left(\sin ^{4} 60^{\circ}+\cos ^{4} 30^{\circ}\right)-3\left(\tan ^{2} 60^{\circ}-\tan ^{2} 45^{\circ}\right)+5 \cos ^{2} 45^{\circ}$
$4\left(\sin ^{4} 60^{\circ}+\cos ^{4} 30^{\circ}\right)-3\left(\tan ^{2} 60^{\circ}-\tan ^{2} 45^{\circ}\right)+5 \cos ^{2} 45^{\circ}$
We know that by trigonometric ratios we have ,
$\sin 60^{\circ}=\sqrt{3} 2 \sin 60^{\circ}=\frac{\sqrt{3}}{2} \quad \cos 45^{\circ}=1 \sqrt{2} \cos 45^{\circ}=\frac{1}{\sqrt{2}}$
$\tan 60^{\circ}=\sqrt{3} \tan 60^{\circ}=\sqrt{3} \quad \cos 30^{\circ}=\sqrt{3} 2 \cos 30^{\circ}=\frac{\sqrt{3}}{2}$
Substituting the values in equation 1 , we get
$4\left([\sqrt{3} 2]^{4}+[\sqrt{3} 2]^{4}\right)-3(3)^{2}-1^{2}+5[1 \sqrt{2}]^{2} 4\left(\left[\frac{\sqrt{3}}{2}\right]^{4}+\left[\frac{\sqrt{3}}{2}\right]^{4}\right)-3(3)^{2}-1^{2}+5\left[\frac{1}{\sqrt{2}}\right]^{2}$
$=4 \cdot 1816-6+524 \cdot \frac{18}{16}-6+\frac{5}{2}$
$=14-6+52 \frac{1}{4}-6+\frac{5}{2}$
$=142-6 \frac{14}{2}-6=7-6=1$

Q $10 .\left(\operatorname{cosec}^{2} 45^{\circ} \sec ^{2} 30^{\circ}\right)\left(\sin ^{2} 30^{\circ}+4 \cot ^{2} 45^{\circ}-\sec ^{2} 60^{\circ}\right)$
$\left(\operatorname{cosec}^{2} 45^{\circ} \sec ^{2} 30^{\circ}\right)\left(\sin ^{2} 30^{\circ}+4 \cot ^{2} 45^{\circ}-\sec ^{2} 60^{\circ}\right)$

Solution:

$\left(\operatorname{cosec}^{2} 45^{\circ} \sec ^{2} 30^{\circ}\right)\left(\sin ^{2} 30^{\circ}+4 \cot ^{2} 45^{\circ}-\sec ^{2} 60^{\circ}\right)$
$\left(\operatorname{cosec}^{2} 45^{\circ} \sec ^{2} 30^{\circ}\right)\left(\sin ^{2} 30^{\circ}+4 \cot ^{2} 45^{\circ}-\sec ^{2} 60^{\circ}\right)$
We know that by trigonometric ratios we have ,
$\operatorname{cosec} 45^{\circ}=\sqrt{2} \operatorname{cosec} 45^{\circ}=\sqrt{2} \quad \sec 30^{\circ}=2 \sqrt{3} \sec 30^{\circ}=\frac{2}{\sqrt{3}}$
$\sin 30^{\circ}=12 \sin 30^{\circ}=\frac{1}{2} \quad \cot 45^{\circ} \cot 45^{\circ}=1$
$\sec 60^{\circ} \sec 60^{\circ}=2$
Substituting the values in equation 1 , we get
$\left([\sqrt{2}]^{2} \cdot[2 \sqrt{3}]^{2}\right)\left([12]^{2}+4(1)(2)^{2}\right)\left([\sqrt{2}]^{2} \cdot\left[\frac{2}{\sqrt{3}}\right]^{2}\right)\left(\left[\frac{1}{2}\right]^{2}+4(1)(2)^{2}\right)$
$=3 \cdot 43 \cdot 143 \cdot \frac{4}{3} \cdot \frac{1}{4}$
$=23 \frac{2}{3}$

Q11. $\operatorname{cosec}^{3} 30^{\circ} \cos 60^{\circ} \tan ^{3} 45^{\circ} \sin ^{2} 90^{\circ} \sec ^{2} 45^{\circ} \cot 30^{\circ}$
$\operatorname{cosec}^{3} 30^{\circ} \cos 60^{\circ} \tan ^{3} 45^{\circ} \sin ^{2} 90^{\circ} \sec ^{2} 45^{\circ} \cot 30^{\circ}$

Solution:

Given,
$=\operatorname{cosec}^{3} 30^{\circ} \cos 60^{\circ} \tan ^{3} 45^{\circ} \sin ^{2} 90^{\circ} \sec ^{2} 45^{\circ} \cot 30^{\circ}$
$\operatorname{cosec}^{3} 30^{\circ} \cos 60^{\circ} \tan ^{3} 45^{\circ} \sin ^{2} 90^{\circ} \sec ^{2} 45^{\circ} \cot 30^{\circ}$
$=2^{3}(12)\left(1^{3}\right)\left(1^{2}\right)\left(\sqrt{2}^{2}\right)(\sqrt{3}) 2^{3}\left(\frac{1}{2}\right)\left(1^{3}\right)\left(1^{2}\right)\left(\sqrt{ } \overline{2}^{2}\right)(\sqrt{3})$
$=(2)^{3} \times(12) \times\left(1^{3}\right) \times\left(1^{2}\right) \times\left(\sqrt{2}^{2}\right) \times(\sqrt{3})(2)^{3} \times\left(\frac{1}{2}\right) \times\left(1^{3}\right) \times\left(1^{2}\right) \times\left(\sqrt{2^{2}}\right) \times(\sqrt{3})$
$=8 \times(12) \times(1) \times(1) \times(2) \times(\sqrt{3}) 8 \times\left(\frac{1}{2}\right) \times(1) \times(1) \times(2) \times(\sqrt{3})$
$=8 \sqrt{3} 8 \sqrt{3}$

Q12. $\cot ^{2} 30^{\circ}-2 \cos ^{2} 60^{\circ}-34 \sec ^{2} 45^{\circ}-4 \sec ^{2} 30^{\circ} \cot ^{2} 30^{\circ}-2 \cos ^{2} 60^{\circ}-\frac{3}{4} \sec ^{2} 45^{\circ}-4 \sec ^{2} 30^{\circ}$

Solution:

Given,
$=\cot ^{2} 30^{\circ}-2 \cos ^{2} 60^{\circ}-34 \sec ^{2} 45^{\circ}-4 \sec ^{2} 30^{\circ} \cot ^{2} 30^{\circ}-2 \cos ^{2} 60^{\circ}-\frac{3}{4} \sec ^{2} 45^{\circ}-4 \sec ^{2} 30^{\circ}$
$=\left(\sqrt{3}^{2}\right) \times 2(12)^{2} \times\left(34 \times \sqrt{2}^{2}\right) \times\left(4 \times(2 \sqrt{3})^{2}\right)\left(\sqrt{3}^{2}\right) \times 2\left(\frac{1}{2}\right)^{2} \times\left(\frac{3}{4} \times \sqrt{2^{2}}\right) \times\left(4 \times\left(\frac{2}{\sqrt{3}}\right)^{2}\right)$
$=3-12-32-1633-\frac{1}{2}-\frac{3}{2}-\frac{16}{3}$
$=-133 \frac{-13}{3}$

Q13. $\left(\cos 0^{\circ}+\sin 45^{\circ}+\sin 30^{\circ}\right)\left(\sin 90^{\circ}-\cos 45^{\circ}+\cos 60^{\circ}\right)$
$\left(\cos 0^{\circ}+\sin 45^{\circ}+\sin 30^{\circ}\right)\left(\sin 90^{\circ}-\cos 45^{\circ}+\cos 60^{\circ}\right)$

Solution:

Given,

$$
\begin{aligned}
&\left(\cos 0^{\circ}+\sin 45^{\circ}+\sin 30^{\circ}\right)\left(\sin 90^{\circ}-\cos 45^{\circ}+\cos 60^{\circ}\right)(1+1 \sqrt{2}+1 \sqrt{2})(1-1 \sqrt{2}+1 \sqrt{2})(32+1 \sqrt{2})(32-1 \sqrt{2}) \\
&\left(\cos 0^{\circ}+\sin 45^{\circ}+\sin 30^{\circ}\right)\left(\sin 90^{\circ}-\cos 45^{\circ}+\cos 60^{\circ}\right) \\
&\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right) \\
&\left(\frac{3}{2}+\frac{1}{\sqrt{2}}\right)\left(\frac{3}{2}-\frac{1}{\sqrt{2}}\right) \\
&\left((32)^{2}-(1 \sqrt{2})^{2}\right) 94-1274\left(\left(\frac{3}{2}\right)^{2}-\left(\frac{1}{\sqrt{2}}\right)^{2}\right) \frac{9}{4}-\frac{1}{2} \frac{7}{4}
\end{aligned}
$$

Q14. $\sin 30^{\circ}-\sin 90^{\circ}+2 \cos 0^{\circ} \tan 30^{\circ} \tan 60^{\circ} \frac{\sin 30^{\circ}-\sin 90^{\circ}+2 \cos 0^{\circ}}{\tan 30^{\circ} \tan 60^{\circ}}$

Solution:

Given,

$$
\begin{aligned}
& \frac{\sin 30^{\circ}-\sin 90^{\circ}+2 \cos 0^{\circ}}{\tan 30^{\circ} \tan 60^{\circ}} \\
& \frac{\frac{1}{2}-1+2}{\frac{1}{\sqrt{3}} \times \sqrt{3}}
\end{aligned}
$$

$\sin 30^{\circ}-\sin 90^{\circ}+2 \cos 0^{\circ} \tan 30^{\circ} \tan 60^{\circ} 12-1+21 \sqrt{3} \times \sqrt{3} 32 \frac{3}{2}$

Q15. $4 \cot ^{2} 30^{\circ}+1 \sin ^{2} 60^{\circ}=\cos ^{2} 45^{\circ} \frac{4}{\cot ^{2} 30^{\circ}}+\frac{1}{\sin ^{2} 60^{\circ}}-\cos ^{2} 45^{\circ}$

Solution:

Given,

$$
\begin{aligned}
& \frac{4}{\cot ^{2} 30^{\circ}}+\frac{1}{\sin ^{2} 60^{\circ}}-\cos ^{2} 45^{\circ} \\
& =\frac{4}{(\sqrt{3})^{2}}+\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^{2}}-\left(\frac{1}{\sqrt{2}}\right)^{2} \\
& =\frac{4}{3}+\frac{4}{3}-\frac{1}{2} \\
& =\frac{16-3}{6}
\end{aligned}
$$

$4 \cot ^{2} 30^{\circ}+1 \sin ^{2} 60^{\circ}-\cos ^{2} 45^{\circ}=4(\sqrt{3})^{2}+1(\sqrt{3} 2)^{2}-(1 \sqrt{2})^{2}=43+43-12=16-36=136=\frac{13}{6}$

Q16. 4($\left.\sin ^{4} 30^{\circ}+\cos ^{2} 60^{\circ}\right)-3\left(\cos ^{2} 45^{\circ}-\sin ^{2} 90^{\circ}\right)-\sin ^{2} 60^{\circ}$
$4\left(\sin ^{4} 30^{\circ}+\cos ^{2} 60^{\circ}\right)-3\left(\cos ^{2} 45^{\circ}-\sin ^{2} 90^{\circ}\right)-\sin ^{2} 60^{\circ}$

Solution:

Given,
$4\left(\sin ^{4} 30^{\circ}+\cos ^{2} 60^{\circ}\right)-3\left(\cos ^{2} 45^{\circ}-\sin ^{2} 90^{\circ}\right)-\sin ^{2} 60^{\circ}=4\left((12)^{4}+(12)^{2}\right)-3\left((1 \sqrt{2})^{2}-1\right)-$

$$
\begin{aligned}
& 4\left(\sin ^{4} 30^{\circ}+\cos ^{2} 60^{\circ}\right)-3\left(\cos ^{2} 45^{\circ}-\sin ^{2} 90^{\circ}\right)-\sin ^{2} 60^{\circ} \\
& =4\left(\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{2}\right)-3\left(\left(\frac{1}{\sqrt{2}}\right)^{2}-1\right)-\left(\frac{\sqrt{3}}{2}\right)^{2} \\
& =4\left(\frac{1}{16}+\frac{1}{4}\right)+\frac{3}{2}-\frac{3}{4}
\end{aligned}
$$

$(\sqrt{3} 2)^{2}=4(116+14)+32-34=84=2=\frac{8}{4}=2$

Q17. $\tan ^{2} 60^{\circ}+4 \cos ^{2} 45^{\circ}+3 \sec ^{2} 30^{\circ}+5 \cos ^{2} 90^{\circ} \operatorname{cosec} 30^{\circ}+\sec 60^{\circ}-\cot ^{2} 30^{\circ} \frac{\tan ^{2} 60^{\circ}+4 \cos ^{2} 45^{\circ}+3 \sec ^{2} 30^{\circ}+5 \cos ^{2} 90^{\circ}}{\operatorname{cosec} 30^{\circ}+\sec 60^{\circ}-\cot ^{2} 30^{\circ}}$

Solution:

Given,

```
\(\tan ^{2} 60^{\circ}+4 \cos ^{2} 45^{\circ}+3 \sec ^{2} 30^{\circ}+5 \cos ^{2} 90^{\circ} \operatorname{cosec} 30^{\circ}+\sec 60^{\circ}-\cot ^{2} 30^{\circ}=(\sqrt{3})^{2}+4(1 \sqrt{2})^{2}+3(2 \sqrt{3})^{2}+5(0) 2+2-(\sqrt{3})^{2}=3+2+4=9\)
    \(\frac{\tan ^{2} 60^{\circ}+4 \cos ^{2} 45^{\circ}+3 \sec ^{2} 30^{\circ}+5 \cos ^{2} 90^{\circ}}{\operatorname{cosec} 30^{\circ}+\sec 60^{\circ}-\cot ^{2} 30^{\circ}}\)
    \(=\frac{(\sqrt{3})^{2}+4\left(\frac{1}{\sqrt{2}}\right)^{2}+3\left(\frac{2}{\sqrt{3}}\right)^{2}+5(0)}{2+2-(\sqrt{3})^{2}}\)
\(=3+2+4\)
\(=9\)
```

Q18. $\sin 30^{\circ} \sin 45^{\circ}+\tan 45^{\circ} \sec 60^{\circ}-\sin 60^{\circ} \cot 45^{\circ}-\cos 30^{\circ} \sin 90^{\circ} \frac{\sin 30^{\circ}}{\sin 45^{\circ}}+\frac{\tan 45^{\circ}}{\sec 60^{\circ}}-\frac{\sin 60^{\circ}}{\cot 45^{\circ}}-\frac{\cos 30^{\circ}}{\sin 90^{\circ}}$

Solution:

Given,

```
\(\sin 30^{\circ} \sin 45^{\circ}+\tan 45^{\circ} \sec 60^{\circ}-\sin 60^{\circ} \cot 45^{\circ}-\cos 30^{\circ} \sin 90^{\circ}={ }_{121 \sqrt{2}}+12-\sqrt{3} 21-\sqrt{3} 21=\sqrt{2} 2+12-\sqrt{3} 2-\sqrt{3} 2=\sqrt{2}+1-2 \sqrt{3} 2\)
\(\frac{\sin 30^{\circ}}{\sin 45^{\circ}}+\frac{\tan 45^{\circ}}{\sec 60^{\circ}}-\frac{\sin 60^{\circ}}{\cot 45^{\circ}}-\frac{\cos 30^{\circ}}{\sin 90^{\circ}}\)
\(=\frac{\frac{1}{2}}{\frac{1}{\sqrt{2}}}+\frac{1}{2}-\frac{\frac{\sqrt{3}}{2}}{1}-\frac{\frac{\sqrt{3}}{2}}{1}\)
\(=\frac{\sqrt{ } \overline{2}}{2}+\frac{1}{2}-\frac{\sqrt{ } \overline{3}}{2}-\frac{\sqrt{ } 3}{2}\)
\(=\frac{\sqrt{2}+1-2 \sqrt{3}}{2}\)
```

Q19. $\tan 45^{\circ} \operatorname{cosec} 30^{\circ}+\boldsymbol{\operatorname { s e c }} 60^{\circ} \cot 45^{\circ}+\mathbf{s s i n} 90^{\circ} 2 \cos 0^{\circ} \frac{\tan 45^{\circ}}{\operatorname{cosec} 30^{\circ}}+\frac{\sec 60^{\circ}}{\cot 45^{\circ}}+\frac{\operatorname{ssin} 90^{\circ}}{2 \cos 0^{\circ}}$

Solution:

Given,

$$
\begin{aligned}
& \frac{\tan 45^{\circ}}{\operatorname{cosec} 30^{\circ}}+\frac{\sec 60^{\circ}}{\cot 45^{\circ}}+\frac{\operatorname{ssin} 90^{\circ}}{2 \cos 0^{\circ}} \\
& =\frac{1}{2}+\frac{2}{1}-\frac{5(1)}{2(1)} \\
& =\frac{5}{2}-\frac{5}{2}
\end{aligned}
$$

$\tan 45^{\circ} \operatorname{cosec} 30^{\circ}+\sec 60^{\circ} \cot 45^{\circ}+\operatorname{ssin} 90^{\circ} 2 \cos 0^{\circ}=12+21-5(1) 2(1)=52-52=0=0$

Q20. $2 \boldsymbol{\operatorname { s i n }} 3 \mathbf{x}=\sqrt{3} 2 \sin 3 x=\sqrt{ } \overline{3}$

Solution:

Given,

$$
\begin{aligned}
& 2 \sin 3 x=\sqrt{3} \\
& =>\sin 3 x=\frac{\sqrt{3}}{2} \\
& =>\sin 3 x=\sin 60^{\circ} \\
& =>3 x=60^{\circ} \\
2 \sin 3 x=\sqrt{3}=>\sin 3 x=\sqrt{3} 2=>\sin 3 x=\sin 60^{\circ}=>3 x=60^{\circ}=>x=20^{\circ} & =>x=20^{\circ}
\end{aligned}
$$

Q21) $2 \boldsymbol{\operatorname { s i n }} \mathrm{x} 2=1, \mathrm{x}=? 2 \sin \frac{x}{2}=1, x=$?

Solution:

$\sin x 2=12 \sin \frac{x}{2}=\frac{1}{2} \quad \sin x 2=\sin 30^{\circ} \sin \frac{x}{2}=\sin 30^{\circ} \quad x 2=30^{\circ} \frac{x}{2}=30^{\circ}$
$x=60^{\circ}$

Q22) $\sqrt{3} \sin x=\cos x \sqrt{3} \sin x=\cos x$

Solution:

$\sqrt{3} \tan x=1 \sqrt{3} \tan x=1 \quad \tan x=1 \sqrt{3} \tan x=\frac{1}{\sqrt{3}} \quad \therefore \tan x=\tan 45^{\circ} \therefore \tan x=\tan 45^{\circ}$
$x=45^{\circ}$

Q23) $\operatorname{Tan} x=\sin 45^{\circ} \cos 45^{\circ}+\sin 30^{\circ}$

Solution:

Tanx $=1 \sqrt{2} \cdot 1 \sqrt{2}+12\left[\because \sin 45^{\circ}=1 \sqrt{2} \cos 45^{\circ}=1 \sqrt{2} \sin 30^{\circ}=12\right]$
$\operatorname{Tan} \mathrm{x}=\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+\frac{1}{2} \quad\left[\because \sin 45^{\circ}=\frac{1}{\sqrt{2}} \cos 45^{\circ}=\frac{1}{\sqrt{2}} \sin 30^{\circ}=\frac{1}{2}\right] \quad$ Tanx $=12+12 \operatorname{Tan} \mathrm{x}=\frac{1}{2}+\frac{1}{2}$
Tan $x=1$
$\operatorname{Tan} \mathrm{x}=45^{\circ}$
$x=45^{\circ}$

Q24) $\sqrt{3} \operatorname{Tan2} \mathbf{x}=\boldsymbol{\operatorname { c o s }} 60^{\circ}+\boldsymbol{\operatorname { s i n }} 45^{\circ} \boldsymbol{\operatorname { c o s }} 45^{\circ} \sqrt{3}$ Tan $2 \mathrm{x}=\cos 60^{\circ}+\sin 45^{\circ} \cos 45^{\circ}$

Solution:

$\sqrt{3} \operatorname{Tan2} 2 x=12+1 \sqrt{2} .1 \sqrt{2}\left[\because \cos 60^{\circ}=12 \sin 45^{\circ}=\cos 45^{\circ}=1 \sqrt{2}\right]$
$\sqrt{3} \operatorname{Tan} 2 x=\frac{1}{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \quad\left[\because \cos 60^{\circ}=\frac{1}{2} \sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}\right] \quad \sqrt{3} \operatorname{Tan} 2 x=1 \sqrt{3} \Rightarrow \tan 2 x=\tan 30^{\circ}$
$\sqrt{3} \operatorname{Tan} 2 \mathrm{x}=\frac{1}{\sqrt{3}} \Rightarrow \tan 2 \mathrm{x}=\tan 30^{\circ}$
$2 x=30^{0}$
$x=15^{0}$

Q25) $\cos 2 x=\cos 60^{\circ} \cos 30^{\circ}+\sin 60^{\circ} \sin 30^{\circ} \cos 2 x=\cos 60^{\circ} \cos 30^{\circ}+\sin 60^{\circ} \sin 30^{\circ}$

Solution:

$\cos 2 x=12 \cdot \sqrt{3} 2+\sqrt{3} 2 \cdot 12\left[\because \cos 60^{\circ}=\sin 30^{\circ}=12 \sin 60^{\circ}=\cos 30^{\circ}=\sqrt{3} 2\right]$
$\cos 2 x=\frac{1}{2} \cdot \frac{\sqrt{ } \overline{3}}{2}+\frac{\sqrt{ } 3}{2} \cdot \frac{1}{2} \quad\left[\because \cos 60^{\circ}=\sin 30^{\circ}=\frac{1}{2} \sin 60^{\circ}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}\right] \quad \cos 2 x=2 \cdot \sqrt{3} 4$
$\cos 2 x=2 \cdot \frac{\sqrt{3}}{4} \cos 2 x=\sqrt{3} 2 \cos 2 x=\frac{\sqrt{3}}{2} \cos 2 x=\cos 30^{\circ} \cos 2 x=\cos 30^{\circ} 2 x=30^{\circ} 2 x=30^{\circ} \quad x=15^{0}$
$\mathrm{x}=15^{0}$

Q26)
If $\theta=30^{\circ}$, verify
If $\theta=\mathbf{3 0}^{\circ}$, verify(i) \boldsymbol{T} an $2 \theta=\mathbf{2 T a n} \theta 1-\tan ^{2} \theta(\mathrm{i}) \mathrm{T}$ an $2 \theta=\frac{2 \operatorname{Tan} \theta}{1-\tan ^{2} \theta}$

Solution:

$\operatorname{Tan} 2 \theta=2 \operatorname{Tan} \theta 1-\tan ^{2} \theta \ldots . .(\mathrm{i}) \operatorname{Tan} 2 \theta=\frac{2 \operatorname{Tan} \theta}{1-\tan ^{2} \theta} \ldots$. (i)
Substitute $\theta=30^{\circ} \theta=30^{\circ}$ in equation (i)
LHS $=\operatorname{Tan} 60^{\circ}=\sqrt{3} \sqrt{ } \overline{3}$
RHS $=2 \operatorname{Tan} 30^{\circ} 1+\left(\operatorname{Tan} 30^{\circ}\right)^{2}=2-1 \sqrt{2} 1-(1 \sqrt{2})^{2}=\sqrt{3} \frac{2 \operatorname{Tan} 30^{\circ}}{1+\left(\operatorname{Tan} 30^{\circ}\right)^{2}}=\frac{2-\frac{1}{\sqrt{2}}}{1-\left(\frac{1}{\sqrt{2}}\right)^{2}}=\sqrt{\overline{3}}$
Therefore, LHS = RHS
(ii) $\sin \theta=2 \tan \theta 1-\tan ^{2} \theta \sin \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

Substitute $\theta=30^{\circ} \theta=30^{\circ}$
$\sin 60^{\circ}=2 \tan 30^{\circ}\left(1-\tan 30^{\circ}\right)^{2} \sin 60^{\circ}=\frac{2 \tan 30^{\circ}}{\left(1-\tan 30^{\circ}\right)^{2}}$
$\Rightarrow>\sqrt{3} 2=2 \cdot 1 \sqrt{\overline{2}} 1+(1 \sqrt{\overline{2}})^{2} \frac{\sqrt{\overline{3}}}{2}=\frac{2 \cdot \frac{1}{\sqrt{2}}}{1+\left(\frac{1}{\sqrt{\bar{\Sigma}}}\right)^{2}}$

$$
\begin{array}{cc}
\Rightarrow \quad & \frac{\sqrt{3}}{2}=\frac{2}{\sqrt{3}} \cdot \frac{3}{4} \\
\sqrt{3} 2=2 \sqrt{3} .34 \Rightarrow \sqrt{3} 2=\sqrt{3} 2 \Rightarrow \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}
\end{array}
$$

Therefore, LHS = RHS.
(iii) $\boldsymbol{\operatorname { c o s }} 2 \theta=1-\tan ^{2} \theta 1+\tan ^{2} \theta \cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$

Substitute $\theta=30^{\circ} \theta=30^{\circ}$
LHS $=\operatorname{cosec} \theta \operatorname{cosec} \theta$

$$
\begin{aligned}
\text { RHS }= & 1-\tan ^{2} \theta 1+\tan ^{2} \theta \frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} \\
& =1-\tan ^{2} 30^{\circ} 1+\tan ^{2} 30^{\circ}=\frac{1-\tan ^{2} 30^{\circ}}{1+\tan ^{2} 30^{\circ}}
\end{aligned}
$$

$=\cos 2\left(30^{\circ}\right)$
$\operatorname{Cos} 60^{\circ}=12 \frac{1}{2} \quad=1-(1 \sqrt{2})^{21}+(1 \sqrt{2})^{2}=2212=12=\frac{1-\left(\frac{1}{\sqrt{2}}\right)^{2}}{1+\left(\frac{1}{\sqrt{2}}\right)^{2}}=\frac{\frac{2}{2}}{\frac{1}{2}}=\frac{1}{2}$
Therefore, LHS = RHS
(iv) $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta \cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$

Solution:

LHS $=\cos 3 \theta \cos 3 \theta$
Substitute $\theta=30^{\circ} \theta=30^{\circ}$
$=\cos 3\left(30^{\circ}\right)=\cos 90^{\circ}$
$=0$
RHS $=4 \cos ^{3} \theta-3 \cos \theta 4 \cos ^{3} \theta-3 \cos \theta$
$=4 \cos ^{3} 30^{\circ}-3 \cos 30^{\circ} 4 \cos ^{3} 30^{\circ}-3 \cos 30^{\circ}$
$=4(\sqrt{3} 2)^{3}-3 \cdot \sqrt{3} 24\left(\frac{\sqrt{3}}{2}\right)^{3}-3 \cdot \frac{\sqrt{3}}{2}$
$=3 \cdot \sqrt{3} 2-3 \cdot \sqrt{3} 23 \cdot \frac{\sqrt{3}}{2}-3 \cdot \frac{\sqrt{3}}{2}$
$=0$
Therefore, LHS = RHS.

Q27) If $A=B=60^{\circ}$. Verify (i) $\operatorname{Cos}(A-B)=\operatorname{Cos} A \operatorname{Cos} B+\operatorname{Sin} A \operatorname{Sin} B$

Solution:

$\operatorname{Cos}(A-B)=\operatorname{Cos} A \operatorname{Cos} B+\operatorname{Sin} A \operatorname{Sin} B$
Substitute A and B in (i)
$=>\cos \left(60^{\circ}-60^{\circ}\right)=\cos 60^{\circ} \cos 60^{\circ}+\sin 60^{\circ} \sin 60^{\circ}$
$\Rightarrow \cos 0^{0}=(12)^{2}+(\sqrt{3} 2)^{2}\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}$
$=>1=14+34 \frac{1}{4}+\frac{3}{4}$
=>1 $=1$
Therefore, LHS = RHS
(ii) Substitute A and B in (i)
$=>\sin \left(60^{\circ}-60^{\circ}\right)=\sin 60^{\circ} \cos 60^{\circ}-\cos 60^{\circ} \sin 60^{\circ}$
$\Rightarrow \sin 0^{\circ}=0$
$=>0=0$
Therefore, LHS = RHS
(iii) $\operatorname{Tan}(A-B)=\operatorname{Tan} A-\operatorname{TanB} 1+\operatorname{TanA} \operatorname{Tan} B \operatorname{Tan}(A-B)=\frac{\operatorname{Tan} A-T a n B}{1+\operatorname{Tan} A \operatorname{Tan} B}$
$A=60^{\circ}, B=60^{\circ}$ we get,
$\operatorname{Tan}\left(60^{\circ}-60^{\circ}\right)=\operatorname{Tan} 60^{\circ}-\operatorname{Tan} 60^{\circ} 1+\operatorname{Tan} 60^{\circ} \operatorname{Tan} 60^{\circ} \operatorname{Tan}\left(60^{\circ}-60^{\circ}\right)=\frac{\operatorname{Tan} 60^{\circ}-\operatorname{Tan} 60^{\circ}}{1+\operatorname{Tan} 60^{\circ} \operatorname{Tan} 60^{\circ}}$
$\operatorname{Tan} 0^{0}=0$
$0=0$
Therefore, LHS = RHS

Q28) If $A=30^{\circ}, B=60^{\circ}$ verify:
(i) $\operatorname{Sin}(A+B)=\operatorname{Sin} A \operatorname{Cos} B+\operatorname{Cos} A \operatorname{Sin} B$

Solution:

$A=30^{\circ}, B=60^{\circ}$ we get
$\operatorname{Sin}\left(30^{\circ}+60^{\circ}\right)=\operatorname{Sin} 30^{\circ} \operatorname{Cos} 60^{\circ}+\operatorname{Cos} 30^{\circ} \operatorname{Sin} 60^{\circ}$
$\operatorname{Sin}\left(90^{\circ}\right)=12 \cdot 12+\sqrt{3} 2 \cdot \sqrt{3} 2 \frac{1}{2} \cdot \frac{1}{2}+\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}$
$\operatorname{Sin}\left(90^{\circ}\right)=1=>1=1$
Therefore, LHS = RHS
$A=30^{\circ}, B=60^{\circ}$ we get
$\operatorname{Cos}\left(30^{\circ}+60^{\circ}\right)=\operatorname{Cos} 30^{\circ} \operatorname{Cos} 60^{\circ}-\operatorname{Sin} 30^{\circ} \operatorname{Sin} 60^{\circ}$
$\operatorname{Cos}\left(90^{\circ}\right)=12 \cdot \sqrt{3} 2-\sqrt{3} 2 \cdot 12 \frac{1}{2} \cdot \frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2} \cdot \frac{1}{2}$
$0=0$
Therefore, LHS = RHS
Q29. If $\sin (A+B)=1$ and $\cos (A-B)=1,0^{\circ}<A+B \leq 90^{\circ} 0^{\circ}<A+B \leq 90^{\circ} \quad, A \geq B$ find A and B.

Sol:

Given,
$\sin (A+B)=1$ this can be written as $\sin (A+B)=\sin \left(90^{\circ}\right) \sin \left(90^{\circ}\right)$
$\cos (A-B)=1$ this can be written as $\cos (A-B)=\cos \left(0^{\circ}\right) \cos \left(0^{\circ}\right)$
$\Rightarrow A+B=90^{\circ} 90^{\circ}$
$A-B=0^{\circ} 0^{\circ}$
$2 \mathrm{~A}=90^{\circ} 90^{\circ}$
$\mathrm{A}=90^{\circ} 2 \frac{90^{\circ}}{2}$
A $=45^{\circ} 45^{\circ}$
Substitute A value in $A-B=0^{\circ} 0^{\circ}$
$45^{\circ} 45^{\circ}-\mathrm{B}=0^{\circ} 0^{\circ}$
$B=45^{\circ} 45^{\circ}$
Hence, the value of $A=45^{\circ} 45^{\circ}$ and $B=45^{\circ} 45^{\circ}$

Q30. If $\tan (A-B)=1 \sqrt{3} \frac{1}{\sqrt{3}}$ and $\tan (A+B)=\sqrt{3} \sqrt{3}, 0^{\circ}<A+B \leq 90^{\circ} 0^{\circ}<A+B \leq 90^{\circ}$, $A>B$ find A and B

Solution:

Given,
$\tan (A-B)=1 \sqrt{3} \frac{1}{\sqrt{3}}$
$A-B=\tan ^{-1}(1 \sqrt{3}) \tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
$A-B=30^{\circ} 30^{\circ}$

- -1
$\tan (A+B)=\sqrt{3} \sqrt{ } \overline{3}$
$A+B=\tan ^{-1} \sqrt{3} \tan ^{-1} \sqrt{3}$
$A+B=60^{\circ} 60^{\circ} \quad-2$
Solve equations 1 and 2
$A+B=30^{\circ} 30^{\circ}$
$A-B=60^{\circ} 60^{\circ}$
$2 \mathrm{~A}=90^{\circ} 90^{\circ}$
$A=90^{\circ} 2 \frac{90^{\circ}}{2}$
$A=45^{\circ} 45^{\circ}$
Substitute the value of A in equation 1
$45^{\circ} 45^{\circ}+B=30^{\circ} 30^{\circ}$
$B=30^{\circ} 30^{\circ}-45^{\circ} 45^{\circ}$
$B=15^{\circ} 15^{\circ}$
The value of $A=45^{\circ} 45^{\circ}$ and $B=15^{\circ} 15^{\circ}$

Q31. If $\sin (A-B)=12 \frac{1}{2}$ and $\cos (A+B)=12 \frac{1}{2}, 0^{\circ}<A+B \leq 90^{\circ} 0^{\circ}<A+B \leq 90^{\circ}, A<B$ find A and B.

Solution:

Given,
$\sin (A-B)=12 \frac{1}{2}$
$A-B=\sin ^{-1}(12) \sin ^{-1}\left(\frac{1}{2}\right)$
$A-B=30^{\circ} 30^{\circ}$

- 1
$\cos (A+B)=12 \frac{1}{2}$
$A+B=\cos ^{-1}(12) \cos ^{-1}\left(\frac{1}{2}\right)$
$A+B=60^{\circ} 60^{\circ}$

Solve equations 1 and 2
$A+B=60^{\circ} 60^{\circ}$
$A-B=30^{\circ} 30^{\circ}$
$2 \mathrm{~A}=90^{\circ} 90^{\circ}$
$A=90^{\circ} 2 \frac{90^{\circ}}{2}$
$A=45^{\circ} 45^{\circ}$
Substitute the value of A in equation 2
$45^{\circ} 45^{\circ}+B=60^{\circ} 60^{\circ}$
$B=60^{\circ} 60^{\circ}-45^{\circ} 45^{\circ}$
$B=15^{\circ} 15^{\circ}$
The value of $A=45^{\circ} 45^{\circ}$ and $B=15^{\circ} 15^{\circ}$

Q32. In a $\Delta \Delta A B C$ right angled triangle at $B, \angle A=\angle C \angle A=\angle C$. Find the values of: 1. $\sin A \cos C+\cos A \sin C$

Solution:

since, it is given as $\angle A=\angle C \angle A=\angle C$
the value of A and C is $45^{\circ} 45^{\circ}$, the value of angle B is $90^{\circ} 90^{\circ}$ because the sum of angles of triangle is $180^{\circ} 180^{\circ}$
$=>\sin \left(45^{\circ} 45^{\circ}\right) \cos \left(45^{\circ} 45^{\circ}\right)+\cos \left(45^{\circ} 45^{\circ}\right) \sin \left(45^{\circ} 45^{\circ}\right)$
$=>(1 \sqrt{2} \times 1 \sqrt{2})\left(\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}\right)+(1 \sqrt{2} \times 1 \sqrt{2})\left(\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}\right)$
$\Rightarrow 12 \frac{1}{2}+12 \frac{1}{2}$
=> 1
The value of $\sin A \cos C+\cos A \sin C$ is 1
2. $\sin A \sin B+\cos A \cos B$

Solution:

since, it is given as $\angle \mathrm{A}=\angle \mathrm{C} \angle \mathrm{A}=\angle \mathrm{C}$
the value of A and C is $45^{\circ} 45^{\circ}$, the value of angle B is $90^{\circ} 90^{\circ}$
because the sum of angles of triangle is $180^{\circ} 180^{\circ}$
$=>\sin \left(45^{\circ} 45^{\circ}\right) \sin \left(90^{\circ} 90^{\circ}\right)+\cos \left(45^{\circ} 45^{\circ}\right) \sin \left(90^{\circ} 90^{\circ}\right)$
$=>1 \sqrt{2} \frac{1}{\sqrt{2}}(1)+1 \sqrt{2} \frac{1}{\sqrt{2}}(0)$
$=>1 \sqrt{2} \frac{1}{\sqrt{2}}+0$
$=>1 \sqrt{2} \frac{1}{\sqrt{2}}$
The value of $\sin A \sin B+\cos A \cos B$ is $1 \sqrt{2} \frac{1}{\sqrt{2}}$

Q33. Find the acute angle A and B, if $\sin (A+2 B)=\sqrt{3} 2 \frac{\sqrt{3}}{2}$ and $\cos (A+4 B)=0, A>B$.

Solution:

Given,
$\sin (A+2 B)=\sqrt{3} 2 \frac{\sqrt{3}}{2}$
$A+2 B=\sin ^{-1} \sqrt{3} 2 \sin ^{-1} \frac{\sqrt{3}}{2}$
$A+2 B=60^{\circ} 60^{\circ} \quad-1$
$\operatorname{Cos}(A+4 B)=0$
$A+4 B=\sin ^{-1}(90) \sin ^{-1}(90)$
$A+4 B=90^{\circ} 90^{\circ}$
-2
Solve equations 1 and 2
$A+2 B=60^{\circ} 60^{\circ}$
$A+4 B=90^{\circ} 90^{\circ}$
$(-)(-) \quad(-)$
$-2 B=-30^{\circ} 30^{\circ}$
$2 \mathrm{~B}=30^{\circ} 30^{\circ}$
$B=30^{\circ} 2 \frac{30^{\circ}}{2}$
$B=15^{\circ} 15^{\circ}$
Substitute B value in eq 2
$A+4 B=90^{\circ} 90^{\circ}$
$A+4\left(15^{\circ} 15^{\circ}\right)=90^{\circ} 90^{\circ}$
$A+60^{\circ} 60^{\circ}=90^{\circ} 90^{\circ}$
$A=90^{\circ} 90^{\circ}-60^{\circ} 60^{\circ}$
$A=30^{\circ} 30^{\circ}$

The value of $A=30^{\circ} 30^{\circ}$ and $B=15^{\circ} 15^{\circ}$

Q 34. In $\triangle P Q R \triangle P Q R$, right angled at $Q, P Q=3 \mathrm{~cm}$ and $P R=6 \mathrm{~cm}$. Determine $\angle \angle P$ and $\angle \angle R$.

Solution:

Given,
In $\triangle P Q R \triangle P Q R$, right angled at $Q, P Q=3 \mathrm{~cm}$ and $P R=6 \mathrm{~cm}$
By Pythagoras theorem,

$$
\begin{aligned}
& P R^{2}=P Q^{2}+Q R^{2} \\
&=>6^{2}=3^{2}+Q R^{2} \\
&=>Q^{2}=36-9 \\
&=>Q R=\sqrt{27} \\
& P R^{2}=P Q^{2}+Q R^{2}=>6^{2}=3^{2}+Q R R^{2}=>Q^{2}=36-9=>Q R=\sqrt{27}=>Q R=3 \sqrt{3}=>Q R=3 \sqrt{3} \\
& \sin R=36=12=\sin 30^{\circ} \frac{3}{6}=\frac{1}{2}=\sin 30^{\circ} \\
& \angle R=30^{\circ} \angle R=30^{\circ}
\end{aligned}
$$

As we know, Sum of angles in a triangle $=180$
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}=>\angle \mathrm{P}+90^{\circ}+30^{\circ}=180^{\circ}=>\angle \mathrm{P}=180^{\circ}-120^{\circ}=>\angle \mathrm{P}=60^{\circ}$
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}$
$\Rightarrow \angle \mathrm{P}+90^{\circ}+30^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{P}=180^{\circ}-120^{\circ}$
$\Rightarrow \angle \mathrm{P}=60^{\circ}$
Therefore, $\angle \mathrm{R}=30^{\circ} \angle \mathrm{R}=30^{\circ}$
And, $\angle \mathrm{P}=60^{\circ} \angle \mathrm{P}=60^{\circ}$

Q35. If $\sin (A-B)=\sin A \cos B-\cos A \sin B$ and $\cos (A-B)=\cos A \cos B+\sin A \sin B$, find the values of $\sin 15$ and $\cos 15$.

Solution:

Given,
$\sin (A-B)=\sin A \cos B-\cos A \sin B$
And, $\cos (A-B)=\cos A \cos B+\sin A \sin B$
We need to find, $\sin 15$ and $\cos 15$.
Let $\mathrm{A}=45$ and $\mathrm{B}=30$
$\sin 15=\sin (45-30)=\sin 45 \cos 30-\cos 45 \sin 30$

$$
\begin{aligned}
& =\quad=\left(\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}\right)-\left(\frac{1}{\sqrt{2}} \times \frac{1}{2}\right) \\
& =(1 \sqrt{2} \times \sqrt{3} 2)-(1 \sqrt{2} \times 12)=\sqrt{3}-12 \sqrt{2}=\frac{\sqrt{3}-1}{2 \sqrt{2}}
\end{aligned}
$$

$\cos 15=\cos (45-30)=\cos 45 \cos 30-\sin 45 \sin 30$

$$
\begin{aligned}
& =\quad=\left(\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}\right)+\left(\frac{1}{\sqrt{\overline{2}}} \times \frac{1}{2}\right) \\
& =(1 \sqrt{2} \times \sqrt{3} 2)+(1 \sqrt{2} \times 12)=\sqrt{3}+12 \sqrt{2}=\frac{\sqrt{3}+1}{2 \sqrt{2}}
\end{aligned}
$$

Q36. In a right triangle $A B C$, right angled at C, if $\angle B=60^{\circ} \angle B=60^{\circ}$ and $A B=15$ units. Find the remaining angles and sides.

Solution:

$$
\begin{aligned}
& \sin 60^{\circ}=\frac{x}{15} \\
& \frac{\sqrt{3}}{2}=\frac{x}{15} \\
& x=\frac{15 \sqrt{3}}{2} \text { units } \\
& \cos 60^{\circ}=\frac{x}{15} \\
& \frac{1}{2}=\frac{x}{15} \\
& x=\frac{15}{2}
\end{aligned}
$$

$\sin 60^{\circ}=x 15 \sqrt{3} 2=x 15 x=15 \sqrt{3} 2$ unitscos $60^{\circ}=x 1512=x 15 x=152 x=7.5$ units $^{x}=7.5$ units

Q37. In $\triangle \triangle A B C$ is a right triangle such that $\angle C=90^{\circ} \angle C=90^{\circ}, \angle A=45^{\circ} \angle A=45^{\circ}$ and $B C=7$ units. Find the remaining angles and sides.

Solution:

Here, $\angle \mathrm{C}=90^{\circ} \angle \mathrm{C}=90^{\circ}$ and $\angle \mathrm{A}=45^{\circ} \angle \mathrm{A}=45^{\circ}$
We know that,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C} \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} 180^{\circ}$
$\Rightarrow 45^{\circ} 45^{\circ}+90^{\circ} 90^{\circ}+\angle \mathrm{C} \angle \mathrm{C}=180^{\circ} 180^{\circ}$
$\Rightarrow 135^{\circ} 135^{\circ}+\angle \mathrm{C} \angle \mathrm{C}=180^{\circ} 180^{\circ}$
$=>\angle C \angle C=180^{\circ} 180^{\circ}-135^{\circ} 135^{\circ}$
$=>\angle C \angle C=45^{\circ} 45^{\circ}$
The value of the remaining angle C is $45^{\circ} 45^{\circ}$
Now, we need to find the sides x and y
here,
$\cos (45)=\operatorname{BCAB} \frac{\mathrm{BC}}{\mathrm{AB}}$
$1 \sqrt{2} \frac{1}{\sqrt{2}}=7 \mathrm{y} \frac{7}{\mathrm{y}}$
$y=7 \sqrt{2} 7 \sqrt{ } \overline{2}$ units
$\sin (45)=A C A B \frac{A C}{A B}$
$1 \sqrt{2} \frac{1}{\sqrt{2}}=x y \frac{x}{y}$
$1 \sqrt{2} \frac{1}{\sqrt{2}}=x 7 \sqrt{2} \frac{x}{7 \sqrt{2}}$
$x=7 \sqrt{2} \sqrt{2} \frac{7 \sqrt{2}}{\sqrt{2}}$
$x=7$ units
the value of $x=7$ units and $y=7 \sqrt{2} 7 \sqrt{2}$ units

Q 38. In a rectangle $A B C D, A B=20 \mathrm{~cm}, \angle \angle B A C=60^{\circ} 60^{\circ}$, calculate side $B C$ and diagonals $A C$ and BD.

Solution:

Let $A C=x \mathrm{~cm}$ and $C B=y \mathrm{~cm}$
Since, $\cos \theta \cos \theta=$ basehypotenuse $\frac{\text { base }}{\text { hypotenuse }}$
Therefore, $\cos 60^{\circ}=20 x \cos 60^{\circ}=\frac{20}{x}$
$\Rightarrow 12=20 x \Rightarrow \frac{1}{2}=\frac{20}{x}$
$\left[\right.$ since, $\left.\cos 60^{\circ}=12 \cos 60^{\circ}=\frac{1}{2}\right]$
$\Rightarrow \Rightarrow x=40 \mathrm{~cm}=\mathrm{AC}$

Similarly BD $=40 \mathrm{~cm}$
Now,
Since, $\sin \theta \sin \theta=$ perpendicularhypotenuse $\frac{\text { perpendicular }}{\text { hypotenuse }}$
Therefore, $\sin 60^{\circ}=B C A C \sin 60^{\circ}=\frac{B C}{A C}$
$\Rightarrow \sqrt{3} 2=y 40 \Rightarrow \frac{\sqrt{3}}{2}=\frac{\mathrm{y}}{40} \Rightarrow \mathrm{y}=40 \sqrt{3} 2 \Rightarrow \mathrm{y}=\frac{40 \sqrt{3}}{2}$
$\Rightarrow y=20 \sqrt{3} \Rightarrow y=20 \sqrt{3} \mathrm{~cm}$.

Q39:If $A \& B$ are acute angles such that $\tan A=1 / 2 \tan B=1 / 3$ and $\tan (A+B)=\tan A+\tan B 1-\tan A \tan B$ $\frac{\tan A+\tan B}{1-\tan A \tan B}$, find $A+B$.

Solution:

$\operatorname{Tan}(\mathrm{A}+\mathrm{B})={ }_{12+131-12.13} \operatorname{Tan}(\mathrm{~A}+\mathrm{B})=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2} \cdot \frac{1}{3}} \quad={ }_{3+2656}=\frac{\frac{3+2}{6}}{\frac{5}{6}}={ }_{5656}=\frac{\frac{5}{6}}{\frac{5}{6}} \operatorname{Tan}(\mathrm{~A}+\mathrm{B})=56 \times 65$
$\operatorname{Tan}(A+B)=\frac{5}{6} \times \frac{6}{5} \quad(A+B)=\operatorname{Tan}^{-1}(1)(A+B)=\operatorname{Tan}^{-1}(1)$
$(A+B)=45^{\circ}$

Q 40: Prove that : $(\sqrt{3}-1)\left(3-\cot 30^{\circ}\right)=\tan ^{3} 60-2 \sin 60^{\circ}$
$(\sqrt{3}-1)\left(3-\cot 30^{\circ}\right)=\tan ^{3} 60-2 \sin 60^{\circ}$
Ans:
L.H.S $=>(\sqrt{3}+1)\left(3-\cot 30^{\circ}\right)(\sqrt{3}+1)\left(3-\cot 30^{\circ}\right)$
$=(\sqrt{3}+1)(3-\sqrt{3}) \because \cot 30^{\circ}=\sqrt{3}(\sqrt{3}+1)(3-\sqrt{3}) \quad \because \cot 30^{\circ}=\sqrt{3}$
$=(\sqrt{3}+1)(\sqrt{3}-1) \sqrt{3}(\sqrt{3}+1)(\sqrt{3}-1) \sqrt{3}$
$=\left((\sqrt{3})^{2}-(1)^{2}\right) \sqrt{3}\left((\sqrt{3})^{2}-(1)^{2}\right) \sqrt{ } \overline{3}$
$=2 \sqrt{3} 2 \sqrt{3}$
R.H.S $=>\tan ^{3} 60-2 \sin 60^{\circ} \tan ^{3} 60-2 \sin 60^{\circ}$
$=(\sqrt{3})^{3}-2 \times \sqrt{3} 2(\sqrt{3})^{3}-2 \times \frac{\sqrt{3}}{2}$
$=3 \sqrt{3}-\sqrt{3} 3 \sqrt{ } \overline{3}-\sqrt{3}$
$=2 \sqrt{3} 2 \sqrt{ } \overline{3}$

L_ - _ $5=R_{\text {- }}$

Hernce Proved

