RD SHARMA
Solutions
Class 10 Maths
Chapter 11
Ex 11.1

Q.1: Determine a point which divides a line segment of length 12 cm internally in the ratio of 2:3. Also, justify your construction.

Solution:

Steps of Construction:

- 1. Draw a line segment AB of 12 cm
- 2. Through the points A and B draw two parallel line on the opposite side of AB
- **3.** Cut 2 equal parts on AX and 3 equal parts on BY such that $AX_1=X_1X_2$ $AX_1=X_1X_2$ and $BX_1=Y_1Y_2=Y_2Y_3BX_1=Y_1Y_2=Y_2Y_3$.
- **4.** Join $X_2Y_3X_2Y_3$ which intersects AB at P: APPB=23: $\frac{AP}{PB}=\frac{2}{3}$.

Justification:

In $\Delta AX_2P\Delta AX_2P$ and $\Delta BY_3P\Delta BY_3P$, we have $\angle APX_2 = \angle BPY_3\angle APX_2 = \angle BPY_3 \quad \{ \text{ Because they are vertically opposite angle} \}$ $\angle X_2AP = \angle Y_3BP\angle X_2AP = \angle Y_3BP \quad \{ \text{ Because they are alternate interior angles } \}$ $\Delta AX_2P\Delta AX_2P \quad \Delta BY_3P\Delta BY_3P \quad \{ \text{ Because AA similarity } \}$

∴ APBP =
$$AX_2BY_3 = 23 \frac{AP}{BP} = \frac{AX_2}{BY_3} = \frac{2}{3}$$
 { Because of C.P.C.T }

Q.2: Divide a line segment of length 9 cm internally in the ratio 4:3. Also, give justification for the construction.

Solution:

Steps of construction:

- 1. Draw a line segment AB of 9 cm
- 2. Through the points, A and B, draw two parallel lines AX and BY on the opposite side of AB
- **3.** Cut 4 equal parts on AX and 3 equal parts on BY such that: $AX_1 = X_1X_2 = X_2X_3 = X_3X_4$ $AX_1 = X_1X_2 = X_2X_3 = X_3X_4$ and $BY_1 = Y_1Y_2 = Y_2Y_3$ $BY_1 = Y_1Y_2 = Y_2Y_3$
- **4.** Join $X_4Y_3X_4Y_3$ which intersects AB at P

$$\therefore APPB = 43 :: \frac{AP}{PB} = \frac{4}{3}$$

Justification:

In $\triangle APX_4\triangle APX_4$ and $\triangle BPY_3\triangle BPY_3$, we have

 $\angle APX_4 = \angle BPY_3 \angle APX_4 = \angle BPY_3$ { Because they are vertically opposite angles }

 $\angle PAX_4 = \angle PBY_3 \angle PAX_4 = \angle PBY_3$ { Because they are alternate interior angle}

 $\triangle APX_4 \triangle APX_4$ $\triangle BPY_3 \triangle BPY_3$ { Because AA similarity }

∴ PAPB = AX₄BY₃ = 43 ∴
$$\frac{PA}{PB} = \frac{AX_4}{BY_3} = \frac{4}{3}$$
 { Because of C.P.C.T }

Q.3: Divide a line segment of length 14 cm internally in the ratio 2:5. Also, give justification for the construction.

Solution:

Steps of construction:

- (i) Draw a line segment AB of 14 cm
- (ii) Through the points A and B, draw two parallel lines AX and BY on the opposite side of AB
- (iii) Starting from A, Cut 2 equal parts on AX and starting from B, cut 5 equal parts on BY such that:

$$\begin{array}{l} \mathsf{AX_1} \text{=} \mathsf{X_1X_2} \mathsf{AX_1} = \mathsf{X_1X_2} \text{ and } \mathsf{BY_1} \text{=} \mathsf{Y_1Y_2} \text{=} \mathsf{Y_2Y_3} \text{=} \mathsf{Y_3Y_4} \text{=} \mathsf{Y_4Y_5} \\ \mathsf{BY_1} = \mathsf{Y_1Y_2} = \mathsf{Y_2Y_3} = \mathsf{Y_3Y_4} = \mathsf{Y_4Y_5} \end{array}$$

(iv) Join $X_2Y_5X_2Y_5$ which intersects AB at P

$$\therefore APPB = 25 \therefore \frac{AP}{PB} = \frac{2}{5}$$

Justification:

In $\Delta AP\, X_2 \Delta AP\, X_2~$ and $\Delta BP\, Y_5 \Delta BP\, Y_5$, we have

$$\angle APX_2 = \angle BPY_5 \angle APX_2 = \angle BPY_5$$
 { Because they are vertically opposite angles }

$$\angle PAX_2 = \angle PBY_5 \angle PAX_2 = \angle PBY_5$$
 { Because they are alternate interior angles }

Then, $\triangle APX_2\triangle APX_2$ $\triangle BPY_5\triangle BPY_5$ { Because AA similarity }

∴ APPB =
$$AX_2BY_5 = 25$$
 ∴ $\frac{AP}{PB} = \frac{AX_2}{BY_5} = \frac{2}{5}$ { Because of C.P.C.T }