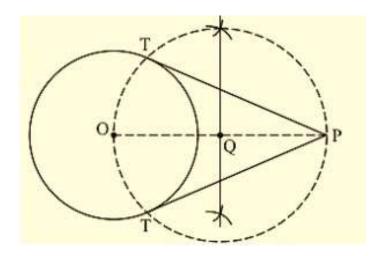
RD SHARMA
Solutions
Class 10 Maths
Chapter 11

Ex 11.3

Q.1: Draw a circle of radius 6 cm. From a point 10 cm away from its center, construct a pair of tangents to the circle and measure their lengths.

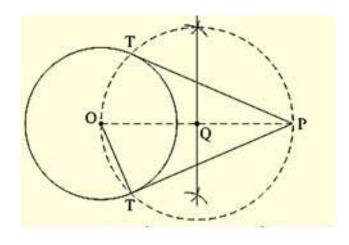

Solutions:

Given that:

Construct a circle of radius 6 cm, and let a point P = 10 cm from its centre, construct a pair of tangents to the circle.

Find the length of the tangents.

We follow the following steps to construct the given:



Steps of construction:

- 1. First of all, we draw a circle of radius AB = 6 cm.
- 2. Make a point P at a distance of OP = 10 cm, and join OP.
- 3. Draw a right bisector of P, intersecting OP at Q.
- **4.** Taking Q as center and radius OQ = PQ, draw a circle to intersect the given circle at T and T`.
- **5.** Join PT and PT to obtain the required tangents.

Thus, PT and PT are the required tangents.

Find the length of the tangents.

As we know that $OT \perp PT$ and ΔOPT is the right triangle.

Therefore,

OT = 6 cm and PO = 10 cm.

In ΔΟΡΤΔΟΡΤ,

$$PT^2 = OP^2 - OT^2PT^2 = OP^2 - OT^2$$

=
$$(10)^2$$
- $(6)^2$ $(10)^2$ - $(6)^2$

$$= 100 - 36$$

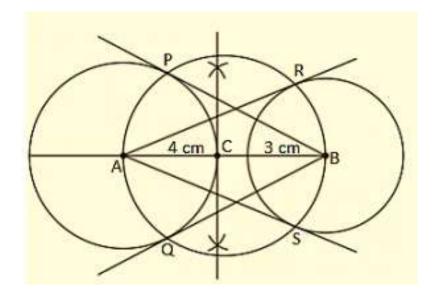
= 64

PT = 8 cm

Thus, length of tangents = 8 cm.

Q.2: Draw a circle of radius 3 cm. Take two points P and Q on one of its extended diameter each at a distance of 7 cm from its center. Draw tangents to the circle from these points P and Q.

Solutions:


Steps of construction:

- (i) Draw a line segment PQ of 14 cm.
- (ii) Take the midpoint O of PQ.
- (iii) Draw the perpendicular bisectors of PO and OQ which intersects at points R and S.
- (iv) With center R and radius RP draw a circle.
- (v) With center S and radius, SQ draw a circle.
- (vi) With center O and radius 3 cm draw another circle which intersects the previous circles at the points A, B, C, and D.
- (vii) Join PA, PB, QC, and QD.

So, PA, PB, QC, and QD are the required tangents.

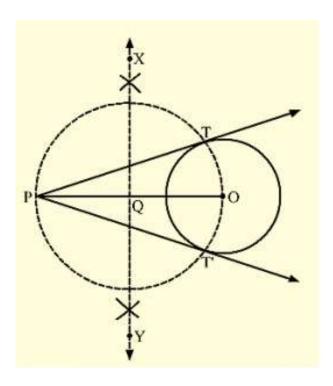
Q.3: Draw a line segment AB of length 8 cm. Taking A as the center, draw a circle of radius 4 cm and taking B as the center, draw another circle of radius 3 cm. Construct tangents to each circle from the center of the other circle.

Solution.

Steps of construction:

- (i) Draw a line segment AB of 8 cm.
- (ii) Draw the perpendicular of AB which intersects it at C.
- (iii) With the center, C and radius CA draw a circle.
- (iv) With centers A and B radius 4 cm and 3 cm, draw two circle which intersects the previous at the points P, Q, R and S.
- (v) Join AR, AS, BP and BQ

So, AR, AS, BP and BQ are the required tangents.

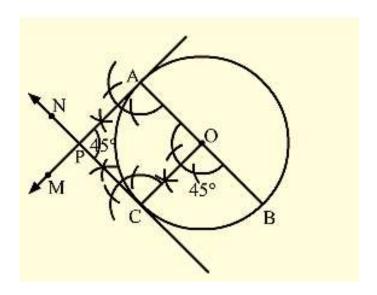

Q.4: Draw two tangents to a circle of radius 3.5 cm from a point P at a distance of 6.2 cm from its center.

Solution:

Steps of construction:

- 1. Draw a circle with O as a center and radius 3.5 cm.
- 2. Mark a point P outside the circle such that OP = 6.2 cm
- 3. Join OP. Draw the perpendicular bisector XY of OP, cutting OP at Q.

- **4.** Draw a circle with Q as center and radius PQ(or OQ), to intersect the given circle at the points T and T`.
- 5. Join PT and PT`.


Here, PT and PT` are the required tangents.

Q.5: Draw a pair of tangents to a circle of radius 4.5 cm, which are inclined to each other at an angle of $45^{\circ}45^{\circ}$.

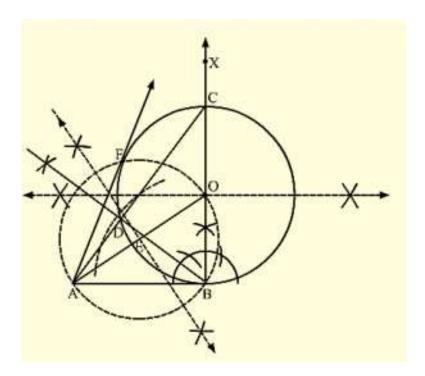
Solution:

Steps of Construction:

- 1. Draw a circle with center O and radius 4.5 cm.
- 2. Draw any diameter AOB of the circle.
- **3.** Construct $\angle BOC = 45^{\circ} \angle BOC = 45^{\circ}$ such that, radius OC cuts the circle at C.
- **4.** Draw AM \perp AB and CN \perp OC . Suppose AM and CN intersect each other at P.

Here, AP and CP are the pairs of tangents to the circle inclined to each other at an angle of $45^{\rm circ}$.

Q.6: Draw a right triangle ABC in which AB = 6 cm, BC = 6 cm and \angle B=90° \angle B = 90° . Draw BD perpendicular from B on AC and draw a circle passing through the points B, C and D. Construct tangents from A to this circle.


Solution:

Steps of construction:

- **1.** Draw a line segment AB = 6 cm
- **2.** At B, draw $\angle ABX = 90^{\circ} \angle ABX = 90^{\circ}$.
- 3. With B as center and radius 8 cm, draw an arc cutting ray BX at C.
- **4.** Join AC. Thus, $\triangle ABC \triangle ABC$ is the required triangle.
- **5.** From B, draw BD \perp ACBD \perp AC .
- 6. Draw the perpendicular bisector of BC, cutting BC at O.
- 7. With O as center and radius OB (or OC), draw a circle. This circle passes through B, C and D.
- **8.** Thus, this is the required circle.
- 9. Join OA.
- 10. Draw the perpendicular bisector of OA, cutting OA at E.

11. With E as a center and radius AE (or OE), draw a circle intersecting the circle with center O at B and F.

12. Join AF.

