RD SHARMA

Solutions

Class 10 Maths

Chapter 15

Ex15.4

1. $A B$ is a chord of a circle with centre O and radius $4 c m$. $A B$ is length 4 cm and divides circle into noo seguents. Find the area of minor segment
Sol:

Radius of circle $\mathrm{r}=4 \mathrm{~cm}=\mathrm{OA}=\mathrm{OB}$
Lengrh of chord $\mathrm{AB}=4 \mathrm{~cm}$
OAB is equilateral triangle $\angle \mathrm{AOB}=60^{\circ} \rightarrow \theta$
Angle subtended at ceure $\theta=60^{\circ}$
Area of segment $($ shaded region $)=($ area of sector $)-($ area of $\triangle A O B)$
$=\frac{\theta}{360^{\circ}} \times \pi r^{2}=\frac{\sqrt{3}}{4}(\text { side })^{2}$
$=\frac{60}{360} \times \frac{22}{7} \times 4 \times 4=\frac{\sqrt{2}}{4} \times 4 \times 4$
$=\frac{176}{3}-4 \sqrt{3}=58.67-6.92=51.75 \mathrm{~cm}^{2}$
2. A chord of circle of radius 14 cm makes a right angle at the centre. Find the areas of minor and major segments of the circle.
Sol:

Radius (r) $=14 \mathrm{~cm}$
$\theta=90^{\circ}$
$=\mathrm{OA}=\mathrm{OB}$
Area of minor segment (ANB)
$=($ area of $A N B$ sector $)-($ area of $\triangle A O B)$
$=\frac{\theta}{360^{\circ}} \times \pi r^{2}-\frac{1}{2} \times O A \times O B$
$=\frac{90}{360} \times \frac{22}{7} \times 14 \times 14-\frac{1}{2} \times 14 \times 14$
$=154-98=56 \mathrm{~cm}^{2}$
Area of major segment (other than shaded)
$=$ area of circle - area of segment ANB
$=\pi r^{2}-56$
$=\frac{22}{7} \times 14 \times 14-56$
$=616-56$
$=560 \mathrm{~cm}^{2}$.
3. A chord 10 cm long is drawn in a circle whose radius is $5 \sqrt{2} \mathrm{~cm}$. Find the area of both segments
Sol:
Given radius $=\mathrm{r}=5 \sqrt{2} \mathrm{~cm}=\mathrm{OA}=\mathrm{OB}$
Length of chord $\mathrm{AB}=10 \mathrm{~cm}$

In $\triangle \mathrm{OAB}, \mathrm{OA}=\mathrm{OB}=5 \sqrt{2} \mathrm{~cm} \mathrm{AB}=10 \mathrm{~cm}$ $O A^{2}+O B^{2}=(5 \sqrt{2})^{2}+(5 \sqrt{2})^{2}=50+50=100=(A B)^{2}$
Pythagoras theorem is satisfied $O A B$ is right triangle
$\theta=$ angle subtended by chord $=\angle \mathrm{AOB}=90^{\circ}$
Area of segment $($ minor $)=$ shaded region
$=$ area of sector - area of $\triangle O A B$
$=\frac{\theta}{360} \times \pi r^{2}-\frac{1}{2} \times O A \times O B$
$=\frac{90}{360} \times \frac{22}{7}(5 \sqrt{2})^{2}-\frac{1}{2} \times 5 \sqrt{2} \times 5 \sqrt{2}$
$=\frac{275}{7}-25-\frac{100}{7} \mathrm{~cm}^{2}$
Area of major segment $=($ area of circle $)-($ area of minor segment $)$
$=\pi r^{2} 2-\frac{100}{7}$
$=\frac{22}{7} \times(5 \sqrt{2})^{2}-\frac{100}{7}$
$=\frac{1100}{7}-\frac{100}{7}=\frac{1000}{7} \mathrm{~cm}^{2}$
4. A chord AB of circle, of radius 14 cm makes an angle of 60° at the centre. Find the area of minor segment of circle.
Sol:

Given radius $(\mathrm{r})=14 \mathrm{~cm}=\mathrm{OA}=\mathrm{OB}$
$\theta=$ angle at centre $=60^{\circ}$
In $\triangle A O B, \angle A=\angle B \quad$ [angles opposite to equal sides $O A$ and $O B]=x$
By angle sum property $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{O}=180^{\circ}$
$\mathrm{x}+\mathrm{x}+60^{\circ}=180^{\circ} \Rightarrow 2 \mathrm{x}=120^{\circ} \Rightarrow \mathrm{x}=60^{\circ}$
All angles are $60^{\circ}, \mathrm{OAB}$ is equilateral $\mathrm{OA}=\mathrm{OB}=\mathrm{AB}$
Area of segment $=$ area of sector - area $\Delta l e ~ O A B$
$=\frac{\theta}{360^{\circ}} \times \pi r^{2}-\frac{\sqrt{3}}{4} \times(-A B)^{2}$
$=\frac{60}{360} \times \frac{22}{7} \times 14 \times 14-\frac{\sqrt{3}}{4} \times 14 \times 14$
$=\frac{308}{3}-49 \sqrt{3}=\frac{308-147 \sqrt{3}}{3} \mathrm{~cm}^{2}$
5. AB is the diameter of a circle, centre O . C is a point on the circumference such that $\angle \mathrm{COB}$ $=\theta$. The area of the minor segment cutoff by AC is equal to twice the area of sector BOC .
Prove that $\sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}=\pi\left(\frac{1}{2}-\frac{\theta}{120^{\circ}}\right)$
Sol:

Given $A B$ is diameter of circle with centre O
$\angle \mathrm{COB}=\theta$
Area of sector $\mathrm{BOC}=\frac{\theta}{360^{\circ}} \times \pi r^{2}$
Area of segment cut off, by $\mathrm{AC}=($ area of sector $)-($ area of $\triangle \mathrm{AOC})$
$\angle \mathrm{AOC}=180-\theta[\angle \mathrm{AOC}$ and $\angle \mathrm{BOC}$ form linear pair]
Area of sector $=\frac{(180-\theta)}{360^{\circ}} \times \pi r^{2}=\frac{\pi r^{2}}{2}-\frac{\pi \theta r^{2}}{360^{\circ}}$
In $\triangle A O C$, drop a perpendicular $A M$, this bisects $\angle A O C$ and side $A C$.
Now, In $\triangle A M O, \sin \angle A O M=\frac{A M}{D A} \Rightarrow \sin \left(\frac{180-\theta}{2}\right)=\frac{A M}{R}$
$\Rightarrow \mathrm{AM}=\mathrm{R} \sin \left(90-\frac{\theta}{2}\right)=R \cdot \cos \frac{\theta}{2}$
$\cos \angle \mathrm{ADM}=\frac{O M}{O A} \Rightarrow \cos \left(90-\frac{\theta}{2}\right)=\frac{O M}{Y} \Rightarrow O M=R \cdot \operatorname{Sin} \frac{\theta}{2}$
Area of segment $=\frac{\pi r^{2}}{2}-\frac{\pi \theta r^{2}}{360^{\circ}}-\frac{1}{2}(A C \times O M)[A C=2 A M]$
$=\frac{\pi r^{2}}{2}-\frac{\pi \theta r^{2}}{360^{\circ}}-\frac{1}{2} \times\left(2 R \cos \frac{\theta}{2} R \sin \frac{\theta}{2}\right)$
$=r^{2}\left[\frac{\pi}{2}-\frac{\pi \theta}{360^{\circ}}-\cos \frac{\theta}{2} \sin \frac{\theta}{2}\right]$

$$
\begin{aligned}
& \text { Area of segment by AC }=2 \text { (Area of sector BDC) } \\
& r^{2}\left[\frac{\pi}{2}-\frac{\pi \theta}{360^{\circ}}-\cos \frac{\theta}{2} \cdot \sin \frac{\theta}{2}\right]=2 r^{2}\left[\frac{\pi \theta}{360^{\circ}}\right] \\
& \cos \frac{\theta}{2} \cdot \sin \frac{\theta}{2}=\frac{\pi}{2}-\frac{\pi \theta}{360}-\frac{2 \pi \theta}{360^{\circ}} \\
& =\frac{\pi}{2}-\frac{\pi \theta}{360^{\circ}}[1+2] \\
& =\frac{\pi}{2}-\frac{\pi \theta}{360^{\circ}}=\pi\left(\frac{1}{2}-\frac{\theta}{120^{\circ}}\right) \\
& \cos \frac{\theta}{2} \cdot \sin \frac{\theta}{2}=\pi\left(\frac{1}{2}-\frac{\theta}{120^{\circ}}\right)
\end{aligned}
$$

6. A chord of a circle subtends an angle θ at the centre of circle. The area of the minor segment cut off by the chord is one eighth of the area of circle. Prove that $8 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}+$ $\pi=\frac{\pi \theta}{45}$ Sol:

Let radius of circle $=\mathrm{r}$
Area of circle $=\pi r^{2}$
$A B$ is a chord, $O A, O B$ are joined drop $O M \perp A B$. This $O M$ bisects $A B$ as well as $\angle A O B$.
$\angle A O M=\angle M O B=\frac{1}{2}(0)=\frac{\theta}{2} \quad A B=2 A M$
In $\triangle A O M, \angle A M O=90^{\circ}$
$\operatorname{Sin} \frac{\theta}{2}=\frac{A M}{A D} \Rightarrow A M=R \cdot \sin \frac{\theta}{2} \quad \mathrm{AB}=2 \mathrm{R} \sin \frac{\theta}{2}$
$\operatorname{Cos} \frac{\theta}{2}=\frac{O M}{A D} \Rightarrow O M=R \cos \frac{\theta}{2}$
Area of segment cut off by $\mathrm{AB}=$ (area of sector) - (area of triangles)
$=\frac{\theta}{360} \times \pi r^{2}-\frac{1}{2} \times A B \times O M$
$=r^{2}\left[\frac{\pi \theta}{360^{\circ}}-\frac{1}{2} \cdot 2 r \sin \frac{\theta}{2} \cdot R \cos \frac{\theta}{2}\right]$
$=R^{2}\left[\frac{\pi \theta}{360^{\circ}}-\sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}\right]$
Area of segment $=\frac{1}{2}$ (area of circle)
$r^{2}\left[\frac{\pi \theta}{360}-\sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}\right]=\frac{1}{8} \pi r^{2}$
$\frac{8 \pi \theta}{360^{\circ}}-8 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}=\pi$
$8 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}+\pi=\frac{\pi \theta}{45}$

