RD SHARMA
Solutions
Class 9 Maths
Chapter 6
Ex 6.4

In each of the following, use factor theorem to find whether polynomial g(x) is a factor of polynomial f(x), or not: (1-7)

Q1.
$$f(x) = x^3 - 6x^2 + 11x - 6$$
, $g(x) = x - 3$

Sol:

Here,
$$f(x) = x^3 - 6x^2 + 11x - 6$$

$$g(x) = x - 3$$

To prove that g(x) is the factor of f(x),

we should show \Rightarrow f(3) = 0

here, x - 3 = 0

$$=> x = 3$$

Substitute the value of x in f(x)

$$f(3) = 3^3 - 6 * (3)^2 + 11(3) - 6$$

$$= 27 - (6*9) + 33 - 6$$

$$= 27 - 54 + 33 - 6$$

$$= 60 - 60$$

= 0

Since, the result is 0 g(x) is the factor of f(x)

Q2.
$$f(x) = 3x^4 + 17x^3 + 9x^2 - 7x - 10$$
, $g(x) = x + 5$

Sol:

Here,
$$f(x) = 3x^4 + 17x^3 + 9x^2 - 7x - 10$$

$$g(x) = x + 5$$

To prove that g(x) is the factor of f(x),

we should show => f(-5) = 0

here, x + 5 = 0

$$=> x = -5$$

Substitute the value of x in f(x)

$$f(-5) = 3(-5)^4 + 17(-5)^3 + 9(-5)^2 - 7(-5) - 10$$

= 0

Since, the result is 0 g(x) is the factor of f(x)

Q3.
$$f(x) = x^5 + 3x^4 - x^3 - 3x^2 + 5x + 15$$
, $g(x) = x + 3$

Sol:

Here, $f(x) = x^5 + 3x^4 - x^3 - 3x^2 + 5x + 15$

g(x) = x + 3

To prove that g(x) is the factor of f(x),

we should show => f(-3) = 0

here, x + 3 = 0

$$=> x = -3$$

Substitute the value of x in f(x)

$$f(-3) = (-3)^5 + 3(-3)^4 - (-3)^3 - 3(-3)^2 + 5(-3) + 15$$

$$= -243 + 243 + 27 - 27 - 15 + 15$$

= 0

Since, the result is 0 g(x) is the factor of f(x)

Q4.
$$f(x) = x^3 - 6x^2 - 19x + 84$$
, $g(x) = x - 7$

Sol:

Here,
$$f(x) = x^3 - 6x^2 - 19x + 84$$

$$q(x) = x - 7$$

To prove that g(x) is the factor of f(x),

we should show \Rightarrow f(7) = 0

here, x - 7 = 0

$$=> x = 7$$

Substitute the value of x in f(x)

$$f(7) = 7^3 - 6(7)^2 - 19(7) + 84$$

$$= 343 - (6*49) - (19*7) + 84$$

$$= 427 - 427$$

= 0

Since, the result is 0 g(x) is the factor of f(x)

Q5.
$$f(x) = 3x^3 + x^2 - 20x + 12$$
, $g(x) = 3x - 2$

Sol:

Here,
$$f(x) = 3x^3 + x^2 - 20x + 12$$

$$q(x) = 3x - 2$$

To prove that g(x) is the factor of f(x),

we should show => $f(\frac{2}{3}) = 0$

here, 3x - 2 = 0

$$=> 3x = 2$$

$$=> \chi = \frac{2}{3}$$

Substitute the value of x in f(x)

$$f(\frac{2}{3}) = 3(\frac{2}{3})^{4}(3) + (\frac{2}{3})^{2} - 20(\frac{2}{3}) + 12$$

$$=3(\frac{8}{27})+\frac{4}{9}-\frac{40}{3}+12$$

$$=\frac{8}{9}+\frac{4}{9}-\frac{40}{3}+12$$

$$=\frac{12}{9}-\frac{40}{3}+12$$

Taking L.C.M

$$= \frac{12-120+108}{9}$$

$$=\frac{120-120}{9}$$

= 0

Since, the result is 0 g(x) is the factor of f(x)

Q6.
$$f(x) = 2x^3 - 9x^2 + x + 13$$
, $g(x) = 3 - 2x$

Sol:

Here,
$$f(x) = 2x^3 - 9x^2 + x + 13$$

$$g(x) = 3 - 2x$$

To prove that g(x) is the factor of f(x),

To prove that g(x) is the factor of f(x),

we should show => $f(\frac{3}{2}) = 0$

here, 3 - 2x = 0

$$=> -2x = -3$$

$$=> \chi = \frac{3}{2}$$

$$f(\frac{3}{2}) = 2(\frac{3}{2})^3 - 9(\frac{3}{2})^2 + (\frac{3}{2}) + 13$$

$$=2(\frac{27}{8})-9(\frac{9}{4})+\frac{3}{2}+12$$

$$=\left(\frac{27}{4}\right)-\left(\frac{81}{4}\right)+\frac{3}{2}+12$$

Taking L.C.M

$$= \frac{21 - 81 + 6 + 48}{4}$$

$$=\frac{81-81}{4}$$

= 0

Since, the result is 0 g(x) is the factor of f(x)

Q7.
$$f(x) = x^3 - 6x^2 + 11x - 6$$
, $g(x) = x^2 - 3x + 2$

Sol:

Here,
$$f(x) = x^3 - 6x^2 + 11x - 6$$

$$g(x) = x^2 - 3x + 2$$

First we need to find the factors of $x^2 - 3x + 2$

$$=>x^2-2x-x+2$$

$$=> x(x-2)-1(x-2)$$

$$=> (x - 1)$$
 and $(x - 2)$ are the factors

To prove that g(x) is the factor of f(x),

The results of f(1) and f(2) should be zero

Let,
$$x - 1 = 0$$

x = 1

substitute the value of x in f(x)

$$f(1) = 1^3 - 6(1)^2 + 11(1) - 6$$

$$= 1 - 6 + 11 - 6$$

= 0

Let,
$$x - 2 = 0$$

$$x = 2$$

substitute the value of x in f(x)

$$f(2) = 2^3 - 6(2)^2 + 11(2) - 6$$

$$= 8 - (6 * 4) + 22 - 6$$

$$= 8 - 24 + 22 - 6$$

$$= 30 - 30$$

= 0

Since, the results are 0 g(x) is the factor of f(x)

Q8. Show that (x - 2), (x + 3) and (x - 4) are the factors of $x^3 - 3x^2 - 10x + 24$

Sol:

Here,
$$f(x) = x^3 - 3x^2 - 10x + 24$$

The factors given are (x - 2), (x + 3) and (x - 4)

To prove that g(x) is the factor of f(x),

The results of f(2), f(-3) and f(4) should be zero

Let,
$$x - 2 = 0$$

$$=> x = 2$$

Substitute the value of x in f(x)

$$f(2) = 2^3 - 3(2)^2 - 10(2) + 24$$

$$= 8 - (3 * 4) - 20 + 24$$

$$= 8 - 12 - 20 + 24$$

$$= 32 - 32$$

= 0

Let,
$$x + 3 = 0$$

$$=> x = -3$$

Substitute the value of x in f(x)

$$f(-3) = (-3)^3 - 3(-3)^2 - 10(-3) + 24$$

$$= -27 - 3(9) + 30 + 24$$

$$= 54 - 54$$

= 0

Let,
$$x - 4 = 0$$

$$=> x = 4$$

Substitute the value of x in f(x)

$$f(4) = (4)^3 - 3(4)^2 - 10(4) + 24$$

$$= 64 - (3*16) - 40 + 24$$

$$= 64 - 48 - 40 + 24$$

$$= 84 - 84$$

= 0

Since, the results are 0 g(x) is the factor of f(x)

Q9. Show that (x + 4), (x - 3) and (x - 7) are the factors of $x^3 - 6x^2 - 19x + 84$

Sol:

Here
$$f(x) = x^3 - 6x^2 - 19x + 84$$

The factors given are (x + 4), (x - 3) and (x - 7)

To prove that g(x) is the factor of f(x),

The results of f(-4), f(3) and f(7) should be zero

Let,
$$x + 4 = 0$$

$$=> x = -4$$

Substitute the value of x in f(x)

$$f(-4) = (-4)^3 - 6(-4)^2 - 19(-4) + 84$$

= 0

Let,
$$x - 3 = 0$$

$$=> x = 3$$

Substitute the value of x in f(x)

$$f(3) = (3)^3 - 6(3)^2 - 19(3) + 84$$

$$= 27 - (6 * 9) - (19 * 3) + 84$$

= 0

Let,
$$x - 7 = 0$$

$$=> x = 7$$

Substitute the value of x in f(x)

$$f(7) = (7)^3 - 6(7)^2 - 19(7) + 84$$

$$= 343 - (6 * 49) - (19 * 7) + 84$$

$$= 343 - 294 - 133 + 84$$

$$= 427 - 427$$

= 0

Since, the results are 0 g(x) is the factor of f(x)

Q10. For what value of a is (x - 5) a factor of $x^3 - 3x^2 + ax - 10$

Sol:

Here,
$$f(x) = x^3 - 3x^2 + ax - 10$$

By factor theorem

If (x - 5) is the factor of f(x) then , f(5) = 0

$$=> x - 5 = 0$$

$$=> x = 5$$

Substitute the value of x in f(x)

$$f(5) = 5^3 - 3(5)^2 + a(5) - 10$$

Equate f(5) to zero

$$f(5) = 0$$

$$=> a = \frac{-40}{5}$$

When a = -8, (x - 5) will be factor of f(x)

Q11. Find the value of a such that (x - 4) is a factor of $5x^3 - 7x^2 - ax - 28$

Sol:

Here,
$$f(x) = 5x^3 - 7x^2 - ax - 28$$

By factor theorem

If (x - 4) is the factor of f(x) then , f(4) = 0

$$=> x - 4 = 0$$

$$=> x = 4$$

Substitute the value of x in f(x)

$$f(4) = 5(4)^3 - 7(4)^2 - a(4) - 28$$

$$= 5(64) - 7(16) - 4a - 28$$

$$= 180 - 4$$

Equate f(4) to zero, to find a

$$f(4) = 0$$

$$=> 180 - 4a = 0$$

$$=> a = \frac{180}{4}$$

When a = 45, (x - 4) will be factor of f(x)

Q12. Find the value of a, if (x + 2) is a factor of $4x^4 + 2x^3 - 3x^2 + 8x + 5a$

Sol:

Here, $f(x) = 4x^4 + 2x^3 - 3x^2 + 8x + 5a$

By factor theorem

If (x + 2) is the factor of f(x) then, f(-2) = 0

$$=> x + 2 = 0$$

$$=> x = -2$$

Substitute the value of x in f(x)

$$f(-2) = 4(-2)^4 + 2(-2)^3 - 3(-2)^2 + 8(-2) + 5a$$

$$= 4(16) + 2(-8) - 3(4) - 16 + 5a$$

$$= 5a + 20$$

equate f(-2) to zero

$$f(-2) = 0$$

$$=> a = \frac{-20}{5}$$

When a = -4, (x + 2) will be factor of f(x)

Q13. Find the value of k if x - 3 is a factor of $k^2x^3 - kx^2 + 3kx - k$

Sol:

Let
$$f(x) = k^2x^3 - kx^2 + 3kx - k$$

From factor theorem if x - 3 is the factor of f(x) then f(3) = 0

$$=> x - 3 = 0$$

$$=> x = 3$$

Substitute the value of x in f(x)

$$f(3) = k^2(3)^3 - k(3)^2 + 3k(3) - k$$

$$= 27k^2 - 9k + 9k - k$$

$$= 27k^2 - k$$

$$= k(27k - 1)$$

Equate f(3) to zero, to find k

$$=> f(3) = 0$$

$$=> k(27k - 1) = 0$$

$$=> k = 0$$
 and $27k - 1 = 0$

=> k = 0 and k =
$$\frac{1}{27}$$

When k = 0 and $\frac{1}{27}$, (x – 3) will be the factor of f(x)

Q14. Find the values of a and b, if x^2 – 4 is a factor of $ax^4 + 2x^3 - 3x^2 + bx - 4$

Sol:

Given,
$$f(x) = ax^4 + 2x^3 - 3x^2 + bx - 4$$

$$g(x) = x^2 - 4$$

first we need to find the factors of g(x)

$$=> x^2 - 4$$

$$=> x^2 = 4$$

$$=> x = \sqrt{4}$$

$$=> x = \pm 2$$

(x - 2) and (x + 2) are the factors

By factor theorem if (x - 2) and (x + 2) are the factors of f(x) the result of f(2) and f(-2) should be zero

Let,
$$x - 2 = 0$$

$$=> x = 2$$

Substitute the value of x in f(x)

$$f(2) = a(2)^4 + 2(2)^3 - 3(2)^2 + b(2) - 4$$

$$= 16a + 2(8) - 3(4) + 2b - 4$$

$$= 16a + 2b$$

Equate f(2) to zero

$$=> 16a + 2b = 0$$

$$=> 2(8a + b) = 0$$

Let,
$$x + 2 = 0$$

$$=> x = -2$$

$$f(-2) = a(-2)^4 + 2(-2)^3 - 3(-2)^2 + b(-2) - 4$$

$$= 16a + 2(-8) - 3(4) - 2b - 4$$

$$= 16a - 2b - 32$$

Equate f(2) to zero

$$=> 16a - 2b - 32 = 0$$

$$=> 2(8a - b) = 32$$

Solve equation 1 and 2

$$8a + b = 0$$

$$8a - b = 16$$

substitute a value in eq 1

$$8(1) + b = 0$$

$$=> b = -8$$

The values are a = 1 and b = -8

Q15. Find
$$\alpha$$
 , β if (x + 1) and (x + 2) are the factors of $x^3 + 3x^2 - 2\alpha x + \beta$

Sol:

Given,
$$f(x) = x^3 + 3x^2 - 2\alpha x + \beta$$
 and the factors are $(x + 1)$ and $(x + 2)$

From factor theorem, if they are tha factors of f(x) then results of f(-2) and f(-1) should be zero

Let,
$$x + 1 = 0$$

$$=> x = -1$$

Substitute value of x in f(x)

$$f(-1) = (-1)^3 + 3(-1)^2 - 2\alpha(-1) + \beta$$

$$= -1 + 3 + 2\alpha + \beta$$

$$= 2\alpha + \beta + 2 - - - 1$$

Let,
$$x + 2 = 0$$

$$=> x = -2$$

Substitute value of x in f(x)

$$f(-2) = (-2)^3 + 3(-2)^2 - 2\alpha(-2) + \beta$$

$$= -8 + 12 + 4\alpha + \beta$$

$$= 4\alpha + \beta + 4 ---- 2$$

Solving 1 and 2 i.e (1 – 2)

$$=> 2\alpha + \beta + 2 - (4\alpha + \beta + 4) = 0$$

$$=> -2\alpha - 2 = 0$$

$$=> 2\alpha = -2$$

$$\Rightarrow \alpha = -1$$

Substitute α = -1 in equation 1

$$=> 2(-1) + \beta = -2$$

$$=> \beta = -2 + 2$$

$$=> \beta$$
= 0

The values are $\alpha = -1$ and $\beta = 0$

Q16. Find the values of p and q so that $x^4 + px^3 + 2x^2 - 3x + q$ is divisible by $(x^2 - 1)$

Sol:

Here,
$$f(x) = x^4 + px^3 + 2x^2 - 3x + q$$

$$q(x) = x^2 - 1$$

first, we need to find the factors of x^2-1

$$=> x^2 - 1 = 0$$

$$=> x^2 = 1$$

$$=> x = \pm 1$$

$$=> (x + 1)$$
 and $(x - 1)$

From factor theorem, if x = 1, -1 are the factors of f(x) then f(1) = 0 and f(-1) = 0

Let us take, x + 1

$$=> x + 1 = 0$$

$$=> \chi = -1$$

Substitute the value of x in f(x)

$$f(-1) = (-1)^4 + p(-1)^3 + 2(-1)^2 - 3(-1) + q$$

$$= 1 - p + 2 + 3 + q$$

$$= -p + q + 6 --- 1$$

Let us take, x - 1

$$=> x - 1 = 0$$

$$=> x = 1$$

$$f(1) = (1)^4 + p(1)^3 + 2(1)^2 - 3(1) + q$$

$$= 1 + p + 2 - 3 + q$$

Solve equations 1 and 2

$$-p + q = -6$$

$$p + q = 0$$

$$2q = -6$$

$$q = -3$$

substitute q value in equation 2

$$p + q = 0$$

$$p - 3 = 0$$

$$p = 3$$

the values of are p = 3 and q = -3

Q17. Find the values of a and b so that (x + 1) and (x - 1) are the factors of $x^4 + ax^3 - 3x^2 + 2x + b$

Sol:

Here,
$$f(x) = x^4 + ax^3 - 3x^2 + 2x + b$$

The factors are (x + 1) and (x - 1)

From factor theorem, if x = 1, -1 are the factors of f(x) then f(1) = 0 and f(-1) = 0

Let, us take x + 1

$$=> x + 1 = 0$$

$$=> \chi = -1$$

Substitute value of x in f(x)

$$f(-1) = (-1)^4 + a(-1)^3 - 3(-1)^2 + 2(-1) + b$$

$$= 1 - a - 3 - 2 + b$$

Let, us take x - 1

$$=> x - 1 = 0$$

$$=> x = 1$$

Substitute value of x in f(x)

$$f(1) = (1)^4 + a(1)^3 - 3(1)^2 + 2(1) + b$$

$$= 1 + a - 3 + 2 + b$$

Solve equations 1 and 2

$$-a + b = 4$$

$$a + b = 0$$

$$2b = 4$$

$$b = 2$$

substitute value of b in eq 2

$$a + 2 = 0$$

$$a = -2$$

the values are a = -2 and b = 2

Q18. If $x^3 + ax^2 - bx + 10$ is divisible by $x^3 - 3x + 2$, find the values of a and b

Sol:

Here,
$$f(x) = x^3 + ax^2 - bx + 10$$

$$g(x) = x^3 - 3x + 2$$

first, we need to find the factors of g(x)

$$q(x) = x^3 - 3x + 2$$

$$= x^3 - 2x - x + 2$$

$$= x(x - 2) - 1(x - 2)$$

=
$$(x - 1)$$
 and $(x - 2)$ are the factors

From factor theorem, if x = 1, 2 are the factors of f(x) then f(1) = 0 and f(2) = 0

Let, us take x - 1

$$=> x - 1 = 0$$

$$=> x = 1$$

Substitute the value of x in f(x)

$$f(1) = 1^3 + a(1)^2 - b(1) + 10$$

$$= 1 + a - b + 10$$

Let, us take x - 2

$$=> x - 2 = 0$$

$$=> x = 2$$

Substitute the value of x in f(x)

$$f(2) = 2^3 + a(2)^2 - b(2) + 10$$

$$= 8 + 4a - 2b + 10$$

$$= 4a - 2b + 18$$

Equate f(2) to zero

$$=> 4a - 2b + 18 = 0$$

$$=> 2(2a - b + 9) = 0$$

Solve 1 and 2

$$a - b = -11$$

$$2a - b = -9$$

$$(-) (+) (+)$$

substitute a value in eq 1

$$=> 2 - b = -11$$

$$=> -b = -11 - 2$$

$$=> -b = -13$$

The values are a = 2 and b = 13

Q19. If both (x + 1) and (x - 1) are the factors of $ax^3 + x^2 - 2x + b$, Find the values of a and b

Sol:

Here,
$$f(x) = ax^3 + x^2 - 2x + b$$

$$(x + 1)$$
 and $(x - 1)$ are the factors

From factor theorem, if x = 1, -1 are the factors of f(x) then f(1) = 0 and f(-1) = 0

Let,
$$x - 1 = 0$$

$$=> x = -1$$

Substitute x value in f(x)

$$f(1) = a(1)^3 + (1)^2 - 2(1) + b$$

$$= a + 1 - 2 + b$$

Let,
$$x + 1 = 0$$

$$=> x = -1$$

Substitute x value in f(x)

$$f(-1) = a(-1)^3 + (-1)^2 - 2(-1) + b$$

$$= -a + 1 + 2 + b$$

Solve equations 1 and 2

$$a + b = 1$$

$$-a + b = -3$$

$$2b = -2$$

$$=> b = -1$$

substitute b value in eq 1

$$=> a = 1 + 1$$

The values are a = 2 and b = -1

Q20. What must be added to $x^3 - 3x^2 - 12x + 19$ so that the result is exactly divisible by $x^2 + x - 6$ Sol :

Here,
$$p(x) = x^3 - 3x^2 - 12x + 19$$

$$g(x) = x^2 + x - 6$$

by division algorithm, when p(x) is divided by g(x), the remainder will be a linear expression in x

let, r(x) = ax + b is added to p(x)

$$\Rightarrow$$
 f(x) = p(x) + r(x)

$$= x^3 - 3x^2 - 12x + 19 + ax + b$$

$$f(x) = x^3 - 3x^2 + x(a-12) + 19 + b$$

We know that , $g(x) = x^2 + x - 6$

First, find the factors for q(x)

$$q(x) = x^2 + 3x - 2x - 6$$

$$= x(x + 3) - 2(x + 3)$$

$$= (x + 3) (x - 2)$$
 are the factors

From, factor theorem when (x + 3) and (x - 2) are the factors of f(x) the f(-3) = 0 and f(2) = 0

Let,
$$x + 3 = 0$$

$$=> x = -3$$

Substitute the value of x in f(x)

$$f(-3) = (-3)^3 - 3(-3)^2 + (-3)(a-12) + 19 + b$$

$$= -27 - 27 - 3a + 24 + 19 + b$$

Let,
$$x - 2 = 0$$

$$=> x = 2$$

$$f(2) = (2)^3 - 3(2)^2 + (2)(a-12) + 19 + b$$

$$= 8 - 12 + 2a - 24 + b$$

$$= 2a + b - 9 - - 2$$

Solve equations 1 and 2

$$-3a + b = -1$$

$$2a + b = 9$$

$$-5a = -10$$

substitute the value of a in eq 1

$$=> -3(2) + b = -1$$

$$=> -6 + b = -1$$

$$=> b = -1 + 6$$

$$=> b = 5$$

$$r(x) = ax + b$$

$$= 2x + 5$$

$$\therefore$$
 $x^3 - 3x^2 - 12x + 19$ is divided by $x^2 + x - 6$ when it is added by 2x + 5

Q21. What must be added to $x^3-6x^2-15x+80$ so that the result is exactly divisible by x^2+x-12 Sol :

Let,
$$p(x) = x^3 - 6x^2 - 15x + 80$$

$$g(x) = x^2 + x - 12$$

by division algorithm, when p(x) is divided by q(x) the remainder is a linear expression in x.

so, let r(x) = ax + b is subtracted from p(x), so that p(x) - q(x) is divisible by q(x)

$$let f(x) = p(x) - q(x)$$

$$q(x) = x^2 + x - 12$$

$$= x^2 + 4x - 3x - 12$$

$$= x(x + 4) (-3)(x + 4)$$

$$= (x+4), (x-3)$$

clearly, (x - 3) and (x + 4) are factors of q(x)

so, f(x) will be divisible by q(x) if (x - 3) and (x + 4) are factors of q(x)

from, factor theorem

$$f(-4) = 0$$
 and $f(3) = 0$

$$\Rightarrow$$
 f(3) = $3^3 - 6(3)^2 - 3(a + 15) + 80 - b = 0$

Similarly,

$$f(-4) = 0$$

$$\Rightarrow$$
 f(-4) \Rightarrow $(-4)^3 - 6(-4)^2 - (-4)(a+15) + 80 - b = 0$

$$=> -64 - 96 - 4a + 60 + 80 - b = 0$$

Substract eq 1 and 2

$$=> 4a - b - 20 - 8 + 3a + b = 0$$

$$=> 7a - 28 = 0$$

$$\Rightarrow$$
 a = $\frac{28}{7}$

Put a = 4 in eq 1

$$=> -3(4) - b = -8$$

$$=> -b - 12 = -8$$

$$=> -b = -8 + 12$$

$$=> b = -4$$

Substitute a and b values in r(x)

$$=> r(x) = ax + b$$

$$= 4x - 4$$

Hence, p(x) is divisible by q(x), if r(x) = 4x - 4 is subtracted from it

Q22. What must be added to $3x^3 + x^2 - 22x + 9$ so that the result is exactly divisible by $3x^2 + 7x - 6$ Sol :

Let,
$$p(x) = 3x^3 + x^2 - 22x + 9$$
 and $q(x) = 3x^2 + 7x - 6$

By division theorem, when p(x) is divided by q(x), the remainder is a linear equation in x.

Let, r(x) = ax + b is added to p(x), so that p(x) + r(x) is divisible by q(x)

$$f(x) = p(x) + r(x)$$

$$=> f(x) = 3x^3 + x^2 - 22x + 9(ax + b)$$

$$\Rightarrow = 3x^3 + x^2 + x(a-22) + b + 9$$

We know that,

$$q(x) = 3x^2 + 7x - 6$$

$$=3x^2+9x-2x-6$$

$$= 3x(x+3) - 2(x+3)$$

$$= (3x-2)(x+3)$$

So, f(x) is divided by q(x) if (3x-2) and (x+3) are the factors of f(x)

From, factor theorem

$$f(\frac{2}{3}) = 0$$
 and $f(-3) = 0$

let,
$$3x - 2 = 0$$

$$3x = 2$$

$$x = \frac{2}{3}$$

=>
$$f(\frac{2}{3}) = 3(\frac{2}{3})^3 + (\frac{2}{3})^4(2) + (\frac{2}{3})(a - 22) + b + 9$$

$$=3(\frac{8}{27})+\frac{4}{9}+\frac{2}{3}a-\frac{44}{3}+b+9$$

$$=\frac{12}{9}+\frac{2}{3}a-\frac{44}{3}+b+9$$

$$= \frac{12+6a-132+9b+81}{9}$$

Equate to zero

$$=>\frac{12+6a-132+9b+81}{9}=0$$

$$=> 6a + 9b - 39 = 0$$

$$=> 3(2a + 3b - 13) = 0$$

Similarly,

Let,
$$x + 3 = 0$$

$$=> x = -3$$

$$=> f(-3) = 3(-3)^3 + (-3)^2 + (-3)(a-22) + b + 9$$

$$= -3a + b + 3$$

Equate to zero

$$-3a + b + 3 = 0$$

Multiply by 3

Substact eq 1 from 2

$$\Rightarrow$$
 a = $\frac{22}{11}$

Substitute a value in eq 1

$$=> -3(2) + b = -3$$

$$=> -6 + b = -3$$

$$=> b = -3 + 6$$

$$=> b = 3$$

Put the values in r(x)

$$r(x) = ax + b$$

$$= 2x + 3$$

Hence, p(x) is divisible by q(x), if r(x) = 2x + 3 is added to it

Q23. If x - 2 is a factor of each of the following two polynomials, find the value of a in each case:

1.
$$x^3 - 2ax^2 + ax - 1$$

$$2 x^5 - 3x^4 - ax^3 + 3ax^2 + 2ax + 4$$

Sol:

(1) let
$$f(x) = x^3 - 2ax^2 + ax - 1$$

from factor theorem

if (x - 2) is the factor of f(x) the f(2) = 0

let,
$$x - 2 = 0$$

$$=> x = 2$$

Substitute x value in f(x)

$$f(2) = 2^3 - 2a(2)^2 + a(2) - 1$$

$$= 8 - 8a + 2a - 1$$

$$= -6a + 7$$

Equate f(2) to zero

$$=> -6a + 7 = 0$$

$$=> a = \frac{7}{6}$$

When , (x - 2) is the factor of f(x) then $a = \frac{7}{6}$

(2) Let,
$$f(x) = x^5 - 3x^4 - ax^3 + 3ax^2 + 2ax + 4$$

from factor theorem

if (x - 2) is the factor of f(x) the f(2) = 0

let,
$$x - 2 = 0$$

$$=> x = 2$$

Substitute x value in f(x)

$$f(2) = 2^5 - 3(2)^4 - a(2)^3 + 3a(2)^2 + 2a(2) + 4$$

$$= 32 - 48 - 8a + 12 + 4a + 4$$

Equate f(2) to zero

$$\Rightarrow$$
 a = $\frac{12}{8}$

$$=\frac{3}{2}$$

So, when (x - 2) is a factor of f(x) then $a = \frac{3}{2}$

Q24. In each of the following two polynomials, find the value of a, if (x - a) is a factor:

1.
$$x^6 - ax^5 + x^4 - ax^3 + 3x - a + 2$$

2.
$$x^5 - a^2x^3 + 2x + a + 1$$

Sol:

(1)
$$x^6 - ax^5 + x^4 - ax^3 + 3x - a + 2$$

let,
$$f(x) = x^6 - ax^5 + x^4 - ax^3 + 3x - a + 2$$

here
$$x - a = 0$$

Substitute the value of x in f(x)

$$f(a) = a^6 - a(a)^5 + (a)^4 - a(a)^3 + 3(a) - a + 2$$

$$= a^6 - a^6 + (a)^4 - a^4 + 3(a) - a + 2$$

$$= 2a + 2$$

Equate to zero

$$=> 2a + 2 = 0$$

$$\Rightarrow$$
 2(a + 1) = 0

So, when (x - a) is a factor of f(x) then a = -1

(2)
$$x^5 - a^2x^3 + 2x + a + 1$$

let,
$$f(x) = x^5 - a^2x^3 + 2x + a + 1$$

here,
$$x - a = 0$$

$$f(a) = a^5 - a^2 a^3 + 2(a) + a + 1$$

$$= a^5 - a^5 + 2a + a + 1$$

$$= 3a + 1$$

Equate to zero

$$\Rightarrow$$
 a= $\frac{-1}{3}$

So, when (x - a) is a factor of f(x) then $a = \frac{-1}{3}$

Q25. In each of the following two polynomials, find the value of a, if (x + a) is a factor:

1.
$$x^3 + ax^2 - 2x + a + 4$$

2.
$$x^4 - a^2x^2 + 3x - a$$

Sol:

(1)
$$x^3 + ax^2 - 2x + a + 4$$

let.
$$f(x) = x^3 + ax^2 - 2x + a + 4$$

here x + a = 0

Substitute the value of x in f(x)

$$f(-a) = (-a)^3 + a(-a)^2 - 2(-a) + a + 4$$

$$=(-a)^3 + a^3 - 2(-a) + a + 4$$

$$= 3a + 4$$

Equate to zero

$$=> 3a + 4 = 0$$

$$\Rightarrow$$
 a = $\frac{-4}{3}$

So, when (x + a) is a factor of f(x) then $a = \frac{-4}{3}$

(2)
$$x^4 - a^2x^2 + 3x - a$$

let,
$$f(x) = x^4 - a^2x^2 + 3x - a$$

here, x + a = 0

Substitute the value of x in f(x)

$$f(-a) = (-a)^4 - a^2(-a)^2 + 3(-a) - a$$

$$= a^4 - a^4 - 3(a) - a$$

Equate to zero

$$=> -4a = 0$$

=> a = 0

So, when (x + a) is a factor of f(x) then a = 0