RD SHARMA
Solutions
Class 9 Maths
Chapter 8
Ex 8.2

Q 1: In the below Fig. OA and OB are opposite rays:

(i) If x = 25, what is the value of y?

(ii) If y = 35, what is the value of x?

Ans:

(i) Given that,

x = 25

Since $\angle AOC$ and $\angle BOC$ form a linear pair

 $\angle AOC + \angle BOC = 180^{\circ}$

Given that $\angle AOC = 2y + 5$ and $\angle BOC = 3x$

 $\angle AOC + \angle BOC = 180^{\circ}$

(2y + 5) + 3x = 180

(2y +5) + 3(25) = 180

2y + 5 + 75 = 180

2y + 80 = 180

2y = 180 - 80 = 100

y = 100/2 = 50

y = 50

(ii) Given that,

y = 35

 $\angle AOC + \angle BOC = 180^{\circ}$

(2y+5)+3x = 180

(2(35) + 5) + 3x = 180

(70+5) + 3x = 180

3x = 180 - 75

3x = 105

Q 2: In the below figure, write all pairs of adjacent angles and all the linear pairs.

Ans: Adjacent angles are:

- (i)∠AOC,∠COB
- (ii)∠AOD∠BOD
- (i)∠AOD,∠COD
- $(i) \angle BOC, \angle COD$

Linear pairs : $\angle AOD$, $\angle BOD$, $\angle AOC$, $\angle BOC$

Q 3: In the given below figure, find x. Further find $\angle COD$, $\angle AOD$, $\angle BOC$

Ans: Since ∠AOD and ∠BOD form a line pair,

$$\angle AOD + \angle BOD = 180^{\circ}$$

$$\angle AOD + \angle BOC + \angle COD = 180^{\circ}$$

Given that,

$$\angle AOD = (x + 10)^{\circ}, \ \angle COD = x^{\circ}, \ \angle BOC = (x + 20)^{\circ}$$

$$(x + 10) + x + (x + 20) = 180$$

$$3x + 30 = 180$$

$$3x = 180 - 30$$

$$3x = 150/3$$

$$x = 50$$

Therefore, $\angle AOD = (x + 10)$

$$=50 + 10 = 60$$

$$\angle COD = x = 50^{\circ}$$

$$\angle COD = (x + 20)$$

$$= 50 + 20 = 70$$

$$\angle AOD = 60^{\circ} \angle COD = 50^{\circ} \angle BOC = 70^{\circ}$$

Q 4 : In the Given below figure rays OA, OB, OC, OP and OE have the common end point 0. Show that $\angle AOB + \angle BOC + \angle COD + \angle DOE + \angle EOA = 360^{\circ}$

Ans: Given that OA,OB,OD and OE have the common end point O.

A ray opposite to OA is drawn

Since $\angle AOB$, $\angle BOF$ are linear pairs,

$$\angle AOB + \angle BOF = 180^{\circ}$$

$$\angle AOB + \angle BOC + \angle COF = 180^{\circ} --(1)$$

Also,

∠AOE and∠EOF are linear pairs

$$\angle AOE + \angle EOF = 180^{\circ}$$

$$\angle AOE + \angle DOF + \angle DOE = 180^{\circ}$$
 --(2)

By adding (1) and (2) equations we get

$$\angle AOB + \angle BOC + \angle COF + \angle AOE + \angle DOF + \angle DOE = 180^{\circ}$$

$$\angle AOB + \angle BOC + \angle COD + \angle DOE + \angle EOA = 180^{\circ}$$

Hence proved.

Q 5: In the Below figure, $\angle AOC$ and $\angle BOC$ form a linear pair. If a - 2b = 30°, find a and b?

Ans: Given that,

∠AOCand∠BOC form a linear pair

If a - b = 30

$$\angle AOC = a^{\circ}, \angle BOC = b^{\circ}$$

Therefore, a + b = 180

--(1)

Given a - 2b = 30

--(2)

By subtracting (1) and (2)

a+b-a+2b=180-30

$$3b = 150$$

b = 150/3

b = 50

Since a - 2b = 30

$$a - 2(50) = 30$$

a = 30 + 100

a = 130

Hence, the values of a and b are 130° and 50° respectively.

Q 6: How many pairs of adjacent angles are formed when two lines intersect at a point?

Ans: Four pairs of adjacent angles will be formed when two lines intersect at a point.

Considering two lines AB and CD intersecting at O

The 4 pairs are:

$$(\angle AOD, \angle DOB), (\angle DOB, \angle BOC), (\angle COA, \angle AOD)$$
and $(\angle BOC, \angle COA)$

Hence, 4 pairs of adjacent angles are formed when two lines intersect at a point.

Q 7: How many pairs of adjacent angles, in all, can you name in the figure below?

Ans: Pairs of adjacent angles are:

 $\angle EOC, \angle DOC$

∠EOD,∠DOB

 $\angle DOC, \angle COB$

∠EOD,∠DOA

∠DOC,∠COA

∠BOC,∠BOA

 $\angle BOA, \angle BOD$

∠BOA,∠BOE

∠EOC,∠COA

 $\angle EOC, \angle COB$

Hence, 10 pair of adjacent angles.

Q 8 : In the below figure, find value of x ?

Ans : Since the sum of all the angles round a point is equal to 360°

3x + 3x + 150 + x = 360

$$7x = 360 - 150$$

 $7x = 210$
 $x = 210/7$
 $x = 30$

Value of x is 30°

Q 9 : In the below figure, AOC is a line, find x.

Ans: Since $\angle AOB$ and $\angle BOC$ are linear pairs,

$$\angle AOB + \angle BOC = 180^{\circ}$$

70 + 2x = 180

2x = 180 - 70

2x = 110

x = 110/2

x = 55

Hence, the value of x is 55°

Q 10 : In the below figure, POS is a line, Find x?

Ans: Since $\angle POQ$ and $\angle QOS$ are linear pairs

$$\angle POQ + \angle QOS = 180^{\circ}$$
 $\angle POQ + \angle QOR + \angle SOR = 180^{\circ}$
 $60 + 4x + 40 = 180$
 $4x = 180 - 100$
 $4x = 80$
 $x = 20$

Hence, Value of x = 20

Q 11: In the below figure, ACB is a line such that $\angle DCA = 5x$ and $\angle DCB = 4x$. Find the value of x?

Ans: Here, $\angle ACD + \angle BCD = 180^{\circ}$

[Since they are linear pairs]

$$\angle DCA = 5x \text{ and } \angle DCB = 4x$$

 $5x + 4x = 180$
 $9x = 180$
 $x = 20$

Hence, the value of x is 20°

Q 12 : In the given figure, Given $\angle POR = 3x$ and $\angle QOR = 2x + 10$, Find the value of x for which POQ will be a line ?

Ans: For the case that POR is a line

∠POR and ∠QORarelinearparts

$$\angle POR + \angle QOR = 180^{\circ}$$

Also, given that,

$$\angle POR = 3x$$
 and $\angle QOR = 2x + 10$

$$2x + 10 + 3x = 180$$

$$5x + 10 = 180$$

$$5x = 180 - 10$$

$$5x = 170$$

$$x = 34$$

Hence the value of x is 34°

Q 13: In Fig: a is greater than b by one third of a right angle. Find the value of a and b?

Ans: Since a and b are linear

$$a = 180 - b - -(1)$$

From given data, a is greater than b by one third of a right angle

$$a = b + 90/3$$

$$a = b + 30$$

$$a - b = 30 - -(2)$$

Equating (1) and (2)
 $180 - b = b + 30$
 $180 - 30 = 2b$
 $b = 150 / 2$
 $b = 75$
From (1)
 $a = 180 - b$
 $a = 180 - 75$
 $a = 105$

Hence the values of a and b are 105° and 75° respectively.

Q 14: What value of y would make AOB a line in the below figure, If $\angle AOB = 4y$ and $\angle BOC = (6y + 30)$?

Ans: Since, $\angle AOC$ and $\angle BOC$ are linear pairs

$$\angle AOC + \angle BOC = 180^{\circ}$$
 $6y + 30 + 4y = 180$
 $10y + 30 = 180$
 $10y = 180 - 30$
 $10y = 150$
 $y = 150/10$
 $y = 15$

Hence value of y that will make AOB a line is 15°

Q 15: If the figure below forms a linear pair,

$$\angle EOB = \angle FOC = 90$$
 and $\angle DOC = \angle FOG = \angle AOB = 30$

Find the measure of $\angle FOE$, $\angle COB$ and $\angle DOE$ Name all the right angles Name three pairs of adjacent complementary angles Name three pairs of adjacent supplementary angles Name three pairs of adjacent angles

Ans :(i) \angle FOE = x, \angle DOE = y and \angle BOC = z

Since $\angle AOF$, $\angle FOG$ is a linear pair

$$\angle AOF + 30 = 180$$

$$\angle AOF = 180 - 30$$

$$\angle AOB + \angle BOC + \angle COD + \angle DOE + \angle EOF = 150$$

$$30 + z + 30 + y + x = 150$$

$$x + y + z = 150 - 30 - 30$$

$$x + y + z = 90 - -(1)$$

$$\angle FOC = 90^{\circ}$$

$$\angle FOE + \angle EOD + \angle DOC = 90^{\circ}$$

$$x + y + 30 = 90$$

$$x + y = 90 - 30$$

$$x + y = 60 - -(2)$$

Substituting (2) in (1)

$$x + y + z = 90$$

$$60 + z = 90$$

$$z = 90 - 60 = 30$$

Given BOE = 90

$$\angle BOC + \angle COD + \angle DOE = 90^{\circ}$$

$$30 + 30 + DOE = 90$$

$$DOE = 90 - 60 = 30$$

$$DOE = x = 30$$

We also know that,

$$x + y = 60$$

$$y = 60 - x$$

$$y = 60 - 30$$

$$y = 30$$

Thus we have $\angle FOE = 30$, $\angle COB = 30$ and $\angle DOE = 30$

- (ii) Right angles are $\angle DOG$, $\angle COF$, $\angle BOF$, $\angle AOD$
- (iii) Adjacent complementary angles are $(\angle AOB, \angle BOD)$; $(\angle AOC, \angle COD)$; $(\angle BOC, \angle COE)$;
- (iv) Adjacent supplementary angles are $(\angle AOB, \angle BOG)$; $(\angle AOC, \angle COG)$; $(\angle AOD, \angle DOG)$;
- (v) Adjacent angles are $(\angle BOC, \angle COD)$; $(\angle COD, \angle DOE)$; $(\angle DOE, \angle EOF)$;

Q16: In below fig. OP, OQ, OR and OS are four rays. Prove that:

 $\angle POQ + \angle QOR + \angle SOR + \angle POS = 360^{\circ}$

Ans: Given that

OP, OQ, OR and OS are four rays

You need to produce any of the ray OP, OQ, OR and OS backwards to a point in the figure.

Let us produce ray OQ backwards to a point T

So that TOQ is a line

Ray OP stands on the TOQ

Since $\angle TOP$, $\angle POQ$ is a linear pair

$$\angle TOP + \angle POQ = 180^{\circ}$$
 --(1)

Similarly,

Ray OS stands on the line TOQ

$$\angle TOS + \angle SOQ = 180^{\circ}$$
 --(2)
But $\angle SOQ = \angle SOR + \angle QOR$ --(3)

So, eqn (2) becomes

$$\angle TOS + \angle SOR + \angle OQR = 180^{\circ}$$

Now, adding (1) and (3) you get $\angle TOP + \angle POQ + \angle TOS + \angle SOR + \angle QOR = 360^{\circ}$ --(4)

$$\angle TOP + \angle TOS = \angle POS$$

Eqn: (4)becomes

Q 17 : In below fig, ray OS stand on a line POQ. Ray OR and ray OT are angle bisectors of $\angle POS$ and $\angle SOQ$ respectively. If $\angle POS = x$, find $\angle ROT$?

Ans: Given,

Ray OS stand on a line POQ

Ray OR and Ray OT are angle bisectors of $\angle POS$ and $\angle SOQ$ respectively

$$\angle POS = x$$

∠POS and ∠SOQ is linear pair

$$\angle POS + \angle QOS = 180^{\circ}$$

$$x + QOS = 180$$

$$QOS = 180 - x$$

Now, ray or bisector POS

$$\angle ROS = \frac{1}{2} \angle POS$$

x/2

ROS =
$$x/2$$
 [Since POS = x]

Similarly ray OT bisector QOS

$$\angle TOS = \frac{1}{2} \angle QOS$$

$$= (180 - x)/2$$
 [QOS = $180 - x$]

$$= 90 - x/2$$

Hence, $\angle ROT = \angle ROS + \angle ROT$

$$= x/2 + 90 - x/2$$

= 90

$$\angle ROT = 180^{\circ}$$

Q 18: In the below fig, lines PQ and RS intersect each other at point 0. If $\angle POR: \angle ROQ = 5:7$. Find all the angles.

Ans: Given

 $\angle POR$ and $\angle ROP$ is linear pair

 $\angle POR + \angle ROP = 180^{\circ}$

Given that

 $\angle POR : \angle ROQ = 5 : 7$

Hence, POR =(5/12)x180=75

Similarly ROQ=(7/7+5) 180 = 105

Now POS = ROQ = 105° [Vertically opposite angles]

Also, SOQ = POR = 75° [Vertically opposite angles]

Q 19 : In the below fig. POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $\angle ROS = \frac{1}{2}(\angle QOS - \angle POS)$.

Ans: Given that

OR perpendicular

$$\therefore \angle POR = 90^{\circ}$$

$$\angle POS + \angle SOR = 90$$
 [:: $\angle POR = \angle POS + \angle SOR$]

$$\angle ROS = 90^{\circ} - \angle POS$$
 --(1)

$$\angle QOR = 90 (:: OR \perp PQ)$$

$$\angle QOS - \angle ROS = 90^{\circ}$$

$$\angle ROS = \angle QOS - 90^{\circ}$$

By adding (1) and (2) equations, we get

$$2\angle ROS = \angle QOS - \angle POS$$

$$\angle ROS = \frac{1}{2}(\angle QOS - \angle POS)$$