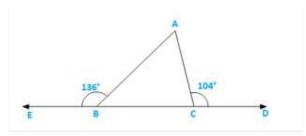
RD SHARMA
Solutions
Class 9 Maths
Chapter 9
Ex 9.2

Q1) The exterior angles, obtained on producing the base of a triangle both ways are 104° and 136° . Find all the angles of the triangle.

Solution:



$$\angle ACD = \angle ABC + \angle BAC$$

[Exterior angle property]

Now
$$\angle ABC = 180^{0} - 136^{0} = 44^{0}$$

[Linera pair]

$$\angle ACB = 180^{0} - 104^{0} = 76^{0}$$

[Linera pair]

Now,

In ΔABC

$$\angle A + \angle ABC + \angle ACB = 180^{\circ}$$

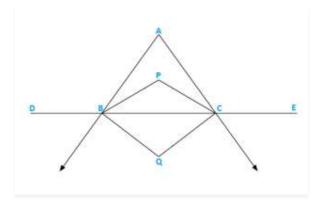
[Sum of all angles of a triangle]

$$\Rightarrow \angle A + 44^0 + 76^0 = 180^0$$

$$\Rightarrow \angle A = 180^0 - 44^0 - 76^0$$

$$\Rightarrow \angle A = 60^0$$

Q2) In a triangle ABC, the internal bisectors of $\angle B$ and $\angle C$ meet at P and the external bisectors of $\angle B$ and $\angle C$ meet at Q. Prove that $\angle BPC + \angle BQC = 180^{\circ}$.

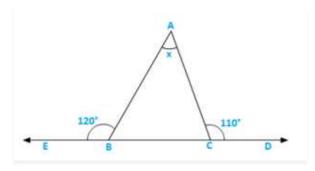


Let
$$\angle ABD = 2x$$
 and $\angle ACE = 2y$
 $\angle ABC = 180^{0} - 2x$ [Linera pair]
 $\angle ACB = 180^{0} - 2y$ [Linera pair]
 $\angle A + \angle ABC + \angle ACB = 180^{0}$ [Sum of all angles of a triangle]
 $\Rightarrow \angle A + 180^{0} - 2x + 180^{0} - 2y = 180^{0}$
 $\Rightarrow -\angle A + 2x + 2y = 180^{0}$
 $\Rightarrow x + y = 90^{0} + \frac{1}{2}\angle A$
Now in $\triangle BQC$
 $x + y + \angle BQC = 180^{0}$ [Sum of all angles of a triangle]
 $\Rightarrow 90^{0} + \frac{1}{2}\angle A + \angle BQC = 180^{0}$
 $\Rightarrow \angle BQC = 90^{0} - \frac{1}{2}\angle A \dots$ (i)
and we know that $\angle BPC = 90^{0} + \frac{1}{2}\angle A \dots$ (ii)
Adding (i) and (ii) we get

Hence proved.

Q3) In figure 9.30, the sides BC, CA and AB of a triangle ABC have been produced to D, E and F respectively. If $\angle ACD = 105^0$ and $\angle EAF = 45^0$, find all the angles of the triangle ABC.

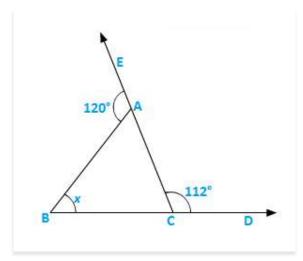
Solution:



 $\angle BPC + \angle BOC = 180^{\circ}$

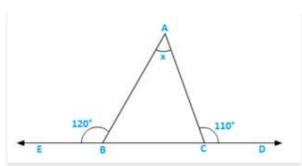
$$\angle BAC = \angle EAF = 45^{\circ}$$
 [V ertically opposite angles]
 $\angle ABC = 105^{\circ} - 45^{\circ} = 60^{\circ}$ [Exterior angle property]
 $\angle ACD = 180^{\circ} - 105^{\circ} = 75^{\circ}$ [Linear pair]

Q4) Compute the value of x in each of the following figures:



∠BAC =
$$180^{0} - 120^{0} = 60^{0}$$
 [Linear pair]
∠ACB = $180^{0} - 112^{0} = 68^{0}$ [Linear pair]
∴ x = $180^{0} - ∠BAC - ∠ACB = 180^{0} - 60^{0} - 68^{0} = 52^{0}$
[Sum of all angles of a triangle]

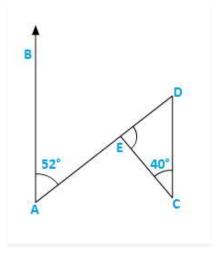
(ii)



Solution:

∠ABC =
$$180^{0} - 120^{0} = 60^{0}$$
 [Linear pair]
∠ACB = $180^{0} - 110^{0} = 70^{0}$ [Linear pair]
∴ e∠BAC = x = $180^{0} - ∠ABC - ∠ACB$
= $180^{0} - 60^{0} - 70^{0} = 50^{0}$ [Sum of all angles of a triangle]

(iii)

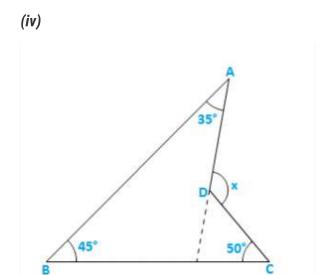


$$\angle BAE = \angle EDC = 52^{0}$$
 [Alternate angles]

$$\therefore \angle DEC = x = 180^{0} - 40^{0} - \angle EDC$$

$$= 180^0 - 40^0 - 52^0$$

$$= 180^0 - 92^0$$



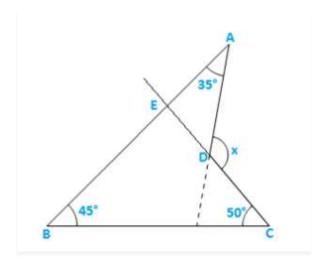
Solution:

CD is produced to meet AB at E.

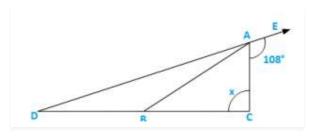
∠BEC =
$$180^{0} - 45^{0} - 50^{0}$$

= 85^{0} [Sum of all angles of a triangle]
∠AEC = $180^{0} - 85^{0} = 95^{0}$ [Linear pair]
∴ $x = 95^{0} + 35^{0} = 130^{0}$ [Exterior angle property]

•



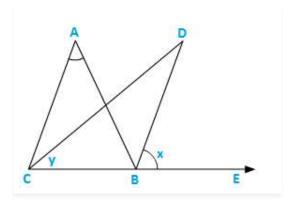
Q5) In figure 9.35, AB divides $\angle DAC$ in the ratio 1 : 3 and AB = DB. Determine the value of x.



Solution:

Let
$$\angle BAD = Z$$
, $\angle BAC = 3Z$
 $\Rightarrow \angle BDA = \angle BAD = Z$ (:: $AB = DB$)
Now $\angle BAD + \angle BAC + 108^0 = 180^0$ [Linear pair]
 $\Rightarrow Z + 3Z + 108^0 = 180^0$
 $\Rightarrow 4Z = 72^0$
 $\Rightarrow Z = 18^0$
Now, In $\triangle ADC$
 $\angle ADC + \angle ACD = 108^0$ [Exterior angle property]
 $\Rightarrow x + 18^0 = 180^0$
 $\Rightarrow x = 90^0$

Q6) ABC is a triangle. The bisector of the exterior angle at B and the bisector of $\angle C$ intersect each other at D. Prove that $\angle D = \frac{1}{2} \angle A$.



Let
$$\angle ABE = 2x$$
 and $\angle ACB = 2y$

$$\angle ABC = 180^{0} - 2x$$
 [Linear pair]

$$\therefore \angle A = 180^{\circ} - \angle ABC - \angle ACB$$
 [Angle sum property]

$$= 180^0 - 180^0 + 2x + 2y$$

$$= 2(x - y) \qquad \dots (i)$$

Now,
$$\angle D = 180^{\circ} - \angle DBC - \angle DCB$$

$$\Rightarrow \angle D = 180^{0} - (x + 180^{0} - 2x) - y$$

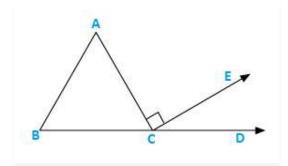
$$\Rightarrow \angle D = 180^{0} - x - 180^{0} + 2x - y$$

$$=(x-y)$$

$$=\frac{1}{2}\angle A$$
 from(i)

Hence,
$$\angle D = \frac{1}{2} \angle A$$

Q7) In figure 9.36, AC \perp CE and \angle A : \angle B : \angle C = 3 : 2 : 1, find



$$\angle A : \angle B : \angle C = 3 : 2 : 1$$

Let the angles be 3x, 2x and x

$$\Rightarrow$$
 3x + 2x + x = 180⁰ [Angle sum property]

$$\Rightarrow 6x = 180^0$$

$$\Rightarrow$$
 x = 30⁰ = \angle ACB

$$\therefore \angle ECD = 180^{0} - \angle ACB - 90^{0}$$
 [Linear pair]

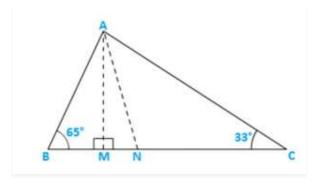
$$= 180^0 - 30^0 - 90^0$$

$$=60^{0}$$

$$\therefore \angle ECD = 60^{\circ}$$

Q8) In figure 9.37,

AM \perp BC and AN is the bisector of \angle A. If \angle B = 65 $^{\circ}$ and \angle C = 33 $^{\circ}$, find \angle MAN..



Solution:

Let
$$\angle BAN = \angle NAC = x$$
 [: AN bisects $\angle A$]

$$\therefore \angle ANM = x + 33^0$$
 [Exterior angle property]

Ιη ΔΑΜΒ

$$\angle BAM = 90^{0} - 65^{0} = 25^{0}$$
 [Exterior angle property]

$$\therefore \angle MAN = \angle BAN - \angle BAM = (x - 25)^0$$

Now in Δ MAN,

$$(x-25)^0 + (x+33)^0 + 90^0 = 180^0$$
 [Angle sum property]

$$\Rightarrow 2x + 8^0 = 90^0$$

$$\Rightarrow 2x = 82^0$$

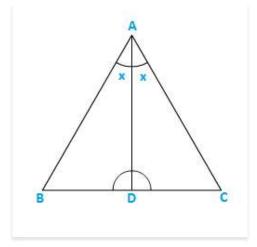
$$\Rightarrow x = 41^0$$

$$\therefore MAN = x - 25^0$$

$$=41^0-25^0$$

$$= 16^{0}$$

Q9) In a triangle ABC, AD bisects $\angle A$ and $\angle C > \angle B$. Prove that $\angle ADB > \angle ADC$..



$$\therefore \angle C > \angle B$$

$$\Rightarrow \angle C + x > \angle B + x$$
 [Adding x on both sides]

$$\Rightarrow$$
 180° - \angle ADC>180^{0} - \angle ADB

$$\Rightarrow$$
 - \angle ADC> - \angle ADB

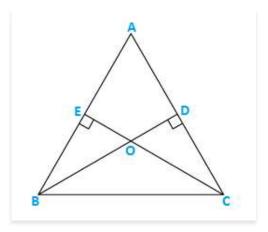
$$\Rightarrow$$
 \angle ADB $>$ \angle ADC

Hence proved.

Q10) In triangle ABC,

BD \perp AC and CE \perp AB. If BD and CE intersect at O, prove that \angle BOC = $180^{\circ} - \angle$ A

Solution:

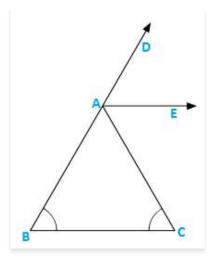


In quadrilateral AEOD

$$\angle A + \angle AEO + \angle EOD + \angle ADO = 360^{0}$$

 $\Rightarrow \angle A + 90^{0} + 90^{0} + \angle EOD = 360^{0}$
 $\Rightarrow \angle A + \angle BOC = 180^{0}$ [: $\angle EOD = \angle BOC$ vertically opposite angles]
 $\Rightarrow \angle BOC = 180^{0} - \angle A$

Q11) In figure 9.38, AE bisects $\angle CAD$ and $\angle B = \angle C$. Prove that $AE \parallel BC$.



Solution:

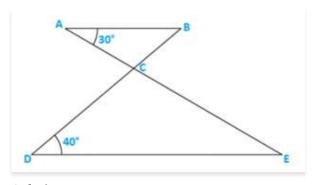
Let
$$\angle B = \angle C = x$$

Then,
 $\angle CAD = \angle B + \angle C = 2x$ (exterior angle)
 $\Rightarrow \frac{1}{2} \angle CAD = x$
 $\Rightarrow \angle EAC = x$
 $\Rightarrow \angle EAC = \angle C$

These are alternate interior angles for the lines AE and BC

∴ AE || BC

Q12) In figure 9.39, AB \parallel DE. Find \angle ACD.



Solution:

Since $AB \parallel DE$

∴ ∠ABC = ∠CDE =
$$40^{\circ}$$
 [Alternate angles]
∴ ∠ACB = 180° - ∠ABC - ∠BAC
= 180° - 40° - 30°
= 110°
∴ ∠ACD = 180° - 110° [Linear pair]
= 70°

- Q13). Which of the following statements are true (T) and which are false (F):
- (i) Sum of the three angles of a triangle is 180°.
- (ii) A triangle can have two right angles.
- (iii) All the angles of a triangle can be less than 60°.
- (iv) All the angles of a triangle can be greater than 60°.
- (v) All the angles of a triangle can be equal to 60°.
- (vi) A triangle can have two obtuse angles.
- (vii) A triangle can have at most one obtuse angles.
- (viii) If one angle of a triangle is obtuse, then it cannot be a right angled triangle.
- (ix) An exterior angle of a triangle is less than either of its interior opposite angles.
- (x) An exterior angle of a triangle is equal to the sum of the two interior opposite angles.
- (xi) An exterior angle of a triangle is greater than the opposite interior angles.

- (i) T
- (ii) F
- (iii) F
- (iv) F
- (v) T
- (vi) F
- (vii) T
- (viii) T
- (ix) F
- (x) T
- (xi) T

(i) Sum of the angles of a triangle is
(ii) An exterior angle of a triangle is equal to the two opposite angles.
(iii) An exterior angle of a triangle is always than either of the interior opposite angles.
(iv) A triangle cannot have more than right angles.
(v) A triangles cannot have more than obtuse angles.
Solution:
(i) 180°
(ii) Interior
(iii) Greater
(iv) One
(v) One