RD SHARMA Solutions Class 9 Maths Chapter 10 Ex 10.2 (1) In fig. (10).40, it is given that RT = TS, \angle 1 = 2 \angle 2 and 4 = 2 \angle (3) Prove that $\triangle RBT \cong \triangle SAT$. **Solution:** In the figure, given that RT = TS(i) $\angle 1 = 2 \angle 2$(ii) And $\angle 4 = 2 \angle 3$(iii) To prove that $\triangle RBT \cong \triangle SAT$. Let the point of intersection RB and SA be denoted by O Since RB and SA intersect at O \angle AOR = \angle BOS [Vertically opposite angles] ∠1=∠4 $2 \angle 2 = 2 \angle 3$ [From (ii) and (iii)] $\angle 2 = \angle 3 \dots (iv)$ Now we have RT =TS in \triangle TRS Δ TRS is an isosceles triangle \angle TRS = \angle TSR(v) But we have \angle TRS = \angle TRB + \angle 2(vi) \angle TSR = \angle TSA + \angle 3(vii) Putting (vi) and (vii) in (v) we get \angle TRB + \angle 2 = \angle TSA + \angle B \Rightarrow \angle TRB \Rightarrow \angle TSA [From (iv)] Now consider Δ RBT and Δ SAT RT = ST [From (i)] \angle TRB = \angle TSA [From (iv)] \angle RTB = \angle STA [Common angle] From ASA criterion of congruence, we have Δ RBT = Δ SAT (2) Two lines AB and CD intersect at 0 such that BC is equal and parallel to AD. Prove that the lines AB and CD bisect at 0. Solution: Given that lines AB and CD Intersect at O Such that BC | AD and BC = AD(i) We have to prove that AB and CD bisect at O. To prove this first we have to prove that \triangle AOD $\cong \triangle$ BOC ## (3) BD and CE are bisectors of \angle B and \angle C of an isosceles \triangle ABC with AB = AC. Prove that BD = CE Solution: Given that \triangle ABC is isosceles with AB = AC and BD and CE are bisectors of \angle B and \angle C We have to prove BD = CE Since AB = AC $$\Rightarrow \Delta ABC = \Delta ACB(i)$$ [Angles opposite to equal sides are equal] Since BD and CE are bisectors of \angle B and \angle C $$\angle$$ ABD = \angle DBC = \angle BCE = ECA = $\frac{\angle B}{2}$ = $\frac{\angle C}{2}$ Now, Consider Δ EBC = Δ DCB $$\angle$$ EBC = \angle DCB [\angle B = \angle C] [From (i)] BC = BC [Common side] ∠ BCE = ∠ CBD [From (ii)] So, by ASA congruence criterion, we have Δ EBC $\cong\!\!\Delta$ DCB Now, CE = BD [Corresponding parts of congruent triangles we equal] or, BD = CE Hence proved Since AD || BC and transversal AB cuts at A and B respectively \angle DAO = \angle OBC(ii) [alternate angle] And similarly AD || BC and transversal DC cuts at D and C respectively ∠ ADO = ∠ OBC(iii) [alternate angle] Since AB end CD intersect at O. \angle AOD = \angle BOC [Vertically opposite angles] Now consider Δ AOD and Δ BOD \angle DAO = \angle OBC [From (ii)] AD = BC [From (i)] And \angle ADO = \angle OCB [From (iii)] So, by ASA congruence criterion, we have $\triangle AOD \cong \triangle BOC$ Now, AO= OB and DO = OC [Corresponding parts of congruent triangles are equal) Lines AB and CD bisect at O. Hence proved