RD SHARMA
Solutions
Class 9 Maths
Chapter 10
Ex 10.2

(1) In fig. (10).40, it is given that RT = TS, \angle 1 = 2 \angle 2 and 4 = 2 \angle (3) Prove that $\triangle RBT \cong \triangle SAT$.

Solution:

In the figure, given that

RT = TS(i)

 $\angle 1 = 2 \angle 2$ (ii)

And $\angle 4 = 2 \angle 3$ (iii)

To prove that $\triangle RBT \cong \triangle SAT$.

Let the point of intersection RB and SA be denoted by O

Since RB and SA intersect at O

 \angle AOR = \angle BOS [Vertically opposite angles]

∠1=∠4

 $2 \angle 2 = 2 \angle 3$ [From (ii) and (iii)]

 $\angle 2 = \angle 3 \dots (iv)$

Now we have RT =TS in \triangle TRS

 Δ TRS is an isosceles triangle

 \angle TRS = \angle TSR(v)

But we have

 \angle TRS = \angle TRB + \angle 2(vi)

 \angle TSR = \angle TSA + \angle 3(vii)

Putting (vi) and (vii) in (v) we get

 \angle TRB + \angle 2 = \angle TSA + \angle B

 \Rightarrow \angle TRB \Rightarrow \angle TSA [From (iv)]

Now consider Δ RBT and Δ SAT

RT = ST [From (i)]

 \angle TRB = \angle TSA [From (iv)] \angle RTB = \angle STA [Common angle]

From ASA criterion of congruence, we have

 Δ RBT = Δ SAT

(2) Two lines AB and CD intersect at 0 such that BC is equal and parallel to AD. Prove that the lines AB and CD bisect at 0.

Solution: Given that lines AB and CD Intersect at O

Such that BC | AD and BC = AD(i)

We have to prove that AB and CD bisect at O.

To prove this first we have to prove that \triangle AOD $\cong \triangle$ BOC

(3) BD and CE are bisectors of \angle B and \angle C of an isosceles \triangle ABC with AB = AC. Prove that BD = CE Solution:

Given that \triangle ABC is isosceles with AB = AC and BD and CE are bisectors of \angle B and \angle C We have to prove BD = CE

Since AB = AC

$$\Rightarrow \Delta ABC = \Delta ACB(i)$$

[Angles opposite to equal sides are equal]

Since BD and CE are bisectors of \angle B and \angle C

$$\angle$$
 ABD = \angle DBC = \angle BCE = ECA = $\frac{\angle B}{2}$ = $\frac{\angle C}{2}$

Now,

Consider Δ EBC = Δ DCB

$$\angle$$
 EBC = \angle DCB [\angle B = \angle C] [From (i)]

BC = BC [Common side]

∠ BCE = ∠ CBD [From (ii)]

So, by ASA congruence criterion, we have Δ EBC $\cong\!\!\Delta$ DCB

Now,

CE = BD [Corresponding parts of congruent triangles we equal]

or, BD = CE

Hence proved

Since AD || BC and transversal AB cuts at A and B respectively

 \angle DAO = \angle OBC(ii) [alternate angle]

And similarly AD || BC and transversal DC cuts at D and C respectively

∠ ADO = ∠ OBC(iii) [alternate angle]

Since AB end CD intersect at O.

 \angle AOD = \angle BOC [Vertically opposite angles]

Now consider Δ AOD and Δ BOD

 \angle DAO = \angle OBC [From (ii)]

AD = BC [From (i)]

And \angle ADO = \angle OCB [From (iii)]

So, by ASA congruence criterion, we have

 $\triangle AOD \cong \triangle BOC$

Now,

AO= OB and DO = OC [Corresponding parts of congruent triangles are equal)

Lines AB and CD bisect at O.

Hence proved