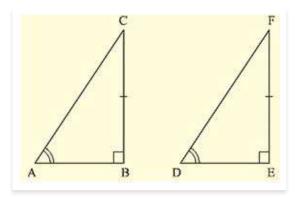
RD SHARMA
Solutions
Class 9 Maths
Chapter 10
Ex 10.3

(1) In two right triangles one side an acute angle of one are equal to the corresponding side and angle of the other. Prove that the triangles are congruent.

Solution:

Given that, in two right triangles one side and acute angle of one are equal to the corresponding side and angles of the other.



We have to prove that the triangles are congruent.

Let us consider two right triangles such that

$$\angle$$
 B = \angle C = 90 $^{\circ}$

$$AB = DE$$

$$\angle C = \angle F$$
 From(iii)

Now observe the two triangles ABC and DEF

 \angle C = \angle F [From (iii)]

 \angle B = \angle E [From (i)]

[From (ii)]

So, by AAS congruence criterion, we have \triangle ABC \cong \triangle DEF

Therefore, the two triangles are congruent

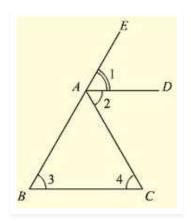
Hence proved

(2) If the bisector of the exterior vertical angle of a triangle be parallel to the base. Show that the triangle is isosceles.

Solution:

Given that the bisector of the exterior vertical angle of a triangle is parallel to the base and we have to prove that the triangle is isosceles. Let ABC be a triangle such that AD is the angular bisector of exterior vertical angle EAC and AD || BC

Let
$$\angle$$
 EAD = (i), \angle DAC =(ii), \angle ABC =(iii) and \angle ACB = (iv)



We have,

(i) = (ii) [AD is a bisector of \angle EAC]

(i) = (iii) [Corresponding angles]

and (ii) = (iv) [alternative angle]

(iii) = (iv)

AB = AC

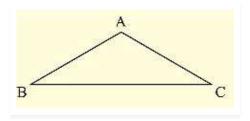
Since, in Δ ABC, two sides AB and AC are equal we can say that Δ ABC is isosceles triangle.

(3) In an isosceles triangle, if the vertex angle is twice the sum of the base angles, calculate the angles of the triangle.

Solution:

Let \triangle ABC be isosceles such that AB = AC.

$$\angle B = \angle C$$



Given that vertex angle A is twice the sum of the base angles B and C. i.e., \angle A= 2(\angle B + \angle C)

$$\angle A = 2(\angle B + \angle B)$$

$$\angle A = 2(2 \angle B)$$

$$\angle A = 4(\angle B)$$

Now, We know that sum of angles in a triangle =180°

$$\angle$$
 A + \angle B + \angle C =180°

Since, \angle B = \angle C

$$\angle$$
 B = \angle C = 30°

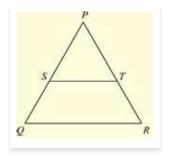
And $\angle A = 4 \angle B$

$$\angle A = 4 \times 30^{\circ} = 120^{\circ}$$

Therefore, angles of the given triangle are 120°, 30° and 30°.

(4) PQR is a triangle in which PQ= PR and is any point on the side PQ. Through S, a line is drawn parallel to QR and intersecting PR at T. Prove that PS = PT.

Solution: Given that PQR is a triangle such that PQ = PR ant S is any point on the side PQ and ST || QR.



To prove,

PS = PT

Since, PQ= PR

PQR is an isosceles triangle.

$$\angle Q = \angle R \text{ (or) } \angle PQR = \angle PRQ$$

Now, \angle PST = \angle PQR and \angle PTS = \angle PRQ [Corresponding angles as ST parallel to QR]

Since, \angle PQR = \angle PRQ

$$\angle$$
 PST = \angle PTS

Now, In \triangle PST, \angle PST = \angle PTS

 Δ PST is an isosceles triangle

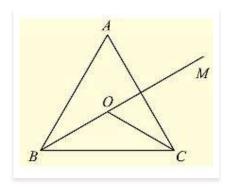
Therefore, PS = PT

(5) In a \triangle ABC, it is given that AB = AC and the bisectors of B and C intersect at O. If M is a point on BO produced, prove that \angle MOC = \angle ABC.

Solution:

Given that in Δ ABC,

AB = AC and the bisector of $\angle B$ and $\angle C$ intersect at 0. If M is a point on BO produced



We have to prove \angle MOC = \angle ABC

Since,

AB = AC

ABC is isosceles

$$\angle B = \angle C (or)$$

$$\angle$$
 ABC = \angle ACB

Now,

BO and CO are bisectors of \angle ABC and \angle ACB respectively

$$\Rightarrow$$
 ABO = \angle OBC = \angle ACO = \angle OCB = $\frac{1}{2}$ \angle ABC = $\frac{1}{2}$ \angle ACB(i)

We have, in Δ OBC

And also

Equating (ii) and (iii)

$$\angle$$
 OBC + \angle OCB + \angle BOC = \angle BOC + \angle MOC

$$\angle$$
 OBC + \angle OCB = \angle MOC [From (i)]

$$2 \angle OBC = \angle MOC [From (i)]$$

$$2(\frac{1}{2} \angle ABC) = \angle MOC [From (i)]$$

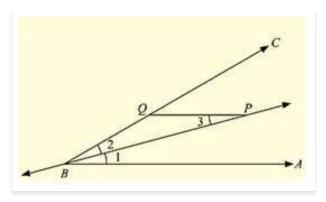
$$\angle$$
 ABC = \angle MOC

Therefore, \angle MOC = \angle ABC

(6) P is a point on the bisector of an angle ABC. If the line through P parallel to AB meets BC at Q, prove that triangle BPQ is isosceles.

Sol:

Given that P is a point on the bisector of an angle ABC, and PQ \parallel AB.



We have to prove that Δ BPQ is isosceles.

Since,

BP is bisector of
$$\angle$$
 ABC = \angle ABP = \angle PBC(i)

Now,

PQ || AB

From (i) and (ii), we get

$$\angle$$
 BPQ = \angle PBC (or) \angle BPQ = \angle PBQ

Now,

In BPQ,

 \angle BPQ = \angle PBQ

 Δ BPQ is an isosceles triangle.

Hence proved

(7) Prove that each angle of an equilateral triangle is 60°.

Sol:

Given to prove each angle of an equilateral triangle is 60°.

Let us consider an equilateral triangle ABC.

Such that AB = BC = CA

Now, AB = BC

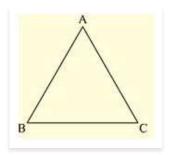
 \angle A = \angle C(i) [Opposite angles to equal sides are equal]

And BC = AC

$$\angle B = \angle A \dots(ii)$$

From (i) and (ii), we get

$$\angle A = \angle B = \angle C$$
(iii)



We know that

Sum of angles in a triangle = 180

$$\angle A + \angle B + \angle C = 180$$

$$\angle A + \angle A + \angle A = 180$$

$$3 \angle A = 180$$

$$\angle A = 60$$

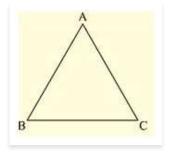
$$\angle A = \angle B = \angle C = 60$$

Hence, each angle of an equilateral triangle is 60°.

(8) Angles Δ A, B, C of a triangle ABC are equal to each other. Prove that ABC is equilateral.

Sol:

Given that angles A, B, C of a triangle ABC equal to each other.



We have to prove that Δ ABC is equilateral

We have, $\angle A = \angle B = \angle C$

Now,

$$\angle A = \angle B$$

BC=AC [opposite sides to equal angles are equal]

And
$$\angle$$
 B = \angle C

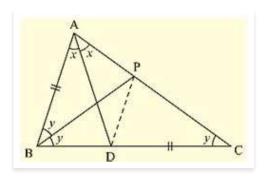
From the above we get

$$AB = BC = AC$$

 Δ ABC is equilateral.

(9) ABC is a triangle in which \angle B = 2 \angle C. D is a point on BC such that AD bisects \angle BAC and AB = CD. Prove that $[\angle$ BAC = 72 .

Solution: Given that in ABC, \angle B= 2 \angle C and D is a point on BC such that AD bisectors \angle BAC and AB = CD.



We have to prove that \angle BAC = 72°

Now, draw the angular bisector of ∠ ABC, which meets AC in P.

Join PD

Let $C = \angle ACB = y$

 \angle B = \angle ABC = 2 \angle C = 2y and also

Let \angle BAD = \angle DAC

 \angle BAC = 2x [AD is the bisector of \angle BAC]

Now, in \triangle BPC,

 \angle CBP = y [BP is the bisector of \angle ABC]

 \angle PCB = y

 \angle CBP = \angle PCB = y [PC = BP]

Consider, Δ ABP and Δ DCP, we have

 \triangle ABP = \triangle DCP = y

AB = DC [Given]

And PC = BP [From above]

So, by SAS congruence criterion, we have $\triangle ABP \cong \triangle DCP$

Now,

∠ BAP = ∠ CDF and AP = DP [Corresponding parts of congruent triangles are equal]

$$\angle$$
 BAP = \angle CDP = 2

Consider, \triangle APD,

We have AP = DP

 $= \angle ADP = \angle DAP$

But \angle DAP = x

 \angle ADP = \angle DAP = x

Now

In \triangle ABD.

 \angle ABD + \angle BAD + \angle ADB = 180

And also \angle ADB + \angle ADC = 180° [Straight angle]

From the above two equations, we get

$$\angle$$
 ABD + \angle BAD + \angle ADB = \angle ADB + \angle ADC
2y + x = \angle ADP + \angle PDC
2y + x = x + 2x
2y=2x
y = x (or) x = y

We know.

Sum of angles in a triangle = 180°

So, In \triangle ABC,

$$\angle A + \angle B + \angle C = 180^{\circ}$$

 $2x + 2y + y = 180^{\circ} [\angle A = 2x, \angle B = 2y, \angle C = y]$
 $2(y)+3y=180^{\circ} [x = y]$
 $5y = 180^{\circ}$
 $y = 36^{\circ}$

Now, $\angle A = \angle BAC = 2 \times 36^{\circ} = 72^{\circ}$

(10) ABC is a right angled triangle in which \angle A = 90° and AB = AC. Find \angle B and \angle C.

Solution: Given that ABC is a right angled triangle such that $\angle A = 90^{\circ}$ and AB = AC

Since, AB= AC

 Δ ABC is also isosceles.

Therefore, we can say that Δ ABC is right angled isosceles triangle.

$$\angle$$
 C = \angle B and \angle A = 90°(i)

Now, we have sum of angled in a triangle = 180°

$$\angle$$
 A + \angle B + \angle C = 180°
90° + \angle B + \angle B = 180° [From(i)]
2 \angle B = 180° - 90°
 \angle B = 45°

Therefore, \angle B = \angle C = 45°