4. Inverse Trigonometric Functions

Exercise 4A

1. Question

Find the principal value of :
(i) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
(ii) $\sin ^{-1}\left(\frac{1}{2}\right)$
(iii) $\cos ^{-1}\left(\frac{1}{2}\right)$
(iv) $\tan ^{-1}$ (1)
(v) $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
(vi) $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
(vii) $\operatorname{cosec}^{-1}(\sqrt{2})$

Answer

NOTE:

Trigonometric Table

	$\mathbf{0}^{\circ} \mathbf{(0)}$	$\mathbf{3 0}^{\circ}\left(\frac{\pi}{6}\right)$	$\mathbf{4 5}$ $\left(\frac{\pi}{4}\right)$	$\mathbf{6 0}^{\circ}\left(\frac{\pi}{3}\right)$	$\mathbf{9 0}^{\circ}\left(\frac{\pi}{2}\right)$
$\boldsymbol{\operatorname { s i n }}$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\boldsymbol{\operatorname { c o s }}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\boldsymbol{\operatorname { t a n }}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undefined
$\boldsymbol{\operatorname { c o s e c }}$	undefined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\boldsymbol{\operatorname { s e c }}$	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Undefined
$\boldsymbol{\operatorname { c o t }}$	undefined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

(i) Let $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\mathrm{x}$
$\Rightarrow \frac{\sqrt{3}}{2}=\sin \mathrm{X}$ [We know which value of x when placed in sin gives us this answer]
$\therefore \mathrm{x}=\frac{\pi}{3}$
(ii) Let $\sin ^{-1}\left(\frac{1}{2}\right)=x$
$\Rightarrow \frac{1}{2}=\sin \mathrm{x}$ [We know which value of x when put in this expression will give us this result]
$\Rightarrow x=\frac{\pi}{6}$
(iii) Let $\cos ^{-1}\left(\frac{1}{2}\right)=\mathrm{x}$
$\Rightarrow \frac{1}{2}=\cos x$ [We know which value of x when put in this expression will give us this result]
$\therefore \mathrm{x}=\frac{\pi}{3}$
(iv) Let $\tan ^{-1}(1)=x$
$\Rightarrow 1=\tan x$ [We know which value of x when put in this expression will give us this result]
$\therefore \mathrm{x}=\frac{\pi}{4}$
(v) Let $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=x$
$\Rightarrow \frac{1}{\sqrt{3}}=\tan x$ [We know which value of x when put in this expression will give us this result]
$\therefore \mathrm{x}=\frac{\pi}{6}$
(vi) Let $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=x$
$\Rightarrow \frac{2}{\sqrt{3}}=\sec x$ [We know which value of x when put in this expression will give us this result]
$\therefore \mathrm{x}=\frac{\pi}{6}$
(vii) Let $\operatorname{cosec}^{-1}(\sqrt{2})=x$
$\Rightarrow \sqrt{2}=\operatorname{cosec} x$
[We know which value of x when put in this expression will give us this result]
$\therefore \mathrm{x}=\frac{\pi}{4}$

2. Question

Find the principal value of :
(i) $\sin ^{-1}\left(\frac{-1}{\sqrt{2}}\right)$
(ii) $\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)$
(iii) $\tan ^{-1}(-\sqrt{3})$
(iv) $\sec ^{-1}(-2)$
(v) $\operatorname{cosec}^{-1}(-\sqrt{2})$
(vi) $\cot ^{-1}\left(\frac{-1}{\sqrt{3}}\right)$

Answer

(i) Let $\sin ^{-1}\left(\frac{-1}{\sqrt{2}}\right)=\mathrm{x}$
$\Rightarrow-\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=x$ [Formula: $\sin ^{-1}(-x)=-\sin ^{-1} x$]
$\Rightarrow \frac{1}{\sqrt{2}}=-\sin x$ [We know which value of x when put in this expression will give us this result]
$\therefore \mathrm{x}=-\frac{\pi}{4}$
(ii) $\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)=\pi-\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ [Formula: $\left.\cos ^{-1}(-x)=\pi-\cos ^{-1} x\right]$

Let $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=x$
$\Rightarrow\left(\frac{\sqrt{3}}{2}\right)=\cos x$ [We know which value of x when put in this expression will give us this result]
$\therefore \mathrm{x}=\frac{\pi}{6}$
Putting this value back in the equation
$\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$
(iii) Let $\tan ^{-1}(-\sqrt{3})=\mathrm{x}$
$\Rightarrow-\tan ^{-1}(\sqrt{3})=x$ [Formula: $\tan ^{-1}(-x)=-\tan ^{-1}(x)$]
$\Rightarrow \sqrt{3}=-\tan x$ [We know which value of x when put in this expression will give us this result]
$\therefore \mathrm{x}=\frac{-\pi}{3}$
(iv) $\sec ^{-1}(-2)=\pi-\sec ^{-1}(2) \ldots$ (i) [Formula: $\left.\sec ^{-1}(-x)=\pi-\sec ^{-1}(x)\right]$

Let $\sec ^{-1}(2)=x$
$\Rightarrow 2=\sec x$ [We know which value of x when put in this expression will give us this result]
$\therefore \mathrm{x}=\frac{\pi}{3}$
Putting the value in (i)
$\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
(v) Let $\operatorname{cosec}^{-1}(-\sqrt{2})=x$
$\Rightarrow-\operatorname{cosec}^{-1}(\sqrt{2})=\mathrm{x}\left[\right.$ Formula: $\left.\operatorname{cosec}^{-1}(-x)=-\operatorname{cosec}^{-1}(x)\right]$
$\Rightarrow \sqrt{2}=-\operatorname{cosec} x$
$\therefore \mathrm{x}=-\frac{\pi}{4}$
(vi) $\cot ^{-1}\left(\frac{-1}{\sqrt{3}}\right)=\pi-\cot ^{-1}\left(\frac{1}{\sqrt{3}}\right) \ldots$ (i)

Let $\cot ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\mathrm{x}$
$\Rightarrow \frac{1}{\sqrt{3}}=\cot ^{-1} \mathrm{x}$ [We know which value of x when put in this expression will give us this result]
$\Rightarrow \mathrm{x}=\frac{\pi}{3}$
Putting in (i)
$\pi-\frac{\pi}{3}$
$=\frac{2 \pi}{3}$

3. Question

Evaluate $\cos \left\{\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)+\frac{\pi}{6}\right\}$.

Answer

$\cos \left\{\pi-\frac{\pi}{6}+\frac{\pi}{6}\right\}[$ Refer to question 2 (ii)]
$=\cos \{\pi\}$
$=\cos \left(\frac{\pi}{2}+\frac{\pi}{2}\right)$
$=-1$
4. Question

Evaluate $\sin \left\{\frac{\pi}{2}-\left(\frac{-\pi}{3}\right)\right\}$

Answer

$\sin \left(\frac{\pi}{2}+\frac{\pi}{3}\right)$
$=\sin \left(\frac{5 \pi}{6}\right)$
$=\sin \left(\pi-\frac{\pi}{6}\right)$
$=\sin \frac{\pi}{6}$
$=\frac{1}{2}$

Exercise 4B

1. Question

Find the principal value of each of the following :
$\sin ^{-1}\left(\frac{-1}{2}\right)$

Answer

$\sin ^{-1}\left(\frac{-1}{2}\right)=-\sin ^{-1}\left(\frac{1}{2}\right)$ [Formula: $\left.\sin ^{-1}(-x)=\sin ^{-1}(x)\right]$
$=-\frac{\pi}{6}$

2. Question

Find the principal value of each of the following :
$\cos ^{-1}\left(\frac{-1}{2}\right)$

Answer

$\cos ^{-1}\left(\frac{-1}{2}\right)=\pi-\cos ^{-1}\left(\frac{1}{2}\right)$ [Formula: $\left.\cos ^{-1}(-x)=-\cos ^{-1}(x)\right]$
$=\pi-\frac{\pi}{3}$
$=\frac{2 \pi}{3}$

3. Question

Find the principal value of each of the following :
$\tan ^{-1}(-1)$

Answer

$\tan (-1)=-\tan (1)$ [Formula: $\left.\tan ^{-1}(-x)=-\tan ^{-1}(x)\right]$
[We know that $\tan \frac{\pi}{4}=1$, thus $\tan ^{-1} \frac{\pi}{4}=1$]
$=-\frac{\pi}{4}$

4. Question

Find the principal value of each of the following :
$\sec ^{-1}(-2)$

Answer

$\sec ^{-1}(-2)=\pi-\sec ^{-1}(2)$ [Formula: $\left.\sec ^{-1}(-x)=\pi-\sec ^{-1}(x)\right]$
$=\pi-\frac{\pi}{3}$
$=\frac{2 \pi}{3}$
5. Question

Find the principal value of each of the following :
$\operatorname{cosec}^{-1}(-\sqrt{2})$

Answer

$\operatorname{cosec}^{-1}(-\sqrt{2})=-\operatorname{cosec}^{-1}(\sqrt{2})\left[\right.$ Formula: $\left.\operatorname{cosec}^{-1}(-x)=-\operatorname{cosec}^{-1}(x)\right]$
$=-\frac{\pi}{4}$
This can also be solved as
$\operatorname{cosec}^{-1}(-\sqrt{2})$
Since cosec is negative in the third quadrant, the angle we are looking for will be in the third quadrant.
$=\pi+\frac{\pi}{4}$
$=\frac{5 \pi}{4}$

6. Question

Find the principal value of each of the following :
$\cot ^{1}(-1)$

Answer

$\cot ^{-1}(-1)=\pi-\cot ^{-1}(1)$ [Formula: $\left.\cot ^{-1}(-x)=\pi-\cot ^{-1}(x)\right]$
$=\pi-\frac{\pi}{4}$
$=\frac{3 \pi}{4}$

7. Question

Find the principal value of each of the following :
$\tan ^{-1}(-\sqrt{3})$

Answer

$\tan ^{-1}(-\sqrt{3})=-\tan ^{-1}(\sqrt{3})$ [Formula: $\left.\tan ^{-1}(-x)=-\tan ^{-1}(x)\right]$
$=-\frac{\pi}{3}$
8. Question

Find the principal value of each of the following :
$\sec ^{-1}\left(\frac{-2}{\sqrt{3}}\right)$

Answer

$\sec ^{-1}\left(\frac{-2}{\sqrt{3}}\right)=\pi-\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$ [Formula: $\left.\sec ^{-1}(-x)=\pi-\sec ^{-1}(x)\right]$
$=\pi-\frac{\pi}{6}$
$=\frac{5 \pi}{6}$
9. Question

Find the principal value of each of the following :
$\operatorname{cosec}^{-1}(2)$
Answer
$\operatorname{cosec}^{-1}(2)$
Putting the value directly
$=\frac{\pi}{6}$

10. Question

Find the principal value of each of the following :
$\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$

Answer

$\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)=\sin ^{-1}\left(\sin \left(\pi-\frac{\pi}{3}\right)\right)$
[Formula: $\sin (\pi-x)=\sin x$)
$=\sin ^{-1}\left(\sin \frac{\pi}{3}\right)$
[Formula: $\sin ^{-1}(\sin x)=x$]
$=\frac{\pi}{3}$

11. Question

Find the principal value of each of the following :
$\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$

Answer

$\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)=\tan ^{-1}\left(\tan \left(\pi-\frac{\pi}{4}\right)\right)$
[Formula: $\tan (\pi-x)=-\tan (x)$, as \tan is negative in the second quadrant.]
$=\tan ^{-1}\left(-\tan \frac{\pi}{4}\right)$
[Formula: $\tan ^{-1}(\tan \mathrm{x})=\mathrm{x}$]
$=-\frac{\pi}{4}$
12. Question

Find the principal value of each of the following :
$\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$

Answer

$\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)=\cos ^{-1}\left(\cos \left(2 \pi-\frac{5 \pi}{6}\right)\right)$
[Formula: $\cos (2 \pi-x)=\cos (x)$, as \cos has a positive vaule in the fourth quadrant.]
$=\cos ^{-1}\left(\cos \frac{5 \pi}{6}\right)$ [Formula: $\cos ^{-1}(\cos x)=x$
$=\frac{5 \pi}{6}$

13. Question

Find the principal value of each of the following :
$\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)$

Answer

$\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)=\cos ^{-1}\left(\cos \left(2 \pi+\frac{\pi}{6}\right)\right)$
[Formula: $\cos (2 \pi+x)=\cos x, \cos$ is positive in the first quadrant.]
$=\cos ^{-1}\left(\cos \frac{\pi}{6}\right)$ [Formula: $\left.\cos ^{-1}(\cos x)=x\right]$
$=\frac{\pi}{6}$

14. Question

Find the principal value of each of the following :
$\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)$

Answer

$\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)=\tan ^{-1}\left(\tan \left(\pi+\frac{\pi}{6}\right)\right)$
[Formula: $\tan (\pi+x)=\tan x$, as \tan is positive in the third quadrant.]
$=\tan ^{-1}\left(\tan \frac{\pi}{6}\right)\left[\right.$ Formula: $\left.\tan ^{-1}(\tan x)=x\right]$
$=\frac{\pi}{6}$

15. Question

Find the principal value of each of the following :
$\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3}) 3$

Answer

$\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})$
Putting the value of $\tan ^{-1} \sqrt{3}$ and using the formula
$\cot ^{-1}(-x)=\pi-\cot ^{-1} x$
$=\frac{\pi}{3}-\left(\pi-\cot ^{-1}(\sqrt{3})\right)$
Putting the value of $\cot ^{-1}(\sqrt{3})$
$=\frac{\pi}{3}-\left(\pi-\frac{\pi}{6}\right)$
$=\frac{\pi}{3}-\frac{5 \pi}{6}$
$=-\frac{3 \pi}{6}$
$=-\frac{\pi}{2}$

16. Question

Find the principal value of each of the following :
$\sin \left\{\frac{\pi}{3}-\sin ^{-1}\left(\frac{-1}{2}\right)\right\}$

Answer

$\sin \left\{\frac{\pi}{3}-\sin ^{-1}\left(\frac{-1}{2}\right)\right\}\left[\right.$ Formula: $\left.\sin ^{-1}(-x)=-\sin ^{-1} x\right]$
$=\sin \left\{\frac{\pi}{3}-\left(-\sin ^{-1} \frac{1}{2}\right)\right\}$
$=\sin \left\{\frac{\pi}{3}+\sin ^{-1}\left(\frac{1}{2}\right)\right\}$
Putting value of $\sin ^{-1}\left(\frac{1}{2}\right)$
$=\sin \left\{\frac{\pi}{3}+\frac{\pi}{6}\right\}$
$=\sin \frac{3 \pi}{6}$
$=\sin \frac{\pi}{2}$
$=1$

17. Question

Find the principal value of each of the following :
$\cot \left(\tan ^{-1} x+\cot ^{-1} x\right)$

Answer

$\cot \left(\tan ^{-1} x+\cot ^{-1} x\right)=\cot \left(\frac{\pi}{2}\right)\left[\right.$ Formula: $\left.\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\right]$
Putting value of $\cot \left(\frac{\pi}{2}\right)$
$=0$

18. Question

Find the principal value of each of the following :
$\operatorname{cosec}\left(\sin ^{-1} x+\cos ^{-1} x\right)$

Answer

$\operatorname{cosec}\left(\sin ^{-1} x+\cos ^{-1} x\right)=\operatorname{cosec} \frac{\pi}{2}\left[\right.$ Formula: $\left.\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}\right]$
Putting the value of $\operatorname{cosec} \frac{\pi}{2}$
$=1$

19. Question

Find the principal value of each of the following :
$\sin \left(\sec ^{-1} x+\operatorname{cosec}^{-1} x\right)$

Answer

$\sin \left(\sec ^{-1} x+\operatorname{cosec}^{-1} x\right)=\sin \left(\frac{\pi}{2}\right)$ [Formula: $\sec ^{-1} x+\operatorname{cosec}^{-1} x=\frac{\pi}{2}$]
Putting the value of $\sin \left(\frac{\pi}{2}\right)$
$=1$

20. Question

Find the principal value of each of the following :
$\cos ^{-1} \frac{1}{2}+2 \sin ^{-1} \frac{1}{2}$

Answer

Putting the values of the inverse trigonometric terms
$\frac{\pi}{3}+2 \times \frac{\pi}{6}$
$=\frac{\pi}{3}+\frac{\pi}{3}$
$=\frac{2 \pi}{3}$

21. Question

Find the principal value of each of the following :
$\tan ^{-1} 1+\cos ^{-1}\left(-\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{2}\right)$

Answer

[Formula: $\cos ^{-1}(-x)=\pi-\cos (x)$ and $\sin ^{-1}(-x)=-\sin (x)$]
$\tan ^{-1} 1+\left(\pi-\cos ^{-1}\left(\frac{1}{2}\right)\right)+\left(-\sin ^{-1}\left(\frac{1}{2}\right)\right)$
Putting the values for each of the inverse trigonometric terms
$=\frac{\pi}{4}+\left(\pi-\frac{\pi}{3}\right)-\frac{\pi}{6}$
$=\frac{\pi}{12}+\frac{2 \pi}{3}$
$=\frac{9 \pi}{12}$
$=\frac{3 \pi}{4}$

22. Question

Find the principal value of each of the following :
$\sin ^{-1}\left\{\sin \frac{3 \pi}{5}\right\}$

Answer

$\sin ^{-1}\left\{\sin \left(\frac{3 \pi}{5}\right)\right\}$
$=\sin ^{-1}\left\{\sin \left(\pi-\frac{2 \pi}{5}\right)\right\}$
[Formula: $\sin (\pi-x)=\sin x$, as \sin is positive in the second quadrant.]
$=\sin ^{-1}\left\{\sin \frac{2 \pi}{5}\right\}\left[\right.$ Formula: $\sin ^{-1}(\sin x)=x$]
$=\frac{2 \pi}{5}$

Exercise 4C

1 A. Question

Prove that:
$\tan ^{-1}\left(\frac{1+x}{1-x}\right)=\frac{\pi}{4}+\tan ^{-1} x, x<1$

Answer

To Prove: $\tan ^{-1}\left(\frac{1+x}{1-x}\right)=\frac{\pi}{4}+\tan ^{-1} x$
Formula Used: $\tan \left(\frac{\pi}{4}+A\right)=\frac{1+\tan A}{1-\tan A}$
Proof:
LHS $=\tan ^{-1}\left(\frac{1+x}{1-x}\right) .$.
Let $\mathrm{x}=\tan \mathrm{A} \ldots$ (2)
Substituting (2) in (1),

LHS $=\tan ^{-1}\left(\frac{1+\tan A}{1-\tan A}\right)$
$=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}+A\right)\right)$
$=\frac{\pi}{4}+A$
From (2), $A=\tan ^{-1} x$,
$\frac{\pi}{4}+A=\frac{\pi}{4}+\tan ^{-1} x$
$=$ RHS
Therefore, LHS = RHS
Hence proved.

1 B. Question

Prove that:
$\tan ^{-1} x+\cot ^{-1}(x+1)=\tan ^{-1}\left(x^{2}+x+1\right)$

Answer

To Prove: $\tan ^{-1} x+\cot ^{-1}(x+1)=\tan ^{-1}\left(x^{2}+x+1\right)$
Formula Used:

1) $\cot ^{-1} x=\tan ^{-1} \frac{1}{x}$
2) $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$

Proof:
LHS $=\tan ^{-1} x+\cot ^{-1}(x+1)$
$=\tan ^{-1} x+\tan ^{-1} \frac{1}{(x+1)}$
$=\tan ^{-1}\left(\frac{x+\frac{1}{(x+1)}}{1-\left(x \times \frac{1}{(x+1)}\right)}\right)$
$=\tan ^{-1} \frac{x(x+1)+1}{x+1-x}$
$=\tan ^{-1}\left(x^{2}+x+1\right)$
$=$ RHS
Therefore, LHS = RHS
Hence proved.

2. Question

Prove that:

$$
\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)=2 \sin ^{-1} x,|x| \leq \frac{1}{\sqrt{2}}
$$

To Prove: $\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)=2 \sin ^{-1} x$
Formula Used: $\sin 2 \mathrm{~A}=2 \times \sin \mathrm{A} \times \cos \mathrm{A}$
Proof:
LHS $=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right) \cdots(1)$
Let $x=\sin A \ldots$ (2)
Substituting (2) in (1),
LHS $=\sin ^{-1}\left(2 \sin A \sqrt{1-\sin ^{2} A}\right)$
$=\sin ^{-1}(2 \times \sin A \times \cos A)$
$=\sin ^{-1}(\sin 2 A)$
$=2 \mathrm{~A}$
From (2), $A=\sin ^{-1} x$,
$2 A=2 \sin ^{-1} x$
$=$ RHS
Therefore, LHS = RHS
Hence proved.

3 A. Question

Prove that:
$\sin ^{-1}\left(3 x-4 x^{3}\right)=3 \sin ^{-1} x,|x| \leq \frac{1}{2}$

Answer

To Prove: $\sin ^{-1}\left(3 x-4 x^{3}\right)=3 \sin ^{-1} x$
Formula Used: $\sin 3 A=3 \sin A-4 \sin ^{3} A$
Proof:
LHS $=\sin ^{-1}\left(3 x-4 x^{3}\right)$
Let $\mathrm{x}=\sin \mathrm{A} \ldots$
Substituting (2) in (1),
LHS $=\sin ^{-1}\left(3 \sin A-4 \sin ^{3} A\right)$
$=\sin ^{-1}(\sin 3 A)$
$=3 \mathrm{~A}$
From (2), $A=\sin ^{-1} x$,
$3 A=3 \sin ^{-1} x$
$=$ RHS
Therefore, LHS = RHS
Hence proved.

3 B. Question

Prove that:
$\cos ^{-1}\left(4 x^{3}-3 x\right)=3 \cos ^{-1} x, \frac{1}{2} \leq x \leq 1$

Answer

To Prove: $\cos ^{-1}\left(4 x^{3}-3 x\right)=3 \cos ^{-1} x$
Formula Used: $\cos 3 A=4 \cos ^{3} A-3 \cos A$
Proof:
LHS $=\cos ^{-1}\left(4 x^{3}-3 x\right) \ldots(1)$
Let $x=\cos A \ldots$ (2)
Substituting (2) in (1),
LHS $=\cos ^{-1}\left(4 \cos ^{3} A-3 \cos A\right)$
$=\cos ^{-1}(\cos 3 A)$
$=3 \mathrm{~A}$
From (2), $A=\cos ^{-1} x$,
$3 A=3 \cos ^{-1} x$
$=$ RHS
Therefore, LHS = RHS
Hence proved.

3 C. Question

Prove that:
$\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)=3 \tan ^{-1} x,|x|<\frac{1}{\sqrt{3}}$

Answer

To Prove: $\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)=3 \tan ^{-1} x$
Formula Used: $\tan 3 A=\frac{3 \tan A-\tan ^{3} A}{1-3 \tan ^{2} A}$
Proof:
$\mathrm{LHS}=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$.
Let $x=\tan A \ldots$ (2)
Substituting (2) in (1),
LHS $=\tan ^{-1}\left(\frac{3 \tan A-\tan ^{3} A}{1-3 \tan ^{2} A}\right)$
$=\tan ^{-1}(\tan 3 \mathrm{~A})$
$=3 \mathrm{~A}$
From (2), $A=\tan ^{-1} x$,
$3 A=3 \tan ^{-1} x$
$=$ RHS

Therefore, LHS = RHS
Hence proved.

3 D. Question

Prove that:
$\tan ^{-1} x+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$

Answer

To Prove: $\tan ^{-1} x+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$
Formula Used: $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
Proof:
$\mathrm{LHS}=\tan ^{-1} x+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$
$=\tan ^{-1}\left(\frac{x+\left(\frac{2 x}{1-x^{2}}\right)}{1-\left(x \times\left(\frac{2 x}{1-x^{2}}\right)\right)}\right)$
$=\tan ^{-1}\left(\frac{x\left(1-x^{2}\right)+2 x}{1-x^{2}-2 x^{2}}\right)$
$=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$
$=$ RHS
Therefore, LHS = RHS
Hence proved.

4 A. Question

Prove that:
$\cos ^{-1}\left(1-2 x^{2}\right)=2 \sin ^{-1} x$

Answer

To Prove: $\cos ^{-1}\left(1-2 x^{2}\right)=2 \sin ^{-1} x$
Formula Used: $\cos 2 \mathrm{~A}=1-2 \sin ^{2} \mathrm{~A}$
Proof:
LHS $=\cos ^{-1}\left(1-2 x^{2}\right)$
Let $x=\sin A \ldots$ (2)
Substituting (2) in (1),
LHS $=\cos ^{-1}\left(1-2 \sin ^{2} A\right)$
$=\cos ^{-1}(\cos 2 \mathrm{~A})$
$=2 \mathrm{~A}$
From (2), $A=\sin ^{-1} x$,
$2 \mathrm{~A}=2 \sin ^{-1} \mathrm{x}$
= RHS
Therefore, LHS = RHS
Hence proved.

4 B. Question

Prove that:
$\cos ^{-1}\left(2 \mathrm{x}^{2}-1\right)=2 \cos ^{-1} \mathrm{x}$

Answer

To Prove: $\cos ^{-1}\left(2 x^{2}-1\right)=2 \cos ^{-1} x$
Formula Used: $\cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1$
Proof:
LHS $=\cos ^{-1}\left(2 x^{2}-1\right) \ldots(1)$
Let $\mathrm{x}=\cos \mathrm{A} .$. (2)
Substituting (2) in (1),
LHS $=\cos ^{-1}\left(2 \cos ^{2} A-1\right)$
$=\cos ^{-1}(\cos 2 \mathrm{~A})$
$=2 \mathrm{~A}$
From (2), $A=\cos ^{-1} x$,
$2 \mathrm{~A}=2 \cos ^{-1} \mathrm{x}$
$=$ RHS
Therefore, LHS = RHS
Hence proved.

4 C. Question

Prove that:
$\sec ^{-1}\left(\frac{1}{2 \mathrm{x}^{2}-1}\right)=2 \cos ^{-1} \mathrm{x}$

Answer

To Prove: $\sec ^{-1}\left(\frac{1}{2 \mathrm{x}^{2}-1}\right)=2 \cos ^{-1} \mathrm{x}$
Formula Used:

1) $\cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1$
2) $\cos ^{-1} \mathrm{~A}=\sec ^{-1}\left(\frac{1}{\mathrm{~A}}\right)$

Proof:
LHS $=\sec ^{-1}\left(\frac{1}{2 \mathrm{x}^{2}-1}\right)$
$=\cos ^{-1}\left(2 x^{2}-1\right) \ldots(1)$
Let $\mathrm{x}=\cos \mathrm{A} \ldots$.. (2

Substituting (2) in (1),
LHS $=\cos ^{-1}\left(2 \cos ^{2} A-1\right)$
$=\cos ^{-1}(\cos 2 \mathrm{~A})$
$=2 \mathrm{~A}$
From (2), $A=\cos ^{-1} x$,
$2 A=2 \cos ^{-1} x$
$=$ RHS
Therefore, LHS = RHS
Hence proved.

4 D. Question

Prove that:
$\cot ^{-1}\left(\sqrt{1+\mathrm{x}^{2}}-\mathrm{x}\right)=\frac{\pi}{2}-\frac{1}{2} \cot ^{-1} \mathrm{x}$

Answer

To Prove: $\cot ^{-1}\left(\sqrt{1+x^{2}}-x\right)=\frac{\pi}{2}-\frac{1}{2} \cot ^{-1} x$
Formula Used:

1) $\tan \left(\frac{\pi}{4}+A\right)=\frac{1+\tan A}{1-\tan A}$
2) $\operatorname{cosec}^{2} A=1+\cot ^{2} A$
3) $1-\cos A=2 \sin ^{2}\left(\frac{A}{2}\right)$
4) $\sin A=2 \sin \left(\frac{A}{2}\right) \cos \left(\frac{A}{2}\right)$

Proof:
LHS $=\cot ^{-1}\left(\sqrt{1+x^{2}}-x\right)$
Let $x=\cot A$
LHS $=\cot ^{-1}\left(\sqrt{1+\cot ^{2} A}-\cot A\right)$
$=\cot ^{-1}(\operatorname{cosec} A-\cot A)$
$=\cot ^{-1}\left(\frac{1-\cos A}{\sin A}\right)$
$=\cot ^{-1}\left(\frac{2 \sin ^{2}\left(\frac{A}{2}\right)}{2 \sin \left(\frac{A}{2}\right) \cos \left(\frac{A}{2}\right)}\right)$
$=\cot ^{-1}\left(\tan \left(\frac{A}{2}\right)\right)$
$=\frac{\pi}{2}-\tan ^{-1}\left(\tan \left(\frac{A}{2}\right)\right)$
$=\frac{\pi}{2}-\frac{A}{2}$
From (2), $A=\cot ^{-1} x$,
$\frac{\pi}{2}-\frac{A}{2}=\frac{\pi}{2}-\frac{1}{2} \cot ^{-1} x$
$=$ RHS
Therefore, LHS = RHS
Hence proved.

5 A. Question

Prove that:
$\tan ^{-1}\left(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{x y}}\right)=\tan ^{-1} \sqrt{x}+\tan ^{-1} \sqrt{y}$

Answer

To Prove: $\tan ^{-1}\left(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{x y}}\right)=\tan ^{-1} \sqrt{x}+\tan ^{-1} \sqrt{y}$
We know that, $\tan A+\tan B=\frac{\tan A+\tan B}{1-\tan A \tan B}$
Also, $\tan ^{-1}\left(\frac{A+B}{1-A B}\right)=\tan ^{-1} A+\tan ^{-1} B$
Taking $A=\sqrt{ } x$ and $B=\sqrt{ } y$
We get,
$\tan ^{-1}\left(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{x y}}\right)=\tan ^{-1} \sqrt{x}+\tan ^{-1} \sqrt{y}$
Hence, Proved.

5 B. Question

Prove that:
$\tan ^{-1}\left(\frac{x+\sqrt{x}}{1-x^{3 / 2}}\right)=\tan ^{-1} x+\tan ^{-1} \sqrt{x}$

Answer

We know that,
$\tan ^{-1}\left(\frac{A+B}{1-A B}\right)=\tan ^{-1} A+\tan ^{-1} B$
Now, taking $A=x$ and $B=\sqrt{ } x$
We get,
$\tan ^{-1} x+\tan ^{-1} \sqrt{x}=\tan ^{-1}\left(\frac{x+\sqrt{x}}{1-x^{3 / 2}}\right)$
As, $x \cdot x^{1 / 2}=x^{3 / 2}$
Hence, Proved.

5 C. Question

Prove that:
$\tan ^{-1}\left(\frac{\sin x}{1+\cos x}\right)=\frac{x}{2}$

Answer

To Prove: $\tan ^{-1}\left(\frac{\sin x}{1+\cos x}\right)=\frac{x}{2}$
Formula Used:

1) $\sin A=2 \times \sin \frac{A}{2} \times \cos \frac{A}{2}$
2) $1+\cos A=2 \cos ^{2} \frac{A}{2}$

Proof:
LHS $=\tan ^{-1}\left(\frac{\sin x}{1+\cos x}\right)$
$=\tan ^{-1}\left(\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\right)$
$=\tan ^{-1}\left(\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}\right)$
$=\tan ^{-1}\left(\tan \frac{X}{2}\right)$
$=\frac{\mathrm{x}}{2}$
$=$ RHS
Therefore LHS $=$ RHS
Hence proved.

6 A. Question

Prove that:
$\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{2}{11}=\tan ^{-1} \frac{3}{4}$

Answer

To Prove: $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{2}{11}=\tan ^{-1} \frac{3}{4}$
Formula Used: $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
Proof:
LHS $=\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{2}{11}$
$=\tan ^{-1}\left(\frac{\frac{1}{2}+\frac{2}{11}}{1-\left(\frac{1}{2} \times \frac{2}{11}\right)}\right)$
$=\tan ^{-1}\left(\frac{11+4}{22-2}\right)$
$=\tan ^{-1} \frac{15}{20}$
$=\tan ^{-1} \frac{3}{4}$
$=$ RHS

Therefore LHS $=$ RHS
Hence proved.

6 B. Question

Prove that:
$\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}=\tan ^{-1} \frac{1}{2}$

Answer

To Prove: $\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}=\tan ^{-1} \frac{1}{2}$
Formula Used: $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
Proof:
LHS $=\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}$
$=\tan ^{-1}\left(\frac{\frac{2}{11}+\frac{7}{24}}{1-\left(\frac{2}{11} \times \frac{7}{24}\right)}\right)$
$=\tan ^{-1}\left(\frac{48+77}{264-14}\right)$
$=\tan ^{-1} \frac{125}{250}$
$=\tan ^{-1} \frac{1}{2}$
$=$ RHS
Therefore LHS $=$ RHS
Hence proved.

6 C. Question

Prove that:
$\tan ^{-1} 1+\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}=\frac{\pi}{2}$

Answer

To Prove: $\tan ^{-1} 1+\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}=\frac{\pi}{2}$
Formula Used: $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
Proof:
LHS $=\tan ^{-1} 1+\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}$
$=\tan ^{-1} 1+\tan ^{-1}\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\left(\frac{1}{2} \times \frac{1}{3}\right)}\right)$
$=\tan ^{-1} 1+\tan ^{-1}\left(\frac{5}{6-1}\right)$
$=\tan ^{-1} 1+\tan ^{-1} 1$
$=\frac{\pi}{4}+\frac{\pi}{4}$
$=\frac{\pi}{2}$
$=$ RHS
Therefore LHS $=$ RHS
Hence proved.

6 D. Question

Prove that:
$2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}=\frac{\pi}{4}$

Answer

To Prove: $2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}=\frac{\pi}{4}$
Formula Used: $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
Proof:
LHS $=2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}$
$=\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}$
$=\tan ^{-1}\left(\frac{\frac{1}{3}+\frac{1}{3}}{1-\left(\frac{1}{3} \times \frac{1}{3}\right)}\right)+\tan ^{-1} \frac{1}{7}$
$=\tan ^{-1}\left(\frac{6}{9-1}\right)+\tan ^{-1} \frac{1}{7}$
$=\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{1}{7}$
$=\tan ^{-1}\left(\frac{\frac{3}{4}+\frac{1}{7}}{1-\left(\frac{3}{4} \times \frac{1}{7}\right)}\right)$
$=\tan ^{-1}\left(\frac{21+4}{28-3}\right)$
$=\tan ^{-1} \frac{25}{25}$
$=\tan ^{-1} 1$
$=\frac{\pi}{4}$
$=$ RHS
Therefore LHS $=$ RHS
Hence proved.

6 E. Question

Prove that:
$\tan ^{-1} 2-\tan ^{-1} 1=\tan ^{-1} \frac{1}{3}$

Answer

To Prove: $\tan ^{-1} 2-\tan ^{-1} 1=\tan ^{-1} \frac{1}{3}$
Formula Used: $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)$ where $x y>-1$
Proof:
LHS $=\tan ^{-1} 2-\tan ^{-1} 1$
$=\tan ^{-1}\left(\frac{2-1}{1+2}\right)$
$=\tan ^{-1}\left(\frac{1}{3}\right)$
$=$ RHS
Therefore LHS $=$ RHS
Hence proved.

6 F. Question

Prove that:
$\tan ^{-1} 1+\tan ^{-1} 2+\tan ^{-1} 3=\pi$

Answer

To Prove: $\tan ^{-1} 1+\tan ^{-1} 2+\tan ^{-1} 3=\pi$
Formula Used: $\tan ^{-1} x+\tan ^{-1} y=\pi+\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$ where $x y>1$
Proof:
LHS $=\tan ^{-1} 1+\tan ^{-1} 2+\tan ^{-1} 3$
$=\frac{\pi}{4}+\pi+\tan ^{-1}\left(\frac{2+3}{1-(2 \times 3)}\right)\{$ since $2 \times 3=6>1\}$
$=\frac{5 \pi}{4}+\tan ^{-1}\left(\frac{5}{-5}\right)$
$=\frac{5 \pi}{4}+\tan ^{-1}(-1)$
$=\frac{5 \pi}{4}-\frac{\pi}{4}$
$=\pi$
= RHS
Therefore LHS = RHS
Hence proved.

6 G. Question

Prove that:
$\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4}$

Answer

To Prove: $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4}$
Formula Used: $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$ where $x y<1$
Proof:
LHS $=\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{8}$
$=\tan ^{-1} \frac{1}{2}+\tan ^{-1}\left(\frac{\frac{1}{5}+\frac{1}{8}}{1-\left(\frac{1}{5} \times \frac{1}{8}\right)}\right)$
$=\tan ^{-1} \frac{1}{2}+\tan ^{-1}\left(\frac{8+5}{40-1}\right)$
$=\tan ^{-1} \frac{1}{2}+\tan ^{-1}\left(\frac{13}{39}\right)$
$=\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}$
$=\tan ^{-1}\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\left(\frac{1}{2} \times \frac{1}{3}\right)}\right)$
$=\tan ^{-1}\left(\frac{3+2}{6-1}\right)$
$=\tan ^{-1} 1$
$=\frac{\pi}{4}$
$=$ RHS
Therefore LHS $=$ RHS
Hence proved.

6 H. Question

Prove that:
$\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\frac{1}{2} \tan ^{1} \frac{4}{3}$

Answer

To Prove: $\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\frac{1}{2} \tan ^{-1} \frac{4}{3} \Rightarrow 2\left(\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}\right)=\tan ^{-1} \frac{4}{3}$
Formula Used: $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$ where $x y<1$
Proof:
LHS $=2\left(\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}\right)$
$=2\left(\tan ^{-1}\left(\frac{\frac{1}{4}+\frac{2}{9}}{1-\left(\frac{1}{4} \times \frac{2}{9}\right)}\right)\right)$
$=2 \tan ^{-1}\left(\frac{9+8}{36-2}\right)$
$=2 \tan ^{-1} \frac{17}{34}$
$=2 \tan ^{-1} \frac{1}{2}$
$=\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{2}$
$=\tan ^{-1}\left(\frac{\frac{1}{2}+\frac{1}{2}}{1-\left(\frac{1}{2} \times \frac{1}{2}\right)}\right)$
$=\tan ^{-1}\left(\frac{1}{\frac{4-1}{4}}\right)$
$=\tan ^{-1} \frac{4}{3}$
$=$ RHS
Therefore LHS $=$ RHS
Hence proved.

7 A. Question

Prove that:
$\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}=\cos ^{-1} \frac{33}{65}$

Answer

To Prove: $\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}=\cos ^{-1} \frac{33}{65}$
Formula Used: $\cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}\left(x y-\sqrt{1-x^{2}} \times \sqrt{1-y^{2}}\right)$
Proof:
$\mathrm{LHS}=\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}$
$=\cos ^{-1}\left(\frac{4}{5} \times \frac{12}{13}-\sqrt{1-\left(\frac{4}{5}\right)^{2}} \times \sqrt{1-\left(\frac{12}{13}\right)^{2}}\right)$
$=\cos ^{-1}\left(\frac{48}{65}-\sqrt{1-\frac{16}{25}} \times \sqrt{1-\frac{144}{169}}\right)$
$=\cos ^{-1}\left(\frac{48}{65}-\left(\sqrt{\frac{25-16}{25}} \times \sqrt{\frac{169-144}{169}}\right)\right)$
$=\cos ^{-1}\left(\frac{48}{65}-\left(\sqrt{\frac{9}{25}} \times \sqrt{\frac{25}{169}}\right)\right)$
$=\cos ^{-1}\left(\frac{48}{65}-\frac{3}{13}\right)$
$=\cos ^{-1}\left(\frac{48-15}{65}\right)$
$=\cos ^{-1} \frac{33}{65}$
$=$ RHS
Therefore, LHS = RHS
Hence proved.

7 B. Question

Prove that:
$\sin ^{-1} \frac{1}{\sqrt{5}}+\sin ^{-1} \frac{2}{\sqrt{5}}=\frac{\pi}{2}$

Answer

To Prove: $\sin ^{-1} \frac{1}{\sqrt{5}}+\sin ^{-1} \frac{2}{\sqrt{5}}=\frac{\pi}{2}$
Formula Used: $\sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left(x \times \sqrt{1-y^{2}}+y \times \sqrt{1-x^{2}}\right)$
Proof:
LHS $=\sin ^{-1} \frac{1}{\sqrt{5}}+\sin ^{-1} \frac{2}{\sqrt{5}}$
$=\sin ^{-1}\left(\frac{1}{\sqrt{5}} \times \sqrt{1-\left(\frac{2}{\sqrt{5}}\right)^{2}}+\frac{2}{\sqrt{5}} \times \sqrt{1-\left(\frac{1}{\sqrt{5}}\right)^{2}}\right)$
$=\sin ^{-1}\left(\frac{1}{\sqrt{5}} \times \sqrt{1-\frac{4}{5}}+\frac{2}{\sqrt{5}} \times \sqrt{1-\frac{1}{5}}\right)$
$=\sin ^{-1}\left(\frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}}+\frac{2}{\sqrt{5}} \times \frac{2}{\sqrt{5}}\right)$
$=\sin ^{-1}\left(\frac{1}{5}+\frac{4}{5}\right)$
$=\sin ^{-1} \frac{5}{5}$
$=\sin ^{-1} 1$
$=\frac{\pi}{2}$
$=$ RHS
Therefore, LHS = RHS
Hence proved.

7 C. Question

Prove that:
$\cos ^{-1} \frac{3}{5}+\sin ^{-1} \frac{12}{13}=\sin ^{-1} \frac{56}{65}$

Answer

To Prove: $\cos ^{-1} \frac{3}{5}+\sin ^{-1} \frac{12}{13}=\sin ^{-1} \frac{56}{65}$
Formula Used: $\sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left(x \times \sqrt{1-y^{2}}+y \times \sqrt{1-x^{2}}\right)$
Proof:
LHS $=\cos ^{-1} \frac{3}{5}+\sin ^{-1} \frac{12}{13}$.
Let $\cos \theta=\frac{3}{5}$

Therefore $\theta=\cos ^{-1} \frac{3}{5}$..
From the figure, $\sin \theta=\frac{4}{5}$
$\Rightarrow \theta=\sin ^{-1} \frac{4}{5}$.
From (2) and (3),
$\cos ^{-1} \frac{3}{5}=\sin ^{-1} \frac{4}{5}$
Substituting in (1), we get
LHS $=\sin ^{-1} \frac{4}{5}+\sin ^{-1} \frac{12}{13}$
$=\sin ^{-1}\left(\frac{4}{5} \times \sqrt{1-\left(\frac{12}{13}\right)^{2}}+\frac{12}{13} \times \sqrt{1-\left(\frac{4}{5}\right)^{2}}\right)$
$=\sin ^{-1}\left(\frac{4}{5} \times \sqrt{1-\frac{144}{169}}+\frac{12}{13} \times \sqrt{1-\frac{16}{25}}\right)$
$=\sin ^{-1}\left(\frac{4}{5} \times \sqrt{\frac{25}{169}}+\frac{12}{13} \times \sqrt{\frac{9}{25}}\right)$
$=\sin ^{-1}\left(\frac{4}{5} \times \frac{5}{13}+\frac{12}{13} \times \frac{3}{5}\right)$
$=\sin ^{-1}\left(\frac{20}{65}+\frac{36}{65}\right)$
$=\sin ^{-1} \frac{56}{65}$
= RHS
Therefore, LHS = RHS
Hence proved.

7 D. Question

Prove that:
$\cos ^{-1} \frac{4}{5}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{27}{11}$

Answer

To Prove: $\cos ^{-1} \frac{4}{5}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{27}{11}$
Formula Used: $\sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left(x \times \sqrt{1-y^{2}}+y \times \sqrt{1-x^{2}}\right)$
Proof:
LHS $=\cos ^{-1} \frac{4}{5}+\sin ^{-1} \frac{3}{5} \ldots$
Let $\cos \theta=\frac{4}{5}$

Therefore $\theta=\cos ^{-1} \frac{4}{5} \ldots$ (2)
From the figure, $\sin \theta=\frac{3}{5}$
$\Rightarrow \theta=\sin ^{-1} \frac{3}{5}$.
From (2) and (3),
$\cos ^{-1} \frac{4}{5}=\sin ^{-1} \frac{3}{5}$
Substituting in (1), we get
LHS $=\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{3}{5}$
$=\sin ^{-1}\left(2 \times \frac{3}{5} \times \sqrt{1-\left(\frac{3}{5}\right)^{2}}\right)$
$=\sin ^{-1}\left(2 \times \frac{3}{5} \times \sqrt{1-\frac{9}{25}}\right)$
$=\sin ^{-1}\left(2 \times \frac{3}{5} \times \sqrt{\frac{16}{25}}\right)$
$=\sin ^{-1}\left(2 \times \frac{3}{5} \times \frac{4}{5}\right)$
$=\sin ^{-1} \frac{24}{25}$

7 E. Question

Prove that:
$\tan ^{-1} \frac{1}{3}+\sec ^{-1} \frac{\sqrt{5}}{2}=\frac{\pi}{4}$

Answer

To Prove: $\tan ^{-1} \frac{1}{3}+\sec ^{-1} \frac{\sqrt{5}}{2}=\frac{\pi}{4}$
Formula Used: $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$ where $x y<1$
Proof:
LHS $=\tan ^{-1} \frac{1}{3}+\sec ^{-1} \frac{\sqrt{5}}{2} .$.
Let $\sec \theta=\frac{\sqrt{5}}{2}$
Therefore $\theta=\sec ^{-1} \frac{\sqrt{5}}{2} \ldots$ (2)

From the figure, $\tan \theta=\frac{1}{2}$
$\Rightarrow \theta=\tan ^{-1} \frac{1}{2} \ldots$
From (2) and (3),
$\sec ^{-1} \frac{\sqrt{5}}{2}=\tan ^{-1} \frac{1}{2}$
Substituting in (1), we get
LHS $=\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{2}$
$=\tan ^{-1}\left(\frac{\frac{1}{3}+\frac{1}{2}}{1-\left(\frac{1}{3} \times \frac{1}{2}\right)}\right)$
$=\tan ^{-1}\left(\frac{2+3}{6-1}\right)$
$=\tan ^{-1} \frac{5}{5}$
$=\tan ^{-1} 1$
$=\frac{\pi}{4}$
$=$ RHS
Therefore, LHS = RHS
Hence proved.

7 F. Question

Prove that:
$\sin ^{-1} \frac{1}{\sqrt{17}}+\cos ^{-1} \frac{9}{\sqrt{85}}=\tan ^{-1} \frac{1}{2}$

Answer

To Prove: $\sin ^{-1} \frac{1}{\sqrt{17}}+\cos ^{-1} \frac{9}{\sqrt{85}}=\tan ^{-1} \frac{1}{2}$
Formula Used: $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$ where $x y<1$
Proof:
LHS $=\sin ^{-1} \frac{1}{\sqrt{17}}+\cos ^{-1} \frac{9}{\sqrt{85}} \ldots$
Let $\sin \theta=\frac{1}{\sqrt{17}}$

Therefore $\theta=\sin ^{-1} \frac{1}{\sqrt{17}} \ldots$ (2)
From the figure, $\tan \theta=\frac{1}{4}$
$\Rightarrow \theta=\tan ^{-1} \frac{1}{4} \ldots$
From (2) and (3),
$\sin ^{-1} \frac{1}{\sqrt{17}}=\tan ^{-1} \frac{1}{4} \ldots$
Now, let $\cos \theta=\frac{9}{\sqrt{85}}$
Therefore $\theta=\cos ^{-1} \frac{9}{\sqrt{85}} \ldots$ (4)
From the figure, $\tan \theta=\frac{2}{9}$
$\Rightarrow \theta=\tan ^{-1} \frac{2}{9} \ldots$
From (4) and (5),
$\cos ^{-1} \frac{9}{\sqrt{85}}=\tan ^{-1} \frac{2}{9} \ldots$
Substituting (3) and (6) in (1), we get
LHS $=\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}$
$=\tan ^{-1}\left(\frac{\frac{1}{4}+\frac{2}{9}}{1-\left(\frac{1}{4} \times \frac{2}{9}\right)}\right)$
$=\tan ^{-1}\left(\frac{9+8}{36-2}\right)$
$=\tan ^{-1} \frac{17}{34}$
$=\tan ^{-1} \frac{1}{2}$
$=$ RHS
Therefore, LHS = RHS

Hence proved.

7 G. Question

Prove that:
$2 \sin ^{-1} \frac{3}{5}-\tan ^{-1} \frac{17}{31}=\frac{\pi}{4}$

Answer

To Prove: $2 \sin ^{-1} \frac{3}{5}-\tan ^{-1} \frac{17}{31}=\frac{\pi}{4}$
Formula Used:

1) $2 \sin ^{-1} x=\sin ^{-1}\left(2 x \times \sqrt{1-x^{2}}\right)$
2) $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$ where $x y<1$

Proof:
LHS $=2 \sin ^{-1} \frac{3}{5}-\tan ^{-1} \frac{17}{31} \ldots(1)$
$2 \sin ^{-1} \frac{3}{5}=\sin ^{-1}\left(2 \times \frac{3}{5} \times \sqrt{1-\left(\frac{3}{5}\right)^{2}}\right)$
$=\sin ^{-1}\left(\frac{6}{5} \times \frac{4}{5}\right)$
$=\sin ^{-1} \frac{24}{25}$..
Substituting (2) in (1), we get
LHS $=\sin ^{-1} \frac{24}{25}-\tan ^{-1} \frac{17}{31} \ldots$ (3)
Let $\sin \theta=\frac{24}{25}$
Therefore $\theta=\sin ^{-1} \frac{24}{25} \ldots$ (4)

From the figure, $\tan \theta=\frac{24}{7}$
$\Rightarrow \theta=\tan ^{-1} \frac{24}{7}$.
From (4) and (5),
$\sin ^{-1} \frac{24}{25}=\tan ^{-1} \frac{24}{7} \ldots$
Substituting (6) in (3), we get
LHS $=\tan ^{-1} \frac{24}{7}-\tan ^{-1} \frac{17}{31}$
$=\tan ^{-1}\left(\frac{\frac{24}{7}-\frac{17}{31}}{1+\left(\frac{24}{7} \times \frac{17}{31}\right)}\right)$
$=\tan ^{-1}\left(\frac{744-119}{217+408}\right)$
$=\tan ^{-1} \frac{625}{625}$
$=\tan ^{-1} 1$
$=\frac{\pi}{4}$
$=$ RHS
Therefore, LHS $=$ RHS
Hence proved.

8 A. Question

Solve for x:
$\tan ^{-1}(x+1)+\tan ^{-1}(x-1)=\tan ^{-1} \frac{8}{31}$

Answer

To find: value of x
Formula Used: $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$ where $x y<1$
Given: $\tan ^{-1}(x+1)+\tan ^{-1}(x-1)=\tan ^{-1} \frac{8}{31}$
LHS $=\tan ^{-1}\left(\frac{x+1+x-1}{1-\{(x+1) \times(x-1)\}}\right)$
$=\tan ^{-1} \frac{2 \mathrm{x}}{1-\left(\mathrm{x}^{2}-\mathrm{x}+\mathrm{x}-1\right)}$
$=\tan ^{-1} \frac{2 \mathrm{x}}{2-\mathrm{x}^{2}}$
Therefore, $\tan ^{-1} \frac{2 \mathrm{x}}{2-\mathrm{x}^{2}}=\tan ^{-1} \frac{8}{31}$
Taking tangent on both sides, we get
$\frac{2 x}{2-x^{2}}=\frac{8}{31}$
$\Rightarrow 62 x=16-8 x^{2}$
$\Rightarrow 8 x^{2}+62 x-16=0$
$\Rightarrow 4 x^{2}+31 x-8=0$
$\Rightarrow 4 x^{2}+32 x-x-8=0$
$\Rightarrow 4 x \times(x+8)-1 \times(x+8)=0$
$\Rightarrow(4 x-1) \times(x+8)=0$
$\Rightarrow x=\frac{1}{4}$ or $x=-8$
Therefore, $x=\frac{1}{4}$ or $x=-8$ are the required values of x.

8 B. Question

Solve for x :
$\tan ^{-1}(2+x)+\tan ^{-1}(2-x)=\tan ^{-1} \frac{2}{3}$

Answer

To find: value of x
Formula Used: $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$ where $x y<1$
Given: $\tan ^{-1}(2+x)+\tan ^{-1}(2-x)=\tan ^{-1} \frac{2}{3}$
LHS $=\tan ^{-1}\left(\frac{2+x+2-x}{1-\{(2+x) \times(2-x)\}}\right)$
$=\tan ^{-1} \frac{4}{1-\left(4-2 x+2 x-x^{2}\right)}$
$=\tan ^{-1} \frac{4}{x^{2}-3}$
Therefore, $\tan ^{-1} \frac{4}{x^{2}-3}=\tan ^{-1} \frac{2}{3}$
Taking tangent on both sides, we get
$\frac{4}{x^{2}-3}=\frac{2}{3}$
$\Rightarrow 12=2 x^{2}-6$
$\Rightarrow 2 x^{2}=18$
$\Rightarrow x^{2}=9$
$\Rightarrow x=3$ or $x=-3$
Therefore, $x= \pm 3$ are the required values of x.

8 C. Question

Solve for x :
$\cos \left(\sin ^{-1} x\right)=\frac{1}{9}$

Answer

To find: value of x
Given: $\cos \left(\sin ^{-1} x\right)=\frac{1}{9}$
LHS $=\cos \left(\sin ^{-1} x\right) \ldots(1)$
Let $\sin \theta=x$
Therefore $\theta=\sin ^{-1} x$

From the figure, $\cos \theta=\sqrt{1-x^{2}}$
$\Rightarrow \theta=\cos ^{-1} \sqrt{1-x^{2}}$.
From (2) and (3),
$\sin ^{-1} \mathrm{x}=\cos ^{-1} \sqrt{1-\mathrm{x}^{2}} \ldots$
Substituting (4) in (1), we get
$\mathrm{LHS}=\cos \left(\cos ^{-1} \sqrt{1-\mathrm{x}^{2}}\right)$
$=\sqrt{1-x^{2}}$
Therefore, $\sqrt{1-\mathrm{x}^{2}}=\frac{1}{9}$
Squaring and simplifying,
$\Rightarrow 81-81 x^{2}=1$
$\Rightarrow 81 x^{2}=80$
$\Rightarrow \mathrm{X}^{2}=\frac{80}{81}$
$\Rightarrow x= \pm \frac{4 \sqrt{5}}{9}$
Therefore, $x= \pm \frac{4 \sqrt{5}}{9}$ are the required values of x.

8 D. Question

Solve for x :
$\cos \left(2 \sin ^{-1} x\right)=\frac{1}{9}$

Answer

To find: value of x
Formula Used: $2 \sin ^{-1} x=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$
Given: $\cos \left(2 \sin ^{-1} \mathrm{x}\right)=\frac{1}{9}$
LHS $=\cos \left(2 \sin ^{-1} x\right)$
Let $\theta=\sin ^{-1} x$
So, $x=\sin \theta$
LHS $=\cos (2 \theta)$
$=1-2 \sin ^{2} \theta$
Substituting in the given equation,
$1-2 \sin ^{2} \theta=\frac{1}{9}$
$2 \sin ^{2} \theta=\frac{8}{9}$
$\sin ^{2} \theta=\frac{4}{9}$
Substituting in (1),
$x^{2}=\frac{4}{9}$
$x= \pm \frac{2}{3}$
Therefore, $x= \pm \frac{2}{3}$ are the required values of x.

8 E. Question

Solve for x :
$\sin ^{-1} \frac{8}{x}+\sin ^{-1} \frac{15}{x}=\frac{\pi}{2}$

Answer

To find: value of x
Given: $\sin ^{-1} \frac{8}{x}+\sin ^{-1} \frac{15}{x}=\frac{\pi}{2}$
We know $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
Let $\sin ^{-1} \frac{8}{x}=P$
$\Rightarrow \sin P=\frac{8}{x}$
Therefore, $\cos P=\frac{\sqrt{x^{2}-64}}{x}$
$P=\cos ^{-1} \frac{\sqrt{x^{2}-64}}{x}$
$\cos ^{-1} \frac{\sqrt{x^{2}-64}}{x}+\sin ^{-1} \frac{15}{x}=\frac{\pi}{2}$
Therefore, $\frac{\sqrt{x^{2}-64}}{x}=\frac{15}{x}$
$\Rightarrow \sqrt{x^{2}-64}=15$
Squaring both sides,
$\Rightarrow x^{2}-64=225$
$\Rightarrow x^{2}=289$
$\Rightarrow \mathrm{x}= \pm 17$
Therefore, $x= \pm 17$ are the required values of x.

9 A. Question

Solve for x :
$\cos \left(\sin ^{-1} \mathrm{x}\right)=\frac{1}{2}$

Answer

To find: value of x
Given: $\cos \left(\sin ^{-1} \mathrm{x}\right)=\frac{1}{2}$
LHS $=\cos \left(\sin ^{-1} x\right)$
$=\cos \left(\cos ^{-1}\left(\sqrt{1-x^{2}}\right)\right)$
$=\sqrt{1-x^{2}}$
Therefore, $\sqrt{1-\mathrm{x}^{2}}=\frac{1}{2}$
Squaring both sides,
$1-x^{2}=\frac{1}{4}$
$\mathrm{x}^{2}=1-\frac{1}{4}$
$x^{2}=\frac{3}{4}$
$x= \pm \frac{\sqrt{3}}{2}$
Therefore, $x= \pm \frac{\sqrt{3}}{2}$ are the required values of x.

9 B. Question

Solve for x :
$\tan ^{-1} x=\sin ^{-1} \frac{1}{\sqrt{2}}$

Answer

To find: value of x
Given: $\tan ^{-1} \mathrm{x}=\sin ^{-1} \frac{1}{\sqrt{2}}$
We know that $\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}$
Therefore, $\frac{\pi}{4}=\sin ^{-1} \frac{1}{\sqrt{2}}$
Substituting in the given equation,
$\tan ^{-1} x=\frac{\pi}{4}$
$x=\tan \frac{\pi}{4}$
$\Rightarrow x=1$
Therefore, $x=1$ is the required value of x.

9 C. Question

Solve for x :
$\sin ^{-1} x-\cos ^{-1} x=\frac{\pi}{6}$

Answer

Given: $\sin ^{-1} x-\cos ^{-1} x=\frac{\pi}{6}$
We know that $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
So, $\sin ^{-1} x=\frac{\pi}{2}-\cos ^{-1} x$

Substituting in the given equation,
$\frac{\pi}{2}-\cos ^{-1} x-\cos ^{-1} x=\frac{\pi}{6}$
Rearranging,
$2 \cos ^{-1} x=\frac{\pi}{2}-\frac{\pi}{6}$
$2 \cos ^{-1} x=\frac{\pi}{3}$
$\cos ^{-1} x=\frac{\pi}{6}$
$x=\frac{\sqrt{3}}{2}$
Therefore, $x=\frac{\sqrt{3}}{2}$ is the required value of x.

Exercise 4D

1. Question

Write down the interval for the principal-value branch of each of the following functions and draw its graph:
$\sin ^{-1} x$

Answer

Principal value branch of $\sin ^{-1} x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

2. Question

Write down the interval for the principal-value branch of each of the following functions and draw its graph:
$\cos ^{-1} \mathrm{x}$
Answer
Principal value branch of $\cos ^{-1} \mathrm{x}$ is $[0, \pi]$

3. Question

Write down the interval for the principal-value branch of each of the following functions and draw its graph: $\tan ^{-1} \mathrm{x}$

Answer

Principal value branch of $\tan ^{-1} \mathrm{x}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

4. Question

Write down the interval for the principal-value branch of each of the following functions and draw its graph: $\cot ^{-1} x$

Answer

Principal value branch of $\cot ^{-1} \mathrm{x}$ is $(0, \pi)$

5. Question

Write down the interval for the principal-value branch of each of the following functions and draw its graph:
$\sec ^{-1} \mathrm{x}$

Answer

Principal value branch of $\sec ^{-1} x$ is $\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$

6. Question

Write down the interval for the principal-value branch of each of the following functions and draw its graph: $\operatorname{cosec}^{-1} \mathrm{x}$

Answer

Principal value branch of $\operatorname{cosec}^{-1} \mathrm{x}$ is $\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$

Objective Questions

1. Question

Mark the tick against the correct answer in the following:
The principal value of $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is
A. $\frac{\pi}{6}$
B. $\frac{5 \pi}{6}$
C. $\frac{7 \pi}{6}$
D. none of these

Answer

To Find:The Principle value of $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
Let the principle value be given by x
Now, let $x=\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
$\Rightarrow \cos x=\frac{\sqrt{3}}{2}$
$\Rightarrow \cos x=\cos \left(\frac{\pi}{6}\right)\left(\because \cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}\right)$
$\Rightarrow x=\frac{\pi}{6}$

2. Question

Mark the tick against the correct answer in the following:
The principal value of $\operatorname{cosec}^{-1}(2)$ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{2 \pi}{3}$
D. $\frac{5 \pi}{6}$

Answer

To Find: The Principle value of $\operatorname{cosec}^{-1}(2)$
Let the principle value be given by x
Now, let $x=\operatorname{cosec}^{-1}(2)$
$\Rightarrow \operatorname{cosec} x=2$
$\Rightarrow \operatorname{cosec} x=\operatorname{cosec}\left(\frac{\pi}{6}\right)\left(\because \cos \left(\frac{\pi}{6}\right)=2\right)$
$\Rightarrow \mathrm{x}=\frac{\pi}{6}$

3. Question

Mark the tick against the correct answer in the following:
The principal value of $\cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ is
A. $\frac{-\pi}{4}$
B. $\frac{\pi}{4}$
C. $\frac{3 \pi}{4}$
D. $\frac{5 \pi}{4}$

Answer

To Find: The Principle value of $\cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right)$
Let the principle value be given by x
Now, let $x=\cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right)$
$\Rightarrow \cos x=\frac{-1}{\sqrt{2}}$
$\Rightarrow \cos x=-\cos \left(\frac{\pi}{4}\right)\left(\because \cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}\right)$
$\Rightarrow \cos x=\cos \left(\pi-\frac{\pi}{4}\right)(\because-\cos (\theta)=\cos (\pi-\theta))$
$\Rightarrow x=\frac{3 \pi}{4}$

4. Question

Mark the tick against the correct answer in the following:
The principal value of $\sin ^{-1}\left(\frac{-1}{2}\right)$ is
A. $\frac{-\pi}{6}$
B. $\frac{5 \pi}{6}$
C. $\frac{7 \pi}{6}$
D. none of these

Answer

To Find: The Principle value of $\sin ^{-1}\left(\frac{-1}{2}\right)$
Let the principle value be given by x
Now, let $x=\sin ^{-1}\left(\frac{-1}{2}\right)$
$\Rightarrow \sin x=\frac{-1}{2}$
$\Rightarrow \sin x=-\sin \left(\frac{\pi}{6}\right)\left(\because \sin \left(\frac{\pi}{6}\right)=\frac{1}{2}\right)$
$\Rightarrow \sin x=\sin \left(-\frac{\pi}{6}\right)(\because-\sin (\theta)=\sin (-\theta))$
$\Rightarrow x=-\frac{\pi}{4}$

5. Question

Mark the tick against the correct answer in the following:
The principal value of $\cos ^{-1}\left(\frac{-1}{2}\right)$ is
A. $\frac{-\pi}{3}$
B. $\frac{2 \pi}{3}$
C. $\frac{4 \pi}{3}$
D. $\frac{\pi}{3}$

Answer

To Find: The Principle value of $\cos ^{-1}\left(\frac{-1}{2}\right)$
Let the principle value be given by x
Now, let $x=\cos ^{-1}\left(\frac{-1}{2}\right)$
$\Rightarrow \cos x=\frac{-1}{2}$
$\Rightarrow \cos x=-\cos \left(\frac{\pi}{3}\right)\left(\because \cos \left(\frac{\pi}{3}\right)=\frac{1}{2}\right)$
$\Rightarrow \cos x=\cos \left(\pi-\frac{\pi}{3}\right)(\because-\cos (\theta)=\cos (\pi-\theta))$
$\Rightarrow \mathrm{x}=\frac{2 \pi}{3}$

6. Question

Mark the tick against the correct answer in the following:
The principal value of $\tan ^{-1}(-\sqrt{3})$ is
A. $\frac{2 \pi}{3}$
B. $\frac{4 \pi}{3}$
C. $\frac{-\pi}{3}$
D. none of these

Answer

To Find: The Principle value of $\tan ^{-1}(-\sqrt{3})$
Let the principle value be given by x
Now, let $x=\tan ^{-1}(-\sqrt{3})$
$\Rightarrow \tan x=-\sqrt{3}$
$\Rightarrow \tan x=-\tan \left(\frac{\pi}{3}\right)\left(\because \tan \left(\frac{\pi}{3}\right)=-\sqrt{3}\right)$
$\Rightarrow \tan x=\tan \left(-\frac{\pi}{3}\right)(\because-\tan (\theta)=\tan (-\theta))$
$\Rightarrow x=-\frac{\pi}{3}$
7. Question

Mark the tick against the correct answer in the following:
The principal value of $\cot ^{-1}(-1)$ is
A. $\frac{-\pi}{4}$
B. $\frac{\pi}{4}$
C. $\frac{5 \pi}{4}$
D. $\frac{3 \pi}{4}$

Answer

To Find: The Principle value of $\cot ^{-1}(-1)$
Let the principle value be given by x
Now, let $x=\cot ^{-1}(-1)$
$\Rightarrow \cot x=-1$
$\Rightarrow \cot x=-\cot \left(\frac{\pi}{4}\right)\left(\because \cot \left(\frac{\pi}{4}\right)=1\right)$
$\Rightarrow \cot x=\cot \left(\pi-\frac{\pi}{4}\right)(\because-\cot (\theta)=\cot (\pi-\theta))$
$\Rightarrow x=\frac{3 \pi}{4}$

8. Question

Mark the tick against the correct answer in the following:
The principal value of $\sec ^{-1}\left(\frac{-2}{\sqrt{3}}\right)$ is
A. $\frac{\pi}{6}$
B. $\frac{-\pi}{6}$
C. $\frac{5 \pi}{6}$
D. $\frac{7 \pi}{6}$

Answer

To Find: The Principle value of $\sec ^{-1}\left(\frac{-2}{\sqrt{3}}\right)$
Let the principle value be given by x
Now, let $x=\sec ^{-1}\left(\frac{-2}{\sqrt{3}}\right)$
$\Rightarrow \sec x=\frac{-2}{\sqrt{3}}$
$\Rightarrow \sec x=-\sec \left(\frac{\pi}{6}\right)\left(\because \sec \left(\frac{\pi}{6}\right)=\frac{2}{\sqrt{3}}\right)$
$\Rightarrow \sec x=\sec \left(\pi-\frac{\pi}{6}\right)(\because-\sec (\theta)=\sec (\pi-\theta))$
$\Rightarrow x=\frac{5 \pi}{6}$

9. Question

Mark the tick against the correct answer in the following:
The principal value of $\operatorname{cosec}^{-1}(-\sqrt{2})$ is
A. $\frac{-\pi}{4}$
B. $\frac{3 \pi}{4}$
C. $\frac{5 \pi}{4}$
D. none of these

Answer

To Find: The Principle value of $\operatorname{cosec}^{-1}(-\sqrt{2})$
Let the principle value be given by x
Now, let $x=\operatorname{cosec}^{-1}(-\sqrt{2})$
$\Rightarrow \operatorname{cosec} x=-\sqrt{2}$
$\Rightarrow \operatorname{cosec} x=-\operatorname{cosec}\left(\frac{\pi}{4}\right)\left(\because \operatorname{cosec}\left(\frac{\pi}{4}\right)=\sqrt{2}\right)$
$\Rightarrow \operatorname{cosec} x=\operatorname{cosec}\left(-\frac{\pi}{4}\right)(\because-\operatorname{cosec}(\theta)=\operatorname{cosec}(-\theta))$
$\Rightarrow x=-\frac{\pi}{4}$

10. Question

Mark the tick against the correct answer in the following:
The principal value of $\cot ^{-1}(-\sqrt{3})$ is
A. $\frac{2 \pi}{6}$
B. $\frac{\pi}{6}$
C. $\frac{7 \pi}{6}$
D. $\frac{5 \pi}{6}$

Answer

To Find: The Principle value of $\cot ^{-1}(-\sqrt{3})$
Let the principle value be given by x
Now, let $x=\cot ^{-1}(-\sqrt{3})$
$\Rightarrow \cot x=-\sqrt{3}$
$\Rightarrow \cot x=-\cot \left(\frac{\pi}{6}\right)\left(\because \cot \left(\frac{\pi}{6}\right)=\sqrt{3}\right)$
$\Rightarrow \cot x=\cot \left(\pi-\frac{\pi}{6}\right)(\because-\cot (\theta)=\cot (\pi-\theta))$
$\Rightarrow x=\frac{5 \pi}{6}$

11. Question

Mark the tick against the correct answer in the following:
The value of $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$ is
A. $\frac{2 \pi}{3}$
B. $\frac{5 \pi}{3}$
C. $\frac{\pi}{3}$
D. none of these

Answer

To Find: The value of $\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)$
Now, let $x=\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)$
$\Rightarrow \sin x=\sin \left(\frac{2 \pi}{3}\right)$
Here range of principle value of sine is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\Rightarrow x=\frac{2 \pi}{3} \notin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of
$\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)$ is
$\Rightarrow \sin \mathrm{x}=\sin \left(\pi-\frac{\pi}{3}\right)\left(\because \sin \left(\frac{2 \pi}{3}\right)=\sin \left(\pi-\frac{\pi}{3}\right)\right)$
$\Rightarrow \sin \mathrm{x}=\sin \left(\frac{\pi}{3}\right)(\because \sin (\pi-\theta)=\sin \theta$ as here θ lies in II quadrant and sine is positive)
$\Rightarrow \mathrm{x}=\frac{\pi}{3}$

12. Question

Mark the tick against the correct answer in the following:
The value of $\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)$ is
A. $\frac{13 \pi}{6}$
B.
C. $\frac{5 \pi}{6}$
D. $\frac{\pi}{6} \frac{7 \pi}{6}$

Answer

To Find: The value of $\cos ^{-1}\left(\cos \left(\frac{13 \pi}{6}\right)\right)$
Now, let $x=\cos ^{-1}\left(\cos \left(\frac{13 \pi}{6}\right)\right)$
$\Rightarrow \cos x=\cos \left(\frac{13 \pi}{6}\right)$
Here ,range of principle value of \cos is $[0, \pi]$
$\Rightarrow \mathrm{X}=\frac{13 \pi}{6} \notin[0, \pi]$
Hence for all values of x in range $[0, \pi]$, the value of
$\cos ^{-1}\left(\cos \left(\frac{13 \pi}{6}\right)\right)$ is
$\Rightarrow \cos x=\cos \left(2 \pi-\frac{\pi}{6}\right)\left(\because \cos \left(\frac{13 \pi}{6}\right)=\cos \left(2 \pi-\frac{\pi}{6}\right)\right)$
$\Rightarrow \cos x=\cos \left(\frac{\pi}{6}\right)(\because \cos (2 \pi-\theta)=\cos \theta)$
$\Rightarrow x=\frac{\pi}{6}$

13. Question

Mark the tick against the correct answer in the following:
The value of $\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)$ is
A. $\frac{7 \pi}{6}$
B. $\frac{5 \pi}{6}$
C. $\frac{\pi}{6}$
D. none of these

Answer

To Find: The value of $\tan ^{-1}\left(\tan \left(\frac{7 \pi}{6}\right)\right)$
Now, let $x=\tan ^{-1}\left(\tan \left(\frac{7 \pi}{6}\right)\right)$
$\Rightarrow \tan x=\tan \left(\frac{7 \pi}{6}\right)$
Here range of principle value of \tan is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\Rightarrow x=\frac{7 \pi}{6} \notin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of
$\tan ^{-1}\left(\tan \left(\frac{13 \pi}{6}\right)\right)$ is
$\Rightarrow \tan x=\tan \left(\pi+\frac{\pi}{6}\right)\left(\because \tan \left(\frac{7 \pi}{6}\right)=\tan \left(\pi+\frac{\pi}{6}\right)\right)$
$\Rightarrow \tan x=\tan \left(\frac{\pi}{6}\right)(\because \tan (\pi+\theta)=\tan \theta)$
$\Rightarrow x=\frac{\pi}{6}$

14. Question

Mark the tick against the correct answer in the following:
The value of $\cot ^{-1}\left(\cot \frac{5 \pi}{4}\right)$ is
A. $\frac{\pi}{4}$
B. $\frac{-\pi}{4}$
C. $\frac{3 \pi}{4}$
D. none of these

Answer

To Find: The value of $\cot ^{-1}\left(\cot \left(\frac{5 \pi}{4}\right)\right)$
Now, let $x=\cot ^{-1}\left(\cot \left(\frac{5 \pi}{4}\right)\right)$
$\Rightarrow \cot x=\cot \left(\frac{5 \pi}{4}\right)$
Here range of principle value of \cot is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\Rightarrow X=\frac{5 \pi}{4} \notin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of
$\cot ^{-1}\left(\cot \left(\frac{5 \pi}{4}\right)\right)$ is
$\Rightarrow \cot x=\cot \left(\pi+\frac{\pi}{4}\right)\left(\because \cot \left(\frac{5 \pi}{4}\right)=\cot \left(\pi+\frac{\pi}{4}\right)\right)$
$\Rightarrow \cot \mathrm{x}=\cot \left(\frac{\pi}{4}\right)(\because \cot (\pi+\theta)=\cot \theta)$
$\Rightarrow x=\frac{\pi}{4}$

15. Question

Mark the tick against the correct answer in the following:
The value of $\sec ^{-1}\left(\sec \frac{8 \pi}{5}\right)$ is
A. $\frac{2 \pi}{5}$
B. $\frac{3 \pi}{5}$
C. $\frac{8 \pi}{5}$
D. none of these

Answer

To Find: The value of $\sec ^{-1}\left(\sec \left(\frac{8 \pi}{5}\right)\right)$
Now, let $x=\sec ^{-1}\left(\sec \left(\frac{8 \pi}{5}\right)\right)$
$\Rightarrow \sec x=\sec \left(\frac{8 \pi}{5}\right)$
Here range of principle value of sec is $[0, \pi]$
$\Rightarrow x=\frac{8 \pi}{5} \notin[0, \pi]$
Hence for all values of x in range $[0, \pi]$, the value of
$\sec ^{-1}\left(\sec \left(\frac{8 \pi}{5}\right)\right)$ is
$\Rightarrow \sec x=\sec \left(2 \pi-\frac{2 \pi}{5}\right)\left(\because \sec \left(\frac{8 \pi}{5}\right)=\sec \left(2 \pi-\frac{2 \pi}{5}\right)\right)$
$\Rightarrow \sec x=\sec \left(\frac{2 \pi}{5}\right)(\because \sec (2 \pi-\theta)=\sec \theta)$
$\Rightarrow x=\frac{2 \pi}{5}$

16. Question

Mark the tick against the correct answer in the following:
The value of $\operatorname{cosec}^{-1}\left(\operatorname{cosec} \frac{4 \pi}{3}\right)$ is
A. $\frac{\pi}{3}$
B. $\frac{-\pi}{3}$
C. $\frac{2 \pi}{3}$
D. none of these

Answer

To Find: The value of $\operatorname{cosec}^{-1}\left(\operatorname{cosec}\left(\frac{4 \pi}{3}\right)\right)$
Now, let $x=\operatorname{cosec}^{-1}\left(\operatorname{cosec}\left(\frac{4 \pi}{3}\right)\right)$
$\Rightarrow \operatorname{cosec} x=\operatorname{cosec}\left(\frac{4 \pi}{3}\right)$
Here range of principle value of cosec is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\Rightarrow \mathrm{x}=\frac{4 \pi}{3} \notin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of $\operatorname{cosec}^{-1}\left(\operatorname{cosec}\left(\frac{4 \pi}{3}\right)\right)$ is
$\Rightarrow \operatorname{cosec} \mathrm{X}=\operatorname{cosec}\left(\pi+\frac{\pi}{3}\right)\left(\because \operatorname{cosec}\left(\frac{4 \pi}{3}\right)=\operatorname{cosec}\left(\pi+\frac{\pi}{3}\right)\right)$
$\Rightarrow \operatorname{cosec} \mathrm{x}=\operatorname{cosec}\left(-\frac{\pi}{3}\right)(\because \operatorname{cosec}(\pi+\theta)=\operatorname{cosec}(-\theta))$
$\Rightarrow \mathrm{x}=-\frac{\pi}{3}$

17. Question

Mark the tick against the correct answer in the following:
The value of $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$ is
A. $\frac{3 \pi}{4}$
B. $\frac{\pi}{4}$
C. $\frac{-\pi}{4}$
D. none of these

Answer

To Find: The value of $\tan ^{-1}\left(\tan \left(\frac{3 \pi}{4}\right)\right)$
Now, let $x=\tan ^{-1}\left(\tan \left(\frac{3 \pi}{4}\right)\right)$
$\Rightarrow \tan x=\tan \left(\frac{3 \pi}{4}\right)$
Here range of principle value of \tan is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\Rightarrow x=\frac{3 \pi}{4} \notin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of
$\tan ^{-1}\left(\tan \left(\frac{3 \pi}{4}\right)\right)$ is
$\Rightarrow \tan x=\tan \left(\pi-\frac{\pi}{4}\right)\left(\because \tan \left(\frac{3 \pi}{4}\right)=\tan \left(\pi-\frac{\pi}{4}\right)\right)$
$\Rightarrow \tan x=\tan \left(-\frac{\pi}{4}\right)(\because \tan (\pi-\theta)=\tan (-\theta))$
$\Rightarrow \mathrm{x}=-\frac{\pi}{4}$
18. Question

Mark the tick against the correct answer in the following:
$\frac{\pi}{3}-\sin ^{-1}\left(\frac{-1}{2}\right)=?$
A. 0
B. $\frac{2 \pi}{3}$
C. $\frac{\pi}{2}$
D. π

Answer

To Find: The value of $\frac{\pi}{3}-\sin ^{-1}\left(\frac{-1}{2}\right)$
Now, let $x=\frac{\pi}{3}-\sin ^{-1}\left(\frac{-1}{2}\right)$
$\Rightarrow x=\frac{\pi}{3}-\left(-\sin ^{-1}\left(\frac{1}{2}\right)\right)(\because \sin (-\theta)=-\sin (\theta)$
$\Rightarrow x=\frac{\pi}{3}-\left(-\frac{\pi}{6}\right)\left(\because \sin \frac{\pi}{6}=\frac{1}{2}\right)$
$\Rightarrow x=\frac{\pi}{3}+\frac{\pi}{6}$
$\Rightarrow x=\frac{3 \pi}{6}=\frac{\pi}{2}$

19. Question

Mark the tick against the correct answer in the following:

The value of $\sin \left(\sin ^{-1} \frac{1}{2}+\cos ^{-1} \frac{1}{2}\right)=$?
A. 0
B. 1
C. -1
D. none of these

Answer

To Find: The value of $\sin \left(\sin ^{-1} \frac{1}{2}+\cos ^{-1} \frac{1}{2}\right)$
Now, let $x=\sin \left(\sin ^{-1} \frac{1}{2}+\cos ^{-1} \frac{1}{2}\right)$
$\Rightarrow x=\sin \left(\frac{\pi}{2}\right)\left(\because \sin ^{-1} \theta+\cos ^{-1} \theta=\frac{\pi}{2}\right)$
$\Rightarrow x=1\left(\because \sin \left(\frac{\pi}{2}\right)=1\right)$

20. Question

Mark the tick against the correct answer in the following:
If $x \neq 0$ then $\cos \left(\tan ^{-1} x+\cot ^{-1} x\right)=$?
A. -1
B. 1
C. 0
D. none of these

Answer

Given: $x \neq 0$
To Find: The value of $\cos \left(\tan ^{-1} x+\cot ^{-1} x\right)$
Now, let $x=\cos \left(\tan ^{-1} x+\cot ^{-1} x\right)$
$\Rightarrow x=\cos \left(\frac{\pi}{2}\right)\left(\because \tan ^{-1} \theta+\cot ^{-1} \theta=\frac{\pi}{2}\right)$
$\Rightarrow x=0\left(\because \cos \left(\frac{\pi}{2}\right)=0\right)$

21. Question

Mark the tick against the correct answer in the following:
The value of $\sin \left(\cos ^{-1} \frac{3}{5}\right)$ is
A. $\frac{2}{5}$
B. $\frac{4}{5}$
C. $\frac{-2}{5}$
D. none of these

Answer

To Find: The value of $\sin \left(\cos ^{-1} \frac{3}{5}\right)$
Now, let $x=\cos ^{-1} \frac{3}{5}$
$\Rightarrow \cos x=\frac{3}{5}$
Now, $\sin x=\sqrt{1-\cos ^{2} x}$
$=\sqrt{1-\left(\frac{3}{5}\right)^{2}}$
$=\frac{4}{5}$
$\Rightarrow x=\sin ^{-1} \frac{4}{5}=\cos ^{-1} \frac{3}{5}$
Therefore,
$\sin \left(\cos ^{-1} \frac{3}{5}\right)=\sin \left(\sin ^{-1} \frac{4}{5}\right)$
Let,$Y=\sin \left(\sin ^{-1} \frac{4}{5}\right)$
$\Rightarrow \sin ^{-1} Y=\sin ^{-1} \frac{4}{5}$
$\Rightarrow Y=\frac{4}{5}$

22. Question

Mark the tick against the correct answer in the following:
$\cos ^{-1}\left(\cos \frac{2 \pi}{3}\right)+\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)=?$
A. $\frac{4 \pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{5 \pi}{3}$
D. π

Answer

To Find: The value of $\cos ^{-1}\left(\cos \left(\frac{2 \pi}{3}\right)\right)+\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)$
Here, consider $\cos ^{-1}\left(\cos \left(\frac{2 \pi}{3}\right)\right)\left(\because\right.$ the principle value of \cos lies in the range $[0, \pi]$ and since $\left.\frac{2 \pi}{3} \in[0, \pi]\right)$ $\Rightarrow \cos ^{-1}\left(\cos \left(\frac{2 \pi}{3}\right)\right)=\frac{2 \pi}{3}$

Now, consider $\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)$

Since here the principle value of sine lies in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and since $\frac{2 \pi}{3} \notin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\Rightarrow \sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)=\sin ^{-1}\left(\sin \left(\pi-\frac{\pi}{3}\right)\right)$
$=\sin ^{-1}\left(\sin \left(\frac{\pi}{3}\right)\right)$
$=\frac{\pi}{3}$

Therefore,
$\cos ^{-1}\left(\cos \left(\frac{2 \pi}{3}\right)\right)+\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)=\frac{2 \pi}{3}+\frac{\pi}{3}$
$=\frac{3 \pi}{3}$
$=\pi$

23. Question

Mark the tick against the correct answer in the following:
$\tan ^{-1}(\sqrt{3})-\sec ^{-1}(-2)=$?
A. $\frac{\pi}{3}$
B. $\frac{-\pi}{3}$
C. $\frac{5 \pi}{3}$
D. none of these

Answer

To Find: The value of $\tan ^{-1}(\sqrt{3})-\sec ^{-1}(-2)$
Let, $x=\tan ^{-1}(\sqrt{3})-\sec ^{-1}(-2)$
$\Rightarrow x=\frac{\pi}{3}-\left[\pi-\sec ^{-1}(2)\right]\left(\because \tan \left(\frac{\pi}{3}\right)=\sqrt{3}\right.$ and $\left.\sec ^{-1}(-\theta)=\pi-\sec ^{-1}(\theta)\right)$
$\Rightarrow x=\frac{\pi}{3}-\left[\pi-\frac{\pi}{3}\right]$
$\Rightarrow \mathrm{x}=\frac{\pi}{3}-\left[\frac{2 \pi}{3}\right]$
$\Rightarrow \mathrm{x}=-\frac{\pi}{3}$

24. Question

Mark the tick against the correct answer in the following:
$\cos ^{-1} \frac{1}{2}+2 \sin ^{-1} \frac{1}{2}=$?
A. $\frac{2 \pi}{3}$
B. $\frac{3 \pi}{2}$
C. 2π
D. none of these

Answer

To Find: The value of $\cos ^{-1} \frac{1}{2}+2 \sin ^{-1} \frac{1}{2}$
Now, let $x=\cos ^{-1} \frac{1}{2}+2 \sin ^{-1} \frac{1}{2}$
$\Rightarrow x=\frac{\pi}{3}+2\left(\frac{\pi}{6}\right)\left(\because \cos \left(\frac{\pi}{3}\right)=\frac{1}{2}\right.$ and $\left.\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}\right)$
$\Rightarrow x=\frac{\pi}{3}+\frac{\pi}{3}$
$\Rightarrow x=\frac{2 \pi}{3}$

25. Question

Mark the tick against the correct answer in the following:
$\tan ^{-1} 1+\cos ^{-1}\left(\frac{-1}{2}\right)+\sin ^{-1}\left(\frac{-1}{2}\right)=$?
A. π
B. $\frac{2 \pi}{3}$
C. $\frac{3 \pi}{4}$
D. $\frac{\pi}{2}$

Answer

To Find: The value of $\tan ^{-1} 1+\cos ^{-1}\left(\frac{-1}{2}\right)+\sin ^{-1}\left(\frac{-1}{2}\right)$
Now, let $x=\tan ^{-1} 1+\cos ^{-1}\left(\frac{-1}{2}\right)+\sin ^{-1}\left(\frac{-1}{2}\right)$
$\Rightarrow x=\frac{\pi}{4}+\left[\pi-\cos ^{-1}\left(\frac{1}{2}\right)\right]+\left[-\sin ^{-1} \frac{1}{2}\right]\left(\because \tan \left(\frac{\pi}{4}\right)=1\right.$ and $\cos ^{-1}(-\theta)=\left[\pi-\cos ^{-1} \theta\right]$ and $\left.\sin ^{-1}(-\theta)=-\sin ^{-1} \theta\right)$
$\Rightarrow \mathrm{X}=\frac{\pi}{4}+\left[\pi-\frac{\pi}{3}\right]+\left[-\frac{\pi}{6}\right]$
$\Rightarrow x=\frac{\pi}{4}+\frac{2 \pi}{3}-\frac{\pi}{6}$
$\Rightarrow x=\frac{3 \pi}{4}$

26. Question

Mark the tick against the correct answer in the following:
$\tan \left[2 \tan ^{-1} \frac{1}{5}-\frac{\pi}{4}\right]=$?
A. $\frac{7}{17}$
B. $\frac{-7}{17}$
C. $\frac{7}{12}$
D. $\frac{-7}{12}$

Answer

To Find: The value of $\tan \left(2 \tan ^{-1} \frac{1}{5}-\frac{\pi}{4}\right)$
Consider , $\tan \left(2 \tan ^{-1} \frac{1}{5}-\frac{\pi}{4}\right)=\tan \left(\tan ^{-1}\left(\frac{2\left(\frac{1}{5}\right)}{1-\left(\frac{1}{5}\right)^{2}}\right)-\frac{\pi}{4}\right)$
$\left(\because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)\right)$
$=\tan \left(\tan ^{-1}\left(\frac{\frac{2}{5}}{1-\frac{1}{25}}\right)-\frac{\pi}{4}\right)$
$=\tan \left(\tan ^{-1}\left(\frac{5}{12}\right)-\frac{\pi}{4}\right)$
$=\tan \left(\tan ^{-1}\left(\frac{5}{12}\right)-\tan ^{-1}(1)\right)\left(\because \tan \left(\frac{\pi}{4}\right)=1\right)$
$=\tan \left(\tan ^{-1}\left(\frac{\frac{5}{12}-1}{1+\frac{5}{12}}\right)\right)$
$\left(\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)\right.$
$=\tan \left(\tan ^{-1}\left(\frac{-7}{17}\right)\right)$
$\tan \left(2 \tan ^{-1} \frac{1}{5}-\frac{\pi}{4}\right)=\frac{-7}{17}$

27. Question

Mark the tick against the correct answer in the following:
$\tan \frac{1}{2}\left(\cos ^{-1} \frac{\sqrt{5}}{3}\right)=$?
A. $\frac{(3-\sqrt{5})}{2}$
B. $\frac{(3+\sqrt{5})}{2}$
C. $\frac{(5-\sqrt{3})}{2}$
D. $\frac{(5+\sqrt{3})}{2}$

Answer

To Find: The value of $\tan \frac{1}{2}\left(\cos ^{-1} \frac{\sqrt{5}}{3}\right)$
Let, $x=\cos ^{-1} \frac{\sqrt{5}}{3}$
$\Rightarrow \cos x=\frac{\sqrt{5}}{3}$
Now, $\tan \frac{1}{2}\left(\cos ^{-1} \frac{\sqrt{5}}{3}\right)$ becomes
$\tan \frac{1}{2}\left(\cos ^{-1} \frac{\sqrt{5}}{3}\right)=\tan \frac{1}{2}(x)=\tan \frac{x}{2}$
$=\sqrt{\frac{1-\cos x}{1+\cos x}}$
$=\sqrt{\frac{1-\left(\frac{\sqrt{5}}{3}\right)}{1+\frac{\sqrt{5}}{3}}}$
$=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}$
$=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}} \times \sqrt{\frac{3-\sqrt{5}}{3-\sqrt{5}}}$
$\tan \frac{1}{2}\left(\cos ^{-1} \frac{\sqrt{5}}{3}\right)=\frac{3-\sqrt{5}}{2}$
28. Question

Mark the tick against the correct answer in the following:
$\sin \left(\cos ^{-1} \frac{3}{5}\right)=?$
A. $\frac{3}{4}$
B. $\frac{4}{5}$
C. $\frac{3}{5}$
D. none of these

Answer

To Find: The value of $\sin \left(\cos ^{-1} \frac{3}{5}\right)$
Let, $x=\cos ^{-1} \frac{3}{5}$
$\Rightarrow \cos x=\frac{3}{5}$

Now, $\sin \left(\cos ^{-1} \frac{3}{5}\right)$ becomes $\sin (x)$
Since we know that $\sin x=\sqrt{1-\cos ^{2} x}$
$=\sqrt{1-\left(\frac{3}{5}\right)^{2}}$
$\sin \left(\cos ^{-1} \frac{3}{5}\right)=\operatorname{Sin} x=\frac{4}{5}$
29. Question

Mark the tick against the correct answer in the following:
$\cos \left(\tan ^{-1} \frac{3}{4}\right)=$?
A. $\frac{3}{5}$
B. $\frac{4}{5}$
C. $\frac{4}{9}$
D. none of these

Answer

To Find: The value of $\cos \left(\tan ^{-1} \frac{3}{4}\right)$
Let $\mathrm{x}=\tan ^{-1} \frac{3}{4}$
$\Rightarrow \tan \mathrm{x}=\frac{3}{4}$
$\Rightarrow \tan x=\frac{3}{4}=\frac{\text { oppositeside }}{\text { adjacent side }}$
We know that by pythagorus theorem ,
$(\text { Hypotenuse })^{2}=(\text { opposite side })^{2}+(\text { adjacent side })^{2}$
Therefore, Hypotenuse $=5$
$\Rightarrow \cos x=\frac{\text { adjacent } \text { side }}{\text { hypotenuse }}=\frac{4}{5}$
Since here $x=\tan ^{-1} \frac{3}{4}$ hence $\cos \left(\tan ^{-1} \frac{3}{4}\right)$ becomes $\cos x$
Hence, $\cos \left(\tan ^{-1} \frac{3}{4}\right)=\cos x=\frac{4}{5}$

30. Question

Mark the tick against the correct answer in the following:
$\sin \left\{\frac{\pi}{3}-\sin ^{-1}\left(\frac{-1}{2}\right)\right\}=$?
A. 1
B. 0
C. $\frac{-1}{2}$
D. none of these

Answer

To Find: The value of of $\sin \left\{\frac{\pi}{3}-\sin ^{-1}\left(\frac{-1}{2}\right)\right\}$
Let, $x=\sin \left\{\frac{\pi}{3}-\sin ^{-1}\left(\frac{-1}{2}\right)\right\}$
$\Rightarrow x=\sin \left\{\frac{\pi}{3}-\left(-\sin ^{-1} \frac{1}{2}\right)\right\}\left(\because \sin ^{-1}(-\theta)=-\sin \theta\right)$
$\Rightarrow x=\sin \left(\frac{\pi}{3}+\frac{\pi}{6}\right)$
$\Rightarrow x=\sin \left(\frac{3 \pi}{6}\right)=\sin \left(\frac{\pi}{2}\right)=1$

31. Question

Mark the tick against the correct answer in the following:
$\sin \left(\frac{1}{2} \cos ^{-1} \frac{4}{5}\right)=$?
A. $\frac{1}{\sqrt{5}}$
B. $\frac{2}{\sqrt{5}}$
C. $\frac{1}{\sqrt{10}}$
D. $\frac{2}{\sqrt{10}}$

Answer

To Find: The value of $\sin \left(\frac{1}{2} \cos ^{-1} \frac{4}{5}\right)$
Let $x=\cos ^{-1} \frac{4}{5}$
$\Rightarrow \cos x=\frac{4}{5}$
Therefore $\sin \left(\frac{1}{2} \cos ^{-1} \frac{4}{5}\right)$ becomes $\sin \left(\frac{1}{2} x\right)$, i.e $\sin \left(\frac{x}{2}\right)$
We know that $\sin \left(\frac{x}{2}\right)=\sqrt{\frac{1-\cos x}{2}}$
$=\sqrt{\frac{1-\frac{4}{5}}{2}}$
$=\sqrt{\frac{1}{\frac{1}{2}}}$
$\sin \left(\frac{x}{2}\right)=\frac{1}{\sqrt{10}}$

32. Question

Mark the tick against the correct answer in the following:
$\tan ^{-1}\left\{2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right\}=?$
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{3 \pi}{4}$
D. $\frac{2 \pi}{3}$

Answer

To Find: The value of $\tan ^{-1}\left\{2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right\}$
Let, $x=\tan ^{-1}\left\{2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right\}$
$\Rightarrow x=\tan ^{-1}\left\{2 \cos \left(2\left(\frac{\pi}{6}\right)\right)\right\}\left(\because \sin \left(\frac{\pi}{6}\right)=\frac{1}{2}\right)$
$\Rightarrow x=\tan ^{-1}\left(2 \cos \frac{\pi}{3}\right)$
$\Rightarrow x=\tan ^{-1}\left(2\left(\frac{1}{2}\right)\right)=\tan ^{-1} 1=\frac{\pi}{4}\left(\because \cos \left(\frac{\pi}{3}\right)=\frac{1}{2}\right.$ and $\left.\tan \left(\frac{\pi}{4}\right)=1\right)$

33. Question

Mark the tick against the correct answer in the following:
If $\cot ^{-1}\left(\frac{-1}{5}\right)=x$ then $\sin x=?$
A. $\frac{1}{\sqrt{26}}$
B. $\frac{5}{\sqrt{26}}$
C. $\frac{1}{\sqrt{24}}$
D. none of these

Answer

Given: $\cot ^{-1} \frac{-1}{5}=x$
To Find: The value of $\sin x$
Since,$x=\cot ^{-1} \frac{-1}{5}$
$\Rightarrow \operatorname{Cot} \mathrm{X}=\frac{-1}{5}=\frac{\text { adjacent side }}{\text { opposite side }}$

By pythagorus theroem,
$(\text { Hypotenuse })^{2}=(\text { opposite side })^{2}+(\text { adjacent side })^{2}$
Therefore, Hypotenuse $=\sqrt{26}$
$\Rightarrow \sin x=\frac{\text { opposite side }}{\text { hypotenuse }}=\frac{5}{\sqrt{26}}$

34. Question

Mark the tick against the correct answer in the following:

$$
\sin ^{-1}\left(\frac{-1}{2}\right)+2 \cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)=?
$$

A. $\frac{\pi}{2}$
B. π
C. $\frac{3 \pi}{2}$
D. none of these

Answer

To Find: The value of $\sin ^{-1}\left(\frac{-1}{2}\right)+2 \cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)$
Let , $x=\sin ^{-1}\left(\frac{-1}{2}\right)+2 \cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)$
$\Rightarrow \mathrm{x}=-\sin ^{-1}\left(\frac{1}{2}\right)+2\left[\pi-\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right]\left(\because \sin ^{-1}(-\theta)=-\sin ^{-1}(\theta)\right.$ and $\left.\cos ^{-1}(-\theta)=\pi-\cos ^{-1}(\theta)\right)$
$\Rightarrow x=-\left(\frac{\pi}{6}\right)+2\left[\pi-\frac{\pi}{6}\right]$
$\Rightarrow x=-\left(\frac{\pi}{6}\right)+2\left[\frac{5 \pi}{6}\right]$
$\Rightarrow x=-\frac{\pi}{6}+\frac{5 \pi}{3}$
$\Rightarrow x=\frac{3 \pi}{2}$
Tag:

35. Question

Mark the tick against the correct answer in the following:
$\tan ^{-1}(-1)+\cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right)=?$
A. $\frac{\pi}{2}$
B. π
C. $\frac{3 \pi}{2}$
D. $\frac{2 \pi}{3}$

Answer

To Find: The value of $\tan ^{-1}(-1)+\cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right)$
Let, $x=\tan ^{-1}(-1)+\cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right)$
$\Rightarrow \mathrm{x}=-\tan ^{-1}(1)+\left(\pi-\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)\right)$
$\left(\because \tan ^{-1}(-\theta)=-\tan ^{-1}(\theta)\right.$ and $\left.\cos ^{-1}(-\theta)=\pi-\cos ^{-1}(\theta)\right)$
$\Rightarrow x=-\frac{\pi}{4}+\left(\pi-\frac{\pi}{4}\right)$
$\Rightarrow \mathrm{x}=-\frac{\pi}{4}+\frac{3 \pi}{4}$
$\Rightarrow x=\frac{\pi}{2}$

36. Question

Mark the tick against the correct answer in the following:

$$
\cot \left(\tan ^{-1} x+\cot ^{-1} x\right)=?
$$

A. 1
B. $\frac{1}{2}$
C. 0
D. none of these

Answer

To Find: The value of $\cot \left(\tan ^{-1} x+\cot ^{-1} x\right)$
Let , $\mathrm{x}=\cot \left(\tan ^{-1} x+\cot ^{-1} x\right)$
$\Rightarrow \mathrm{x}=\cot \left(\frac{\pi}{2}\right)\left(\because \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\right)$
$\Rightarrow x=0$

37. Question

Mark the tick against the correct answer in the following:
$\tan ^{-1} 1+\tan ^{-1} \frac{1}{3}=?$
A. $\tan ^{-1} \frac{4}{3}$
B. $\tan ^{-1} \frac{2}{3}$
C. $\tan ^{-1} 2$
D. $\tan ^{-1} 3$

Answer

To Find: The value of $\tan ^{-1} 1+\tan ^{-1} \frac{1}{3}$
Let, $x=\tan ^{-1} 1+\tan ^{-1} \frac{1}{3}$
Since we know that $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
$\Rightarrow \tan ^{-1} 1+\tan ^{-1} \frac{1}{3}=\tan ^{-1}\left(\frac{1+\frac{1}{3}}{1-\frac{1}{3}}\right)=\tan ^{-1} 2$

38. Question

Mark the tick against the correct answer in the following:
$\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}=?$
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\frac{2 \pi}{3}$

Answer

To Find: The value of $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}$
Let, $x=\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}$
Since we know that $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
$\Rightarrow \tan ^{-1} 1+\tan ^{-1} \frac{1}{3}=\tan ^{-1}\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\left(\frac{1}{3} \times \frac{1}{2}\right)}\right)=\tan ^{-1} 1=\frac{\pi}{4}$

39. Question

Mark the tick against the correct answer in the following:
$2 \tan ^{-1} \frac{1}{3}=?$
A. $\tan ^{-1} \frac{3}{2}$
B. $\tan ^{-1} \frac{3}{4}$
C. $\tan ^{-1} \frac{4}{3}$
D. none of these

Answer

To Find: The value of $2 \tan ^{-1} \frac{1}{3}$ i.e, $\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{3}$
Let, $x=\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{3}$
Since we know that $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
$\Rightarrow \tan ^{-1} 1+\tan ^{-1} \frac{1}{3}=\tan ^{-1}\left(\frac{\frac{1}{3}+\frac{1}{3}}{\left.1-\frac{1}{3} \times \frac{1}{3}\right)}\right)=\tan ^{-1} \frac{3}{4}$

40. Question

Mark the tick against the correct answer in the following:
$\cos \left(2 \tan ^{-1} \frac{1}{2}\right)=?$
A. $\frac{3}{5}$
B. $\frac{4}{5}$
C. $\frac{7}{8}$
D. none of these

Answer

To Find: The value of $\cos \left(2 \tan ^{-1} \frac{1}{2}\right)$
Let, $x=\cos \left(2 \tan ^{-1} \frac{1}{2}\right)$
$\Rightarrow x=\cos \left(\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{2}\right)$
Since we know that $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
$\Rightarrow \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{2}=\tan ^{-1}\left(\frac{\frac{1}{2}+\frac{1}{2}}{1-\left(\frac{1}{2} \times \frac{1}{2}\right)}\right)=\tan ^{-1} \frac{4}{3}$
$\Rightarrow x=\cos \left(\tan ^{-1} \frac{4}{3}\right)$
Now, let $y=\tan ^{-1} \frac{4}{3}$
$\Rightarrow \tan \mathrm{y}=\frac{4}{3}=\frac{\text { opposite side }}{\text { adjacent side }}$
By pythagorus theroem,
$(\text { Hypotenuse })^{2}=(\text { opposite side })^{2}+(\text { adjacent side })^{2}$
Therefore, Hypotenuse $=5$
$\Rightarrow \cos \left(\tan ^{-1} \frac{4}{3}\right)=\cos y=\frac{3}{5}$

41. Question

Mark the tick against the correct answer in the following:
$\sin \left[2 \tan ^{-1} \frac{5}{8}\right]$
A. $\frac{25}{64}$
B. $\frac{80}{89}$
C. $\frac{75}{128}$
D. none of these

Answer

To Find: The value of $\sin \left(2 \tan ^{-1} \frac{5}{8}\right)$
Let, $x=\sin \left(2 \tan ^{-1} \frac{5}{8}\right)$
We know that $2 \tan ^{-1} x=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
$\Rightarrow x=\sin \left(\sin ^{-1}\left(\frac{2\left(\frac{5}{5}\right)}{\left.1+\left(\frac{5}{9}\right)^{2}\right)^{2}}\right)=\sin \left(\sin ^{-1}\left(\frac{80}{89}\right)\right)=\frac{80}{89}\right.$

42. Question

Mark the tick against the correct answer in the following:
$\sin \left[2 \sin ^{-1} \frac{4}{5}\right]$
A. $\frac{12}{25}$
B. $\frac{16}{25}$
C. $\frac{24}{25}$
D. None of these

Answer

To Find: The value of $\sin \left(2 \sin ^{-1} \frac{4}{5}\right)$
Let , $x=\sin ^{-1} \frac{4}{5}$
$\Rightarrow \sin x=\frac{4}{5}$
We know that , $\cos x=\sqrt{1-\sin ^{2} x}$
$=\sqrt{1-\left(\frac{4}{5}\right)^{2}}$
$=\frac{3}{5}$

Now since, $x=\sin ^{-1} \frac{4}{5}$, hence $\sin \left(2 \sin ^{-1} \frac{4}{5}\right)$ becomes $\sin (2 x)$
Here, $\sin (2 x)=2 \sin x \cos x$
$=2 \times \frac{4}{5} \times \frac{3}{5}$
$=\frac{24}{25}$

43. Question

Mark the tick against the correct answer in the following:
If $\tan ^{-1} x=\frac{\pi}{4}-\tan ^{-1} \frac{1}{3}$ then $x=$?
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{1}{6}$
D. None of these

Answer

To Find: The value of $\tan ^{-1} x=\frac{\pi}{4}-\tan ^{-1} \frac{1}{3}$
Now, $\tan ^{-1} x=\tan ^{-1} 1-\tan ^{-1} \frac{1}{3}\left(\because \tan \frac{\pi}{4}=1\right)$
Since we know that $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)$
$\Rightarrow \tan ^{-1} 1+\tan ^{-1} \frac{1}{3}=\tan ^{-1}\left(\frac{1-\frac{1}{3}}{1+\frac{1}{3}}\right)=\tan ^{-1} \frac{1}{2}$
$\Rightarrow \tan ^{-1} x=\tan ^{-1} \frac{1}{2}$
$\Rightarrow x=\frac{1}{2}$

44. Question

Mark the tick against the correct answer in the following:
If $\tan ^{-1}(1+x)+\tan ^{-1}(1-x)=\frac{\pi}{2}$ then $x=$?
A. 1
B. -1
C. 0
D. $\frac{1}{2}$

Answer
To Find: The value of $\tan ^{-1}(1+x)+\tan ^{-1}(1-x)=\frac{\pi}{2}$

Since we know that $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
$\Rightarrow \tan ^{-1}(1+x)+\tan ^{-1}(1-x)=\tan ^{-1}\left(\frac{(1+x)+(1-x)}{1-(1+x)(1-x)}\right)$
$=\tan ^{-1}\left(\frac{2}{1-\left(1-x^{2}\right)}\right)$
$=\tan ^{-1}\left(\frac{2}{x^{2}}\right)$
Here since $\tan ^{-1}(1+x)+\tan ^{-1}(1-x)=\frac{\pi}{2}$
$\Rightarrow \tan ^{-1}\left(\frac{2}{x^{2}}\right)=\frac{\pi}{2}$
$\Rightarrow \tan ^{-1}\left(\frac{2}{x^{2}}\right)=\tan ^{-1}(\infty)\left(\because \tan \frac{\pi}{2}=\infty\right)$
$\Rightarrow \frac{2}{x^{2}}=\infty$
$\Rightarrow x^{2}=\frac{2}{\infty}$
$\Rightarrow x=0$

45. Question

Mark the tick against the correct answer in the following:
If $\sin ^{-1} x+\sin ^{-1} y=\frac{2 \pi}{3}$ then $\left(\cos ^{-1} x+\cos ^{-1} y\right)=?$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. π
D. $\frac{2 \pi}{3}$

Answer

Given: $\sin ^{-1} x+\sin ^{-1} y=\frac{2 \pi}{3}$
To Find: The value of $\cos ^{-1} x+\cos ^{-1} y$
Since we know that $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
$\Rightarrow \cos ^{-1} x=\frac{\pi}{2}-\sin ^{-1} x$
Similarly $\cos ^{-1} y=\frac{\pi}{2}-\sin ^{-1} y$
Now consider $\cos ^{-1} x+\cos ^{-1} y=\frac{\pi}{2}-\sin ^{-1} x+\frac{\pi}{2}-\sin ^{-1} y$
$=\frac{2 \pi}{2}-\left[\sin ^{-1} x+\sin ^{-1} y\right]$
$=\pi-\frac{2 \pi}{3}$
$=\frac{\pi}{3}$

46. Question

Mark the tick against the correct answer in the following:
$\left(\tan ^{-1} 2+\tan ^{-1} 3\right)=?$
A. $\frac{-\pi}{4}$
B. $\frac{\pi}{4}$
C. $\frac{3 \pi}{4}$
D. π

Answer

To Find: The value of $\tan ^{-1} 2+\tan ^{-1} 3$
Since we know that $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
$\Rightarrow \tan ^{-1} 2+\tan ^{-1} 3=\tan ^{-1}\left(\frac{2+3}{1-(2 \times 3)}\right)$
$=\tan ^{-1}\left(\frac{5}{-5}\right)$
$=\tan ^{-1}(-1)$
Since the principle value of tan lies in the range $[0, \pi]$
$\Rightarrow \tan ^{-1}(-1)=\frac{3 \pi}{4}$

47. Question

Mark the tick against the correct answer in the following:
If $\tan ^{-1} x+\tan ^{-1} 3=\tan ^{-1} 8$ then $x=$?
A. $\frac{1}{3}$
B. $\frac{1}{5}$
C. 3
D. 5

Answer

Given: $\tan ^{-1} x+\tan ^{-1} 3=\tan ^{-1} 8$
To Find: The value of x
Here $\tan ^{-1} x+\tan ^{-1} 3=\tan ^{-1} 8$ can be written as
$\tan ^{-1} x=\tan ^{-1} 8-\tan ^{-1} 3$
Since we know that $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)$
$\tan ^{-1} x=\tan ^{-1} 8-\tan ^{-1} 3=\tan ^{-1}\left(\frac{8-3}{1+(8 \times 3)}\right)$
$=\tan ^{-1}\left(\frac{5}{25}\right)$
$=\tan ^{-1}\left(\frac{1}{5}\right)$
$\Rightarrow x=\frac{1}{5}$

48. Question

Mark the tick against the correct answer in the following:
If $\tan ^{-1} 3 x+\tan ^{-1} 2 x=\frac{\pi}{4}$ then $x=?$
A. $\frac{1}{2}$ or -2
B. $\frac{1}{3}$ or -3
C. $\frac{1}{4}$ or -2
D. $\frac{1}{6}$ or -1

Answer

Given: $\tan ^{-1} 3 x+\tan ^{-1} 2 x=\frac{\pi}{4}$
To Find: The value of x
Since we know that $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
$\Rightarrow \tan ^{-1} 3 x+\tan ^{-1} 2 x=\tan ^{-1}\left(\frac{3 x+2 x}{1-(3 x \times 2 x)}\right)$
$=\tan ^{-1}\left(\frac{5 x}{1-6 x^{2}}\right)$
Now since $\tan ^{-1} 3 x+\tan ^{-1} 2 x=\frac{\pi}{4}$
$\tan ^{-1} 3 x+\tan ^{-1} 2 x=\tan ^{-1} 1\left(\because \tan \frac{\pi}{4}=1\right)$
$\Rightarrow \tan ^{-1}\left(\frac{5 x}{1-6 x^{2}}\right)=\tan ^{-1} 1$
$\Rightarrow \frac{5 x}{1-6 x^{2}}=1$
$\Rightarrow 6 x^{2}+5 x-1=0$
$\Rightarrow x=\frac{1}{6}$ or $x=-1$

49. Question

Mark the tick against the correct answer in the following:
$\tan \left\{\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{2}{3}\right\}=$?
A. $\frac{13}{6}$
B. $\frac{17}{6}$
C. $\frac{19}{6}$
D. $\frac{23}{6}$

Answer

To Find: The value of $\tan \left\{\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{2}{3}\right\}$
Let $x=\cos ^{-1} \frac{4}{5}$
$\Rightarrow \cos x=\frac{4}{5}=\frac{\text { adjacent side }}{\text { hypotenuse }}$
By pythagorus theroem,
$(\text { Hypotenuse })^{2}=(\text { opposite side })^{2}+(\text { adjacent side })^{2}$
Therefore , opposite side $=3$
$\Rightarrow \tan \mathrm{x}=\frac{\text { oppositeside }}{\text { adjacent side }}=\frac{3}{4}$
$\Rightarrow x=\tan ^{-1} \frac{3}{4}$
Now $\tan \left\{\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{2}{3}\right\}=\tan \left\{\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right\}$
Since we know that $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
$\tan \left\{\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right\}=\tan \left(\tan ^{-1}\left(\frac{\frac{3}{6}+\frac{2}{3}}{1-\left(-\frac{3}{4} \frac{2}{3}\right.}\right)\right)$
$=\tan \left(\tan ^{-1}\left(\frac{17}{6}\right)\right)$
$=\frac{17}{6}$

50. Question

Mark the tick against the correct answer in the following:
$\cos ^{-1} 9+\operatorname{cosec}^{-1} \frac{\sqrt{41}}{4}=$?
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{3 \pi}{4}$

Answer

To Find: The value of $\cot ^{-1} 9+\operatorname{cosec}^{-1} \frac{\sqrt{41}}{4}$
Now $\cot ^{-1} 9+\operatorname{cosec}^{-1} \frac{\sqrt{41}}{4}$ can be written in terms of tan inverse as
$\cot ^{-1} 9+\operatorname{cosec}^{-1} \frac{\sqrt{41}}{4}=\tan ^{-1} \frac{1}{9}+\tan ^{-1} \frac{4}{5}$
Since we know that $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
$\Rightarrow \tan ^{-1} \frac{1}{9}+\tan ^{-1} \frac{4}{5}=\tan ^{-1}\left(\frac{\frac{1}{9}+\frac{4}{5}}{1-\left(\frac{-1}{9} \times \frac{4}{5}\right)}\right)$
$=\tan ^{-1}\left(\frac{41}{41}\right)$
$=\tan ^{-1}(1)=\frac{\pi}{4}$

51. Question

Mark the tick against the correct answer in the following:

$$
\text { Range of } \sin ^{-1} \mathrm{x} \text { is }
$$

A. $\left[0, \frac{\pi}{2}\right]$
B. $[0, \pi]$
C. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
D. None of these

Answer

To Find: The range of $\sin ^{-1} x$
Here, the inverse function is given by $y=f^{-1}(x)$
The graph of the function $\mathrm{y}=\sin ^{-1}(x)$ can be obtained from the graph of $Y=\sin x$ by interchanging x and y axes.i.e, if (a, b) is a point on $Y=\sin x$ then (b, a) is The point on the function $\mathrm{y}=\sin ^{-1}(x)$

Below is the Graph of range of $\sin ^{-1}(x)$

From the graph, it is clear that the range of $\sin ^{-1}(x)$ is restricted to the interval
$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

52. Question

Mark the tick against the correct answer in the following:
Range of $\cos ^{-1} x$ is
A. $[0, \pi]$
B. $\left[0, \frac{\pi}{2}\right]$
C. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
D. None of these

Answer

To Find: The range of $\cos ^{-1} x$
Here, the inverse function is given by $y=f^{-1}(x)$
The graph of the function $\mathrm{y}=\cos ^{-1}(x)$ can be obtained from the graph of
$Y=\cos x$ by interchanging x and y axes.i.e, if (a, b) is a point on $Y=\cos x$ then (b, a) is the point on the function $y=\cos ^{-1}(x)$

Below is the Graph of the range of $\cos ^{-1}(x)$

From the graph, it is clear that the range of $\cos ^{-1}(x)$ is restricted to the interval
$[0, \pi]$

53. Question

Mark the tick against the correct answer in the following:
Range of $\tan ^{-1} x$ is
A. $\left(0, \frac{\pi}{2}\right)$
B. $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
C. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
D. None of these

Answer

To Find: The range of $\tan ^{-1} x$
Here, the inverse function is given by $\mathrm{y}=\mathrm{f}^{-1}(x)$
The graph of the function $y=\tan ^{-1}(x)$ can be obtained from the graph of
$Y=\tan x$ by interchanging x and y axes.i.e, if (a, b) is a point on $Y=\tan x$ then (b, a) is the point on the function $y=\tan ^{-1}(x)$

Below is the Graph of the range of $\tan ^{-1}(x)$

From the graph, it is clear that the range of $\tan ^{-1}(x)$ is restricted to any of the intervals like $\left[-\frac{3 \pi}{2},-\frac{\pi}{2}\right]$, $[$ $\left.-\frac{\pi}{2}, \frac{\pi}{2}\right],\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$ and so on. Hence the range is given by
$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

54. Question

Mark the tick against the correct answer in the following:
Range of $\sec ^{-1} x$ is
A. $\left[0, \frac{\pi}{2}\right]$
B. $[0, \pi]$
C. $[0, \pi]-\left\{\frac{\pi}{2}\right\}$
D. None of these

Answer

To Find:The range of $\sec ^{-1}(x)$
Here, the inverse function is given by $y=f^{-1}(x)$
The graph of the function $y=\sec ^{-1}(x)$ can be obtained from the graph of
$Y=\sec x$ by interchanging x and y axes.i.e, if (a, b) is a point on $Y=\sec x$ then (b, a) is the point on the function $y=\sec ^{-1}(x)$

Below is the Graph of the range of $\sec ^{-1}(x)$

From the graph, it is clear that the range of $\sec ^{-1}(x)$ is restricted to interval
$[0, \pi]-\left\{\frac{\pi}{2}\right\}$

55. Question

Mark the tick against the correct answer in the following:
Range of $\operatorname{coses}^{-1} x$ is
A. $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
B. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
C. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
D. None of these

Answer

To Find: The range of $\operatorname{cosec}^{-1}(x)$
Here, the inverse function is given by $y=\mathrm{f}^{-1}(x)$
The graph of the function $y=\operatorname{cosec}^{-1}(x)$ can be obtained from the graph of $Y=\operatorname{cosec} x$ by interchanging x and y axes.i.e, if (a, b) is a point on $Y=\operatorname{cosec} x$ then (b, a) is the point on the function $y=\operatorname{cosec}^{-1}(x)$

Below is the Graph of the range of $\operatorname{cosec}^{-1}(x)$

From the graph it is clear that the range of $\operatorname{cosec}^{-1}(x)$ is restricted to interval
$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$

56. Question

Mark the tick against the correct answer in the following:
Domain of cos-1 x is
A. $[0,1]$
B. $[-1,1]$
C. $[-1,0]$
D. None of these

Answer

To Find: The Domain of $\cos ^{-1}(x)$
Here,the inverse function of cos is given by $y=\mathrm{f}^{-1}(x)$
The graph of the function $\mathrm{y}=\cos ^{-1}(x)$ can be obtained from the graph of
$Y=\cos x$ by interchanging x and y axes.i.e, if (a, b) is a point on $Y=\cos x$ then (b, a) is the point on the function $\mathrm{y}=\cos ^{-1}(x)$

Below is the Graph of the domain of $\cos ^{-1}(x)$

From the graph, it is clear that the domain of $\cos ^{-1}(x)$ is $[-1,1]$

57. Question

Mark the tick against the correct answer in the following:
Domain of $\sec ^{-1} \mathrm{x}$ is
A. $[-1,1]$
B. $R-\{0\}$
C. R-[-1, 1]
D. $R-\{-1,1\}$

Answer

To Find: The Domain of $\sec ^{-1}(x)$
Here, the inverse function is given by $\mathrm{y}=\mathrm{f}^{-1}(x)$
The graph of the function $\mathrm{y}=\sec ^{-1}(x)$ can be obtained from the graph of
$Y=\sec x$ by interchanging x and y axes.i.e, if (a, b) is a point on $Y=\sec x$ then (b, a) is the point on the function $y=\sec ^{-1}(x)$

Below is the Graph of the domain of $\sec ^{-1}(x)$

From the graph, it is clear that the domain of $\sec ^{-1}(x)$ is a set of all real numbers excluding -1 and 1 i.e, R -[-1,1]

