4. Inverse Trigonometric Functions

Exercise 4A

1. Question

Find the principal value of :

Answer

NOTE:

Trigonometric Table

2	0°(0)	$30^{\circ}\left(\frac{\pi}{6}\right)$	$\frac{45^{\circ}}{\left(\frac{\pi}{4}\right)}$	$60^{\circ}\left(\frac{\pi}{3}\right)$	90° $\left(\frac{\pi}{2}\right)$
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undefined
cosec	undefined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Undefined
cot	undefined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

(i) Let $\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = x$

 $\Rightarrow \frac{\sqrt{3}}{2} = \sin x$ [We know which value of x when placed in sin gives us this answer] $\therefore x = \frac{\pi}{3}$

(ii) Let $\sin^{-1}\left(\frac{1}{2}\right) = x$

 $\Rightarrow \frac{1}{2} = \sin x$ [We know which value of x when put in this expression will give us this result]

 $\Rightarrow X = \frac{\pi}{6}$

(iii) Let $\cos^{-1}\left(\frac{1}{2}\right) = x$

 $\Rightarrow \frac{1}{2} = \cos x$ [We know which value of x when put in this expression will give us this result] $\therefore x = \frac{\pi}{3}$

(iv) Let $\tan^{-1}(1) = x$

 $\Rightarrow 1 = \tan x$ [We know which value of x when put in this expression will give us this result]

 $\therefore \mathbf{x} = \frac{\pi}{4}$

(v) Let $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = x$

 $\Rightarrow \frac{1}{\sqrt{3}} = \tan x$ [We know which value of x when put in this expression will give us this result] $\therefore x = \frac{\pi}{6}$

(vi) Let $\sec^{-1} \Bigl(\frac{2}{\sqrt{3}} \Bigr) = x$

 $\Rightarrow \frac{2}{\sqrt{3}} = \sec x$ [We know which value of x when put in this expression will give us this result] $\therefore x = \frac{\pi}{6}$

(vii) Let $\operatorname{cosec}^{-1}(\sqrt{2}) = x$

 $\Rightarrow \sqrt{2} = \operatorname{cosec} x$

[We know which value of x when put in this expression will give us this result]

 $\therefore \mathbf{x} = \frac{\pi}{4}$

2. Question

Find the principal value of :

(i)
$$\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$$

(ii) $\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right)$
(iii) $\tan^{-1}\left(-\sqrt{3}\right)$
(iv) $\sec^{-1}\left(-2\right)$
(v) $\csc^{-1}\left(-\sqrt{2}\right)$
(vi) $\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right)$

Answer

(i) Let $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right) = x$

 $\Rightarrow -\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = x \left[\text{Formula: } \sin^{-1}(-x) = -\sin^{-1}x\right]$ $\Rightarrow \frac{1}{\sqrt{2}} = -\sin x \left[\text{We know which value of x when put in this expression will give us this result}\right]$ $\therefore x = -\frac{\pi}{4}$ (ii) $\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right) = \pi - \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) \left[\text{Formula: } \cos^{-1}(-x) = \pi - \cos^{-1}x\right]$ Let $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = x$

 $\Rightarrow \left(\frac{\sqrt{3}}{2}\right) = \cos x \text{ [We know which value of x when put in this expression will give us this result]}$ $\therefore x = \frac{\pi}{\epsilon}$

Putting this value back in the equation

 $\pi - \frac{\pi}{6} = \frac{5\pi}{6}$ (iii) Let $\tan^{-1}(-\sqrt{3}) = x$ $\Rightarrow -\tan^{-1}(\sqrt{3}) = x [Formula: \tan^{-1}(-x) = -\tan^{-1}(x)]$ $\Rightarrow \sqrt{3} = -\tan x$ [We know which value of x when put in this expression will give us this result] $\therefore \mathbf{x} = \frac{-\pi}{2}$ (iv) $\sec^{-1}(-2) = \pi - \sec^{-1}(2) \dots$ (i) [Formula: $\sec^{-1}(-x) = \pi - \sec^{-1}(x)$] Let $sec^{-1}(2) = x$ $\Rightarrow 2 = \sec x$ [We know which value of x when put in this expression will give us this result] $\therefore \mathbf{x} = \frac{\pi}{2}$ Putting the value in (i) $\pi - \frac{\pi}{3} = \frac{2\pi}{3}$ (v) Let $cosec^{-1}(-\sqrt{2}) = x$ $\Rightarrow -\operatorname{cosec}^{-1}(\sqrt{2}) = x$ [Formula: cosec⁻¹(-x) = -cosec⁻¹(x)] $\Rightarrow \sqrt{2} = -\operatorname{cosec} x$ $\therefore \mathbf{x} = -\frac{\pi}{4}$ (vi) $\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right) = \pi - \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) \dots$ (i) Let $\cot^{-1}\left(\frac{1}{\sqrt{2}}\right) = x$

 $\Rightarrow \frac{1}{\sqrt{3}} = \cot^{-1} x \text{ [We know which value of x when put in this expression will give us this result]}$ $\Rightarrow x = \frac{\pi}{3}$

Putting in (i)

 $\pi - \frac{\pi}{3}$

3. Question

Evaluate $\cos\left\{\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right) + \frac{\pi}{6}\right\}$.

Answer

 $\cos\{\pi - \frac{\pi}{6} + \frac{\pi}{6}\} [\text{ Refer to question 2(ii) }]$ $= \cos\{\pi\}$ $= \cos\left(\frac{\pi}{2} + \frac{\pi}{2}\right)$ = -1

4. Question

Evaluate $\sin\left\{\frac{\pi}{2} - \left(\frac{-\pi}{3}\right)\right\}$

Answer

$$\sin\left(\frac{\pi}{2} + \frac{\pi}{3}\right)$$
$$= \sin\left(\frac{5\pi}{6}\right)$$
$$= \sin\left(\pi - \frac{\pi}{6}\right)$$
$$= \sin\frac{\pi}{6}$$
$$= \frac{1}{2}$$

Exercise 4B

1. Question

Find the principal value of each of the following :

$$\sin^{-1}\left(\frac{-1}{2}\right)$$

Answer

$$\sin^{-1}\left(\frac{-1}{2}\right) = -\sin^{-1}\left(\frac{1}{2}\right)$$
 [Formula: $\sin^{-1}(-x) = \sin^{-1}(x)$]
= $-\frac{\pi}{6}$

2. Question

Find the principal value of each of the following :

$$\cos^{-1}\left(\frac{-1}{2}\right)$$

Answer

$$\cos^{-1}\left(\frac{-1}{2}\right) = \pi - \cos^{-1}\left(\frac{1}{2}\right)$$
 [Formula: $\cos^{-1}(-x) = -\cos^{-1}(x)$]

 $= \pi - \frac{\pi}{3}$ $= \frac{2\pi}{3}$

3. Question

Find the principal value of each of the following :

 $\tan^{-1}(-1)$

Answer

 $\tan(-1) = -\tan(1)$ [Formula: $\tan^{-1}(-x) = -\tan^{-1}(x)$] [We know that $\tan\frac{\pi}{4} = 1$, thus $\tan^{-1}\frac{\pi}{4} = 1$] $= -\frac{\pi}{4}$

4. Question

Find the principal value of each of the following :

sec⁻¹(-2)

Answer

```
\sec^{-1}(-2) = \pi - \sec^{-1}(2) [Formula: \sec^{-1}(-x) = \pi - \sec^{-1}(x)]
= \pi - \frac{\pi}{3}
= \frac{2\pi}{3}
```

5. Question

Find the principal value of each of the following :

$$\operatorname{cosec}^{-1}\left(-\sqrt{2}\right)$$

Answer

```
\operatorname{cosec}^{-1}(-\sqrt{2}) = -\operatorname{cosec}^{-1}(\sqrt{2}) [\operatorname{Formula: cosec}^{-1}(-x) = -\operatorname{cosec}^{-1}(x) ]= -\frac{\pi}{4}
```

This can also be solved as

 $\operatorname{cosec}^{-1}(-\sqrt{2})$

Since cosec is negative in the third quadrant, the angle we are looking for will be in the third quadrant.

 $= \pi + \frac{\pi}{4}$ $= \frac{5\pi}{4}$

6. Question

Find the principal value of each of the following :

 $\cot^{1}(-1)$

Answer

 $\cot^{-1}(-1) = \pi - \cot^{-1}(1)$ [Formula: $\cot^{-1}(-x) = \pi - \cot^{-1}(x)$]

 $= \pi - \frac{\pi}{4}$ $= \frac{3\pi}{4}$

7. Question

Find the principal value of each of the following :

 $tan^{-1} \left(-\sqrt{3} \right)$

Answer

$$\tan^{-1}(-\sqrt{3}) = -\tan^{-1}(\sqrt{3})$$
 [Formula: $\tan^{-1}(-x) = -\tan^{-1}(x)$]
= $-\frac{\pi}{3}$

8. Question

Find the principal value of each of the following :

$$\sec^{-1}\left(\frac{-2}{\sqrt{3}}\right)$$

Answer

$$\sec^{-1}\left(\frac{-2}{\sqrt{3}}\right) = \pi - \sec^{-1}\left(\frac{2}{\sqrt{3}}\right) [\text{ Formula: } \sec^{-1}(-x) = \pi - \sec^{-1}(x)]$$
$$= \pi - \frac{\pi}{6}$$
$$= \frac{5\pi}{6}$$

9. Question

Find the principal value of each of the following :

cosec⁻¹ (2)

Answer

 $cosec^{-1}(2)$

Putting the value directly

$$=\frac{\pi}{6}$$

10. Question

Find the principal value of each of the following :

$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$$

Answer

$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \sin^{-1}\left(\sin\left(\pi - \frac{\pi}{3}\right)\right)$$

[Formula: $sin(\pi - x) = sin x$)

$$= \sin^{-1}\left(\sin\frac{\pi}{3}\right)$$

[Formula: $\sin^{-1}(\sin x) = x$]

11. Question

Find the principal value of each of the following :

$$\tan^{-1}\left(\tan\frac{3\pi}{4}\right)$$

Answer

$$\tan^{-1}\left(\tan\frac{3\pi}{4}\right) = \tan^{-1}\left(\tan\left(\pi - \frac{\pi}{4}\right)\right)$$

[Formula: $tan(\pi - x) = -tan(x)$, as tan is negative in the second quadrant.]

$$= \tan^{-1}\left(-\tan\frac{\pi}{4}\right)$$

[Formula: $tan^{-1}(tan x) = x$]

$$=-\frac{\pi}{4}$$

12. Question

Find the principal value of each of the following :

$$\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$$

Answer

$$\cos^{-1}\left(\cos\frac{7\pi}{6}\right) = \cos^{-1}\left(\cos\left(2\pi - \frac{5\pi}{6}\right)\right)$$

[Formula: $cos(2\pi - x) = cos(x)$, as cos has a positive vaule in the fourth quadrant.]

$$= \cos^{-1}\left(\cos\frac{5\pi}{6}\right)$$
 [Formula: $\cos^{-1}(\cos x) = x$
$$= \frac{5\pi}{6}$$

13. Question

Find the principal value of each of the following :

$$\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$$

Answer

$$\cos^{-1}\left(\cos\frac{13\pi}{6}\right) = \cos^{-1}\left(\cos\left(2\pi + \frac{\pi}{6}\right)\right)$$

[Formula: $\cos (2\pi + x) = \cos x$, $\cos is positive in the first quadrant.$]

$$= \cos^{-1}\left(\cos\frac{\pi}{6}\right) [Formula: \cos^{-1}(\cos x) = x]$$
$$= \frac{\pi}{6}$$

14. Question

Find the principal value of each of the following :

$$\tan^{-1}\left(\tan\frac{7\pi}{6}\right)$$

$$\tan^{-1}\left(\tan\frac{7\pi}{6}\right) = \tan^{-1}\left(\tan\left(\pi + \frac{\pi}{6}\right)\right)$$

[Formula: tan($\pi + x$) = tan x, as tan is positive in the third quadrant.]

$$=\tan^{-1}\left(\tan\frac{\pi}{6}\right)$$
[Formula: $\tan^{-1}(\tan x) = x$]
$$= \frac{\pi}{6}$$

15. Question

Find the principal value of each of the following :

$$\tan^{-1}\sqrt{3} - \cot^{-1}\left(-\sqrt{3}\right)$$
 3

Answer

 $\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3})$

Putting the value of $\tan^{-1}\sqrt{3}$ and using the formula

$$\cot^{-1}(-x) = \pi - \cot^{-1}x$$

$$=\frac{\pi}{3}-(\pi-\cot^{-1}(\sqrt{3}))$$

Putting the value of $\cot^{-1}(\sqrt{3})$

$$= \frac{\pi}{3} - \left(\pi - \frac{\pi}{6}\right)$$
$$= \frac{\pi}{3} - \frac{5\pi}{6}$$
$$= -\frac{3\pi}{6}$$
$$= -\frac{\pi}{2}$$

16. Question

Find the principal value of each of the following :

$$\sin\left\{\frac{\pi}{3}-\sin^{-1}\left(\frac{-1}{2}\right)\right\}$$

Answer

$$\sin\left\{\frac{\pi}{3} - \sin^{-1}\left(\frac{-1}{2}\right)\right\} [\text{Formula: } \sin^{-1}(-x) = -\sin^{-1}x]$$

$$= \sin\left\{\frac{\pi}{3} - \left(-\sin^{-1}\frac{1}{2}\right)\right\}$$

$$= \sin\left\{\frac{\pi}{3} + \sin^{-1}\left(\frac{1}{2}\right)\right\}$$
Putting value of $\sin^{-1}\left(\frac{1}{2}\right)$

$$= \sin\left\{\frac{\pi}{3} + \frac{\pi}{6}\right\}$$

$$= \sin\frac{3\pi}{6}$$

$$= \sin\frac{\pi}{2}$$

$$= 1$$

17. Question

Find the principal value of each of the following :

 $\cot(\tan^{-1}x + \cot^{-1}x)$

Answer

 $\cot(\tan^{-1}x + \cot^{-1}x) = \cot(\frac{\pi}{2})$ [Formula: $\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$] Putting value of $\cot(\frac{\pi}{2})$

= 0

18. Question

Find the principal value of each of the following :

```
\cos ec \left( sin^{-1}x + cos^{-1}x \right)
```

Answer

cosec
$$(\sin^{-1}x + \cos^{-1}x) = \csc \frac{\pi}{2}$$
 [Formula: $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$]

Putting the value of cosec $\frac{\pi}{2}$

= 1

19. Question

Find the principal value of each of the following :

 $\sin(\sec^{-1}x + \cos ec^{-1}x)$

Answer

$$\sin(\sec^{-1}x + \csc^{-1}x) = \sin\left(\frac{\pi}{2}\right) [\text{Formula: } \sec^{-1}x + \csc^{-1}x = \frac{\pi}{2}]$$

Putting the value of $\sin\left(\frac{\pi}{2}\right)$

=1

20. Question

Find the principal value of each of the following :

$$\cos^{-1}\frac{1}{2} + 2\sin^{-1}\frac{1}{2}$$

Answer

Putting the values of the inverse trigonometric terms

 $\frac{\pi}{3} + 2 \times \frac{\pi}{6}$ $= \frac{\pi}{3} + \frac{\pi}{3}$ $= \frac{2\pi}{3}$

21. Question

Find the principal value of each of the following :

$$\tan^{-1}1 + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$$

[Formula: $\cos^{-1}(-x) = \pi - \cos(x)$ and $\sin^{-1}(-x) = -\sin(x)$]

$$\tan^{-1} 1 + \left(\pi - \cos^{-1}\left(\frac{1}{2}\right)\right) + \left(-\sin^{-1}\left(\frac{1}{2}\right)\right)$$

Putting the values for each of the inverse trigonometric terms

$$= \frac{\pi}{4} + \left(\pi - \frac{\pi}{3}\right) - \frac{\pi}{6}$$
$$= \frac{\pi}{12} + \frac{2\pi}{3}$$
$$= \frac{9\pi}{12}$$
$$= \frac{3\pi}{4}$$

22. Question

Find the principal value of each of the following :

$$\sin^{-1}\left\{\sin\frac{3\pi}{5}\right\}$$

Answer

$$\sin^{-1}\left\{\sin\left(\frac{3\pi}{5}\right)\right\}$$
$$=\sin^{-1}\left\{\sin\left(\pi-\frac{2\pi}{5}\right)\right\}$$

[Formula: $sin(\pi - x) = sin x$, as sin is positive in the second quadrant.]

$$= \sin^{-1}\left\{\sin\frac{2\pi}{5}\right\}$$
 [Formula: $\sin^{-1}(\sin x) = x$]
$$= \frac{2\pi}{5}$$

Exercise 4C

1 A. Question

Prove that:

$$\tan^{-1}\left(\frac{1+x}{1-x}\right) = \frac{\pi}{4} + \tan^{-1}x, x < 1$$

Answer

To Prove: $\tan^{-1}\left(\frac{1+x}{1-x}\right) = \frac{\pi}{4} + \tan^{-1} x$ Formula Used: $\tan\left(\frac{\pi}{4} + A\right) = \frac{1 + \tan A}{1 - \tan A}$ Proof: LHS = $\tan^{-1}\left(\frac{1+x}{1-x}\right) \dots (1)$ Let x = tan A ... (2) Substituting (2) in (1),

$$LHS = \tan^{-1} \left(\frac{1 + \tan A}{1 - \tan A} \right)$$
$$= \tan^{-1} \left(\tan \left(\frac{\pi}{4} + A \right) \right)$$
$$= \frac{\pi}{4} + A$$

From (2), $A = \tan^{-1} x$,

$$\frac{\pi}{4} + A = \frac{\pi}{4} + \tan^{-1} x$$

= RHS

Therefore, LHS = RHS

Hence proved.

1 B. Question

Prove that:

$$\tan^{-1}x + \cot^{-1}(x+1) = \tan^{-1}(x^2 + x + 1)$$

Answer

To Prove: $\tan^{-1} x + \cot^{-1} (x + 1) = \tan^{-1} (x^2 + x + 1)$ Formula Used:

1)
$$\cot^{-1} x = \tan^{-1} \frac{1}{x}$$

2) $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$

Proof:

LHS =
$$\tan^{-1} x + \cot^{1} (x + 1) \dots (1)$$

= $\tan^{-1} x + \tan^{-1} \frac{1}{(x + 1)}$
= $\tan^{-1} \left(\frac{x + \frac{1}{(x + 1)}}{1 - (x \times \frac{1}{(x + 1)})} \right)$
= $\tan^{-1} \frac{x(x + 1) + 1}{x + 1 - x}$
= $\tan^{-1} (x^{2} + x + 1)$
= RHS
Therefore, LHS = RHS

Hence proved.

2. Question

Prove that:

$$\sin^{-1}\left(2x\sqrt{1-x^2}\right) = 2\sin^{-1}x, |x| \le \frac{1}{\sqrt{2}}.$$

Answer

To Prove: $\sin^{-1}(2x\sqrt{1-x^2}) = 2\sin^{-1}x$ Formula Used: $\sin 2A = 2 \times \sin A \times \cos A$ Proof: $LHS = \sin^{-1}(2x\sqrt{1-x^2}) \dots (1)$ Let x = sin A ... (2)Substituting (2) in (1), LHS = $sin^{-1}(2sinA\sqrt{1-sin^2A})$ $= \sin^{-1} (2 \times \sin A \times \cos A)$ = sin⁻¹ (sin 2A) = 2A From (2), $A = \sin^{-1} x$, $2A = 2 \sin^{-1} x$ = RHS Therefore, LHS = RHSHence proved. 3 A. Question

Prove that:

 $\sin^{-1}(3x - 4x^3) = 3\sin^{-1}x, |x| \le \frac{1}{2}$

Answer

To Prove: $\sin^{-1}(3x - 4x^3) = 3 \sin^{-1} x$ Formula Used: $\sin 3A = 3 \sin A - 4 \sin^3 A$ Proof: LHS = $\sin^{-1}(3x - 4x^3) \dots (1)$ Let x = sin A ... (2)Substituting (2) in (1), LHS = \sin^{-1} (3 sin A - 4 sin³ A) $= \sin^{-1} (\sin 3A)$ = 3A From (2), $A = \sin^{-1} x$, $3A = 3 \sin^{-1} x$ = RHSTherefore, LHS = RHSHence proved. 3 B. Question Prove that:

$$\cos^{-1}(4x^3 - 3x) = 3\cos^{-1}x, \frac{1}{2} \le x \le 1$$

To Prove: $\cos^{-1} (4x^3 - 3x) = 3 \cos^{-1} x$ Formula Used: $\cos 3A = 4 \cos^3 A - 3 \cos A$ Proof: LHS = $\cos^{-1} (4x^3 - 3x) \dots (1)$ Let x = $\cos A \dots (2)$ Substituting (2) in (1), LHS = $\cos^{-1} (4 \cos^3 A - 3 \cos A)$ = $\cos^{-1} (\cos 3A)$ = 3AFrom (2), A = $\cos^{-1} x$, $3A = 3 \cos^{-1} x$ = RHS Therefore, LHS = RHS

Hence proved.

3 C. Question

Prove that:

$$\tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right) = 3\tan^{-1}x, |x| < \frac{1}{\sqrt{3}}$$

Answer

To Prove: $tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right) = 3 tan^{-1} x$

Formula Used: $tan 3A = \frac{3 tan A - tan^3 A}{1 - 3 tan^2 A}$

Proof:

LHS =
$$tan^{-1} \left(\frac{3x - x^2}{1 - 3x^2} \right) \dots (1)$$

Let x = tan A ... (2)

Substituting (2) in (1),

LHS =
$$tan^{-1} \left(\frac{3tanA - tan^3 A}{1 - 3tan^2 A} \right)$$

= $tan^{-1} (tan 3A)$
= 3A
From (2), A = $tan^{-1} x$,
3A = 3 $tan^{-1} x$

= RHS

Therefore, LHS = RHS

Hence proved.

3 D. Question

Prove that:

$$\tan^{-1} x + \tan^{-1} \left(\frac{2x}{1-x^2} \right) = \tan^{-1} \left(\frac{3x-x^3}{1-3x^2} \right)$$

Answer

To Prove:
$$tan^{-1}x + tan^{-1}\left(\frac{2x}{1-x^2}\right) = tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right)$$

Formula Used: $tan^{-1}x + tan^{-1}y = tan^{-1}\left(\frac{x+y}{1-xy}\right)$

Proof:

$$LHS = tan^{-1} x + tan^{-1} \left(\frac{2x}{1-x^2} \right) \dots (1)$$
$$= tan^{-1} \left(\frac{x + \left(\frac{2x}{1-x^2} \right)}{1 - \left(x \times \left(\frac{2x}{1-x^2} \right) \right)} \right)$$
$$= tan^{-1} \left(\frac{x(1-x^2) + 2x}{1-x^2 - 2x^2} \right)$$
$$= tan^{-1} \left(\frac{3x - x^3}{1-3x^2} \right)$$

= RHS

Therefore, LHS = RHS

Hence proved.

4 A. Question

Prove that:

 $\cos^{-1}(1-2x^2) = 2\sin^{-1}x$

Answer

To Prove: $\cos^{-1} (1 - 2x^2) = 2 \sin^{-1} x$ Formula Used: $\cos 2A = 1 - 2 \sin^2 A$ Proof: LHS = $\cos^{-1} (1 - 2x^2) \dots (1)$ Let x = sin A ... (2) Substituting (2) in (1), LHS = $\cos^{-1} (1 - 2 \sin^2 A)$ = $\cos^{-1} (\cos 2A)$ = 2A From (2), A = $\sin^{-1} x$, $2A = 2 \sin^{-1} x$

= RHS

Therefore, LHS = RHS

Hence proved.

4 B. Question

Prove that:

 $\cos^{-1}(2x^2-1) = 2\cos^{-1}x$

Answer

To Prove: $\cos^{-1} (2x^2 - 1) = 2 \cos^{-1} x$ Formula Used: $\cos 2A = 2 \cos^2 A - 1$ Proof: LHS = $\cos^{-1} (2x^2 - 1) \dots (1)$ Let x = $\cos A \dots (2)$ Substituting (2) in (1), LHS = $\cos^{-1} (2 \cos^2 A - 1)$ = $\cos^{-1} (\cos 2A)$ = 2A From (2), A = $\cos^{-1} x$, 2A = 2 $\cos^{-1} x$ = RHS Therefore, LHS = RHS Hence proved.

4 C. Question

Prove that:

$$\sec^{-1}\left(\frac{1}{2x^2-1}\right) = 2\cos^{-1}x$$

Answer

To Prove: $\sec^{-1}\left(\frac{1}{2x^2-1}\right) = 2\cos^{-1}x$

Formula Used:

1) $\cos 2A = 2 \cos^2 A - 1$

2)
$$\cos^{-1}A = \sec^{-1}\left(\frac{1}{A}\right)$$

Proof:

LHS = $\sec^{-1}\left(\frac{1}{2x^2-1}\right)$ = $\cos^{-1}(2x^2-1)...(1)$ Let x = $\cos A ...(2)$ Substituting (2) in (1), LHS = $\cos^{-1} (2 \cos^2 A - 1)$ = $\cos^{-1} (\cos 2A)$ = 2A From (2), A = $\cos^{-1} x$, 2A = $2 \cos^{-1} x$ = RHS Therefore, LHS = RHS Hence proved.

4 D. Question

Prove that:

$$\cot^{-1}\left(\sqrt{1+x^2}-x\right) = \frac{\pi}{2} - \frac{1}{2}\cot^{-1}x$$

Answer

To Prove: $\cot^{-1}(\sqrt{1+x^2}-x) = \frac{\pi}{2} - \frac{1}{2}\cot^{-1}x$ Formula Used: 1) $\tan\left(\frac{\pi}{4} + A\right) = \frac{1 + \tan A}{1 - \tan A}$ 2) $\csc^2 A = 1 + \cot^2 A$ 3) $1 - \cos A = 2 \sin^2 \left(\frac{A}{2}\right)$ 4) $\sin A = 2 \sin \left(\frac{A}{2}\right) \cos \left(\frac{A}{2}\right)$ Proof: $LHS = \cot^{-1}(\sqrt{1+x^2}-x)$ Let $x = \cot A$ $LHS = \cot^{-1}(\sqrt{1 + \cot^2 A} - \cot A)$ $= \cot^{-1}(\operatorname{cosec} A - \cot A)$ $= \cot^{-1}\left(\frac{1-\cos A}{\sin A}\right)$ $= \cot^{-1}\left(\frac{2\sin^2\left(\frac{A}{2}\right)}{2\sin\left(\frac{A}{2}\right)\cos\left(\frac{A}{2}\right)}\right)$ $= \cot^{-1}\left(\tan\left(\frac{A}{2}\right)\right)$ $=\frac{\pi}{2}-\tan^{-1}\left(\tan\left(\frac{A}{2}\right)\right)$ $=\frac{\pi}{2}-\frac{A}{2}$

From (2), $A = \cot^{-1} x$,

$$\frac{\pi}{2} - \frac{A}{2} = \frac{\pi}{2} - \frac{1}{2}\cot^{-1}x$$

= BHS

Therefore, LHS = RHS

Hence proved.

5 A. Question

Prove that:

$$\tan^{-1}\left(\frac{\sqrt{x} + \sqrt{y}}{1 - \sqrt{xy}}\right) = \tan^{-1}\sqrt{x} + \tan^{-1}\sqrt{y}$$

Answer

To Prove:
$$\tan^{-1}\left(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}\right) = \tan^{-1}\sqrt{x} + \tan^{-1}\sqrt{y}$$

В

We know that, $\tan A + \tan B = \frac{\tan A + \tan B}{1 - \tan A \tan B}$

Also,
$$\tan^{-1}(\frac{A+B}{1-AB}) = \tan^{-1}A + \tan^{-1}A$$

Taking A = \sqrt{x} and B = \sqrt{y}

We get,

$$\tan^{-1}(\frac{\sqrt{x} + \sqrt{y}}{1 - \sqrt{xy}}) = \tan^{-1}\sqrt{x} + \tan^{-1}\sqrt{y}$$

Hence, Proved.

5 B. Question

Prove that:

$$\tan^{-1}\left(\frac{x+\sqrt{x}}{1-x^{3/2}}\right) = \tan^{-1}x + \tan^{-1}\sqrt{x}$$

Answer

We know that,

$$\tan^{-1}(\frac{A+B}{1-AB}) = \tan^{-1}A + \tan^{-1}B$$

Now, taking A = x and B =
$$\sqrt{x}$$

We get,

$$\tan^{-1} x + \tan^{-1} \sqrt{x} = \tan^{-1} \left(\frac{x + \sqrt{x}}{1 - x^{3/2}} \right)$$

As, $x \cdot x^{1/2} = x^{3/2}$

Hence, Proved.

5 C. Question

Prove that:

 $\tan^{-1}\left(\frac{\sin x}{1+\cos x}\right) = \frac{x}{2}$

To Prove: $\tan^{-1}\left(\frac{\sin x}{1+\cos x}\right) = \frac{x}{2}$ Formula Used: 1) $\sin A = 2 \times \sin \frac{A}{2} \times \cos \frac{A}{2}$ 2) $1 + \cos A = 2\cos^2 \frac{A}{2}$ Proof: LHS = $\tan^{-1}\left(\frac{\sin x}{1+\cos x}\right)$ = $\tan^{-1}\left(\frac{2\sin \frac{x}{2}\cos \frac{x}{2}}{2\cos^2 \frac{x}{2}}\right)$ = $\tan^{-1}\left(\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}\right)$ = $\tan^{-1}\left(\tan \frac{x}{2}\right)$ = $\frac{x}{2}$

Therefore LHS = RHS

Hence proved.

6 A. Question

Prove that:

$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{2}{11} = \tan^{-1}\frac{3}{4}$$

Answer

To Prove: $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{2}{11} = \tan^{-1}\frac{3}{4}$ Formula Used: $\tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$

Proof:

LHS =
$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{2}{11}$$

= $\tan^{-1}\left(\frac{\frac{1}{2} + \frac{2}{11}}{1 - (\frac{1}{2} \times \frac{2}{11})}\right)$
= $\tan^{-1}\left(\frac{11 + 4}{22 - 2}\right)$
= $\tan^{-1}\frac{15}{20}$
= $\tan^{-1}\frac{3}{4}$

= RHS

Therefore LHS = RHS

Hence proved.

6 B. Question

Prove that:

$$\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\frac{1}{2}$$

Answer

To Prove: $\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\frac{1}{2}$ Formula Used: $\tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$

Proof:

LHS =
$$\tan^{-1} \frac{2}{11} + \tan^{-1} \frac{7}{24}$$

= $\tan^{-1} \left(\frac{\frac{2}{11} + \frac{7}{24}}{1 - (\frac{2}{11} \times \frac{7}{24})} \right)$
= $\tan^{-1} \left(\frac{48 + 77}{264 - 14} \right)$
= $\tan^{-1} \frac{125}{250}$
= $\tan^{-1} \frac{1}{2}$
= RHS

Therefore LHS = RHS

Hence proved.

6 C. Question

Prove that:

 $\tan^{-1}1 + \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \frac{\pi}{2}$

Answer

To Prove: $\tan^{-1} 1 + \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \frac{\pi}{2}$ Formula Used: $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

Proof:

LHS =
$$\tan^{-1} 1 + \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3}$$

= $\tan^{-1} 1 + \tan^{-1} \left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - (\frac{1}{2} \times \frac{1}{3})} \right)$
= $\tan^{-1} 1 + \tan^{-1} \left(\frac{5}{6 - 1} \right)$
= $\tan^{-1} 1 + \tan^{-1} 1$

$$= \frac{\pi}{4} + \frac{\pi}{4}$$
$$= \frac{\pi}{2}$$
$$= RHS$$

Therefore LHS = RHS

Hence proved.

6 D. Question

Prove that:

$$2\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7} = \frac{\pi}{4}$$

Answer

To Prove: $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$ Formula Used: $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$ Proof:

LHS =
$$2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7}$$

= $\tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7}$
= $\tan^{-1} \left(\frac{\frac{1}{3} + \frac{1}{3}}{1 - (\frac{1}{3} \times \frac{1}{3})} \right) + \tan^{-1} \frac{1}{7}$
= $\tan^{-1} \left(\frac{6}{9 - 1} \right) + \tan^{-1} \frac{1}{7}$
= $\tan^{-1} \left(\frac{\frac{3}{4} + \frac{1}{7}}{1 - (\frac{3}{4} \times \frac{1}{7})} \right)$
= $\tan^{-1} \left(\frac{\frac{21 + 4}{28 - 3}}{1 - (\frac{25}{25})} \right)$
= $\tan^{-1} 1$
= $\frac{\pi}{4}$
= RHS

Therefore LHS = RHS

Hence proved.

6 E. Question

Prove that:

$$\tan^{-1}2 - \tan^{-1}1 = \tan^{-1}\frac{1}{3}$$

To Prove: $\tan^{-1} 2 - \tan^{-1} 1 = \tan^{-1} \frac{1}{3}$ Formula Used: $\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x-y}{1+xy}\right)$ where xy > -1

Proof:

 $LHS = tan^{-1} 2 - tan^{-1} 1$

$$= \tan^{-1} \left(\frac{2 - 1}{1 + 2} \right)$$
$$= \tan^{-1} \left(\frac{1}{3} \right)$$

= RHS

Therefore LHS = RHS

Hence proved.

6 F. Question

Prove that:

 $\tan^{-1}1 + \tan^{-1}2 + \tan^{-1}3 = \pi$

Answer

To Prove: $\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3 = \pi$

Formula Used: $\tan^{-1} x + \tan^{-1} y = \pi + \tan^{-1} \left(\frac{x+y}{1-xy}\right)$ where xy > 1

Proof:

LHS =
$$\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3$$

= $\frac{\pi}{4} + \pi + \tan^{-1} \left(\frac{2+3}{1-(2\times3)}\right)$ {since $2 \times 3 = 6 > 1$ }
= $\frac{5\pi}{4} + \tan^{-1} \left(\frac{5}{-5}\right)$
= $\frac{5\pi}{4} + \tan^{-1}(-1)$
= $\frac{5\pi}{4} - \frac{\pi}{4}$
= π
= RHS
Therefore LHS = RHS

Therefore LHS = RHS

Hence proved.

6 G. Question

Prove that:

 $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$

To Prove: $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$ Formula Used: $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$ where xy < 1Proof: LHS = $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8}$ $= \tan^{-1}\frac{1}{2} + \tan^{-1}\left(\frac{\frac{1}{5} + \frac{1}{8}}{1 - (\frac{1}{5} \times \frac{1}{8})}\right)$ $= \tan^{-1}\frac{1}{2} + \tan^{-1}\left(\frac{8+5}{40-1}\right)$ $= \tan^{-1}\frac{1}{2} + \tan^{-1}\left(\frac{13}{39}\right)$ $= \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{2}$ $= \tan^{-1}\left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - (\frac{1}{2} \times \frac{1}{2})}\right)$ $= \tan^{-1}\left(\frac{3+2}{6}\right)$ $= tan^{-1} 1$ $=\frac{\pi}{4}$ = RHSTherefore LHS = RHS Hence proved.

6 H. Question

Prove that:

$$\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} = \frac{1}{2}\tan^{1}\frac{4}{3}$$

Answer

To Prove: $\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} = \frac{1}{2}\tan^{-1}\frac{4}{3} \Rightarrow 2\left(\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9}\right) = \tan^{-1}\frac{4}{3}$ Formula Used: $\tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$ where xy < 1

Proof:

LHS =
$$2(\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9})$$

= $2\left(\tan^{-1}\left(\frac{\frac{1}{4} + \frac{2}{9}}{1 - (\frac{1}{4} \times \frac{2}{9})}\right)\right)$
= $2\tan^{-1}\left(\frac{9 + 8}{36 - 2}\right)$

$$= 2 \tan^{-1} \frac{17}{34}$$

= $2 \tan^{-1} \frac{1}{2}$
= $\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{2}$
= $\tan^{-1} \left(\frac{\frac{1}{2} + \frac{1}{2}}{1 - (\frac{1}{2} \times \frac{1}{2})} \right)$
= $\tan^{-1} \left(\frac{\frac{1}{4} - 1}{\frac{4}{3}} \right)$
= $\tan^{-1} \frac{4}{3}$
= RHS

Therefore LHS = RHS

Hence proved.

7 A. Question

Prove that:

$$\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$$

Answer

To Prove: $\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$

Formula Used: $\cos^{-1}x + \cos^{-1}y = \cos^{-1}(xy - \sqrt{1 - x^2} \times \sqrt{1 - y^2})$

Proof:

$$\begin{aligned} \mathsf{LHS} &= \cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} \\ &= \cos^{-1}\left(\frac{4}{5} \times \frac{12}{13} - \sqrt{1 - \left(\frac{4}{5}\right)^2} \times \sqrt{1 - \left(\frac{12}{13}\right)^2}\right) \\ &= \cos^{-1}\left(\frac{48}{65} - \sqrt{1 - \frac{16}{25}} \times \sqrt{1 - \frac{144}{169}}\right) \\ &= \cos^{-1}\left(\frac{48}{65} - \left(\sqrt{\frac{25 - 16}{25}} \times \sqrt{\frac{169 - 144}{169}}\right)\right) \\ &= \cos^{-1}\left(\frac{48}{65} - \left(\sqrt{\frac{9}{25}} \times \sqrt{\frac{25}{169}}\right)\right) \\ &= \cos^{-1}\left(\frac{48}{65} - \frac{3}{13}\right) \end{aligned}$$

$$= \cos^{-1} \left(\frac{48 - 15}{65} \right)$$
$$= \cos^{-1} \frac{33}{65}$$

Therefore, LHS = RHS

Hence proved.

7 B. Question

Prove that:

$$\sin^{-1}\frac{1}{\sqrt{5}} + \sin^{-1}\frac{2}{\sqrt{5}} = \frac{\pi}{2}$$

Answer

To Prove: $\sin^{-1}\frac{1}{\sqrt{5}} + \sin^{-1}\frac{2}{\sqrt{5}} = \frac{\pi}{2}$

Formula Used: $\sin^{-1}x + \sin^{-1}y = \sin^{-1}(x \times \sqrt{1-y^2} + y \times \sqrt{1-x^2})$

Proof:

LHS =
$$\sin^{-1} \frac{1}{\sqrt{5}} + \sin^{-1} \frac{2}{\sqrt{5}}$$

= $\sin^{-1} \left(\frac{1}{\sqrt{5}} \times \sqrt{1 - \left(\frac{2}{\sqrt{5}}\right)^2} + \frac{2}{\sqrt{5}} \times \sqrt{1 - \left(\frac{1}{\sqrt{5}}\right)^2} \right)$
= $\sin^{-1} \left(\frac{1}{\sqrt{5}} \times \sqrt{1 - \frac{4}{5}} + \frac{2}{\sqrt{5}} \times \sqrt{1 - \frac{1}{5}} \right)$
= $\sin^{-1} \left(\frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}} + \frac{2}{\sqrt{5}} \times \frac{2}{\sqrt{5}} \right)$
= $\sin^{-1} \left(\frac{1}{\sqrt{5}} + \frac{4}{5} \right)$
= $\sin^{-1} \frac{5}{5}$
= $\sin^{-1} 1$
= $\frac{\pi}{2}$
= RHS
Therefore, LHS = RHS

Hence proved.

7 C. Question

Prove that:

$$\cos^{-1}\frac{3}{5} + \sin^{-1}\frac{12}{13} = \sin^{-1}\frac{56}{65}$$

Answer

To Prove: $\cos^{-1}\frac{3}{5} + \sin^{-1}\frac{12}{13} = \sin^{-1}\frac{56}{65}$ Formula Used: $\sin^{-1}x + \sin^{-1}y = \sin^{-1}(x \times \sqrt{1 - y^2} + y \times \sqrt{1 - x^2})$ Proof: LHS = $\cos^{-1}\frac{3}{5} + \sin^{-1}\frac{12}{13} \dots (1)$ Let $\cos\theta = \frac{3}{5}$

Therefore $\theta = \cos^{-1}\frac{3}{5} \dots (2)$

From the figure, $\sin \theta = \frac{4}{5}$

$$\Rightarrow \theta = \sin^{-1}\frac{4}{5}\dots$$
 (3)

From (2) and (3),

$$\cos^{-1}\frac{3}{5} = \sin^{-1}\frac{4}{5}$$

Substituting in (1), we get

$$\begin{aligned} \mathsf{LHS} &= \sin^{-1}\frac{4}{5} + \sin^{-1}\frac{12}{13} \\ &= \sin^{-1}\left(\frac{4}{5} \times \sqrt{1 - \left(\frac{12}{13}\right)^2} + \frac{12}{13} \times \sqrt{1 - \left(\frac{4}{5}\right)^2}\right) \\ &= \sin^{-1}\left(\frac{4}{5} \times \sqrt{1 - \frac{144}{169}} + \frac{12}{13} \times \sqrt{1 - \frac{16}{25}}\right) \\ &= \sin^{-1}\left(\frac{4}{5} \times \sqrt{\frac{25}{169}} + \frac{12}{13} \times \sqrt{\frac{9}{25}}\right) \\ &= \sin^{-1}\left(\frac{4}{5} \times \frac{5}{13} + \frac{12}{13} \times \frac{3}{5}\right) \\ &= \sin^{-1}\left(\frac{20}{65} + \frac{36}{65}\right) \\ &= \sin^{-1}\frac{56}{65} \end{aligned}$$

= RHS

Therefore, LHS = RHS

Hence proved.

7 D. Question

Prove that:

$$\cos^{-1}\frac{4}{5} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{27}{11}$$

To Prove: $\cos^{-1}\frac{4}{5} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{27}{11}$

Formula Used: $\sin^{-1}x + \sin^{-1}y = \sin^{-1}(x \times \sqrt{1-y^2} + y \times \sqrt{1-x^2})$

Proof:

LHS =
$$\cos^{-1}\frac{4}{5} + \sin^{-1}\frac{3}{5} \dots (1)$$

Let $\cos\theta = \frac{4}{5}$

Therefore $\theta = \cos^{-1}\frac{4}{5} \dots (2)$ From the figure, $\sin \theta = \frac{3}{5}$ $\Rightarrow \theta = \sin^{-1}\frac{3}{5} \dots (3)$

From (2) and (3),

$$\cos^{-1}\frac{4}{5} = \sin^{-1}\frac{3}{5}$$

Substituting in (1), we get

$$LHS = \sin^{-1}\frac{3}{5} + \sin^{-1}\frac{3}{5}$$
$$= \sin^{-1}\left(2 \times \frac{3}{5} \times \sqrt{1 - \left(\frac{3}{5}\right)^2}\right)$$
$$= \sin^{-1}\left(2 \times \frac{3}{5} \times \sqrt{1 - \frac{9}{25}}\right)$$
$$= \sin^{-1}\left(2 \times \frac{3}{5} \times \sqrt{\frac{16}{25}}\right)$$
$$= \sin^{-1}\left(2 \times \frac{3}{5} \times \frac{4}{5}\right)$$
$$= \sin^{-1}\frac{24}{25}$$

7 E. Question

Prove that:

 $\tan^{-1}\frac{1}{3} + \sec^{-1}\frac{\sqrt{5}}{2} = \frac{\pi}{4}$

To Prove: $\tan^{-1}\frac{1}{3} + \sec^{-1}\frac{\sqrt{5}}{2} = \frac{\pi}{4}$ Formula Used: $\tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$ where xy < 1Proof: LHS = $\tan^{-1}\frac{1}{3} + \sec^{-1}\frac{\sqrt{5}}{2} \dots (1)$

Let
$$\sec\theta = \frac{\sqrt{5}}{2}$$

Therefore $\theta = \sec^{-1} \frac{\sqrt{5}}{2} \dots$ (2)

From the figure, $\tan \theta = \frac{1}{2}$

$$\Rightarrow \theta = \tan^{-1} \frac{1}{2} \dots (3)$$

From (2) and (3),

$$\sec^{-1}\frac{\sqrt{5}}{2} = \tan^{-1}\frac{1}{2}$$

Substituting in (1), we get

LHS =
$$\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{2}$$

= $\tan^{-1}\left(\frac{\frac{1}{3} + \frac{1}{2}}{1 - (\frac{1}{3} \times \frac{1}{2})}\right)$
= $\tan^{-1}\left(\frac{2+3}{6-1}\right)$
= $\tan^{-1}\frac{5}{5}$
= $\tan^{-1}1$
= $\frac{\pi}{4}$
= RHS

Therefore, LHS = RHS

Hence proved.

7 F. Question

Prove that:

$$\sin^{-1}\frac{1}{\sqrt{17}} + \cos^{-1}\frac{9}{\sqrt{85}} = \tan^{-1}\frac{1}{2}$$

To Prove: $\sin^{-1}\frac{1}{\sqrt{17}} + \cos^{-1}\frac{9}{\sqrt{85}} = \tan^{-1}\frac{1}{2}$ Formula Used: $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$ where xy < 1Proof: LHS = $\sin^{-1} \frac{1}{\sqrt{17}} + \cos^{-1} \frac{9}{\sqrt{85}} \dots (1)$ Let $\sin \theta = \frac{1}{\sqrt{17}}$ $\sqrt{17}$ Therefore $\theta = \sin^{-1} \frac{1}{\sqrt{17}} \dots (2)$ From the figure, $\tan \theta = \frac{1}{4}$ $\Rightarrow \theta = \tan^{-1} \frac{1}{4} \dots (3)$ From (2) and (3), $\sin^{-1}\frac{1}{\sqrt{17}} = \tan^{-1}\frac{1}{4}\dots$ (3) Now, let $\cos\theta = \frac{9}{\sqrt{85}}$ Therefore $\theta = \cos^{-1} \frac{9}{\sqrt{85}} \dots (4)$ From the figure, $\tan \theta = \frac{2}{9}$ $\Rightarrow \theta = \tan^{-1} \frac{2}{9} \dots (5)$ From (4) and (5), $\cos^{-1}\frac{9}{\sqrt{85}} = \tan^{-1}\frac{2}{9}\dots$ (6) Substituting (3) and (6) in (1), we get $LHS = \tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9}$ $= \tan^{-1}\left(\frac{\frac{1}{4} + \frac{2}{9}}{1 - \left(\frac{1}{4} \times \frac{2}{9}\right)}\right)$ $= \tan^{-1}\left(\frac{9+8}{36-2}\right)$ $= \tan^{-1} \frac{17}{17}$

$$= \tan^{-1}\frac{1}{2}$$
$$= RHS$$

Therefore, LHS = RHS

Hence proved.

7 G. Question

Prove that:

$$2\sin^{-1}\frac{3}{5} - \tan^{-1}\frac{17}{31} = \frac{\pi}{4}$$

Answer

To Prove: $2 \sin^{-1} \frac{3}{5} - \tan^{-1} \frac{17}{31} = \frac{\pi}{4}$ Formula Used: 1) $2 \sin^{-1} x = \sin^{-1} (2x \times \sqrt{1 - x^2})$ 2) $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$ where xy < 1Proof: LHS = $2 \sin^{-1} \frac{3}{5} - \tan^{-1} \frac{17}{31} \dots (1)$ $2 \sin^{-1} \frac{3}{5} = \sin^{-1} \left(2 \times \frac{3}{5} \times \sqrt{1 - \left(\frac{3}{5}\right)^2}\right)$ $= \sin^{-1} \left(\frac{6}{5} \times \frac{4}{5}\right)$ $= \sin^{-1} \frac{24}{25} \dots (2)$ Substituting (2) in (1), we get LHS = $\sin^{-1} \frac{24}{25} - \tan^{-1} \frac{17}{31} \dots (3)$ Let $\sin \theta = \frac{24}{25}$ Therefore $\theta = \sin^{-1} \frac{24}{25} \dots (4)$

From the figure, $\tan \theta = \frac{24}{7}$

$$\Rightarrow \theta = \tan^{-1} \frac{24}{7} \dots (5)$$

From (4) and (5),

$$\sin^{-1}\frac{24}{25} = \tan^{-1}\frac{24}{7}\dots$$
 (6)

Substituting (6) in (3), we get

LHS =
$$\tan^{-1} \frac{\frac{24}{7}}{-} \tan^{-1} \frac{\frac{17}{31}}{1}$$

= $\tan^{-1} \left(\frac{\frac{24}{7} - \frac{17}{31}}{1 + \left(\frac{24}{7} \times \frac{17}{31}\right)} \right)$

$$= \tan^{-1} \left(\frac{744 - 119}{217 + 408} \right)$$
$$= \tan^{-1} \frac{625}{625}$$
$$= \tan^{-1} 1$$
$$= \frac{\pi}{4}$$
$$= RHS$$
Therefore, LHS = RHS

Hence proved.

8 A. Question

Solve for x:

$$\tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1}\frac{8}{31}$$

Answer

To find: value of x

Formula Used: $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$ where xy < 1Given: $\tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1} \frac{8}{31}$ LHS = $\tan^{-1} \left(\frac{x+1+x-1}{1-((x+1)\times(x-1))}\right)$ = $\tan^{-1} \frac{2x}{1-(x^2-x+x-1)}$ = $\tan^{-1} \frac{2x}{2-x^2}$ Therefore, $\tan^{-1} \frac{2x}{2-x^2} = \tan^{-1} \frac{8}{31}$ Taking tangent on both sides, we get $\frac{2x}{2-x^2} = \frac{8}{31}$ $\Rightarrow 62x = 16 - 8x^2$ $\Rightarrow 8x^2 + 62x - 16 = 0$ $\Rightarrow 4x^2 + 31x - 8 = 0$ $\Rightarrow 4x^2 (x + 8) - 1 \times (x + 8) = 0$

$$\Rightarrow 4x \times (x + 0) - 1 \times (x + 0) =$$

 $\Rightarrow (4x - 1) \times (x + 8) = 0$

$$\Rightarrow x = \frac{1}{4} \text{ or } x = -8$$

Therefore, $x = \frac{1}{4}$ or x = -8 are the required values of x.

8 B. Question

Solve for x:

$$\tan^{-1}(2+x) + \tan^{-1}(2-x) = \tan^{-1}\frac{2}{3}$$

To find: value of x Formula Used: $\tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$ where xy < 1Given: $\tan^{-1}(2+x) + \tan^{-1}(2-x) = \tan^{-1}\frac{2}{3}$ LHS = $\tan^{-1}\left(\frac{2+x+2-x}{1-\{(2+x)\times(2-x)\}}\right)$ = $\tan^{-1}\frac{4}{1-(4-2x+2x-x^2)}$ = $\tan^{-1}\frac{4}{x^2-3}$ Therefore, $\tan^{-1}\frac{4}{x^2-3} = \tan^{-1}\frac{2}{3}$ Taking tangent on both sides, we get $\frac{4}{x^2-3} = \frac{2}{3}$

 $\overline{x^2 - 3} = \overline{3}$ $\Rightarrow 12 = 2x^2 - 6$ $\Rightarrow 2x^2 = 18$ $\Rightarrow x^2 = 9$ $\Rightarrow x = 3 \text{ or } x = -3$

Therefore, $x = \pm 3$ are the required values of x.

8 C. Question

Solve for x:

$$\cos\left(\sin^{-1}x\right) = \frac{1}{9}$$

Answer

To find: value of x

Given: $\cos(\sin^{-1}x) = \frac{1}{9}$

 $LHS = cos(sin^{-1} x) ... (1)$

Let sin $\theta = x$

Therefore $\theta = \sin^{-1} x \dots (2)$

From the figure, $\cos \theta = \sqrt{1-x^2}$

 $\Rightarrow \theta = \cos^{-1}\sqrt{1 - x^2} \dots (3)$ From (2) and (3), $\sin^{-1}x = \cos^{-1}\sqrt{1 - x^2} \dots (4)$ Substituting (4) in (1), we get LHS = $\cos(\cos^{-1}\sqrt{1 - x^2})$ = $\sqrt{1 - x^2}$ Therefore, $\sqrt{1 - x^2} = \frac{1}{9}$ Squaring and simplifying, $\Rightarrow 81 - 81x^2 = 1$ $\Rightarrow 81x^2 = 80$ $\Rightarrow x^2 = \frac{80}{81}$ $\Rightarrow x = \pm \frac{4\sqrt{5}}{9}$

Therefore, $x = \pm \frac{4\sqrt{5}}{9}$ are the required values of x.

8 D. Question

Solve for x:

$$\cos\left(2\sin^{-1}x\right) = \frac{1}{9}$$

Answer

To find: value of x Formula Used: $2\sin^{-1}x = \sin^{-1}(2x\sqrt{1-x^2})$ Given: $\cos(2\sin^{-1}x) = \frac{1}{9}$ LHS = $\cos(2\sin^{-1}x)$ Let $\theta = \sin^{-1}x$ So, $x = \sin \theta \dots (1)$ LHS = $\cos(2\theta)$ = $1 - 2\sin^2 \theta$

Substituting in the given equation,

 $1 - 2\sin^2 \theta = \frac{1}{9}$ $2\sin^2 \theta = \frac{8}{9}$ $\sin^2 \theta = \frac{4}{9}$

Substituting in (1),

$$x^{2} = \frac{4}{9}$$
$$x = \pm \frac{2}{3}$$

Therefore, $x = \pm \frac{2}{3}$ are the required values of x.

8 E. Question

Solve for x:

$$\sin^{-1}\frac{8}{x} + \sin^{-1}\frac{15}{x} = \frac{\pi}{2}$$

Answer

To find: value of x Given: $\sin^{-1}\frac{8}{x} + \sin^{-1}\frac{15}{x} = \frac{\pi}{2}$ We know $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$ Let $\sin^{-1}\frac{8}{x} = P$ $\Rightarrow \sin P = \frac{8}{x}$ Therefore, $\cos P = \frac{\sqrt{x^2-64}}{x}$ $P = \cos^{-1}\frac{\sqrt{x^2-64}}{x} + \sin^{-1}\frac{15}{x} = \frac{\pi}{2}$ Therefore, $\frac{\sqrt{x^2-64}}{x} = \frac{15}{x}$ $\Rightarrow \sqrt{x^2-64} = 15$ Squaring both sides, $\Rightarrow x^2 - 64 = 225$ $\Rightarrow x^2 = 289$

 $\Rightarrow x = \pm 17$

Therefore, $x = \pm 17$ are the required values of x.

9 A. Question

Solve for x :

$$\cos\left(\sin^{-1}x\right) = \frac{1}{2}$$

Answer

To find: value of x Given: $\cos(\sin^{-1}x) = \frac{1}{2}$ LHS = $\cos(\sin^{-1}x)$ $= \cos(\cos^{-1}(\sqrt{1-x^2}))$ $= \sqrt{1-x^2}$ Therefore, $\sqrt{1-x^2} = \frac{1}{2}$ Squaring both sides, $1-x^2 = \frac{1}{4}$ $x^2 = 1 - \frac{1}{4}$ $x^2 = \frac{3}{4}$

 $x=\pm\frac{\sqrt{3}}{2}$

Therefore, $x = \pm \frac{\sqrt{3}}{2}$ are the required values of x.

9 B. Question

Solve for x :

 $\tan^{-1} x = \sin^{-1} \frac{1}{\sqrt{2}}$

Answer

To find: value of x

Given: $\tan^{-1} x = \sin^{-1} \frac{1}{\sqrt{2}}$ We know that $\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$ Therefore, $\frac{\pi}{4} = \sin^{-1} \frac{1}{\sqrt{2}}$ Substituting in the given equation,

$$\tan^{-1} x = \frac{\pi}{4}$$
$$x = \tan \frac{\pi}{4}$$
$$\Rightarrow x = 1$$

Therefore, x = 1 is the required value of x.

9 C. Question

Solve for x :

 $\sin^{-1} x - \cos^{-1} x = \frac{\pi}{6}$

Answer

Given: $\sin^{-1} x - \cos^{-1} x = \frac{\pi}{6}$ We know that $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$ So, $\sin^{-1} x = \frac{\pi}{2} - \cos^{-1} x$ Substituting in the given equation,

$$\frac{\pi}{2} - \cos^{-1}x - \cos^{-1}x = \frac{\pi}{6}$$

Rearranging,

$$2\cos^{-1}x = \frac{\pi}{2} - \frac{\pi}{6}$$
$$2\cos^{-1}x = \frac{\pi}{3}$$
$$\cos^{-1}x = \frac{\pi}{6}$$
$$x = \frac{\sqrt{3}}{2}$$

Therefore, $x = \frac{\sqrt{3}}{2}$ is the required value of x.

Exercise 4D

1. Question

Write down the interval for the principal-value branch of each of the following functions and draw its graph:

sin⁻¹ x

Answer

Principal value branch of sin⁻¹ x is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

2. Question

Write down the interval for the principal-value branch of each of the following functions and draw its graph:

cos⁻¹ x

Answer

Principal value branch of $\cos^{-1} x$ is $[0, \pi]$

3. Question

Write down the interval for the principal-value branch of each of the following functions and draw its graph:

tan⁻¹ x

Answer

4. Question

Write down the interval for the principal-value branch of each of the following functions and draw its graph: $\cot^{-1} x$

Answer

Principal value branch of $\cot^{-1} x$ is $(0, \pi)$

5. Question

Write down the interval for the principal-value branch of each of the following functions and draw its graph:

Principal value branch of sec⁻¹ x is $\left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$

6. Question

Write down the interval for the principal-value branch of each of the following functions and draw its graph: cosec⁻¹ x

Answer

Objective Questions

1. Question

Mark the tick against the correct answer in the following:

The principal value of
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$
 is

A. $\frac{\pi}{6}$ B. $\frac{5\pi}{6}$

C.
$$\frac{7\pi}{6}$$

D. none of these

Answer

To Find: The Principle value of $\cos^{-1}(\frac{\sqrt{3}}{2})$

Let the principle value be given by x

Now, let $x = \cos^{-1}(\frac{\sqrt{3}}{2})$

$$\Rightarrow \cos x = \frac{\sqrt{3}}{2}$$

$$\Rightarrow \cos x = \cos(\frac{\pi}{6}) (\because \cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2})$$

$$\Rightarrow x = \frac{\pi}{6}$$

2. Question

Mark the tick against the correct answer in the following:

The principal value of $cosec^{-1}(2)$ is

A. $\frac{\pi}{3}$ B. $\frac{\pi}{6}$ C. $\frac{2\pi}{3}$ D. $\frac{5\pi}{6}$

Answer

To Find: The Principle value of $cosec^{-1}(2)$

Let the principle value be given by x

Now, let $x = cosec^{-1}(2)$

 \Rightarrow cosec x =2

$$\Rightarrow \operatorname{cosec} x = \operatorname{cosec}(\frac{\pi}{6}) \ (\because \cos\left(\frac{\pi}{6}\right) = 2)$$
$$\Rightarrow x = \frac{\pi}{6}$$

3. Question

Mark the tick against the correct answer in the following:

The principal value of
$$\cos^{-1}\left(rac{-1}{\sqrt{2}}
ight)$$
 is

A.
$$\frac{-\pi}{4}$$

B.
$$\frac{\pi}{4}$$

C. $\frac{3\pi}{4}$
D. $\frac{5\pi}{4}$

To Find: The Principle value of $\cos^{-1}(\frac{-1}{\sqrt{2}})$

Let the principle value be given by x

Now, let $x = \cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ $\Rightarrow \cos x = \frac{-1}{\sqrt{2}}$ $\Rightarrow \cos x = -\cos\left(\frac{\pi}{4}\right) (\because \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}})$ $\Rightarrow \cos x = \cos(\pi - \frac{\pi}{4}) (\because -\cos(\theta) = \cos(\pi - \theta))$ $\Rightarrow x = \frac{3\pi}{4}$

4. Question

Mark the tick against the correct answer in the following:

The principal value of $\sin^{-1}\left(\frac{-1}{2}\right)$ is A. $\frac{-\pi}{6}$ B. $\frac{5\pi}{6}$ C. $\frac{7\pi}{6}$ D. none of these **Answer** To Find: The Principle value of $\sin^{-1}\left(\frac{-1}{2}\right)$

Let the principle value be given by x

Now, let
$$x = \sin^{-1}\left(\frac{-1}{2}\right)$$

 $\Rightarrow \sin x = \frac{-1}{2}$
 $\Rightarrow \sin x = -\sin\left(\frac{\pi}{6}\right) (\because \sin\left(\frac{\pi}{6}\right) = \frac{1}{2})$
 $\Rightarrow \sin x = \sin\left(-\frac{\pi}{6}\right) (\because -\sin(\theta) = \sin(-\theta))$
 $\Rightarrow x = -\frac{\pi}{4}$

Mark the tick against the correct answer in the following:

The principal value of
$$\cos^{-1}\left(\frac{-1}{2}\right)$$
 is

A. $\frac{-\pi}{3}$ B. $\frac{2\pi}{3}$ C. $\frac{4\pi}{3}$

Answer

To Find: The Principle value of $\cos^{-1}(\frac{-1}{2})$

Let the principle value be given by x

Now, let
$$x = \cos^{-1}\left(\frac{-1}{2}\right)$$

 $\Rightarrow \cos x = \frac{-1}{2}$
 $\Rightarrow \cos x = -\cos(\frac{\pi}{3}) (\because \cos(\frac{\pi}{3}) = \frac{1}{2})$
 $\Rightarrow \cos x = \cos(\pi - \frac{\pi}{3}) (\because -\cos(\theta) = \cos(\pi - \theta))$
 $\Rightarrow x = \frac{2\pi}{3}$

6. Question

Mark the tick against the correct answer in the following:

The principal value of $\tan^{-1}\left(-\sqrt{3}\right)$ is

A.
$$\frac{2\pi}{3}$$

C.
$$\frac{-\pi}{3}$$

D. none of these

Answer

To Find: The Principle value of $\tan^{-1}(-\sqrt{3})$

Let the principle value be given by x

Now, let $x = \tan^{-1}(-\sqrt{3})$

$$\Rightarrow \tan x = -\sqrt{3}$$

$$\Rightarrow \tan x = -\tan(\frac{\pi}{3}) (\because \tan(\frac{\pi}{3}) = -\sqrt{3})$$

$$\Rightarrow \tan x = \tan(-\frac{\pi}{3}) (\because -\tan(\theta) = \tan(-\theta))$$

$$\Rightarrow x = -\frac{\pi}{3}$$

Mark the tick against the correct answer in the following:

The principal value of cot⁻¹ (-1) is

A. $\frac{-\pi}{4}$ B. $\frac{\pi}{4}$ C. $\frac{5\pi}{4}$ D. $\frac{3\pi}{4}$

Answer

To Find: The Principle value of $\cot^{-1}(-1)$

Let the principle value be given by x

Now, let $x = \cot^{-1}(-1)$ $\Rightarrow \cot x = -1$ $\Rightarrow \cot x = -\cot(\frac{\pi}{4}) (\because \cot(\frac{\pi}{4}) = 1)$ $\Rightarrow \cot x = \cot(\pi - \frac{\pi}{4}) (\because -\cot(\theta) = \cot(\pi - \theta))$ $\Rightarrow x = \frac{3\pi}{4}$

8. Question

Mark the tick against the correct answer in the following:

The principal value of $\sec^{-1}\left(\frac{-2}{\sqrt{3}}\right)$ is A. $\frac{\pi}{6}$

- 6
- B. $\frac{-\pi}{6}$

C.
$$\frac{5\pi}{6}$$

D.
$$\frac{7\pi}{6}$$

To Find: The Principle value of $\sec^{-1}\left(\frac{-2}{\sqrt{3}}\right)$ Let the principle value be given by x Now, let $x = \sec^{-1}\left(\frac{-2}{\sqrt{3}}\right)$ $\Rightarrow \sec x = \frac{-2}{\sqrt{3}}$ $\Rightarrow \sec x = -\sec(\frac{\pi}{6}) (\because \sec(\frac{\pi}{6}) = \frac{2}{\sqrt{3}})$ $\Rightarrow \sec x = \sec(\pi - \frac{\pi}{6}) (\because -\sec(\theta) = \sec(\pi - \theta))$ $\Rightarrow x = \frac{5\pi}{6}$

9. Question

Mark the tick against the correct answer in the following:

The principal value of $\operatorname{cosec}^{-1}\left(-\sqrt{2}\right)$ is

A.
$$\frac{-\pi}{4}$$

B. $\frac{3\pi}{4}$

C.
$$\frac{5\pi}{4}$$

D. none of these

Answer

To Find: The Principle value of $cosec^{-1}(-\sqrt{2})$

Let the principle value be given by x

Now, let
$$x = \operatorname{cosec}^{-1}(-\sqrt{2})$$

$$\Rightarrow$$
 cosec x = $-\sqrt{2}$

$$\Rightarrow \operatorname{cosec} x = -\operatorname{cosec}(\frac{\pi}{4}) \ (\because \operatorname{cosec}(\frac{\pi}{4}) = \sqrt{2})$$
$$\Rightarrow \operatorname{cosec} x = \operatorname{cosec}(-\frac{\pi}{4}) \ (\because -\operatorname{cosec}(\theta) = \operatorname{cosec}(-\theta))$$
$$\Rightarrow x = -\frac{\pi}{4}$$

10. Question

Mark the tick against the correct answer in the following:

The principal value of $cot^{-1} \Bigl(-\sqrt{3} \Bigr)$ is

A.
$$\frac{2\pi}{6}$$

B. $\frac{\pi}{6}$
C. $\frac{7\pi}{6}$
D. $\frac{5\pi}{6}$

To Find: The Principle value of $\cot^{-1}(-\sqrt{3})$ Let the principle value be given by x Now, let $x = \cot^{-1}(-\sqrt{3})$ $\Rightarrow \cot x = -\sqrt{3}$ $\Rightarrow \cot x = -\cot(\frac{\pi}{6})$ (:: $\cot(\frac{\pi}{6}) = \sqrt{3}$)

$$\Rightarrow \cot x = \cot(\pi - \frac{\pi}{6}) (\because -\cot(\theta) = \cot(\pi - \theta))$$
$$\Rightarrow x = \frac{5\pi}{6}$$

11. Question

Mark the tick against the correct answer in the following:

The value of $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$ is A. $\frac{2\pi}{3}$ B. $\frac{5\pi}{3}$ C. $\frac{\pi}{3}$ D. none of these

Answer

To Find: The value of $\sin^{-1}(\sin(\frac{2\pi}{3}))$

Now, let x =sin⁻¹(sin($\frac{2\pi}{3}$))

 $\Rightarrow \sin x = \sin \left(\frac{2\pi}{3}\right)$

Here range of principle value of sine is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

 $\Rightarrow X = \frac{2\pi}{3} \notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of

 $\sin^{-1}(\sin(\frac{2\pi}{3}))$ is $\Rightarrow \sin x = \sin (\pi - \frac{\pi}{3}) (::\sin (\frac{2\pi}{3}) = \sin (\pi - \frac{\pi}{3}))$ $\Rightarrow \sin x = \sin \left(\frac{\pi}{3}\right)$ (sin $(\pi - \theta) = \sin \theta$ as here θ lies in II quadrant and sine is positive) $\Rightarrow x = \frac{\pi}{3}$

12. Question

Mark the tick against the correct answer in the following:

The value of $\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$ is A. $\frac{13\pi}{6}$

C.
$$\frac{5\pi}{6}$$

D.
$$\frac{\pi}{6} - \frac{7\pi}{6}$$

Answer

To Find: The value of $\cos^{-1}(\cos(\frac{13\pi}{6}))$

Now, let x = $\cos^{-1}(\cos(\frac{13\pi}{6}))$

$$\Rightarrow \cos x = \cos \left(\frac{13\pi}{6}\right)$$

Here ,range of principle value of cos is $[0,\pi]$

$$\Rightarrow x = \frac{13\pi}{6} \notin [0,\pi]$$

Hence for all values of x in range $[0,\pi]$, the value of

$$\cos^{-1}\left(\cos\left(\frac{13\pi}{6}\right)\right) \text{ is}$$

$$\Rightarrow \cos x = \cos\left(2\pi - \frac{\pi}{6}\right) (\because \cos\left(\frac{13\pi}{6}\right) = \cos\left(2\pi - \frac{\pi}{6}\right))$$

$$\Rightarrow \cos x = \cos\left(\frac{\pi}{6}\right) (\because \cos\left(2\pi - \theta\right) = \cos\theta)$$

$$\Rightarrow x = \frac{\pi}{6}$$

13. Question

Mark the tick against the correct answer in the following:

The value of $\tan^{-1}\left(\tan\frac{7\pi}{6}\right)$ is

A.
$$\frac{7\pi}{6}$$

B. $\frac{5\pi}{6}$

C. <u>~</u> 6

D. none of these

Answer

To Find: The value of $\tan^{-1}(\tan(\frac{7\pi}{6}))$

Now, let x =tan⁻¹(tan($\frac{7\pi}{6}$))

 \Rightarrow tan x =tan ($\frac{7\pi}{6}$)

Here range of principle value of tan is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\Rightarrow \mathsf{X} = \frac{7\pi}{6} \notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of

$$\tan^{-1}\left(\tan\left(\frac{13\pi}{6}\right)\right) \text{ is}$$

$$\Rightarrow \tan x = \tan \left(\pi + \frac{\pi}{6}\right) (\because \tan \left(\frac{7\pi}{6}\right) = \tan \left(\pi + \frac{\pi}{6}\right))$$

$$\Rightarrow \tan x = \tan \left(\frac{\pi}{6}\right) (\because \tan \left(\pi + \theta\right) = \tan \theta)$$

$$\Rightarrow x = \frac{\pi}{6}$$

14. Question

Mark the tick against the correct answer in the following:

The value of
$$\cot^{-1}\left(\cot\frac{5\pi}{4}\right)$$
 is

A. $\frac{\pi}{4}$ B. $\frac{-\pi}{4}$

C.
$$\frac{3\pi}{4}$$

D. none of these

Answer

To Find: The value of $\cot^{-1}(\cot(\frac{5\pi}{4}))$

Now, let $x = \cot^{-1}(\cot(\frac{5\pi}{4}))$

 $\Rightarrow \cot x = \cot (\frac{5\pi}{4})$

Here range of principle value of cot is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\Rightarrow \mathsf{x} = \frac{5\pi}{4} \notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Hence for all values of x in range $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$,the value of

$$\cot^{-1}\left(\cot\left(\frac{5\pi}{4}\right)\right) \text{ is}$$

$$\Rightarrow \cot x = \cot\left(\pi + \frac{\pi}{4}\right) \left(\because\cot\left(\frac{5\pi}{4}\right) = \cot\left(\pi + \frac{\pi}{4}\right)\right)$$

$$\Rightarrow \cot x = \cot\left(\frac{\pi}{4}\right) \left(\because\cot\left(\pi + \theta\right) = \cot\theta\right)$$

$$\Rightarrow x = \frac{\pi}{4}$$

15. Question

Mark the tick against the correct answer in the following:

The value of $\sec^{-1}\left(\sec\frac{8\pi}{5}\right)$ is A. $\frac{2\pi}{5}$ B. $\frac{3\pi}{5}$ C. $\frac{8\pi}{5}$ D. none of these

Answer

To Find: The value of $\sec^{-1}(\sec(\frac{8\pi}{5}))$

Now, let $x = \sec^{-1}(\sec(\frac{8\pi}{5}))$

 \Rightarrow sec x = sec $\left(\frac{8\pi}{5}\right)$

Here range of principle value of sec is $[0,\pi]$

$$\Rightarrow x = \frac{8\pi}{5} \notin [0,\pi]$$

Hence for all values of x in range $[0,\pi]$, the value of

$$\sec^{-1}(\sec(\frac{8\pi}{5})) \text{ is}$$

$$\Rightarrow \sec x = \sec(2\pi - \frac{2\pi}{5}) (\because \sec(\frac{8\pi}{5}) = \sec(2\pi - \frac{2\pi}{5}))$$

$$\Rightarrow \sec x = \sec(\frac{2\pi}{5}) (\because \sec(2\pi - \theta) = \sec\theta)$$

$$\Rightarrow x = \frac{2\pi}{5}$$

Mark the tick against the correct answer in the following:

The value of
$$\operatorname{cosec}^{-1}\left(\operatorname{cosec}\frac{4\pi}{3}\right)$$
 is

A.
$$\frac{\pi}{3}$$

B.
$$\frac{-\pi}{3}$$

C.
$$\frac{2\pi}{3}$$

D. none of these

Answer

To Find: The value of $cosec^{-1}(cosec(\frac{4\pi}{3}))$

Now, let x =cosec⁻¹(cosec($\frac{4\pi}{3}$))

 \Rightarrow cosec x =cosec $\left(\frac{4\pi}{3}\right)$

Here range of principle value of cosec is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\Rightarrow X = \frac{4\pi}{3} \notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of

 $\operatorname{cosec}^{-1}(\operatorname{cosec}(\frac{4\pi}{3})) \text{ is}$ $\Rightarrow \operatorname{cosec} x = \operatorname{cosec} (\pi + \frac{\pi}{3}) (\operatorname{cosec}(\frac{4\pi}{3}) = \operatorname{cosec}(\pi + \frac{\pi}{3}))$ $\Rightarrow \operatorname{cosec} x = \operatorname{cosec}(-\frac{\pi}{3}) (\operatorname{cosec}(\pi + \theta) = \operatorname{cosec}(-\theta))$ $\Rightarrow x = -\frac{\pi}{3}$

17. Question

Mark the tick against the correct answer in the following:

The value of $\tan^{-1}\left(\tan\frac{3\pi}{4}\right)$ is

C.
$$\frac{-\pi}{4}$$

D. none of these

To Find: The value of $\tan^{-1}(\tan(\frac{3\pi}{4}))$ Now, let $x = \tan^{-1}(\tan(\frac{3\pi}{4}))$ $\Rightarrow \tan x = \tan(\frac{3\pi}{4})$ Here range of principle value of $\tan is \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ $\Rightarrow x = \frac{3\pi}{4} \notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ Hence for all values of x in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the value of $\tan^{-1}(\tan(\frac{3\pi}{4}))$ is $\Rightarrow \tan x = \tan(\pi - \frac{\pi}{4})$ (: $\tan(\frac{3\pi}{4}) = \tan(\pi - \frac{\pi}{4})$) $\Rightarrow \tan x = \tan(-\frac{\pi}{4})$ (: $\tan(\pi - \theta) = \tan(-\theta)$) $\Rightarrow x = -\frac{\pi}{4}$

18. Question

Mark the tick against the correct answer in the following:

 $\frac{\pi}{3} - \sin^{-1}\left(\frac{-1}{2}\right) = ?$ A. 0

B. $\frac{2\pi}{3}$

C.
$$\frac{\pi}{2}$$

D. π

Answer

To Find: The value of $\frac{\pi}{3} - \sin^{-1}\left(\frac{-1}{2}\right)$ Now, let $x = \frac{\pi}{3} - \sin^{-1}\left(\frac{-1}{2}\right)$ $\Rightarrow x = \frac{\pi}{3} - \left(-\sin^{-1}\left(\frac{1}{2}\right)\right)$ ($\because \sin(-\theta) = -\sin(\theta)$ $\Rightarrow x = \frac{\pi}{3} - \left(-\frac{\pi}{6}\right)$ ($\because \sin\frac{\pi}{6} = \frac{1}{2}$) $\Rightarrow x = \frac{\pi}{3} + \frac{\pi}{6}$ $\Rightarrow x = \frac{3\pi}{6} = \frac{\pi}{2}$

19. Question

Mark the tick against the correct answer in the following:

The value of
$$\sin\left(\sin^{-1}\frac{1}{2} + \cos^{-1}\frac{1}{2}\right) = ?$$

A. 0

- B. 1
- C. -1

D. none of these

Answer

To Find: The value of $\sin(\sin^{-1}\frac{1}{2} + \cos^{-1}\frac{1}{2})$ Now, let $x = \sin(\sin^{-1}\frac{1}{2} + \cos^{-1}\frac{1}{2})$ $\Rightarrow x = \sin(\frac{\pi}{2})$ ($\because \sin^{-1}\theta + \cos^{-1}\theta = \frac{\pi}{2}$) $\Rightarrow x = 1$ ($\because \sin(\frac{\pi}{2}) = 1$)

20. Question

Mark the tick against the correct answer in the following:

If x ≠ 0 then cos (tan⁻¹ x + cot⁻¹ x) = ?
A. -1
B. 1

C. 0

D. none of these

Answer

Given: $x \neq 0$

To Find: The value of $cos(tan^{-1}x + cot^{-1}x)$

```
Now, let x = \cos(\tan^{-1}x + \cot^{-1}x)
```

$$\Rightarrow x = \cos\left(\frac{\pi}{2}\right) (\because \tan^{-1}\theta + \cot^{-1}\theta = \frac{\pi}{2})$$

 $\Rightarrow x = 0 (:: \cos\left(\frac{\pi}{2}\right) = 0)$

21. Question

Mark the tick against the correct answer in the following:

The value of $sin\left(cos^{-1}\frac{3}{5}\right)$ is A. $\frac{2}{5}$ B. $\frac{4}{5}$ C $\frac{-2}{5}$

D. none of these

Answer

To Find: The value of $sin(cos^{-1}\frac{3}{5})$

Now, let $x = \cos^{-1}\frac{3}{5}$

 $\Rightarrow \cos x = \frac{3}{5}$

Now , sin x = $\sqrt{1 - \cos^2 x}$

$$= \sqrt{1 - (\frac{3}{5})^2}$$
$$= \frac{4}{5}$$
$$\Rightarrow x = \sin^{-1}\frac{4}{5} = \cos^{-1}\frac{3}{5}$$

Therefore,

 $\sin(\cos^{-1}\frac{3}{5}) = \sin(\sin^{-1}\frac{4}{5})$ Let, Y = sin(sin⁻¹\frac{4}{5}) $\Rightarrow sin^{-1}Y = sin^{-1}\frac{4}{5}$ $\Rightarrow Y = \frac{4}{5}$

22. Question

Mark the tick against the correct answer in the following:

D. π

Answer

To Find: The value of $\cos^{-1}(\cos(\frac{2\pi}{3})) + \sin^{-1}(\sin(\frac{2\pi}{3}))$

Here, consider $\cos^{-1}(\cos(\frac{2\pi}{3}))$ (: the principle value of $\cos lies$ in the range $[0, \pi]$ and since $\frac{2\pi}{3} \in [0, \pi]$)

$$\Rightarrow \cos^{-1}(\cos(\frac{2\pi}{3})) = \frac{2\pi}{3}$$

Now, consider $\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$

Since here the principle value of sine lies in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and since $\frac{2\pi}{3} \notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\Rightarrow \sin^{-1}(\sin(\frac{2\pi}{3})) = \sin^{-1}(\sin(\pi - \frac{\pi}{3}))$$
$$= \sin^{-1}(\sin(\frac{\pi}{3}))$$
$$= \frac{\pi}{3}$$
Therefore,

$$\cos^{-1}(\cos(\frac{2\pi}{3})) + \sin^{-1}(\sin(\frac{2\pi}{3})) = \frac{2\pi}{3} + \frac{\pi}{3}$$
$$= \frac{3\pi}{3}$$
$$= \pi$$

23. Question

Mark the tick against the correct answer in the following:

$$\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) = ?$$
A. $\frac{\pi}{3}$
B. $\frac{-\pi}{3}$
C. $\frac{5\pi}{3}$
D. none of these

Answer

To Find: The value of $\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2)$ Let , $x = \tan^{-1}(\sqrt{3}) - \sec^{-1}(-2)$ $\Rightarrow x = \frac{\pi}{3} - [\pi - \sec^{-1}(2)]$ (:: $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$ and $\sec^{-1}(-\theta) = \pi - \sec^{-1}(\theta)$) $\Rightarrow x = \frac{\pi}{3} - [\pi - \frac{\pi}{3}]$ $\Rightarrow x = \frac{\pi}{3} - [\frac{2\pi}{3}]$ $\Rightarrow x = -\frac{\pi}{3}$

24. Question

Mark the tick against the correct answer in the following:

$$\cos^{-1}\frac{1}{2} + 2\sin^{-1}\frac{1}{2} = ?$$

A. $\frac{2\pi}{3}$

в. <u>3</u>π

C. 2π

D. none of these

Answer

To Find: The value of $\cos^{-1}\frac{1}{2} + 2\sin^{-1}\frac{1}{2}$ Now, let $x = \cos^{-1}\frac{1}{2} + 2\sin^{-1}\frac{1}{2}$ $\Rightarrow x = \frac{\pi}{3} + 2(\frac{\pi}{6}) (\because \cos(\frac{\pi}{3}) = \frac{1}{2} \text{ and } \sin(\frac{\pi}{6}) = \frac{1}{2})$ $\Rightarrow x = \frac{\pi}{3} + \frac{\pi}{3}$ $\Rightarrow x = \frac{2\pi}{3}$

25. Question

Mark the tick against the correct answer in the following:

 $\tan^{-1}1 + \cos^{-1}\left(\frac{-1}{2}\right) + \sin^{-1}\left(\frac{-1}{2}\right) = ?$ A. π B. $\frac{2\pi}{3}$ C. $\frac{3\pi}{4}$ D. $\frac{\pi}{2}$

Answer

To Find: The value of $\tan^{-1} 1 + \cos^{-1}(\frac{-1}{2}) + \sin^{-1}(\frac{-1}{2})$ Now, let $x = \tan^{-1} 1 + \cos^{-1}(\frac{-1}{2}) + \sin^{-1}(\frac{-1}{2})$ $\Rightarrow x = \frac{\pi}{4} + [\pi - \cos^{-1}(\frac{1}{2})] + [-\sin^{-1}\frac{1}{2}] (\because \tan(\frac{\pi}{4}) = 1 \text{ and } \cos^{-1}(-\theta) = [\pi - \cos^{-1}\theta] \text{ and } \sin^{-1}(-\theta) = -\sin^{-1}\theta)$ $\Rightarrow x = \frac{\pi}{4} + [\pi - \frac{\pi}{3}] + [-\frac{\pi}{6}]$ $\Rightarrow x = \frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6}$ $\Rightarrow x = \frac{3\pi}{4}$

26. Question

Mark the tick against the correct answer in the following:

 $\tan\left[2\tan^{-1}\frac{1}{5}-\frac{\pi}{4}\right] = ?$

A.
$$\frac{7}{17}$$

B. $\frac{-7}{17}$
C. $\frac{7}{12}$
D. $\frac{-7}{12}$

To Find: The value of $\tan(2\tan^{-1}\frac{1}{5}-\frac{\pi}{4})$ Consider , $\tan(2\tan^{-1}\frac{1}{5}-\frac{\pi}{4}) = \tan(\tan^{-1}(\frac{2(\frac{1}{5})}{1-(\frac{1}{5})^2})-\frac{\pi}{4})$ (:: $2\tan^{-1}x = \tan^{-1}(\frac{2x}{1-x^2}))$ = $\tan(\tan^{-1}(\frac{\frac{2}{5}}{1-\frac{1}{25}})-\frac{\pi}{4})$ = $\tan(\tan^{-1}(\frac{5}{12})-\frac{\pi}{4})$ = $\tan(\tan^{-1}(\frac{5}{12})-\tan^{-1}(1))$ (:: $\tan(\frac{\pi}{4})=1$) = $\tan(\tan^{-1}(\frac{\frac{5}{12}-1}{1+\frac{5}{12}}))$ ($\tan^{-1}x - \tan^{-1}y = \tan^{-1}(\frac{x-y}{1+xy})$ = $\tan(\tan^{-1}(\frac{-7}{17}))$ $\tan(2\tan^{-1}\frac{1}{5}-\frac{\pi}{4}) = \frac{-7}{17}$

27. Question

Mark the tick against the correct answer in the following:

= ?

$$\tan \frac{1}{2} \left(\cos^{-1} \frac{\sqrt{5}}{3} \right)$$
A. $\frac{\left(3 - \sqrt{5}\right)}{2}$
B. $\frac{\left(3 + \sqrt{5}\right)}{2}$
C. $\frac{\left(5 - \sqrt{3}\right)}{2}$

D.
$$\frac{\left(5+\sqrt{3}\right)}{2}$$

To Find: The value of $\tan \frac{1}{2}(\cos^{-1}\frac{\sqrt{5}}{3})$ Let , $x = \cos^{-1}\frac{\sqrt{5}}{3}$ $\Rightarrow \cos x = \frac{\sqrt{5}}{3}$ Now, $\tan \frac{1}{2}(\cos^{-1}\frac{\sqrt{5}}{3})$ becomes $\tan \frac{1}{2}(\cos^{-1}\frac{\sqrt{5}}{3}) = \tan \frac{1}{2}(x) = \tan \frac{x}{2}$ $= \sqrt{\frac{1-\cos x}{1+\cos x}}$ $= \sqrt{\frac{1-\cos x}{1+\cos x}}$ $= \sqrt{\frac{1-(\frac{\sqrt{5}}{3})}{1+\frac{\sqrt{5}}{3}}}$ $= \sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}$ $= \sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}} \times \sqrt{\frac{3-\sqrt{5}}{3-\sqrt{5}}}$ $\tan \frac{1}{2}(\cos^{-1}\frac{\sqrt{5}}{3}) = \frac{3-\sqrt{5}}{2}$ **28. Question**

Mark the tick against the correct answer in the following:

 $\sin\left(\cos^{-1}\frac{3}{5}\right) = ?$ A. $\frac{3}{4}$ B. $\frac{4}{5}$ C. $\frac{3}{5}$

D. none of these

Answer

To Find: The value of $sin(cos^{-1}\frac{3}{5})$

Let, $x = \cos^{-1}\frac{3}{5}$ $\Rightarrow \cos x = \frac{3}{5}$ Now , $sin(cos^{-1\frac{3}{5}})$ becomes sin (x)

Since we know that $\sin x = \sqrt{1 - \cos^2 x}$

$$=\sqrt{1-(\frac{3}{5})^2}$$

 $\sin(\cos^{-1}\frac{3}{5}) = \sin x = \frac{4}{5}$

29. Question

Mark the tick against the correct answer in the following:

 $\cos\left(\tan^{-1}\frac{3}{4}\right) = ?$ A. $\frac{3}{5}$ B. $\frac{4}{5}$ C. $\frac{4}{9}$

D. none of these

Answer

To Find: The value of $\cos(\tan^{-1}\frac{3}{4})$

Let $x = \tan^{-1} \frac{3}{4}$ $\Rightarrow \tan x = \frac{3}{4}$ $\Rightarrow \tan x = \frac{3}{4} = \frac{opposite \ side}{adjacent \ side}$

We know that by pythagorus theorem ,

(Hypotenuse)² = (opposite side)² + (adjacent side)²

Therefore, Hypotenuse = 5

 \Rightarrow cos x = $\frac{adjacent side}{hypotenuse} = \frac{4}{5}$

Since here $x = \tan^{-1}\frac{3}{4}$ hence $\cos(\tan^{-1}\frac{3}{4})$ becomes $\cos x$

Hence , $\cos(\tan^{-1}\frac{3}{4}) = \cos x = \frac{4}{5}$

30. Question

Mark the tick against the correct answer in the following:

$$\sin\left\{\frac{\pi}{3} - \sin^{-1}\left(\frac{-1}{2}\right)\right\} = ?$$

A. 1

B. 0

c.
$$\frac{-1}{2}$$

D. none of these

Answer

To Find: The value of of $\sin \{\frac{\pi}{3} - \sin^{-1}(\frac{-1}{2})\}$ Let, x = $\sin \{\frac{\pi}{3} - \sin^{-1}(\frac{-1}{2})\}$

$$\Rightarrow x = \sin\left\{\frac{\pi}{3} - \left(-\sin^{-1}\frac{1}{2}\right)\right\} (:: \sin^{-1}(-\theta) = -\sin\theta)$$
$$\Rightarrow x = \sin\left(\frac{\pi}{3} + \frac{\pi}{6}\right)$$
$$\Rightarrow x = \sin\left(\frac{3\pi}{6}\right) = \sin\left(\frac{\pi}{2}\right) = 1$$

31. Question

Mark the tick against the correct answer in the following:

$$\sin\left(\frac{1}{2}\cos^{-1}\frac{4}{5}\right)$$
A. $\frac{1}{\sqrt{5}}$
B. $\frac{2}{\sqrt{5}}$
C. $\frac{1}{\sqrt{10}}$
D. $\frac{2}{\sqrt{10}}$

Answer

To Find: The value of $sin(\frac{1}{2}cos^{-1}\frac{4}{5})$

=?

Let $x = \cos^{-1}\frac{4}{5}$ $\Rightarrow \cos x = \frac{4}{5}$ Therefore $\sin(\frac{1}{2}\cos^{-1}\frac{4}{5})$ becomes $\sin(\frac{1}{2}x)$, i.e $\sin(\frac{x}{2})$ We know that $\sin(\frac{x}{2}) = \sqrt{\frac{1-\cos x}{2}}$ $= \sqrt{\frac{1-\frac{4}{5}}{2}}$

$$=\sqrt{\frac{1-\frac{4}{5}}{2}}$$
$$=\sqrt{\frac{1}{\frac{5}{2}}}$$
$$\sin\left(\frac{x}{2}\right)=\frac{1}{\sqrt{10}}$$

Mark the tick against the correct answer in the following:

$$\tan^{-1}\left\{2\cos\left(2\sin^{-1}\frac{1}{2}\right)\right\} = ?$$
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{3\pi}{4}$
D. $\frac{2\pi}{3}$

Answer

To Find: The value of
$$\tan^{-1}\{2\cos(2\sin^{-1}\frac{1}{2})\}$$

Let , x = $\tan^{-1}\{2\cos(2\sin^{-1}\frac{1}{2})\}$
 $\Rightarrow x = \tan^{-1}\{2\cos(2(\frac{\pi}{6}))\}$ ($\because \sin(\frac{\pi}{6}) = \frac{1}{2}$)
 $\Rightarrow x = \tan^{-1}(2\cos\frac{\pi}{3})$
 $\Rightarrow x = \tan^{-1}(2(\frac{1}{2})) = \tan^{-1}1 = \frac{\pi}{4}$ ($\because \cos(\frac{\pi}{3}) = \frac{1}{2}$ and $\tan(\frac{\pi}{4}) = 1$)

33. Question

Mark the tick against the correct answer in the following:

If
$$\cot^{-1}\left(\frac{-1}{5}\right) = x$$
 then sin x = ?
A. $\frac{1}{\sqrt{26}}$
B. $\frac{5}{\sqrt{26}}$

C.
$$\frac{1}{\sqrt{24}}$$

D. none of these

Answer

Given: $\cot^{-1}\frac{-1}{5} = x$

To Find: The value of sin x

Since , $x = \cot^{-1} \frac{-1}{5}$ $\Rightarrow \cot x = \frac{-1}{5} = \frac{adjacent\ side}{opposite\ side}$ By pythagorus theroem,

(Hypotenuse)² = (opposite side)² + (adjacent side)²

Therefore, Hypotenuse = $\sqrt{26}$

$$\Rightarrow \sin x = \frac{opposite \ side}{hypotenuse} = \frac{5}{\sqrt{26}}$$

34. Question

Mark the tick against the correct answer in the following:

$$\sin^{-1}\left(\frac{-1}{2}\right) + 2\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right) = ?$$

A. $\frac{\pi}{2}$

Β. π

C.
$$\frac{3\pi}{2}$$

D. none of these

Answer

To Find: The value of
$$\sin^{-1}\left(\frac{-1}{2}\right) + 2\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right)$$

Let , $x = \sin^{-1}\left(\frac{-1}{2}\right) + 2\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right)$
 $\Rightarrow x = -\sin^{-1}\left(\frac{1}{2}\right) + 2\left[\pi - \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)\right] (\because \sin^{-1}(-\theta) = -\sin^{-1}(\theta) \text{ and } \cos^{-1}(-\theta) = \pi - \cos^{-1}(\theta))$
 $\Rightarrow x = -\left(\frac{\pi}{6}\right) + 2\left[\pi - \frac{\pi}{6}\right]$
 $\Rightarrow x = -\left(\frac{\pi}{6}\right) + 2\left[\frac{\pi}{6}\right]$
 $\Rightarrow x = -\left(\frac{\pi}{6}\right) + 2\left[\frac{5\pi}{6}\right]$
 $\Rightarrow x = -\frac{\pi}{6} + \frac{5\pi}{3}$
 $\Rightarrow x = \frac{3\pi}{2}$

Tag:

35. Question

Mark the tick against the correct answer in the following:

 $\tan^{-1}(-1) + \cos^{-1}\left(\frac{-1}{\sqrt{2}}\right) = ?$

A. $\frac{\pi}{2}$

Β. π

C. $\frac{3\pi}{2}$

D.
$$\frac{2\pi}{3}$$

To Find: The value of
$$\tan^{-1}(-1) + \cos^{-1}(\frac{-1}{\sqrt{2}})$$

Let , x = $\tan^{-1}(-1) + \cos^{-1}(\frac{-1}{\sqrt{2}})$
 $\Rightarrow x = -\tan^{-1}(1) + (\pi - \cos^{-1}(\frac{1}{\sqrt{2}}))$
(: $\tan^{-1}(-\theta) = -\tan^{-1}(\theta)$ and $\cos^{-1}(-\theta) = \pi - \cos^{-1}(\theta)$)
 $\Rightarrow x = -\frac{\pi}{4} + (\pi - \frac{\pi}{4})$
 $\Rightarrow x = -\frac{\pi}{4} + \frac{3\pi}{4}$
 $\Rightarrow x = \frac{\pi}{2}$

36. Question

Mark the tick against the correct answer in the following:

 $\cot(\tan^{-1}x + \cot^{-1}x) = ?$ A. 1 B. $\frac{1}{2}$ C. 0 D. none of these

Answer

To Find: The value of cot $(\tan^{-1} x + \cot^{-1} x)$

```
Let , x = cot (\tan^{-1} x + \cot^{-1} x)

\Rightarrow x = \cot\left(\frac{\pi}{2}\right) (\because \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2})

\Rightarrow x = 0
```

37. Question

Mark the tick against the correct answer in the following:

 $\tan^{-1}1 + \tan^{-1}\frac{1}{3} = ?$ A. $\tan^{-1}\frac{4}{3}$ B. $\tan^{-1}\frac{2}{3}$ C. $\tan^{-1}2$ D. $\tan^{-1}3$

To Find: The value of $\tan^{-1} 1 + \tan^{-1} \frac{1}{2}$

Let , x = $\tan^{-1} 1 + \tan^{-1} \frac{1}{3}$

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

$$\Rightarrow \tan^{-1} 1 + \tan^{-1} \frac{1}{3} = \tan^{-1} \left(\frac{1 + \frac{1}{3}}{1 - \frac{1}{3}}\right) = \tan^{-1} 2$$

38. Question

Mark the tick against the correct answer in the following:

 $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = ?$ A. $\frac{\pi}{3}$ B. $\frac{\pi}{4}$ C. $\frac{\pi}{2}$ D. $\frac{2\pi}{3}$

Answer

To Find: The value of $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3}$ Let , x = $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3}$

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1}(\frac{x+y}{1-xy})$

$$\Rightarrow \tan^{-1} 1 + \tan^{-1} \frac{1}{3} = \tan^{-1} \left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - (\frac{1}{3} \times \frac{1}{2})} \right) = \tan^{-1} 1 = \frac{\pi}{4}$$

39. Question

Mark the tick against the correct answer in the following:

 $2 \tan^{-1} \frac{1}{3} = ?$ A. $\tan^{-1} \frac{3}{2}$ B. $\tan^{-1} \frac{3}{4}$ C. $\tan^{-1} \frac{4}{3}$

D. none of these

To Find: The value of $2 \tan^{-1} \frac{1}{3}$ i.e, $\tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{3}$

Let , $x = \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{3}$

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$

$$\Rightarrow \tan^{-1}1 + \tan^{-1}\frac{1}{3} = \tan^{-1}\left(\frac{\frac{1}{3} + \frac{1}{3}}{1 - \left(\frac{1}{3} + \frac{1}{3}\right)}\right) = \tan^{-1}\frac{3}{4}$$

=?

40. Question

Mark the tick against the correct answer in the following:

$$\cos\left(2\tan^{-1}\frac{1}{2}\right)$$

A. $\frac{3}{5}$
B. $\frac{4}{5}$
C. $\frac{7}{8}$

D. none of these

Answer

To Find: The value of $\cos (2 \tan^{-1} \frac{1}{2})$ Let , x = $\cos (2 \tan^{-1} \frac{1}{2})$ $\Rightarrow x = \cos (\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{2})$ Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} (\frac{x+y}{1-xy})$ $\Rightarrow \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{2} = \tan^{-1} (\frac{\frac{1}{2} + \frac{1}{2}}{1 - (\frac{1}{2} \times \frac{1}{2})}) = \tan^{-1} \frac{4}{3}$ $\Rightarrow x = \cos (\tan^{-1} \frac{4}{3})$ Now , let y = $\tan^{-1} \frac{4}{3}$ $\Rightarrow \tan y = \frac{4}{3} = \frac{opposite side}{adjacent side}$ By pythagorus theroem , (Hypotenuse)² = (opposite side)² + (adjacent side)²

$$\Rightarrow \cos\left(\tan^{-1}\frac{4}{3}\right) = \cos y = \frac{3}{5}$$

41. Question

Mark the tick against the correct answer in the following:

$$\sin\left[2\tan^{-1}\frac{5}{8}\right]$$
A. $\frac{25}{64}$
B. $\frac{80}{89}$
C. $\frac{75}{128}$

D. none of these

Answer

To Find: The value of sin $(2 \tan^{-1} \frac{5}{9})$

Let , $x = sin(2 \tan^{-1} \frac{5}{8})$

We know that $2 \tan^{-1} x = \sin^{-1}(\frac{2x}{1+x^2})$

$$\Rightarrow x = \sin(\sin^{-1}(\frac{2\binom{5}{g}}{1+\binom{5}{g}^2}) = \sin(\sin^{-1}(\frac{80}{89})) = \frac{80}{89}$$

42. Question

Mark the tick against the correct answer in the following:

 $\sin\left[2\sin^{-1}\frac{4}{5}\right]$ A. $\frac{12}{25}$ B. $\frac{16}{25}$ C. $\frac{24}{25}$ D. None of these

Answer

To Find: The value of sin $(2 \sin^{-1} \frac{4}{5})$

Let , $x = \sin^{-1}\frac{4}{5}$ $\Rightarrow \sin x = \frac{4}{5}$

We know that ,cos x = $\sqrt{1 - sin^2 x}$

$$=\sqrt{1-(\frac{4}{5})^2}$$

 $=\frac{3}{5}$

Now since, $x = \sin^{-1}\frac{4}{5}$, hence sin $(2\sin^{-1}\frac{4}{5})$ becomes sin(2x)Here, sin $(2x) = 2 \sin x \cos x$ $= 2x \frac{4}{5} x \frac{3}{5}$

$$=\frac{24}{25}$$

43. Question

Mark the tick against the correct answer in the following:

If
$$\tan^{-1} x = \frac{\pi}{4} - \tan^{-1} \frac{1}{3}$$
 then $x = ?$
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{1}{6}$

D. None of these

Answer

To Find: The value of $\tan^{-1} x = \frac{\pi}{4} \cdot \tan^{-1} \frac{1}{3}$ Now, $\tan^{-1} x = \tan^{-1} 1 \cdot \tan^{-1} \frac{1}{3}$ (: $\tan \frac{\pi}{4} = 1$) Since we know that $\tan^{-1} x \cdot \tan^{-1} y = \tan^{-1} (\frac{x - y}{1 + xy})$ $\Rightarrow \tan^{-1} 1 + \tan^{-1} \frac{1}{3} = \tan^{-1} (\frac{1 - \frac{1}{3}}{1 + \frac{1}{3}}) = \tan^{-1} \frac{1}{2}$ $\Rightarrow \tan^{-1} x = \tan^{-1} \frac{1}{2}$

44. Question

Mark the tick against the correct answer in the following:

If
$$\tan^{-1}(1+x) + \tan^{-1}(1-x) = \frac{\pi}{2}$$
 then $x = ?$
A. 1
B. -1
C. 0
D. $\frac{1}{2}$
Answer

To Find: The value of $\tan^{-1}(1+x) + \tan^{-1}(1-x) = \frac{\pi}{2}$

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$ $\Rightarrow \tan^{-1}(1+x) + \tan^{-1}(1-x) = \tan^{-1} \left(\frac{(1+x)+(1-x)}{1-(1+x)(1-x)}\right)$ $= \tan^{-1} \left(\frac{2}{1-(1-x^2)}\right)$ $= \tan^{-1} \left(\frac{2}{x^2}\right)$ Here since $\tan^{-1}(1+x) + \tan^{-1}(1-x) = \frac{\pi}{2}$ $\Rightarrow \tan^{-1} \left(\frac{2}{x^2}\right) = \frac{\pi}{2}$ $\Rightarrow \tan^{-1} \left(\frac{2}{x^2}\right) = \tan^{-1}(\infty) \ (\because \tan \frac{\pi}{2} = \infty)$ $\Rightarrow \frac{2}{x^2} = \infty$ $\Rightarrow x^2 = \frac{2}{\infty}$ $\Rightarrow x = 0$

45. Question

Mark the tick against the correct answer in the following:

If
$$\sin^{-1}x + \sin^{-1}y = \frac{2\pi}{3}$$
 then $(\cos^{-1}x + \cos^{-1}y) = ?$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. π
D. $\frac{2\pi}{3}$

Answer

Given: $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$ To Find: The value of $\cos^{-1} x + \cos^{-1} y$ Since we know that $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$ $\Rightarrow \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x$ Similarly $\cos^{-1} y = \frac{\pi}{2} - \sin^{-1} y$ Now consider $\cos^{-1} x + \cos^{-1} y = \frac{\pi}{2} - \sin^{-1} x + \frac{\pi}{2} - \sin^{-1} y$ $= \frac{2\pi}{2} - [\sin^{-1} x + \sin^{-1} y]$ $= \pi - \frac{2\pi}{3}$

Mark the tick against the correct answer in the following:

 $(\tan^{-1} 2 + \tan^{-1} 3) = ?$

A. $\frac{-\pi}{4}$

B. $\frac{\pi}{4}$

C.
$$\frac{3\pi}{4}$$

D. π

Answer

To Find: The value of $\tan^{-1} 2 + \tan^{-1} 3$

Since we know that
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1}(\frac{x+y}{1-xy})$$

$$\Rightarrow \tan^{-1} 2 + \tan^{-1} 3 = \tan^{-1} \left(\frac{2+3}{1 - (2 \times 3)} \right)$$
$$= \tan^{-1} \left(\frac{5}{-5} \right)$$
$$= \tan^{-1} (-1)$$

Since the principle value of tan lies in the range $[0,\pi]$

 $\Rightarrow \tan^{-1}(-1) = \frac{3\pi}{4}$

47. Question

Mark the tick against the correct answer in the following:

```
If \tan^{-1} x + \tan^{-1} 3 = \tan^{-1} 8 then x = ?
```

A. $\frac{1}{3}$ B. $\frac{1}{5}$ C. 3 D. 5

Answer

Given: $\tan^{-1} x + \tan^{-1} 3 = \tan^{-1} 8$

To Find: The value of x

Here $\tan^{-1} x + \tan^{-1} 3 = \tan^{-1} 8$ can be written as

 $\tan^{-1} x = \tan^{-1} 8 - \tan^{-1} 3$

Since we know that $\tan^{-1} x \cdot \tan^{-1} y = \tan^{-1} \left(\frac{x-y}{1+xy}\right)$

$$\tan^{-1} x = \tan^{-1} 8 - \tan^{-1} 3 = \tan^{-1} \left(\frac{8-3}{1+(8\times3)}\right)$$
$$= \tan^{-1} \left(\frac{5}{25}\right)$$
$$= \tan^{-1} \left(\frac{1}{5}\right)$$
$$\Rightarrow x = \frac{1}{5}$$

Mark the tick against the correct answer in the following:

If
$$\tan^{-1}3x + \tan^{-1}2x = \frac{\pi}{4}$$
 then $x = ?$
A. $\frac{1}{2}$ or -2
B. $\frac{1}{3}$ or -3
C. $\frac{1}{4}$ or -2
D. $\frac{1}{6}$ or -1

Answer

Given: $\tan^{-1} 3x + \tan^{-1} 2x = \frac{\pi}{4}$ To Find: The value of x Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$ $\Rightarrow \tan^{-1} 3x + \tan^{-1} 2x = \tan^{-1} \left(\frac{3x+2x}{1-(3x\times2x)} \right)$ $= \tan^{-1} \left(\frac{5x}{1-6x^2} \right)$ Now since $\tan^{-1} 3x + \tan^{-1} 2x = \frac{\pi}{4}$ $\tan^{-1} 3x + \tan^{-1} 2x = \tan^{-1} 1 (\because \tan \frac{\pi}{4} = 1)$ $\Rightarrow \tan^{-1} \left(\frac{5x}{1-6x^2} \right) = \tan^{-1} 1$ $\Rightarrow \frac{5x}{1-6x^2} = 1$ $\Rightarrow 6x^2 + 5x - 1 = 0$ $\Rightarrow x = \frac{1}{6}$ or x = -1

49. Question

Mark the tick against the correct answer in the following:

$$\tan\left\{\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{2}{3}\right\} = ?$$

A.
$$\frac{13}{6}$$

B. $\frac{17}{6}$
C. $\frac{19}{6}$
D. $\frac{23}{6}$

To Find: The value of tan $\{\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{2}{3}\}$

Let x = $\cos^{-1}\frac{4}{5}$ $\Rightarrow \cos x = \frac{4}{5} = \frac{adjacent\ side}{hypotenuse}$

By pythagorus theroem ,

(Hypotenuse)² = (opposite side)² + (adjacent side)²

Therefore , opposite side = 3

$$\Rightarrow \tan x = \frac{opposite \, side}{adjacent \, side} = \frac{3}{4}$$

$$\Rightarrow x = \tan^{-1} \frac{3}{4}$$

Now $\tan \{\cos^{-1} \frac{4}{5} + \tan^{-1} \frac{2}{3}\} = \tan \{\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{2}{3}\}$
Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1} (\frac{x+y}{1-xy})$

$$\tan \{\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{2}{3}\} = \tan (\tan^{-1} (\frac{\frac{3}{4} + \frac{2}{3}}{1 - (\frac{3}{4} + \frac{2}{3})}))$$

$$= \tan (\tan^{-1} (\frac{17}{6}))$$

$$= \frac{17}{6}$$

50. Question

Mark the tick against the correct answer in the following:

$$\cos^{-1}9 + \csc^{-1}\frac{\sqrt{41}}{4} = ?$$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$

D.
$$\frac{3\pi}{4}$$

To Find: The value of $\cot^{-1}9 + \csc^{-1}\frac{\sqrt{41}}{4}$

Now $\cot^{-1}9 + \csc^{-1}\frac{\sqrt{41}}{4}$ can be written in terms of tan inverse as

 $\cot^{-1}9 + \csc^{-1}\frac{\sqrt{41}}{4} = \tan^{-1}\frac{1}{9} + \tan^{-1}\frac{4}{5}$

Since we know that $\tan^{-1} x + \tan^{-1} y = \tan^{-1}(\frac{x+y}{1-xy})$

$$\Rightarrow \tan^{-1}\frac{1}{9} + \tan^{-1}\frac{4}{5} = \tan^{-1}(\frac{\frac{1}{9} + \frac{4}{5}}{1 - (\frac{1}{9} \times \frac{4}{5})})$$
$$= \tan^{-1}(\frac{41}{41})$$
$$= \tan^{-1}(1) = \frac{\pi}{4}$$

51. Question

Mark the tick against the correct answer in the following:

Range of sin⁻¹ x is

A.
$$\left[0, \frac{\pi}{2}\right]$$

Β. [0, π]

$$\mathsf{C}.\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$$

D. None of these

Answer

To Find: The range of $\sin^{-1} x$

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = \sin^{-1}(x)$ can be obtained from the graph of

Y = sin x by interchanging x and y axes.i.e, if (a,b) is a point on Y = sin x then (b,a) is

The point on the function $y = \sin^{-1}(x)$

Below is the Graph of range of $\sin^{-1}(x)$

From the graph, it is clear that the range of $\sin^{-1}(x)$ is restricted to the interval

Mark the tick against the correct answer in the following:

Range of cos⁻¹ x is

Α. [0, π]

B.
$$\left[0, \frac{\pi}{2}\right]$$

C. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

D. None of these

Answer

To Find: The range of $\cos^{-1}x$

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = \cos^{-1}(x)$ can be obtained from the graph of

Y = cos x by interchanging x and y axes.i.e, if (a,b) is a point on Y = cos x then (b,a) is the point on the function $y = \cos^{-1}(x)$

Below is the Graph of the range of $\cos^{-1}(x)$

From the graph, it is clear that the range of $\cos^{-1}(x)$ is restricted to the interval

[**0**, π]

53. Question

Mark the tick against the correct answer in the following:

Range of tan⁻¹ x is

A.
$$\left(0, \frac{\pi}{2}\right)$$

B. $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
C. $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

D. None of these

Answer

To Find: The range of tan⁻¹ x

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = \tan^{-1}(x)$ can be obtained from the graph of

Y = tan x by interchanging x and y axes.i.e, if (a,b) is a point on Y = tan x then (b,a) is the point on the function $y = \tan^{-1}(x)$

Below is the Graph of the range of $tan^{-1}(x)$

From the graph, it is clear that the range of $\tan^{-1}(x)$ is restricted to any of the intervals like $\left[-\frac{3\pi}{2}, -\frac{\pi}{2}\right]$, $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ and so on. Hence the range is given by

$$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$
.

54. Question

Mark the tick against the correct answer in the following:

Range of sec⁻¹ x is

A.
$$\left[0, \frac{\pi}{2}\right]$$

Β. [0, π]

$$\mathsf{C}.\left[0,\pi\right] - \left\{\frac{\pi}{2}\right\}$$

D. None of these

Answer

To Find: The range of $sec^{-1}(x)$

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = \sec^{-1}(x)$ can be obtained from the graph of

Y = sec x by interchanging x and y axes.i.e, if (a,b) is a point on Y = sec x then (b,a) is the point on the function $y = \sec^{-1}(x)$

Below is the Graph of the range of $\sec^{-1}(x)$

From the graph, it is clear that the range of $\sec^{-1}(x)$ is restricted to interval

$$[0,\pi] - \{\frac{\pi}{2}\}$$

55. Question

Mark the tick against the correct answer in the following:

Range of coses⁻¹ x is

D. None of these

Answer

To Find: The range of $cosec^{-1}(x)$

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = cosec^{-1}(x)$ can be obtained from the graph of

Y = cosec x by interchanging x and y axes.i.e, if (a,b) is a point on Y = cosec x then (b,a) is the point on the function $y = cosec^{-1}(x)$

Below is the Graph of the range of $cosec^{-1}(x)$

From the graph it is clear that the range of $cosec^{-1}(x)$ is restricted to interval

$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right] - \{0\}$$

Mark the tick against the correct answer in the following:

Domain of cos-1 x is

A. [0, 1]

B.[-1,1]

C. [-1, 0]

D. None of these

Answer

To Find: The Domain of $\cos^{-1}(x)$

Here, the inverse function of cos is given by $y = f^{-1}(x)$

The graph of the function $y = \cos^{-1}(x)$ can be obtained from the graph of

Y = cos x by interchanging x and y axes.i.e, if (a,b) is a point on Y = cos x then (b,a) is the point on the function $y = \cos^{-1}(x)$

Below is the Graph of the domain of $\cos^{-1}(x)$

From the graph, it is clear that the domain of $\cos^{-1}(x)$ is [-1,1]

57. Question

Mark the tick against the correct answer in the following:

Domain of sec⁻¹ x is

A. [-1, 1]

B. R - {0}

C. R - [-1, 1]

D. R - {-1, 1}

Answer

To Find: The Domain of $\sec^{-1}(x)$

Here, the inverse function is given by $y = f^{-1}(x)$

The graph of the function $y = \sec^{-1}(x)$ can be obtained from the graph of

Y = sec x by interchanging x and y axes.i.e, if (a,b) is a point on Y = sec x then (b,a) is the point on the function $y = \sec^{-1}(x)$

Below is the Graph of the domain of $\sec^{-1}(x)$

From the graph, it is clear that the domain of $\sec^{-1}(x)$ is a set of all real numbers excluding -1 and 1 i.e, R - [-1,1]