8. System of Linear Equations

Exercise 8A

1. Question

Show that each one of the following systems of equations is inconsistent.
$x+2 y=9 ;$
$2 x+4 y=7$.

Answer

To prove: Set of given lines are inconsistent.
Given set of lines are :-
$x+2 y=9$
$2 x+4 y=7$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}9 \\ 7\end{array}\right]$
$R_{2}-2 R_{1}$
$\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}9 \\ -11\end{array}\right]$
Again converting into equation form, we get
$x+2 y=9$
$0 x+0 y=-11$
$\therefore 0=-11$
which is not true
$\therefore x+2 y=9$
$2 x+4 y=7$ are inconsistent.

2. Question

Show that each one of the following systems of equations is inconsistent.
$2 x+3 y=5 ;$
$6 x+9 y=10$.

Answer

To prove: Set of given lines are inconsistent.
Given set of lines are :-
$2 x+3 y=5$
$6 x+9 y=10$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ll}2 & 3 \\ 6 & 9\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}5 \\ 10\end{array}\right]$
$R_{2}-3 R_{1}$
$\left[\begin{array}{ll}2 & 3 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}5 \\ -5\end{array}\right]$
Again converting into equation form, we get
$2 x+3 y=5$
$0 x+0 y=-5$
$\therefore 0=-5$
which is not true
$\therefore 2 x+3 y=5$
$6 x+9 y=10$ are inconsistent.

3. Question

Show that each one of the following systems of equations is inconsistent.
$4 x-2 y=3 ;$
$6 x-3 y=5$.

Answer

To prove: Set of given lines are inconsistent.
Given set of lines are :-
$4 x-2 y=3$
$6 x-3 y=5$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ll}4 & -2 \\ 6 & -3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 \\ 5\end{array}\right]$
$4 R_{2}-6 R_{1}$
$\left[\begin{array}{cc}4 & -2 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 \\ 2\end{array}\right]$
Again converting into equation form, we get
$4 x-2 y=3$
$0 x+0 y=2$
$\therefore 0=2$
which is not true
$\therefore 4 x-2 y=3$
$6 x-3 y=5$ are inconsistent.
4. Question

Show that each one of the following systems of equations is inconsistent.
$6 x+4 y=5 ;$
$9 x+6 y=8$.

Answer

To prove: Set of given lines are inconsistent.

Given set of lines are :-
$6 x+4 y=5$
$9 x+6 y=8$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ll}6 & 4 \\ 9 & 6\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}5 \\ 8\end{array}\right]$
$2 R_{2}-3 R_{1}$
$\left[\begin{array}{ll}6 & 4 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}5 \\ 3\end{array}\right]$
Again converting into equation form, we get
$6 x+4 y=5$
$0 x+0 y=3$
$\therefore 0=3$
which is not true
$\therefore 6 x+4 y=5$
$9 x+6 y=8$ are inconsistent.

5. Question

Show that each one of the following systems of equations is inconsistent.
$x+y-2 z=5 ;$
$x-2 y+z=-2 ;$
$-2 x+y+z=4$.

Answer

To prove: Set of given lines are inconsistent.
Given set of lines are :-
$x+y-2 z=5 ;$
$x-2 y+z=-2 ;$
$-2 x+y+z=4$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}5 \\ -2 \\ 4\end{array}\right]$
$R_{2}-R_{1}$
$R_{3}+2 R_{1}$
$\left[\begin{array}{ccc}1 & 1 & -2 \\ 0 & -3 & 3 \\ 0 & 3 & -3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}5 \\ -7 \\ 14\end{array}\right]$
$R_{3}+R_{2}$
$\left[\begin{array}{ccc}1 & 1 & -2 \\ 0 & -3 & 3 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}5 \\ -7 \\ 7\end{array}\right]$
Converting back into equation form we get,
$x+y-2 z=5 ;$
$0 x-3 y+3 z=-7 ;$
$0 x+0 y+0 z=7$
$\therefore 0=7$
Which is not true.
$\therefore x+y-2 z=5$;
$x-2 y+z=-2 ;$
$-2 x+y+z=4$
are inconsistent.

6. Question

Show that each one of the following systems of equations is inconsistent.
$2 x-y+3 z=1 ;$
$3 x-2 y+5 z=-4 ;$
$5 x-4 y+9 z=14$.

Answer

To prove: Set of given lines are inconsistent.
Given set of lines are :-
$2 x-y+3 z=1 ;$
$3 x-2 y+5 z=-4 ;$
$5 x-4 y+9 z=14$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{lll}2 & -1 & 3 \\ 3 & -2 & 5 \\ 5 & -4 & 9\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ -4 \\ 14\end{array}\right]$
$2 R_{2}-3 R_{1}$
$2 R_{3}-5 R_{1}$
$\left[\begin{array}{lll}2 & -1 & 3 \\ 0 & -1 & 1 \\ 0 & -3 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ -11 \\ 23\end{array}\right]$
$R_{3}-3 R_{2}$
$\left[\begin{array}{ccc}2 & -1 & 3 \\ 0 & -1 & 1 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ -11 \\ 56\end{array}\right]$
Converting back into equation form we get,
$2 x-y+3 z=1 ;$
$0 x-1 y+1 z=-11 ;$
$0 x+0 y+0 z=56$
$\therefore 0=56$
Which is not true.
$\therefore 2 \mathrm{x}-\mathrm{y}+3 \mathrm{z}=1$;
$3 x-2 y+5 z=-4 ;$
$5 x-4 y+9 z=14$
are inconsistent.

7. Question

Show that each one of the following systems of equations is inconsistent.
$x+2 y+4 z=12 ;$
$y+2 z=-1 ;$
$3 x+2 y+4 z=4$.

Answer

To prove: Set of given lines are inconsistent.
Given set of lines are :-
$x+2 y+4 z=12 ;$
$y+2 z=-1 ;$
$3 x+2 y+4 z=4$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 1 & 2 \\ 3 & 2 & 4\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}12 \\ -1 \\ 4\end{array}\right]$
$R_{3}-3 R_{1}$
$\left[\begin{array}{ccc}1 & 2 & 4 \\ 0 & 1 & 2 \\ 0 & -4 & -8\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}12 \\ -1 \\ -32\end{array}\right]$
$R_{3}+4 R_{2}$
$\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}12 \\ -1 \\ -36\end{array}\right]$
Converting back into equation form we get,
$x+2 y+4 z=12 ;$
$y+2 z=-1 ;$
$0 x+0 y+0 z=-36$
$\therefore 0=-36$
Which is not true.
$\therefore 2 \mathrm{x}-\mathrm{y}+3 \mathrm{z}=1$;
$3 x-2 y+5 z=-4 ;$
$5 x-4 y+9 z=14$
are inconsistent.

8. Question

Show that each one of the following systems of equations is inconsistent.
$3 x-y-2 z=2 ;$
$2 y-z=-1 ;$
$3 x-5 y=3$

Answer

To prove: Set of given lines are inconsistent.
Given set of lines are :-
$3 x-y-2 z=2 ;$
$2 y-z=-1 ;$
$3 x-5 y=3$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$
$R_{3}-R_{1}$
$\left[\begin{array}{ccc}3 & -1 & -2 \\ 0 & 2 & -1 \\ 0 & -4 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$
$R_{3}+2 R_{2}$
$\left[\begin{array}{ccc}3 & -1 & -2 \\ 0 & 2 & -1 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}2 \\ -1 \\ -1\end{array}\right]$
Converting back into equation form we get,
$3 x-y-2 z=2 ;$
$2 y-z=-1 ;$
$0 x+0 y+0 z=-1$
$\therefore 0=-1$
Which is not true.
$\therefore 3 \mathrm{x}-\mathrm{y}-2 \mathrm{z}=2$;
$2 y-z=-1 ;$
$3 x-5 y=3$
are inconsistent.

9. Question

Solve each of the following systems of equations using matrix method.
$5 x+2 y=4 ;$
$7 x+3 y=5$.

To find: $-\mathrm{x}, \mathrm{y}$
Given set of lines are :-
$5 x+2 y=4 ;$
$7 x+3 y=5$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ll}5 & 2 \\ 7 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}4 \\ 5\end{array}\right]$
$5 R_{2}-7 R_{1}$
$\left[\begin{array}{ll}5 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}4 \\ -3\end{array}\right]$
Again converting into equation form, we get
$5 x+2 y=4 ;$
$y=-3$
$5 x+2 x-3=4$
$5 x=10$
$X=2$
$\therefore \mathrm{x}=2, \mathrm{y}=-3$

10. Question

Solve each of the following systems of equations using matrix method.
$3 x+4 y-5=0 ;$
$x-y+3=0$.

Answer

To find: - x, y
Given set of lines are :-
$3 x+4 y-5=0 ;$
$x-y+3=0$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{cc}3 & 4 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}5 \\ -3\end{array}\right]$
$3 R_{2}-R_{1}$
$\left[\begin{array}{cc}3 & 4 \\ 0 & -7\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}5 \\ -14\end{array}\right]$
Again converting into equation form, we get
$3 x+4 y=5$
$-7 y=-14$
$Y=2$
$3 x+4 y=5$
$3 x+4 \times 2=5$
$3 x=-3$
$X=-1$
$\therefore \mathrm{x}=-1, \mathrm{y}=2$

11. Question

Solve each of the following systems of equations using matrix method.
$x+2 y=1 ;$
$3 x+y=4$

Answer

To find: - x, y
Given set of lines are :-
$x+2 y=1$
$3 x+y=4$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 4\end{array}\right]$
$R_{2}-3 R_{1}$
$\left[\begin{array}{cc}1 & 2 \\ 0 & -5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Again converting into equation form, we get
$x+2 y=1$
$-5 y=1$
$Y=-\frac{1}{5}$
$x+2 x-\frac{1}{5}=1$
$x+-\frac{2}{5}=1$
$x=1+\frac{2}{5}$
$X=\frac{7}{5}$
$\therefore \mathrm{x}=\frac{7}{5}, \mathrm{y}=-\frac{1}{5}$

12. Question

Solve each of the following systems of equations using matrix method.
$5 x+7 y+2=0 ;$
$4 x+6 y+3=0$.

Answer

To find: $-x, y$
Given set of lines are :-
$5 x+7 y+2=0 ;$
$4 x+6 y+3=0$.
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ll}5 & 7 \\ 4 & 6\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}-2 \\ -3\end{array}\right]$
$5 R_{2}-4 R_{1}$
$\left[\begin{array}{ll}5 & 7 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}-2 \\ -7\end{array}\right]$
Again converting into equation form, we get
$5 x+7 y=-2$
$2 y=-7$
$Y=-\frac{7}{2}$
$5 x+7 x-\frac{7}{2}=-2$
$5 x=-2+\frac{49}{2}$
$5 x=\frac{45}{2}$
$X=\frac{9}{2}$
$\therefore x=\frac{9}{2}, y=-\frac{7}{2}$
13. Question

Solve each of the following systems of equations using matrix method.
$2 x-3 y+1=0 ;$
$x+4 y+3=0$.

Answer

To find: - x, y
Given set of lines are :-
$2 x-3 y+1=0 ;$
$x+4 y+3=0$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{cc}2 & -3 \\ 1 & 4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}-1 \\ -3\end{array}\right]$
$2 \mathrm{R}_{2}-\mathrm{R}_{1}$
$\left[\begin{array}{cc}2 & -3 \\ 0 & 11\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-1 \\ -5\end{array}\right]$
Again converting into equation form we get
$2 x-3 y=-1$
$11 y=-5$
$Y=-\frac{5}{11}$
$2 x-3 x-\frac{5}{11}=-1$
$2 x=-1-\frac{15}{11}$
$X=-\frac{13}{11}$
$\therefore x=-\frac{13}{11}, y=-\frac{5}{11}$

14. Question

Solve each of the following systems of equations using matrix method.
$4 x-3 y=3 ;$
$3 x-5 y=7$

Answer

To find: $-x, y$
Given set of lines are :-
$4 x-3 y=3 ;$
$3 x-5 y=7$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ll}4 & -3 \\ 3 & -5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 \\ 7\end{array}\right]$
$4 R_{2}-3 R_{1}$
$\left[\begin{array}{cc}4 & -3 \\ 0 & -11\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}3 \\ 19\end{array}\right]$
Again converting into equation form, we get
$4 x-3 y=3$
$-11 y=19$
$Y=-\frac{19}{11}$
$4 x-3 x-\frac{19}{11}=3$
$4 x=3-\frac{57}{11}$
$4 x=-\frac{24}{11}$
$X=-\frac{6}{11}$
$\therefore x=-\frac{6}{11}, y=-\frac{19}{11}$

15. Question

Solve each of the following systems of equations using matrix method.
$2 x+8 y+5 z=5 ;$
$x+y+z=-2 ;$
$x+2 y-z=2$.

Answer

To find: $-x, y, z$
Given set of lines are :-
$2 x+8 y+5 z=5 ;$
$x+y+z=-2 ;$
$x+2 y-z=2$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}2 & 8 & 5 \\ 1 & 1 & 1 \\ 1 & 2 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}5 \\ -2 \\ 2\end{array}\right]$
$2 R_{2}-R_{1}$
$2 R_{3}-R_{1}$
$\left[\begin{array}{ccc}2 & 8 & 5 \\ 0 & -6 & -3 \\ 0 & -4 & -7\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}5 \\ -9 \\ -1\end{array}\right]$
$3 R_{3}-2 R_{2}$
$\left[\begin{array}{ccc}2 & 8 & 5 \\ 0 & -6 & -3 \\ 0 & 0 & -15\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}5 \\ -9 \\ 15\end{array}\right]$
Again converting into equations, we get
$2 x+8 y+5 z=5$
$-6 y-3 z=-9$
$-15 z=15$
$Z=-1$
$-6 y-3 x-1=-9$
$-6 y=-9-3$
$Y=2$
$2 x+8 \times 2+5 x-1=5$
$2 x=5-16+5$
$X=-3$
$\therefore x=-3, y=2, z=-1$

16. Question

Solve each of the following systems of equations using matrix method.
$x-y+z=1 ;$
$2 x+y-z=2 ;$
$x-2 y-z=4$.

Answer

To find: $-x, y, z$
Given set of lines are :-
$x-y+z=1 ;$
$2 x+y-z=2 ;$
$x-2 y-z=4$
Converting following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -1 \\ 1 & -2 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]$
$R_{2}-2 R_{1}$
$R_{3}-R_{1}$
$\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 3 & -3 \\ 0 & -1 & -2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]$
$3 R_{3}+R_{2}$
$\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 3 & -3 \\ 0 & 0 & -9\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 9\end{array}\right]$
Again converting into equations we get
$X-y+z=1$
$3 y-3 z=0$
$-9 z=9$
$Z=-1$
$Y=z$
$Y=-1$
$X+1-1=1$
$X=1$
$\therefore x=1, y=-1, z=-1$

17. Question

Solve each of the following systems of equations using matrix method.
$3 x+4 y+7 z=4 ;$
$2 x-y+3 z=-3 ;$
$x+2 y-3 z=8$.

Answer

To find: - x , y , z
Given set of lines are :-
$3 x+4 y+7 z=4 ;$
$2 x-y+3 z=-3 ;$
$x+2 y-3 z=8$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}3 & 4 & 7 \\ 2 & -1 & 3 \\ 1 & 2 & -3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}4 \\ -3 \\ 8\end{array}\right]$
$3 R_{2}-2 R_{1}$
$3 R_{3}-R_{1}$
$\left[\begin{array}{ccc}3 & 4 & 7 \\ 0 & -11 & -5 \\ 0 & 2 & -16\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}4 \\ -17 \\ 20\end{array}\right]$
$11 R_{3}+2 R_{2}$
$\left[\begin{array}{ccc}3 & 4 & 7 \\ 0 & -11 & -5 \\ 0 & 0 & -186\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}4 \\ -17 \\ 186\end{array}\right]$
Again converting into equations we get
$3 x+4 y+7 z=4$
$-11 y-5 z=-17$
$-186 z=186$
$Z=-1$
$-11 y+5=-17$
$-11 y=-22$
$Y=2$
$3 x+4 \times 2+7 x-1=4$
$3 x=4-8+7$
$X=1$
$\therefore x=1, y=2, z=-1$

18. Question

Solve each of the following systems of equations using matrix method.
$x+2 y+z=7 ;$
$x+3 z=11 ;$
$2 x-3 y=1$.

Answer

To find: - x, y, z
Given set of lines are :-
$x+2 y+z=7 ;$
$x+3 z=11 ;$
$2 x-3 y=1$
Converting following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}1 & 2 & 1 \\ 1 & 0 & 3 \\ 2 & -3 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}7 \\ 11 \\ 1\end{array}\right]$
$R_{2}-R_{1}$
$R_{3}-2 R_{1}$
$\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & -2 & 2 \\ 0 & -7 & -2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}7 \\ 4 \\ -13\end{array}\right]$
$R_{3}+R_{2}$
$\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & -2 & 2 \\ 0 & -9 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}7 \\ 4 \\ -9\end{array}\right]$
Again converting into equations we get
$x+2 y+z=7$
$-2 y+2 z=4$
$-9 y=-9$
$Y=1$
$-2 \times 1+2 z=4$
$2 z=6$
$Z=3$
$x+2 \times 1+3=7$
$X=7-2-3$
$X=2$
$\therefore x=2, y=1, z=3$

19. Question

Solve each of the following systems of equations using matrix method.
$2 x-3 y+5 z=16 ;$
$3 x+2 y-4 z=-4$
$x+y-2 z=-3$.

Answer

To find: - x, y, z
Given set of lines are :-
$2 x-3 y+5 z=16 ;$
$3 x+2 y-4 z=-4$
$x+y-2 z=-3$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}16 \\ -4 \\ -3\end{array}\right]$
$2 R_{2}-3 R_{1}$
$2 R_{3}-R_{1}$
$\left[\begin{array}{ccc}2 & -3 & 5 \\ 0 & 13 & -23 \\ 0 & 5 & -9\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}16 \\ -56 \\ -22\end{array}\right]$
$13 R_{3}-5 R_{2}$
$\left[\begin{array}{ccc}2 & -3 & 5 \\ 0 & 13 & -23 \\ 0 & 0 & -2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}16 \\ -56 \\ -6\end{array}\right]$
Again converting into equations, we get
$2 x-3 y+5 z=16$
$13 y-23 z=-56$
$-2 z=-6$
Z = 3
$13 y-23 \times 3=-56$
$13 y=-56+69$
$Y=1$
$2 x-3 \times 1+5 \times 3=16$
$2 x=16+3-15$
$2 x=4$
$x=2$
$\therefore x=2, y=1, z=3$
20. Question

Solve each of the following systems of equations using matrix method.
$x+y+z=4 ;$
$2 x-y+z=-1 ;$
$2 x+y-3 z=-9$.

Answer

To find: - x, y, z
Given set of lines are :-
$x+y+z=4 ;$
$2 x-y+z=-1 ;$
$2 x+y-3 z=-9$.
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & -1 & 1 \\ 2 & 1 & -3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}4 \\ -1 \\ -9\end{array}\right]$
$\mathrm{R}_{2}-2 \mathrm{R}_{1}$
$R_{3}-2 R_{1}$
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -3 & -1 \\ 0 & -1 & -5\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}4 \\ -9 \\ -17\end{array}\right]$
$3 R_{3}-R_{2}$
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -3 & -1 \\ 0 & 0 & -14\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}4 \\ -9 \\ -42\end{array}\right]$
Again converting into equations, we get
$X+y+z=4$
$-3 y-z=-9$
$-14 z=-42$
$Z=3$
$-3 y-3=-9$
$-3 y=-6$
$Y=2$
$x+2+3=4$
$X=4-5$
$X=-1$
$\therefore x=-1, y=2, z=3$

21. Question

Solve each of the following systems of equations using matrix method.
$2 x-3 y+5 z=11 ;$
$3 x+2 y-4 z=-5 ;$
$x+y-2 z=-3$.

Answer

To find: - x, y , z
Given set of lines are :-
$2 x-3 y+5 z=11 ;$
$3 x+2 y-4 z=-5 ;$
$x+y-2 z=-3$.
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}11 \\ -5 \\ -3\end{array}\right]$
$2 R_{2}-3 R_{1}$
$2 R_{3}-R_{1}$
$\left[\begin{array}{ccc}2 & -3 & 5 \\ 0 & 13 & -23 \\ 0 & 5 & -9\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}11 \\ -43 \\ -17\end{array}\right]$
$13 R_{3}-5 R_{2}$
$\left[\begin{array}{ccc}2 & -3 & 5 \\ 0 & 13 & -23 \\ 0 & 0 & -2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}11 \\ -43 \\ -6\end{array}\right]$
Again converting into equations we get
$2 x-3 y+5 z=11$
$13 y-23 z=-43$
$-2 z=-6$
$Z=3$
$13 y-23 \times 3=-43$
$13 y=-43+69$
$13 y=26$
$Y=2$
$2 x-3 \times 2+5 \times 3=11$
$2 x=11+6-15$
$X=1$
$\therefore x=1, y=2, z=3$

22. Question

Solve each of the following systems of equations using matrix method.
$x+y+z=1 ;$
$x-2 y+3 z=2 ;$
$5 x-3 y+z=3$.

Answer

To find: $-x, y, z$
Given set of lines are :-
$x+y+z=1 ;$
$x-2 y+3 z=2 ;$
$5 x-3 y+z=3$.
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -2 & 3 \\ 5 & -3 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
$R_{2}-R_{1}$
$R_{3}-5 R_{1}$
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -3 & 2 \\ 0 & -8 & -4\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$
$R_{3}+2 R_{2}$
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -3 & 2 \\ 0 & -14 & -0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
Again converting into equations we get
$x+y+z=1$
$-3 y+2 z=1$
$-14 y=0$
$Y=0$
$-3 \times 0+2 z=1$
$Z=\frac{1}{2}$
$x+0+\frac{1}{2}=1$
$X=\frac{1}{2}$
$\therefore x=\frac{1}{2}, y=0, z=\frac{1}{2}$

23. Question

Solve each of the following systems of equations using matrix method.
$x+y+z=6$;
$x+2 z=7 ;$
$3 x+y+z=12$.

Answer

To find: $-\mathrm{x}, \mathrm{y}, \mathrm{z}$
Given set of lines are :-
$x+y+z=6$;
$x+2 z=7 ;$
$3 x+y+z=12$
Converting following equations in matrix form,
$A X=B$
$\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}6 \\ 7 \\ 12\end{array}\right]$
$\mathrm{R}_{2}-\mathrm{R}_{1}$
$R_{3}-3 R_{1}$
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & -2 & -2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}6 \\ 1 \\ -6\end{array}\right]$
$R_{3}+2 R_{2}$
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & -4 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}6 \\ 1 \\ -4\end{array}\right]$
Again converting into equations we get
$X+y+z=6$
$-y+z=1$
$-4 y=-4$
$Y=1$
$-1+z=1$
$Z=2$
$x+1+2=6$
$X=6-3$
$X=3$
$\therefore x=3, y=1, z=2$

24. Question

Solve each of the following systems of equations using matrix method.
$2 x+3 y+3 z=5 ;$
$x-2 y+z=-4 ;$
$3 x-y-2 z=3$.

Answer

To find: - x, y, z
Given set of lines are :-
$2 x+3 y+3 z=5 ;$
$x-2 y+z=-4 ;$
$3 x-y-2 z=3$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}5 \\ -4 \\ 3\end{array}\right]$
$2 R_{2}-R_{1}$
$2 R_{3}-3 R_{1}$
$\left[\begin{array}{ccc}2 & 3 & 3 \\ 0 & -7 & -1 \\ 0 & -11 & -13\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}5 \\ -13 \\ -9\end{array}\right]$
$R_{3}-13 R_{2}$
$\left[\begin{array}{ccc}2 & 3 & 3 \\ 0 & -7 & -1 \\ 0 & 80 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}5 \\ -13 \\ 160\end{array}\right]$
Again converting into equations we get

$$
2 x+3 y+3 z=5
$$

$-7 y-z=-13$
$80 y=160$
$Y=2$
$-7 \times 2-z=-13$
$Z=-1$
$2 x+3 \times 2+3 x-1=5$
$2 x=5-6+3$
$X=1$
$\therefore x=1, y=2, z=-1$

25. Question

Solve each of the following systems of equations using matrix method.
$4 x-5 y-11 z=12 ;$
$X-3 y+z=1 ;$
$2 x+3 y-7 z=2$.

Answer

To find: $-x, y, z$
Given set of lines are :-
$4 x-5 y-11 z=12$
$X-3 y+z=1 ;$
$2 x+3 y-7 z=2$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}4 & -5 & -11 \\ 1 & -3 & 1 \\ 2 & 3 & -7\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}12 \\ 1 \\ 2\end{array}\right]$
$4 R_{2}-R_{1}$
$2 R_{3}-R_{1}$
$\left[\begin{array}{ccc}4 & -5 & -11 \\ 0 & -7 & 15 \\ 0 & 11 & -3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}12 \\ -8 \\ -8\end{array}\right]$
$5 R_{3}+R_{2}$
$\left[\begin{array}{ccc}4 & -5 & -11 \\ 0 & -7 & 15 \\ 0 & 48 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}12 \\ -8 \\ -48\end{array}\right]$
Again converting into equations we get
$4 x-5 y-11 z=12$
$-7 y+15 z=-8$
$48 y=-48$
$Y=-1$
$7+15 z=-8$
$15 z=-15$
$Z=-1$
$4 x+5+11=12$
$4 x=12-5-11$
$4 x=-4$
$X=-1$
$\therefore x=-1, y=-1, z=-1$

26. Question

Solve each of the following systems of equations using matrix method.
$x-y+2 z=7 ;$
$3 x+4 y-5 z=-5:$
$2 x-y+3 z=12$.

Answer

To find: $-\mathrm{x}, \mathrm{y}, \mathrm{z}$
Given set of lines are :-
$x-y+2 z=7$
$3 x+4 y-5 z=-5$
$2 x-y+3 z=12$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}7 \\ -5 \\ 12\end{array}\right]$
$\mathrm{R}_{2}-3 \mathrm{R}_{1}$
$\mathrm{R}_{3}-2 \mathrm{R}_{1}$
$\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 7 & -11 \\ 0 & 1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}7 \\ -26 \\ -2\end{array}\right]$
$7 \mathrm{R}_{3}-\mathrm{R}_{2}$
$\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 7 & -11 \\ 0 & 0 & 4\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}7 \\ -26 \\ 12\end{array}\right]$
Again converting into equations we get
$x-y+2 z=7$
$7 y-11 z=-26$
$4 z=12$
Z = 3
$7 y-11 \times 3=-26$
$7 y=-26+33$
$7 y=7$
$Y=1$
$x-1+2 \times 3=7$
$\mathrm{X}=7+1-6$
$\mathrm{X}=2$
$\therefore x=2, y=1, z=3$

27. Question

Solve each of the following systems of equations using matrix method.
$6 \mathrm{X}-9 \mathrm{y}-20 \mathrm{z}=-4$;
$4 x-15 y+10 z=-1 ;$
$2 x-3 y-5 z=-1$.

Answer

To find: $-\mathrm{x}, \mathrm{y}, \mathrm{z}$
Given set of lines are :-
$6 x-9 y-20 z=-4$
$4 x-15 y+10 z=-1$
$2 x-3 y-5 z=-1$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}6 & -9 & -20 \\ 4 & -15 & 10 \\ 2 & -3 & -5\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}-4 \\ -1 \\ -1\end{array}\right]$
$3 R_{2}-2 R_{1}$
$3 R_{3}-R_{1}$
$\left[\begin{array}{ccc}6 & -9 & -20 \\ 0 & -27 & 70 \\ 0 & 0 & 5\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-4 \\ 5 \\ 1\end{array}\right]$
Again converting into equations, we get
$6 x-9 y-20 z=-4$
$-27 y+70 z=5$
$5 z=1$
$Z=\frac{1}{5}$
$-27 y+70 \times \frac{1}{5}=5$
$-27 y=5-14$
$-27 y=-9$
$Y=\frac{1}{3}$
$6 x-9 \times \frac{1}{3}-20 \times \frac{1}{5}=-4$
$6 x=-4+3+4$
$X=\frac{1}{2}$
$\therefore x=\frac{1}{2}, y=\frac{1}{3}, z=\frac{1}{5}$

28. Question

Solve each of the following systems of equations using matrix method.
$3 x-4 y+2 z=-1 ;$
$2 x+3 y+5 z=7 ;$
$X+z=2$.

Answer

To find: $-x, y, z$

Given set of lines are :-
$3 x-4 y+2 z=-1$
$2 x+3 y+5 z=7 ;$
$x+z=2$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}3 & -4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-1 \\ 7 \\ 2\end{array}\right]$
$3 R_{2}-2 R_{1}$
$3 R_{3}-R_{1}$
$\left[\begin{array}{ccc}3 & -4 & 2 \\ 0 & 17 & 11 \\ 0 & 4 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-1 \\ 23 \\ 7\end{array}\right]$
$11 R_{3}-R_{2}$
$\left[\begin{array}{ccc}3 & -4 & 2 \\ 0 & 17 & 11 \\ 0 & 27 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-1 \\ 23 \\ 54\end{array}\right]$
Again converting into equations, we get
$3 x-4 y+2 z=-1$
$17 y+11 z=23$
$27 y=54$
$Y=2$
$17 \times 2+11 z=23$
$11 z=23-34$
$Z=-1$
$3 x-4 \times 2+2 x-1=-1$
$3 x=-1+8+2$
$3 x=9$
$X=3$
$\therefore x=3, y=2, z=-1$

29. Question

Solve each of the following systems of equations using matrix method.
$x+y-z=1 ;$
$3 x+y-2 z=3 ;$
$x-y-z=-1$.

Answer

To find: $-\mathrm{x}, \mathrm{y}, \mathrm{z}$
Given set of lines are :-
$x+y-z=1$
$3 x+y-2 z=3$
$x-y-z=-1$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}1 & 1 & -1 \\ 3 & 1 & -2 \\ 1 & -1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right]$
$R_{2}-3 R_{1}$
$R_{3}-R_{1}$
$\left[\begin{array}{ccc}1 & 1 & -1 \\ 0 & -2 & 1 \\ 0 & -2 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right]$
Again converting into equations we get
$x+y-z=1$
$-2 y+z=0$
$-2 y=-2$
$Y=1$
$-2+z=0$
$Z=2$
$X+1-2=1$
$X=2$
$\therefore x=2, y=1, z=2$

30. Question

Solve each of the following systems of equations using matrix method.
$2 x+y-z=1 ;$
$x-y+z=2 ;$
$3 x+y-2 z=-1$.

Answer

To find: $-x, y, z$
Given set of lines are :-
$2 x+y-z=1$
$x-y+z=2$
$3 x+y-2 z=-1$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & -1 & 1 \\ 3 & 1 & -2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$
$2 R_{2}-R_{1}$
$2 R_{3}-3 R_{1}$
$\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & -3 & 3 \\ 0 & -1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ 3 \\ -5\end{array}\right]$
$3 R_{3}-R_{2}$
$\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & -3 & 3 \\ 0 & 0 & -6\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ 3 \\ -18\end{array}\right]$
Again converting into equations we get
$2 x+y-z=1$
$-3 y+3 z=3$
$-6 z=-18$
$Z=3$
$-3 y+3 \times 3=3$
$-3 y=3-9$
$-3 y=-6$
$Y=2$
$2 x+2-3=1$
$2 x=1+1$
$X=1$
$\therefore \mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=3$

31. Question

Solve each of the following systems of equations using matrix method.
$X+2 y+z=4 ;$
$-x+y+z=0 ;$
$x-3 y+z=4$.

Answer

To find: - x, y, z
Given set of lines are :-
$x+2 y+z=4$
$-x+y+z=0$
$x-3 y+z=4$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 1 & 1 \\ 1 & -3 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}4 \\ 0 \\ 4\end{array}\right]$
$R_{2}+R_{1}$
$R_{3}-R_{1}$
$\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 3 & 2 \\ 0 & -5 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}4 \\ 4 \\ 0\end{array}\right]$

Again converting into equations we get
$x+2 y+z=4$
$3 y+2 z=4$
$-5 y=0$
$Y=0$
$0+2 z=4$
$Z=2$
$x+0+2=4$
$X=2$
$\therefore \mathrm{x}=2, \mathrm{y}=0, \mathrm{z}=2$

32. Question

Solve each of the following systems of equations using matrix method.
$x-y-2 z=3 ;$
$x+y=1 ;$
$x+z=-6$.

Answer

To find: $-x, y, z$
Given set of lines are :-
$x-y-2 z=3$
$x+y=1$
$x+z=-6$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}1 & -1 & -2 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}3 \\ 1 \\ -6\end{array}\right]$
$R_{2}-R_{1}$
$R_{3}-R_{1}$
$\left[\begin{array}{ccc}1 & -1 & -2 \\ 0 & 2 & 2 \\ 0 & 1 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}3 \\ -2 \\ -9\end{array}\right]$
$2 R_{3}-R_{2}$
$\left[\begin{array}{ccc}1 & -1 & -2 \\ 0 & 2 & 2 \\ 0 & 0 & 4\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}3 \\ -2 \\ -16\end{array}\right]$
Again converting into equations we get
$x+y-2 z=3$
$2 y+2 z=-2$
$4 z=-16$
$Z=-4$
$2 y-8=-2$
$2 y=-2+8$
$2 y=6$
$Y=3$
$\mathrm{X}-3+8=3$
$x=-2$
$\therefore \mathrm{x}=-2, \mathrm{y}=3, \mathrm{z}=-4$

33. Question

Solve each of the following systems of equations using matrix method.
$5 x-y=-7 ;$
$2 x+3 z=1 ;$
$3 y-z=5$.

Answer

To find: $-\mathrm{x}, \mathrm{y}, \mathrm{z}$
Given set of lines are :-
$5 x-y=-7$
$2 x+3 z=1$
$3 y-z=5$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}5 & -1 & 0 \\ 2 & 0 & 3 \\ 0 & 3 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-7 \\ 1 \\ 5\end{array}\right]$
$5 R_{2}-2 R_{1}$
$\left[\begin{array}{ccc}5 & -1 & 0 \\ 0 & 2 & 15 \\ 0 & 3 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-7 \\ 19 \\ 5\end{array}\right]$
$2 R_{3}-3 R_{2}$
$\left[\begin{array}{ccc}5 & -1 & 0 \\ 0 & 2 & 15 \\ 0 & 0 & -47\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-7 \\ 19 \\ -47\end{array}\right]$
Again converting into equations we get
$5 x-y=-7$
$2 y+15 z=19$
$-47 z=-47$
$Z=1$
$2 y+15=19$
$2 y=19-15$
$Y=2$
$5 x-2=-7$
$5 x=-5$
$x=-1$
$\therefore \mathrm{x}=-1, \mathrm{y}=2, \mathrm{z}=1$

34. Question

Solve each of the following systems of equations using matrix method.
$x-2 y+z=0 ;$
$y-z=2 ;$
$2 x-3 z=10$.

Answer

To find: $-\mathrm{x}, \mathrm{y}, \mathrm{z}$
Given set of lines are :-
$x-2 y+z=0$
$y-z=2$
$2 x-3 z=10$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & 1 & -1 \\ 2 & 0 & -3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}0 \\ 2 \\ 10\end{array}\right]$
$\mathrm{R}_{3}-2 \mathrm{R}_{1}$
$\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 4 & -5\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}0 \\ 2 \\ 10\end{array}\right]$
$R_{3}-4 R_{2}$
$\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 2 \\ 2\end{array}\right]$
Again converting into equations we get
$x-2 y+z=0$
$Y-z=2$
$-z=2$
$Z=-2$
$Y+2=2$
$Y=0$
$x+0-2=0$
$\mathrm{X}=2$
$\therefore \mathrm{x}=2, \mathrm{y}=0, \mathrm{z}=-2$

35. Question

Solve each of the following systems of equations using matrix method.
$x-y=3$;
$2 x+3 y+4 z=17 ;$
$y+2 z=7$.

Answer

To find: - $\mathrm{x}, \mathrm{y}, \mathrm{z}$
Given set of lines are :-
$x-y=3$
$2 x+3 y+4 z=17$
$y+2 z=7$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}3 \\ 17 \\ 7\end{array}\right]$
$R_{2}-2 R_{1}$
$\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 5 & 4 \\ 0 & 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}3 \\ 11 \\ 7\end{array}\right]$
$2 R_{3}-R_{2}$
$\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 5 & 4 \\ 0 & -3 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}3 \\ 11 \\ 3\end{array}\right]$
Again converting into equations we get
$x-y=3$
$5 y+4 z=11$
$-3 y=3$
$Y=-1$
$5 x-1+4 z=11$
$4 z=16$
$Z=4$
$\mathrm{X}+1=3$
$X=2$
$\therefore \mathrm{x}=2, \mathrm{y}=-1, \mathrm{z}=4$

36. Question

Solve each of the following systems of equations using matrix method.
$4 x+3 y+2 z=60 ;$
$x+2 y+3 z=45 ;$
$6 x+2 y+3 z=70$.

Answer

To find: - x, y, z
Given set of lines are :-
$4 x+3 y+2 z=60$
$x+2 y+3 z=45$
$6 x+2 y+3 z=70$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{lll}4 & 3 & 2 \\ 1 & 2 & 3 \\ 6 & 2 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}60 \\ 45 \\ 70\end{array}\right]$
$4 R_{2}-R_{1}$
$2 R_{3}-3 R_{1}$
$\left[\begin{array}{ccc}4 & 3 & 2 \\ 0 & 5 & 10 \\ 0 & -5 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}60 \\ 120 \\ -40\end{array}\right]$
Again converting into equations, we get
$4 x+3 y+2 z=60$
$5 y+10 z=120$
$-5 y=-40$
$Y=8$
$5 \times 8+10 z=120$
$10 z=120-40$
$10 z=80$
$Z=8$
$4 x+3 \times 8+2 \times 8=60$
$4 x=60-24-16$
$4 x=20$
$X=5$
$\therefore \mathrm{x}=5, \mathrm{y}=8, \mathrm{z}=8$

37. Question

If $A=\left(\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right)$, find A^{-1}.
Using A^{-1}, solve the following system of equations:
$2 x-3 y+5 z=11 ;$
$3 x+2 y-4 z=-5 ;$
$x+y-2 z=-3$.

Answer

Given,
$A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$
$\mathrm{A}^{-1}=\frac{1}{|A|} \operatorname{adj}(A)$
The determinant of matrix A is
$|A|=\left|\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right|$
$=2(2 \times-2-(-4) \times 1)+3(3 \times-2-(-4) \times 1)+5(3 \times 1-2 \times 1)$
$=2(-4+4)+3(-6+4)+5(3-2)$
$=2(0)+3(-2)+5(1)$
$=-6+5$
$=-1$
$|A| \neq 0$
$\therefore A^{-1}$ is possible.
$A^{\top}=\left[\begin{array}{ccc}2 & 3 & 1 \\ -3 & 2 & 1 \\ 5 & -4 & -2\end{array}\right]$
$\operatorname{Adj}(A)=\left[\begin{array}{ccc}0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13\end{array}\right]$
$\mathrm{A}^{-1}=\frac{1}{|A|} \operatorname{adj}(A)$
$A^{-1}=\frac{1}{-1}\left[\begin{array}{ccc}0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13\end{array}\right]$
$A^{-1}=\left[\begin{array}{ccc}0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13\end{array}\right]$
Given set of lines are :-
$2 x-3 y+5 z=11$
$3 x+2 y-4 z=-5$
$x+y-2 z=-3$
Converting following equations in matrix form,
$A X=B$
Where $\mathrm{A}=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right], \mathrm{X}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], \mathrm{B}=\left[\begin{array}{c}11 \\ -5 \\ -3\end{array}\right]$
Pre - multiplying by A^{-1}
$A^{-1} A X=A{ }^{-1} B$
$I X=A^{-1} B$
$X=A^{-1} B$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13\end{array}\right]\left[\begin{array}{c}11 \\ -5 \\ -3\end{array}\right]$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}0 \times 11-5 \times 1-3 \times-2 \\ -2 \times 11-5 \times 9-3 \times-23 \\ -1 \times 11-5 \times 5-3 \times-13\end{array}\right]$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}0-5+6 \\ -22-45+69 \\ -11-25+39\end{array}\right]$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
$\therefore \mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=3$
38. Question

If $A=\left(\begin{array}{ccc}2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5\end{array}\right)$, find A^{-1}.
Using A^{-1}, solve the following
system of linear equations:
$2 x+y+z=1 ;$
$x-2 y-z=\frac{3}{2} ;$
$3 y-5 z=9$.
HINT: Here $A=\left(\begin{array}{ccc}2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5\end{array}\right)$,
$\mathrm{X}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{l}1 \\ 3 / 2 \\ 9\end{array}\right)$.

Answer

Given,
$A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5\end{array}\right]$
$\mathrm{A}^{-1}=\frac{1}{|A|} \operatorname{adj}(A)$
The determinant of matrix A is
$|A|=\left|\begin{array}{ccc}2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5\end{array}\right|$
$=2(-2 \times-5-(-1) \times 3)-(1 \times-5-(-1) \times 0)+(1 \times 3-(-2) \times 0)$
$=2(10+3)-(-5)+(3)$
$=26+5+3$
$=34$
$|A| \neq 0$
$\therefore A^{-1}$ is possible.
$A^{\top}=\left[\begin{array}{ccc}2 & 1 & 0 \\ 1 & -2 & 3 \\ 1 & -1 & -5\end{array}\right]$
$\operatorname{Adj}(A)=\left[\begin{array}{ccc}13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5\end{array}\right]$
$\mathrm{A}^{-1}=\frac{1}{|A|} \operatorname{adj}(A)$
$A^{-1}=\frac{1}{34}\left[\begin{array}{ccc}13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5\end{array}\right]$
Given set of lines are :-
$2 x+y+z=1$
$x-2 y-z=\frac{3}{2}$
$3 y-5 z=9$
Converting the following equations in matrix form,
$A X=B$
Where $\mathrm{A}=\left[\begin{array}{ccc}2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5\end{array}\right], \mathrm{X}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], \mathrm{B}=\left[\begin{array}{c}1 \\ \frac{3}{2} \\ 9\end{array}\right]$
Pre - multiplying by A^{-1}
$A^{-1} A X=A^{-1} B$
$I X=A-1 B$
$X=A^{-1} B$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{34}\left[\begin{array}{ccc}13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5\end{array}\right]\left[\begin{array}{l}1 \\ \frac{3}{2} \\ 9\end{array}\right]$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{34}\left[\begin{array}{c}1 \times 13+\frac{3}{2} \times 8+9 \times 1 \\ 1 \times 5+\frac{3}{2} \times-10+9 \times 3 \\ 1 \times 3+\frac{3}{2} \times-6+9 \times-5\end{array}\right]$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{34}\left[\begin{array}{c}13+12+9 \\ 5-15+27 \\ 3-9-45\end{array}\right]$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{34}\left[\begin{array}{c}34 \\ 17 \\ -51\end{array}\right]=\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ -\frac{3}{2}\end{array}\right]$
$\therefore \mathrm{x}=1, \mathrm{y}=\frac{1}{2}, \mathrm{z}=-\frac{3}{2}$
39 Using. Question
If $A=\left(\begin{array}{ccc}1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1\end{array}\right)$ and
$B=\left(\begin{array}{ccc}7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5\end{array}\right)$, find $A B$.
Hence, solve the system of equations:
$x-2 y=10$,
$2 x+y+3 z=8$ and
$-2 y+z=7$.
HINT: $A B=(11) /=A\left(\frac{1}{11} B\right)=/$
$A^{-1}=\left(\frac{1}{11}\right) B$.

Answer

Given,
$A=\left[\begin{array}{ccc}1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1\end{array}\right], B=\left[\begin{array}{ccc}7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5\end{array}\right]$
$A B=\left[\begin{array}{ccc}1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1\end{array}\right]\left[\begin{array}{ccc}7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5\end{array}\right]$
$A B=\left[\begin{array}{ccc}7 \times 1-2 \times-2-4 \times 0 & 2 \times 1+1 \times-2+2 \times 0 & -6 \times 1-3 \times-2+5 \times 0 \\ 7 \times 2-2 \times 1-4 \times 3 & 2 \times 2+1 \times 1+2 \times 3 & -6 \times 2-3 \times 1+5 \times 3 \\ 7 \times 0-2 \times-2-4 \times 1 & 2 \times 0+1 \times-2+2 \times 1 & -6 \times 0-3 \times-2+5 \times 1\end{array}\right]$
$A B=\left[\begin{array}{ccc}7+4+0 & 2-2+0 & -6+6+0 \\ 14-2-12 & 4+1+6 & -12-3+15 \\ 0+4-4 & 0-2+2 & 0+6+5\end{array}\right]$
$A B=\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right]$
$A B=11\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$A B=111$
Pre - multiplying by A^{-1}
$A^{-1} A B=11 A^{-1} \mid$
$\mathrm{IB}=11 \mathrm{~A}^{-1}$
$B=11 A^{-1}$
$A^{-1}=\frac{1}{11} B$
Given set of lines are :-
$x-2 y=10$
$x+y+3 z=8$
$-2 y+z=7$
Converting following equations in matrix form,
$A X=C$

Where $\mathrm{A}=\left[\begin{array}{ccc}1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1\end{array}\right], \mathrm{X}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], \mathrm{C}=\left[\begin{array}{c}10 \\ 8 \\ 7\end{array}\right]$
Pre - multiplying by A^{-1}
$A{ }^{-1} A X=A^{-1} C$
$I X=A^{-1} C$
$X=A^{-1} C$
$X=\frac{1}{11} B C$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{11}\left[\begin{array}{ccc}7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5\end{array}\right]\left[\begin{array}{c}10 \\ 8 \\ 7\end{array}\right]$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}10 \times 7+8 \times 2+7 \times-6 \\ 10 \times-2+8 \times 1+7 \times-3 \\ 10 \times-4+8 \times 8+7 \times 5\end{array}\right]$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}70+16-42 \\ -20+8-21 \\ -40+-16+35\end{array}\right]$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}44 \\ -33 \\ 11\end{array}\right]=\left[\begin{array}{c}4 \\ -3 \\ 1\end{array}\right]$
$\therefore \mathrm{x}=4, \mathrm{y}=-3, \mathrm{z}=1$
40. Question
$\frac{2}{x}-\frac{3}{y}+\frac{3}{z}=10, \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=10$,
$\frac{3}{x}-\frac{1}{y}+\frac{2}{z}=13$
Ans. $x=\frac{1}{2}, y=\frac{1}{3}, z=\frac{1}{5}$

Answer

To find: - x, y, z
Given set of lines are :-
$\frac{2}{x}-\frac{3}{y}+\frac{3}{z}=10$
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=10$,
$\frac{3}{x}-\frac{1}{y}+\frac{2}{z}=13$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}2 & -3 & 3 \\ 1 & 1 & 1 \\ 3 & -1 & 2\end{array}\right]\left[\begin{array}{c}\frac{1}{x} \\ \frac{1}{y} \\ \frac{1}{z}\end{array}\right]=\left[\begin{array}{c}10 \\ 10 \\ 13\end{array}\right]$
$2 R_{2}-R_{1}$
$2 R_{3}-3 R_{1}$
$\left[\begin{array}{ccc}2 & -3 & 3 \\ 0 & 5 & -1 \\ 0 & 7 & -5\end{array}\right]\left[\begin{array}{l}\frac{1}{x} \\ \frac{1}{y} \\ \frac{1}{z}\end{array}\right]=\left[\begin{array}{c}10 \\ 10 \\ -4\end{array}\right]$
$R_{3}-5 R_{2}$
$\left[\begin{array}{ccc}2 & -3 & 3 \\ 0 & 5 & -1 \\ 0 & -18 & 0\end{array}\right]\left[\begin{array}{l}\frac{1}{x} \\ \frac{1}{y} \\ \frac{1}{z}\end{array}\right]=\left[\begin{array}{c}10 \\ 10 \\ -54\end{array}\right]$
Again converting into equations we get
$\frac{2}{x}-\frac{3}{y}+\frac{3}{z}=10$
$\frac{5}{y}-\frac{1}{z}=10$
$-\frac{18}{y}=-54$
$y=\frac{1}{3}$
$5 \times 3-\frac{1}{z}=10$
$-\frac{1}{z}=10-15$
$Z=\frac{1}{5}$
$\frac{2}{x}-3 \times 3+3 \times 5=10$
$\frac{2}{x}=10+9-15=4$
$X=\frac{1}{2}$
$\therefore \mathrm{x}=\frac{1}{2}, \mathrm{y}=\frac{1}{3}, \mathrm{z}=\frac{1}{5}$

41 VALUE. Question

$\frac{1}{x}-\frac{1}{y}+\frac{1}{z}=4 ; \frac{2}{x}+\frac{1}{y}-\frac{3}{z}=0 ;$
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2 .(x, y, z \neq 0)$

Answer

To find: $-x, y, z$
Given set of lines are :-
$\frac{1}{x}-\frac{1}{y}+\frac{1}{z}=4$
$\frac{2}{x}+\frac{1}{y}-\frac{3}{z}=0$
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2$
Converting following equations in matrix form,
$A X=B$
$\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}\frac{1}{x} \\ \frac{1}{y} \\ \frac{1}{z}\end{array}\right]=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$
$R_{2}-2 R_{1}$
$R_{3}-R_{1}$
$\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 3 & -5 \\ 0 & 2 & 0\end{array}\right]\left[\begin{array}{l}\frac{1}{x} \\ \frac{1}{y} \\ \frac{1}{z}\end{array}\right]=\left[\begin{array}{c}4 \\ -8 \\ -2\end{array}\right]$
Again converting into equations we get
$\frac{1}{x}-\frac{1}{y}+\frac{1}{z}=4$
$\frac{3}{y}-\frac{5}{z}=-8$
$\frac{2}{y}=-2$
$y=-1$
$3 \times-1-\frac{5}{z}=-8$
$-\frac{5}{z}=-8+3$
$Z=1$
$\frac{1}{x}-1 \times-1+1 \times 1=4$
$\frac{1}{x}=4-1-1$
$X=\frac{1}{2}$
$\therefore \mathrm{x}=\frac{1}{2}, \mathrm{y}=1, \mathrm{z}=1$

42. Question

The sum of three numbers is 2 . If twice the second number is added to the sum of first and third, we get 1 . On adding the sum of second and third numbers to five times the first, we get 6 . Find the three numbers by using matrices.

Answer

Let the three numbers be x, y and z.
According to the question,
$x+y+z=2$
$x+2 y+z=1$
$5 x+y+z=6$
Converting the following equations in matrix form,
$A X=B$
$\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 5 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 6\end{array}\right]$
$R_{2}-R_{1}$
$R_{3}-R_{1}$
$\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 4 & 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}2 \\ -1 \\ 5\end{array}\right]$
Converting back into the equations we get
$x+y+z=2$
$Y=-1$
$4 x=5$
$X=\frac{5}{4}$
$\frac{5}{4}-1+z=2$
$Z=2-\frac{5}{4}+1$
$Z=\frac{7}{4}$
\therefore The numbers are $\frac{5}{4}, \frac{7}{4},-1$.

43. Question

The cost of 4 kg potato, 3 kg wheat and 2 kg of rice is ₹ 60 . The cost of 1 kg potato, 2 kg wheat and 3 kg of rice is ₹ 45 . The cost of 6 kg potato, 2 kg wheat and 3 kg of rice is ₹ 70 . Find the cost of each item per kg by matrix method.

Answer

Let the price of 1 kg potato, wheat and rice be x, y and z respectively.
According to the question,
$4 x+3 y+2 z=60$
$x+2 y+3 z=45$
$6 x+2 y+3 z=70$
Converting into matrix form
$A X=B$
$\left[\begin{array}{lll}4 & 3 & 2 \\ 1 & 2 & 3 \\ 6 & 2 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}60 \\ 45 \\ 70\end{array}\right]$
$4 R_{2}-R_{1}$
$2 R_{3}-3 R_{1}$
$\left[\begin{array}{ccc}4 & 3 & 2 \\ 0 & 5 & 10 \\ 0 & -5 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}60 \\ 120 \\ -40\end{array}\right]$
Converting back into the equations we get
$4 x+3 y+2 z=60$
$5 y+10 z=120$
$-5 y=-40$
$Y=8$
$5 \times 8+10 z=120$
$10 z=120-40$
$Z=8$
$4 x+3 \times 8+2 \times 8=60$
$4 x=60-24-16$
$4 x=20$
$X=5$
\therefore The cost of 1 kg potatoes, wheat and rice is Rs.5, Rs. 8 and Rs. 8 respectively.

44. Question

An amount of ₹ 5000 is put into three investments at $6 \%, 7 \%$ and 8% per annum respectively. The total annual income from these investments is ₹ 358 . If the total annual income from first two investments is ₹70more
than the income from the third, find the amount of each investment by the matrix method.
HINT: Let these investments be ₹x, ₹y and ₹z, respectively.
Then, $x+y+z=5000, \ldots$ (i)
$\frac{6 x}{100}+\frac{7 y}{100}+\frac{8 z}{100}=358 \Rightarrow$
$6 x+7 y+8 z=35800$
And, $\frac{6 x}{100}+\frac{7 y}{100}=\frac{8 z}{100}+70$
$\Rightarrow 6 x+7 y-8 z=7000$.

Answer

Let these investments be ₹x, ₹y and ₹z, respectively.
Then, $x+y+z=5000$
$\frac{6 x}{100}+\frac{7 y}{100}+\frac{8 z}{100}=358$
$6 x+7 y+8 z=35800$

And, $\frac{6 x}{100}+\frac{7 y}{100}=\frac{8 z}{100}+70$
$6 x+7 y-8 z=7000$.
Representing in the matrix form,
$A X=B$
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 6 & 7 & 8 \\ 6 & 7 & -8\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}5000 \\ 35800 \\ 7000\end{array}\right]$
$R_{3}-R_{2}$
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 6 & 7 & 8 \\ 0 & 0 & -16\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}5000 \\ 35800 \\ -28800\end{array}\right]$
$R_{2}-6 R_{1}$
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -16\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}5000 \\ 5800 \\ -28800\end{array}\right]$
Converting back into the equations we get
$X+y+z=5000$
$Y+2 z=5800$
$-16 z=-28800$
$Z=1800$
$Y+2 \times 1800=5800$
$Y=5800-3600$
$Y=2200 x+2200+1800=5000$
$X=5000-4000$
$X=1000$
Amount of $1000,2200,1800$ were invested in the investments of $6 \%, 7 \%, 8 \%$ respectively.

45. Question

Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award $₹ \times$ each, $₹ y$ each and $₹ z$ each for the three respective values to 3,2 and 1 students respectively with total award money of ₹ 1,600 . School B wants to spend $₹ 2,300$ to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹ 900 , using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.

HINT: By the given data, we have
$3 x+2 y+z=16007$
$4 x+y+3 z=2300\}$
$x+y+z=900$

Answer

Let the amount x, y and z be considered for sincerity, truthfulness and helpfulness.
According to the questions,
$3 x+2 y+z=1600$
$4 x+y+3 z=2300$
$x+y+z=900$
Converting into the matrix form
$A X=B$
$\left[\begin{array}{lll}3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1600 \\ 2300 \\ 900\end{array}\right]$
$R_{1}-3 R_{3}$
$R_{2}-4 R_{3}$
$\left[\begin{array}{ccc}0 & -1 & -2 \\ 0 & -3 & -1 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-1100 \\ -1300 \\ 900\end{array}\right]$
$2 R_{2}-R_{1}$
$\left[\begin{array}{ccc}0 & -1 & -2 \\ 0 & -5 & 0 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-1100 \\ -1500 \\ 900\end{array}\right]$
Converting back into the equations we get
$-y-2 z=-1100$
$-5 y=-1500$
$x+y+z=900$
$Y=300$
$-300-2 z=-1100$
$-2 z=-800$
$Z=400$
$X+300+400=900$
$X=900-700$
$X=200$
$₹ 200$ for sincerity, ₹ 300 for truthfulness and ₹ 400 for helpfulness. One more value may be like honesty, kindness, etc.

Objective Questions

1. Question

If A and B are 2-rowed square matrices such that
$(A+B)=\left(\begin{array}{cc}4 & -3 \\ 1 & 6\end{array}\right)$ and $(A-B)=\left(\begin{array}{cc}-2 & -1 \\ 5 & 2\end{array}\right)$ then $A B=$?
A. $\left(\begin{array}{cc}-7 & 5 \\ 1 & -5\end{array}\right)$
B. $\left(\begin{array}{cc}7 & -5 \\ 1 & 5\end{array}\right)$
c. $\left(\begin{array}{ll}7 & -1 \\ 5 & -5\end{array}\right)$
D. $\left(\begin{array}{cc}7 & -1 \\ -5 & 5\end{array}\right)$

Answer

$(A+B)=\left(\begin{array}{cc}4 & -3 \\ 1 & 6\end{array}\right)-----1$
$(A-B)=\left(\begin{array}{cc}-2 & -1 \\ 5 & 2\end{array}\right)-----2$
$1+2 \Rightarrow 2 \mathrm{~A}=\left(\begin{array}{cc}4 & -3 \\ 1 & 6\end{array}\right)+\left(\begin{array}{cc}-2 & -1 \\ 5 & 2\end{array}\right)$
$\Rightarrow 2 A=\left(\begin{array}{cc}2 & -4 \\ 6 & 8\end{array}\right)$
Dividing the matrix by 2
$\Rightarrow A=\left(\begin{array}{cc}1 & -2 \\ 3 & 4\end{array}\right)$
$1-2 \Rightarrow 2 B=\left(\begin{array}{cc}4 & -3 \\ 1 & 6\end{array}\right)-\left(\begin{array}{cc}-2 & -1 \\ 5 & 2\end{array}\right)$
$\Rightarrow 2 B=\left(\begin{array}{cc}6 & -2 \\ -4 & 4\end{array}\right)$
Dividing the matrix by 2
$\Rightarrow B=\left(\begin{array}{cc}3 & -1 \\ -2 & 2\end{array}\right)$
$A \times B=\left(\begin{array}{cc}1 & -2 \\ 3 & 4\end{array}\right) \times\left(\begin{array}{cc}3 & -1 \\ -2 & 2\end{array}\right)$
$=\left(\begin{array}{cc}1 \times 3+(-2) \times(-2) & (1) \times(-1)+(-2) \times(2) \\ 3 \times 3+4 \times(-2) & 3 \times(-1)+4 \times 2\end{array}\right)$
$=\left(\begin{array}{cc}7 & -5 \\ 1 & 5\end{array}\right)$

2. Question

If $\left(\begin{array}{cc}3 & -2 \\ 5 & 6\end{array}\right)+2 A=\left(\begin{array}{cc}5 & 6 \\ -7 & 10\end{array}\right)$ then $A=$?
A. $\left(\begin{array}{cc}1 & 3 \\ -5 & 4\end{array}\right)$
B. $\left(\begin{array}{ll}-1 & 5 \\ -3 & 4\end{array}\right)$
C. $\left(\begin{array}{cc}1 & 4 \\ -6 & 2\end{array}\right)$
D. none of these

Answer

C
$\left(\begin{array}{cc}3 & -2 \\ 5 & 6\end{array}\right)+2 A=\left(\begin{array}{cc}5 & 6 \\ -7 & 10\end{array}\right)$
$\Rightarrow 2 \mathrm{~A}=\left(\begin{array}{cc}5 & 6 \\ -7 & 10\end{array}\right)-\left(\begin{array}{cc}3 & -2 \\ 5 & 6\end{array}\right)$
$\Rightarrow 2 \mathrm{~A}=\left(\begin{array}{cc}2 & 8 \\ -12 & 4\end{array}\right)$
Dividing the matrix by 2
$\Rightarrow A=\left(\begin{array}{cc}1 & 4 \\ -6 & 2\end{array}\right)$

3. Question

If $A=\left(\begin{array}{cc}2 & 0 \\ -3 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}4 & -3 \\ -6 & 2\end{array}\right)$ are such that $4 A+3 X=5 B$ then $X=$?
A. $\left(\begin{array}{cc}4 & -5 \\ -6 & 2\end{array}\right)$
B. $\left(\begin{array}{cc}4 & 5 \\ -6 & -2\end{array}\right)$
C. $\left(\begin{array}{cc}-4 & 5 \\ 6 & -2\end{array}\right)$
D. none of these

Answer

$4 A+3 X=5 B$
$\Rightarrow 4\left(\begin{array}{cc}2 & 0 \\ -3 & 1\end{array}\right)+3 X=5\left(\begin{array}{cc}4 & -3 \\ -6 & 2\end{array}\right)$
$\Rightarrow 3 X=5\left(\begin{array}{cc}4 & -3 \\ -6 & 2\end{array}\right)-4\left(\begin{array}{cc}2 & 0 \\ -3 & 1\end{array}\right)$
$\Rightarrow 3 X=\left(\begin{array}{cc}20 & -15 \\ -30 & 10\end{array}\right)-\left(\begin{array}{cc}8 & 0 \\ -12 & 4\end{array}\right)$
$\Rightarrow 3 \mathrm{X}=\left(\begin{array}{cc}12 & -15 \\ -18 & 6\end{array}\right)$
Dividing by 3
$\Rightarrow X=\left(\begin{array}{cc}4 & -5 \\ -6 & 2\end{array}\right)$

4. Question

If $(A-2 B)=\left(\begin{array}{cc}1 & -2 \\ 3 & 0\end{array}\right)$ and $(2 A-3 B)=\left(\begin{array}{cc}-2 & 2 \\ 3 & -3\end{array}\right)$ then $B=$?
A. $\left(\begin{array}{cc}6 & -4 \\ -3 & 3\end{array}\right)$
B. $\left(\begin{array}{cc}-4 & 6 \\ -3 & -3\end{array}\right)$
C. $\left(\begin{array}{ll}4 & -6 \\ 3 & -3\end{array}\right)$
D. none of these

Answer

B
$(A-2 B)=\left(\begin{array}{cc}1 & -2 \\ 3 & 0\end{array}\right)$
Multiplying equation by 2
$2 A-4 B=\left(\begin{array}{cc}2 & -4 \\ 6 & 0\end{array}\right)$
$2 A-3 B=\left(\begin{array}{cc}-2 & 2 \\ 3 & -3\end{array}\right)$
(ii)-(i)
$B=\left(\begin{array}{cc}-2 & 2 \\ 3 & -3\end{array}\right)-\left(\begin{array}{cc}2 & -4 \\ 6 & 0\end{array}\right)$
$=\left(\begin{array}{cc}-4 & 6 \\ 3 & -3\end{array}\right)$

5. Question

If $(2 A-B)=\left(\begin{array}{lrl}6 & -6 & 0 \\ -4 & 2 & 1\end{array}\right)$ and $(2 B+A)=\left(\begin{array}{lll}3 & 2 & 5 \\ -2 & 1 & -7\end{array}\right)$ then $A=$?
A. $\left(\begin{array}{llr}-3 & 2 & 1 \\ 2 & 1 & -1\end{array}\right)$
B. $\left(\begin{array}{lll}3 & 2 & -1 \\ 2 & -1 & 1\end{array}\right)$
C. $\left(\begin{array}{lrl}3 & -2 & 1 \\ -2 & 1 & -1\end{array}\right)$
D. none of these

Answer

$(2 A-B)=\left(\begin{array}{lrr}6 & -6 & 0 \\ -4 & 2 & 1\end{array}\right)$
Multiplying by 2
$4 A-2 B=\left(\begin{array}{ccc}12 & -12 & 0 \\ -8 & 4 & 2\end{array}\right)-\cdots---(i)$
$2 B+A=\left(\begin{array}{ccc}3 & 2 & 5 \\ -2 & 1 & -7\end{array}\right)$
(i)+(ii)
$5 A=\left(\begin{array}{ccc}12 & -12 & 0 \\ -8 & 4 & 2\end{array}\right)+\left(\begin{array}{ccc}3 & 2 & 5 \\ -2 & 1 & -7\end{array}\right)$
$=\left(\begin{array}{ccc}15 & 10 & 5 \\ -10 & 5 & -5\end{array}\right)$
Dividing each element of the matrix by 5
$A=\left(\begin{array}{ccc}3 & 2 & 1 \\ -2 & 1 & -1\end{array}\right)$
6. Question

If $2\left(\begin{array}{ll}3 & 4 \\ 5 & x\end{array}\right)+\left(\begin{array}{ll}1 & y \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}7 & 0 \\ 10 & 5\end{array}\right)$
A. $(x=-2, y=8)$
B. $(x=2, y=-8)$
C. $(x=3, y=-6)$
D. $(x=-3, y=6)$

Answer

$2\left(\begin{array}{ll}3 & 4 \\ 5 & x\end{array}\right)+\left(\begin{array}{ll}1 & y \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}7 & 0 \\ 10 & 5\end{array}\right)$
To solve this problem we will use the comparison that is we will use that all the elements of L.H.S are equal to R.H.S .
$=\left(\begin{array}{cc}6 & 8 \\ 10 & 2 \mathrm{x}\end{array}\right)+\left(\begin{array}{ll}1 & \mathrm{y} \\ 0 & 1\end{array}\right)$
$=\left(\begin{array}{cc}7 & 8+y \\ 10 & 2 x+1\end{array}\right)$
Comparing with R.H.S
$8+y=0$
$y=-8$
$2 x+1=5$
$2 x=4$
$x=2$

7. Question

If $\left(\begin{array}{cc}x-y & 2 x-y \\ 2 x+z & 3 z+w\end{array}\right)=\left(\begin{array}{cc}-1 & 0 \\ 5 & 13\end{array}\right)$ then
A. $z=3, w=4$
B. $z=4, w=3$
C. $z=1, w=2$
D. $z=2, w=-1$

Answer

A
By comparing L.H.S and R.H.S
$x-y=-1$ \qquad
$2 x-y=0$ \qquad - ii
$2 x+z=5$
$3 z+w=13$------- iv
Using i in equation ii
$x=-1+y$
ii becomes, $-2+2 y-y=0$
$y=2$
$x=1$
Putting x in iii
$2+z=5$
$z=3$
Putting z in iv
$9+w=13$
$w=4$
8. Question

If $\left(\begin{array}{cc}\mathrm{x} & \mathrm{y} \\ 3 \mathrm{y} & \mathrm{x}\end{array}\right)\binom{1}{2}=\binom{3}{5}$ then
A. $x=1, y=2$
B. $x=2, y=1$
C. $x=1, y=1$
D. none of these

Answer

C
$\left(\begin{array}{ll}x & y \\ 3 y & x\end{array}\right)\binom{1}{2}$
$=\binom{x \times 1+y \times 2}{3 y \times 1+x \times 2}$
$=\binom{x+2 y}{3 y+2 x}$
Comparing with R.H.S
$x+2 y=3$
$2 x+3 y=5$
(i) $\times 2$ - (ii)
$2 x+4 y-2 x+3 y=6-5$
$y=1$
Putting y in (i)
$x+2(1)=3$
$x=1$
9. Question

If the matrix $A=\left(\begin{array}{cc}3-2 x & x+1 \\ 2 & 4\end{array}\right)$ is singular then $x=$?
A. 0
B. 1
C. -1
D. -2

Answer

When a given matrix is singular then the given matrix determinant is 0 .
$|A|=0$
Given, $\mathrm{A}=\left(\begin{array}{cc}3-2 \mathrm{x} & \mathrm{x}+1 \\ 2 & 4\end{array}\right)$
$|A|=0$
$4(3-2 x)-2(x+1)=0$
$12-8 x-2 x-2=0$
$10-10 x=0$
$10 \mathrm{x}=0$
$x=1$

10. Question

If $A_{\alpha}=\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right)$ then $\left(A_{\alpha}\right)^{2}=$?
A. $\left(\begin{array}{cc}\cos ^{2} \alpha & \sin ^{2} \alpha \\ -\sin ^{2} \alpha & \cos ^{2} \alpha\end{array}\right)$
B. $\left(\begin{array}{cc}\cos 2 \alpha & \sin 2 \alpha \\ -\sin 2 \alpha & \cos 2 \alpha\end{array}\right)$
C. $\left(\begin{array}{ll}2 \cos \alpha & 2 \sin \alpha \\ -\sin \alpha & 2 \cos \alpha\end{array}\right)$
D. none of these

Answer

Given, $A_{\alpha}=\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right)$
$A_{\alpha}{ }^{2}=\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right)\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right)$
$=\left(\begin{array}{cc}\cos \alpha \times \cos \alpha-\sin \alpha \times \sin \alpha & \cos \alpha \times \sin \alpha+\sin \alpha \times \cos \alpha \\ -\sin \alpha \times \cos \alpha-\cos \alpha \times \sin \alpha & -\sin \alpha \times \sin \alpha+\cos \alpha \times \cos \alpha\end{array}\right)$
$=\left(\begin{array}{cc}\cos ^{2} \alpha-\sin ^{2} \alpha & \cos \alpha \sin \alpha+\sin \alpha \cos \alpha \\ -\sin \alpha \cos \alpha-\cos \alpha \sin \alpha & -\sin ^{2} \alpha+\cos ^{2} \alpha\end{array}\right)$
$=\left(\begin{array}{cc}\cos 2 \alpha & \sin 2 \alpha \\ -\sin 2 \alpha & \cos 2 \alpha\end{array}\right)$
11. Question

If $A=\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right)$ be such that $A+A^{\prime}=I$, then $\alpha=$?
А. Π
B. $\frac{\pi}{3}$
С. $П$
D. $\frac{2 \pi}{3}$

Answer

L.H.S: $A+A^{\prime}=\left(\begin{array}{cc}\cos a & \sin a \\ -\sin a & \cos a\end{array}\right)+\left(\begin{array}{cc}\cos a & -\sin a \\ \sin a & \cos a\end{array}\right)$
$=\left(\begin{array}{cc}\cos a+\cos a & \sin a-\sin a \\ -\sin a+\sin a & \cos a+\cos a\end{array}\right)$
$=\left(\begin{array}{cc}2 \operatorname{cosa} & 0 \\ 0 & 2 \cos a\end{array}\right)$
This will be equal to $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
When $2 \operatorname{cosa}=1$
$\cos a=\frac{1}{2}$
$a=\frac{\pi}{3}$
12. Question

If $A=\left(\begin{array}{ccc}1 & k & 3 \\ 3 & k & -2 \\ 2 & 3 & -4\end{array}\right)$ is singular then $k=$?
A. $\frac{16}{3}$
B. $\frac{34}{3}$
C. $\frac{33}{2}$
D. none of these

Answer

When a given matrix is singular then the given matrix determinant is 0 .
$|A|=0$

Given,
$A=\left(\begin{array}{ccc}1 & \mathrm{k} & 3 \\ 3 & \mathrm{k} & -2 \\ 2 & 3 & -4\end{array}\right)$
$|A|=0$
$1(-4 k+6)-k(-12+4)+3(9-2 k)=0$
$-4 k+6+12 k-4 k+27-6 k=0$
$-2 k+33=0$
$k=\frac{33}{2}$.
13. Question

If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then $\operatorname{adj} A=$?
A. $\left(\begin{array}{cc}\mathrm{d} & -\mathrm{c} \\ -\mathrm{b} & \mathrm{a}\end{array}\right)$
B. $\left(\begin{array}{cc}-d & b \\ c & -a\end{array}\right)$
C. $\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
D. $\left(\begin{array}{cc}-\mathrm{d} & -\mathrm{b} \\ \mathrm{c} & \mathrm{a}\end{array}\right)$

Answer

To find adj A we will first find the cofactor matrix
$C_{11}=d_{12}=-c$
$C_{21}=-b C_{22}=a$
Cofactor matrix $A=\left(\begin{array}{cc}d & -c \\ -b & a\end{array}\right)$
$\operatorname{Adj} A=\left(\begin{array}{cc}d & -c \\ -b & a\end{array}\right)$,
$=\left(\begin{array}{cc}d & -b \\ -\mathrm{c} & \mathrm{a}\end{array}\right)$

14. Question

If $A=\left(\begin{array}{cc}2 x & 0 \\ x & x\end{array}\right)$ and $A^{-1}=\left(\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right)$ then $x=$?
A. 1
B. 2
C. $\frac{1}{2}$
D. -2

Answer

We know that $\mathrm{A}^{\mathrm{x}} \mathrm{A}^{-1}=1$
$\left(\begin{array}{cc}2 \mathrm{x} & 0 \\ \mathrm{x} & \mathrm{x}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\left(\begin{array}{cc}2 \mathrm{x} \times 1+0 \times(-1) & 2 \mathrm{x} \times 0+0 \times 2 \\ \mathrm{x} \times 1+\mathrm{x} \times(-1) & \mathrm{x} \times 0+\mathrm{x} \times 2 \mathrm{x}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\left(\begin{array}{cc}2 \mathrm{x} & 0 \\ 0 & 2 \mathrm{x}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
To satisfy the above condition $2 \mathrm{x}=1$
$\mathrm{x}=\frac{1}{2}$

15. Question

If A and B are square matrices of the same order then $(A+B)(A-B)=$?
A. $\left(A^{2}-B^{2}\right)$
B. $A^{2}+A B-B A-B^{2}$
C. $A^{2}-A B+B A-B^{2}$
D. none of these

Answer

Since A and B are square matrices of same order.
$(A+B)(A-B)=A^{2}-A B+B A-B$

16. Question

If A and B are square matrices of the same order then $(A+B)^{2}=$?
A. $A^{2}+2 A B+B^{2}$
B. $A^{2}+A B+B A+B^{2}$
C. $A^{2}+2 B A+B^{2}$
D. none of these

Answer

Since A and B are square matrices of same order.
$(A+B)^{2}=(A+B)(A+B)$
$=A^{2}+A B+B A+B^{2}$

17. Question

If A and B are square matrices of the same order then $(A-B)^{2}=$?
A. $A^{2}-2 A B+B^{2}$
B. $A^{2}-A B-B A+B^{2}$
C. $A^{2}-2 B A+B^{2}$
D. none of these

Answer

Since A and B are square matrices of same order.
$(A-B)^{2}=(A-B)(A-B)$
$=A^{2}-A B-B A+B^{2}$

18. Question

If A and B are symmetric matrices of the same order then ($A B-B A$) is always
A. a symmetric matrix
B. a skew-symmetric matrix
C. a zero matrix
D. an identity matrix

Answer

Given A and B are symmetric matrices
$A^{\prime}=A$--- 1
$B^{\prime}=B---2$
Now $(A B-B A)^{\prime}=(A B)^{\prime}-(B A)^{\prime}$
$=B^{\prime} A^{\prime}-A^{\prime} B^{\prime}$
$\left[\because(A B)^{\prime}=B^{\prime} A^{\prime}\right]$
$=B A-A B[$ Using 1 and 2$]$
$\therefore(A B-B A)^{\prime}=-(A B-B A)$
$A B-B A$ is a skew symmetric matrix.

19. Question

Matrices A and B are inverse of each other only when
A. $A B=B A$
B. $A B=B A=0$
C. $A B=0, B A=1$
D. $A B=B A=1$

Answer

$A=B^{-1}$
$B=A^{-1}$
We know that
$A A^{-1}=1$
(Given $B=A^{-1}$)
AB= 1 ------ 1
We know that
$B B^{-1}=1$
(Given $A=B^{-1}$)
$B A=1-----2$
From 1 and 2
$A B=B A=1$

20. Question

For square matrices A and B of the same order, we have $\operatorname{adj}(A B)=$?
A. $(\operatorname{adj} A)(\operatorname{adj} B)$
B. $(\operatorname{adj} B)(\operatorname{adj} A)$
C. $|A B|$
D. none of these

Answer

We know that $(A B)^{-1}=\operatorname{adj}(A B) /|A B|$
$\operatorname{adj}(A B)=(A B)^{-1} \cdot|A B|$
We also know that $(A B)^{-1}=B^{-1} \cdot A^{-1}$
$|A B|=|A||B|$
Putting them in 1
$\operatorname{Adj}(A B)=B^{-1} \cdot A^{-1} \cdot|\mathbf{A}| \cdot|\mathbf{B}|$
$=\left(\mathrm{A}^{-1} \cdot|\mathbf{A}|\right)\left(\mathrm{B}^{-1}|\mathbf{B}|\right)$
$=\operatorname{adj}(A) \operatorname{adj}(B)$
Since, $\operatorname{adj}(A)=(A)^{-1} \cdot|A|$
$\operatorname{adj}(B)=(B)^{-1} \cdot|\mathbf{B}|$

21. Question

If A is a 3 -rowed square matrix and $|A|=4$ then $\operatorname{adj}(\operatorname{adj} A)=$?
A. 4 A
B. 16 A
C. 64 A
D. none of these

Answer

The property states that
$\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} \cdot A$
Here $n=2$
$\operatorname{adj}(\operatorname{adj} A)=|4|^{3-2} \cdot A$
$=4 \mathrm{~A}$

22. Question

If A is a 3 -rowed square matrix and $|A|=5$ then $|\operatorname{adj} A|=$?
A. 5
B. 25
C. 125
D. none of these

Answer

The property states that $|\operatorname{adj} A|=|A|^{n-1}$
Here $n=3$ and $|A|=5$
$|\operatorname{adj} A|=|5|^{3-1}$
$=|5|^{2}$
$=25$.

23. Question

For any two matrices A and B,
A. $A B=B A$ is always true
$B . A B=B A$ is never true
C. sometimes $A B=B A$ and sometimes $A B \neq B A$
D. whenever $A B$ exists, then $B A$ exists

Answer

If the two matrices A and B are of same order it is not necessary that in every situation $A B=B A$
$A B=B A=$ l only when $A=B^{-1}$
$B=A^{-1}$
Other time $A B \neq B A$

24. Question

If $A\left(\begin{array}{cc}3 & 2 \\ 1 & -1\end{array}\right)=\left(\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right)$ then $A=$?
A. $\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$
B. $\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$
C. $\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
D. none of these

Answer

The matrix on the R.H.S of the given matrix is of order 2×2 and the one given on left side is 2×2. Therefore A has to be a 2×2 matrix.

Let $A=\left(\begin{array}{ll}\mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d}\end{array}\right)$
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}3 & 2 \\ 1 & -1\end{array}\right)=\left(\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right)$
$\left(\begin{array}{ll}3 a+b & 2 a-b \\ 3 c+d & 2 c-d\end{array}\right)=\left(\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right)$
$3 a+b=4----1$
2a-b = 1 ------ 2
$3 c+d=2$------ 3
$2 c-d=3------4$
Using 1 and 2
$a=1$
$b=1$
Using 3 and 4
$\mathrm{c}=1$
$d=-1$
So A becomes $\left(\begin{array}{cc}\mathbf{1} & \mathbf{1} \\ \mathbf{1} & -\mathbf{1}\end{array}\right)$

25. Question

If A is an invertible square matrix then $\left|A^{-1}\right|=$?
A. $|A|$
B. $\frac{1}{|\mathrm{~A}|}$
C. 1
D. 0

Answer

B
We know that $A A^{-1}=\mathbf{I}$
Taking determinant both sides
$\left|A A^{-1}\right|=|I|$
$|A|\left|A^{-1}\right|=|I|(|A B|=|A||B|)$
$|A|\left|A^{-1}\right|=1(|I|=1)$
$\left|A^{-1}\right|=\frac{1}{|A|}$

26. Question

If A and B are invertible matrices of the same order then $(A B)^{-1}=$?
A. $\left(A^{-1} \times B^{-1}\right)$
B. $\left(A \times B^{-1}\right)$
C. $\left(A^{-1} \times B\right)$
D. $\left(B^{-1} \times A^{-1}\right)$

Answer

$(A B)(A B)^{-1}=1$
$A^{-1}(A B)(A B)^{-1}=I A^{-1}$
$\left(A^{-1} A\right) B(A B)^{-1}=A^{-1}$
$\mathrm{IB}(\mathrm{AB})^{-1}=\mathrm{A}^{-1}$
$B(A B)^{-1}=A^{-1}$
$B^{-1} B(A B)^{-1}=B^{-1} A^{-1}$
$I(A B)^{-1}=B^{-1} A^{-1}$
$(A B)^{-1}=B^{-1} A^{-1}$

27. Question

If A and B are two nonzero square matrices of the same order such that $A B=0$ then
A. $|A|=0$ or $|B|=0$
B. $|A|=0$ and $|B|=0$
C. $|A| \neq 0$ and $|B| \neq 0$
D.None of these

Answer

$s A B$ is a 0 matrix its determinant has to be 0 .
So $|A B|=|A||B|=0$
So $|A|=|B|=0$

28. Question

If A is a square matrix such that $|A| \neq 0$ and $A^{2}-A+2 I=0$ then $A^{-1}=$?
A. (I-A)
B. $(I+A)$
c. $\frac{1}{2}(\mathrm{I}-\mathrm{A})$
D. $\frac{1}{2}(\mathrm{I}+\mathrm{A})$

Answer

$2-A+21=0$
Multiplying by A^{-1}
$A^{-1} A^{2}-A^{-1} A+2 I A^{-1}=0$
$A-I+2 A^{-1}=0$
$A^{-1}=\frac{1}{2}(I-A)$
29. Question

If $A=\left(\begin{array}{lll}1 & \lambda & 2 \\ 1 & 2 & 5 \\ 2 & 1 & 1\end{array}\right)$ is not invertible then $\lambda=$?
A. 2
B. 1
C. -1
D. 0

Answer

$=\left(\begin{array}{lll}1 & \lambda & 2 \\ 1 & 2 & 5 \\ 2 & 1 & 1\end{array}\right)$
$|A|=0$
$1(2 \times 1-5 \times 1)-\lambda(1 \times 1-5 \times 2)+2(1 \times 1-2 \times 2)=0$
$-3+9 \lambda-6=0$
$9 \lambda=9$
$\lambda=1$
30. Question

If $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ then $A^{-1}=$?
A. A
B. -A
C. Adj A
D. $-\operatorname{adj} \mathrm{A}$

Answer

$A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
$|A|=\cos ^{2} \theta-\left(-\sin ^{2} \theta\right)$
$=\cos ^{2} \boldsymbol{\theta}+\left(\sin ^{2} \boldsymbol{\theta}\right)$
$=1$
We know that $A^{-1}=\frac{\mathbf{1}}{|\mathbf{A}|} \operatorname{adj} \mathrm{A}$
$=\operatorname{adj} \mathrm{A}[$ From I]
31. Question

The matrix $A=\left(\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right)$ is
A. idempotent
B. Orthogonal
C. Nilpotent
D. None of these

Answer

Matrix A is said to be nilpotent since there exist a positive integer $k=1$ such that $A k$ is zero matrix.

32. Question

The matrix $A=\left(\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right)$ is
A. Nonsingular
B. Idempotent
C. Nilpotent
D. Orthogonal

Answer

Here the diagonal value is $2+3-3=1$
So the given matrix is idempotent.

33. Question

If A is singular then $A(\operatorname{adj} A)=$?
A. A unit matrix
B.A null matrix
C.A symmetric matrix
D. None of these

Answer

$A(\operatorname{adj} A)=A\left(|A| \times A^{-1}\right)$
Since determinant of singular matrix is always 0
$A(\operatorname{adj} A)=0$
So, it is a null matrix.

34. Question

For any 2-rowed square matrix A, if $A(\operatorname{adj} A)=\left(\begin{array}{ll}8 & 0 \\ 0 & 8\end{array}\right)$ then the value of $|A|$ is
A. 0
B. 8
C. 64
D. 4

Answer
$(\operatorname{adj} A)=\left(\begin{array}{ll}8 & 0 \\ 0 & 8\end{array}\right)$
$=8\left(\begin{array}{ll}\mathbf{1} & \mathbf{0} \\ \mathbf{0} & 1\end{array}\right)$
$=|A| I$
$|A|=8$.
35. Question

If $A=\left(\begin{array}{cc}-2 & 3 \\ 1 & 1\end{array}\right)$ then $\left|A^{-1}\right|=$?
A. -5
B. $\frac{-1}{5}$
C. $\frac{1}{25}$
D. 25

Answer
$A=\left(\begin{array}{cc}-2 & 3 \\ 1 & 1\end{array}\right)$
$|A|=-2-3=-5$
We know that $\left|A^{-1}\right|=\frac{\mathbf{1}}{|\mathbf{A}|}$
$=\frac{1}{-5}$

36. Question

If $A=\left(\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right)$ and $A^{2}+x I=y A$ then the values of x and y are
A. $X=6, y=6$
B. $X=8, y=8$
C. $X=5, y=8$
D. $x=6, y=8$

Answer

$2+x I=y A$
$\left(\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right)\left(\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right)+x\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=y\left(\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right)$
$\left(\begin{array}{cc}16 & 8 \\ 56 & 32\end{array}\right)+x\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=y\left(\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right)$
$8\left(\begin{array}{ll}2 & 1 \\ 7 & 4\end{array}\right)+x\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=y\left(\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right)$
Comparing L.H.S and R.H.S
$x=8 y=8$

37. Question

If matrices A and B anticommute then
A. $A B=B A$
B. $A B=-B A$
C. $(A B)=\left(B A^{-1}\right)$
D. None of these

Answer

If A and B anticommute then $A B=-B A$

38. Question

If $A=\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)$ then $\operatorname{adj} A=?$
A. $\left(\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right)$
B. $\left(\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right)$
C. $\left(\begin{array}{cc}-1 & 2 \\ 3 & -5\end{array}\right)$
D.None of these

Answer

To find adj A we will first find the cofactor matrix
$C_{11}=3 C_{12}=-1$
$C_{21}=-5 C_{22}=2$
Cofactor matrix $A=\left(\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right)$
$\operatorname{Adj} \mathrm{A}=\left(\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right)$,
$=\left(\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right)$

39. Question

If $A=\left(\begin{array}{cc}3 & -4 \\ -1 & 2\end{array}\right)$ and B is a square matrix of order 2 such that $A B=$ I then $B=$?
A. $\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)$
B. $\left(\begin{array}{ll}1 & \frac{1}{2} \\ 2 & \frac{3}{2}\end{array}\right)$
C. $\left(\begin{array}{cc}1 & 2 \\ \frac{1}{2} & \frac{3}{2}\end{array}\right)$
D.None of these

Answer

$B=1$
$B=A^{-1} \mid-------1$
$A^{-1}=\frac{1}{|A|} \operatorname{adj} A$-------- 2
$|A|=3 \times 2-(-4) \times(-1)$
$=2$
$C_{11}=2 C_{12}=1$
$C_{21}=4 C_{22}=3$
Cofactor matrix $A=\left(\begin{array}{ll}2 & 1 \\ 4 & 3\end{array}\right)$
$\operatorname{Adj} A=\left(\begin{array}{ll}2 & 1 \\ \mathbf{4} & 3\end{array}\right)$,
$=\left(\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right)$
Putting in 2
$A^{-1}=\frac{1}{|2|}\left(\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right)$
$=\left(\begin{array}{ll}1 & \frac{2}{1} \\ \frac{3}{2} & \frac{3}{2}\end{array}\right)$
Putting in 1
$B=A^{-1} \mid$
$=\mathrm{A}^{-1}$
$=\left(\begin{array}{ll}1 & 2 \\ \frac{1}{2} & \frac{3}{2}\end{array}\right)$

40. Question

If A and B are invertible square matrices of the same order then $(A B)^{-1}=$?
A. $A B^{-1}$
B. $A^{-1} B$
C. $A^{-1} B^{-1}$
D. $B^{-1} A^{-1}$

Answer

$(A B)(A B)^{-1}=1$
$A^{-1}(A B)(A B)^{-1}=I A^{-1}$
$\left(A^{-1} A\right) B(A B)^{-1}=A^{-1}$
$\mathrm{IB}(\mathrm{AB})^{-1}=\mathrm{A}^{-1}$
$B(A B)^{-1}=A^{-1}$
$B^{-1} B(A B)^{-1}=B^{-1} A^{-1}$
$I(A B)^{-1}=B^{-1} A^{-1}$
$(A B)^{-1}=B^{-1} A^{-1}$
41. Question

If $A=\left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right)$, then $A^{-1}=$?
A. $\left(\begin{array}{cc}\frac{3}{7} & \frac{-1}{7} \\ \frac{1}{7} & \frac{2}{7}\end{array}\right)$
B. $\left(\begin{array}{cc}\frac{3}{7} & \frac{1}{7} \\ \frac{-1}{7} & \frac{2}{7}\end{array}\right)$
c. $\left(\begin{array}{cc}\frac{1}{3} & \frac{1}{7} \\ \frac{1}{7} & \frac{2}{7}\end{array}\right)$
D.None of these

Answer

$-1=\frac{1}{|A|} \operatorname{adj} A$--------- 1
$|A|=3 \times 2-(1) \times(-1)$
$=7$
$C_{11}=3 C_{12}=-1$
$C_{21}=1 C_{22}=2$
Cofactor matrix $A=\left(\begin{array}{ll}2 & 1 \\ 4 & 3\end{array}\right)$
$\operatorname{Adj} A=\left(\begin{array}{cc}3 & -1 \\ 1 & 2\end{array}\right)$,
$=\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right)$
Putting in 1
$A^{-1}=\frac{1}{|7|}\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right)$
$=\left(\begin{array}{cc}\frac{3}{7} & \frac{1}{7} \\ \frac{-1}{7} & \frac{2}{7}\end{array}\right)$
42. Question

If $|A|=3$ and $A^{-1}=\left(\begin{array}{cc}3 & -1 \\ \frac{-5}{3} & \frac{2}{3}\end{array}\right)$ then $\operatorname{adj} A=$?
A. $\left(\begin{array}{cc}9 & 3 \\ -5 & -2\end{array}\right)$
B. $\left(\begin{array}{cc}9 & -3 \\ -5 & 2\end{array}\right)$
c. $\left(\begin{array}{cc}-9 & 3 \\ 5 & -2\end{array}\right)$
D. $\left(\begin{array}{ll}9 & -3 \\ 5 & -2\end{array}\right)$

Answer

${ }^{-1}=\frac{1}{|A|} \operatorname{adj} \mathrm{A}$
$\operatorname{adj} \mathrm{A}=|\mathbf{A}| \times \mathrm{A}^{-1}$
$=3 \times\left(\begin{array}{cc}3 & -1 \\ \frac{-5}{3} & \frac{2}{3}\end{array}\right)$
$=\left(\begin{array}{cc}9 & -3 \\ -5 & 2\end{array}\right)$
43. Question

If A is an invertible matrix and $A^{-1}=\left(\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right)$ then $A=$?
A. $\left(\begin{array}{cc}6 & -4 \\ -5 & 3\end{array}\right)$
B. $\left(\begin{array}{ll}\frac{1}{3} & \frac{1}{4} \\ \frac{1}{5} & \frac{1}{6}\end{array}\right)$
c. $\left(\begin{array}{cc}-3 & 2 \\ \frac{5}{2} & \frac{-3}{2}\end{array}\right)$
D.None of these

Answer

y property of inverse
$\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$
$\left(A^{-1}\right)^{-1}=\left(\begin{array}{ll}\mathbf{3} & \mathbf{4} \\ \mathbf{5} & \mathbf{6}\end{array}\right)^{-1}$
$A=\left(\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right)^{-1}$ 1
$|\mathbf{A}|^{-1}=3 \times 6-4 \times 5$
$=-2$
$C_{11}=6 C_{12}=-5$
$C_{21}=-4 C_{22}=3$
Cofactor matrix $A=\left(\begin{array}{cc}6 & -5 \\ -4 & 3\end{array}\right)$
$\operatorname{Adj} \mathrm{A}=\left(\begin{array}{cc}6 & -4 \\ -5 & 3\end{array}\right)$
$\left(\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right)^{-1}=\frac{1}{-2}\left(\begin{array}{cc}6 & -4 \\ -5 & 3\end{array}\right)$
$=\left(\begin{array}{cc}-3 & 2 \\ \frac{5}{2} & \frac{-3}{2}\end{array}\right)$
Putting in 1
$\mathrm{A}=\left(\begin{array}{cc}-3 & 2 \\ \frac{5}{2} & \frac{-3}{2}\end{array}\right)$
44. Question

If $A=\left(\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right)$ and $f(x)=2 x^{2}-4 x+5$ then $f(A)=$?
A. $\left(\begin{array}{cc}19 & -32 \\ -16 & 51\end{array}\right)$
B. $\left(\begin{array}{cc}19 & -16 \\ -32 & 51\end{array}\right)$
c. $\left(\begin{array}{cc}19 & -11 \\ -27 & 51\end{array}\right)$
D. None of these

Answer

$f(A)=2 A^{2}-4 A+5$
$A^{2}=\left(\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right)\left(\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right)$
$=\left(\begin{array}{cc}9 & -4 \\ -8 & 17\end{array}\right)$
$f(A)=2 A^{2}-4 A+5 I$
$=2\left(\begin{array}{cc}9 & -4 \\ -8 & 17\end{array}\right)-4\left(\begin{array}{cc}1 & 2 \\ 4 & -3\end{array}\right)+5\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$
$=\left(\begin{array}{cc}18 & -8 \\ -16 & 34\end{array}\right)-\left(\begin{array}{cc}4 & 8 \\ 16 & -12\end{array}\right)+\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right)$
$=\left(\begin{array}{cc}19 & -16 \\ -32 & 51\end{array}\right)$

45. Question

If $A=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$ then $A^{2}-4 A=$?
A. I
B. 51
C. 31
D. 0

Answer

$A^{2}=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$
$=\left(\begin{array}{ll}9 & 16 \\ 8 & 17\end{array}\right)$
$A^{2}-4 A=\left(\begin{array}{ll}9 & 16 \\ 8 & 17\end{array}\right)-4\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$
$=\left(\begin{array}{ll}9 & 16 \\ 8 & 17\end{array}\right)-\left(\begin{array}{ll}4 & 16 \\ 8 & 12\end{array}\right)$
$=\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right)$
$=5\left(\begin{array}{ll}\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1}\end{array}\right)$
$=51$

46. Question

If A is a 2-rowed square matrix and $|A|=6$ then $A \cdot \operatorname{adj} A=$?
A. $\left(\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right)$
B. $\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$
c. $\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$
D. None of these

Answer

$(\operatorname{adj} A)=|A| I$
$=6\left(\begin{array}{ll}\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1}\end{array}\right)$
$=\left(\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right)$

47. Question

If A is an invertible square matrix and k is a non-negative real number then $(K A)^{-1}=$?
A. $\mathrm{k} \cdot \mathrm{A}^{-1}$
B. $\frac{1}{\mathrm{k}} \cdot \mathrm{A}^{-1}$
C. $-\mathrm{k} \cdot \mathrm{A}^{-1}$
D. None of these

Answer

y the property of inverse
$(A B)^{-1}=B^{-1} A^{-1}$
$(K A)^{-1}=A^{-1} K^{-1}$
$=\frac{1}{\mathrm{~K}} \mathrm{~A}^{-1}$
48. Question

If $A=\left(\begin{array}{ccc}3 & 4 & 1 \\ 1 & 0 & -2 \\ -2 & -1 & 2\end{array}\right)$ then $\mathrm{A}^{-1}=$?
A. $\left(\begin{array}{ccc}2 & 9 & -8 \\ -2 & 8 & 7 \\ -1 & 5 & -4\end{array}\right)$
B. $\left(\begin{array}{ccc}-2 & 9 & -8 \\ 2 & 8 & 7 \\ -1 & -5 & 4\end{array}\right)$
c. $\left(\begin{array}{ccc}-2 & -9 & -8 \\ 2 & 8 & 7 \\ -1 & -5 & -4\end{array}\right)$
D. None of these

Answer

$|A|=3 \times(0-2)-4 \times(2-4)+1 \times(-1)$
$=-6+8-1$
$=1$
$C_{11}=-2 C_{12}=2 C_{13}=-1$
$C_{21}=-9 C_{22}=8 C_{23}=-5$
$C_{31}=-8 C_{32}=7 C_{33}=-4$
Cofactor $(A)=\left[\begin{array}{lll}-2 & 2 & -1 \\ -9 & 8 & -5 \\ -8 & 7 & -4\end{array}\right]$
$\left.\operatorname{Adj} A=\begin{array}{lll}-2 & 2 & -1 \\ -9 & 8 & -5\end{array}\right]^{\prime}$
$\left.=\begin{array}{ccc}-2 & -9 & -8 \\ 2 & 8 & 7 \\ -1 & -5 & -4\end{array}\right]$
$\mathrm{A}^{-1}=\frac{\mathbf{1}}{|\mathrm{A}|} \operatorname{adj} \mathrm{A}$
$=\frac{1}{1}\left[\begin{array}{ccc}-2 & -9 & -8 \\ 2 & 8 & 7 \\ -1 & -5 & -4\end{array}\right]$

$$
\left(\begin{array}{ccc}
-2 & -9 & -8 \\
2 & 8 & 7 \\
-1 & -5 & -4
\end{array}\right)
$$

49. Question

If A is a square matrix then $\left(A+A^{\prime}\right)$ is
A. A null matrix
B. An identity matrix
C. A symmetric matrix
D. A skew-symmetric matrix

Answer

Let $\mathrm{X}=\mathrm{A}+\mathrm{A}^{\prime}$
$X^{\prime}=\left(A+A^{\prime}\right)^{\prime}$
$=A^{\prime}+\left(A^{\prime}\right)^{\prime}$
$=A+A^{\prime}$
$=X$
Therefore ($A+A^{\prime}$) is symmetric matrix.

50. Question

If A is a square matrix then ($A-A^{\prime}$) is
A. A null matrix
B. An identity matrix
C. A symmetric matrix
D. A skew-symmetric matrix

Answer

Let $X=A-A^{\prime}$
$X^{\prime}=\left(A-A^{\prime}\right)^{\prime}$
$=A^{\prime}-\left(A^{\prime}\right)^{\prime}$
$=A^{\prime}-A$
$=-\left(A-A^{\prime}\right)$
$=-\mathrm{X}$
Therefore ($\mathrm{A}-\mathrm{A}^{\prime}$) is skew symmetric matrix.

51. Question

If A is a 3 -rowed square matrix and $|3 A|=k|A|$ then $k=$?
A. 3 B. 9
C. 27 D. 1

Answer

Since the matrix is of order 3 so 3 will be taken common from each row or column.
So, $k=27$

Tagging

52. Question

Which one of the following is a scalar matrix?
A. $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
B. $\left(\begin{array}{ll}6 & 0 \\ 0 & 3\end{array}\right)$
c. $\left(\begin{array}{cc}-8 & 0 \\ 0 & -8\end{array}\right)$
D. None of these

Answer

$=\left(\begin{array}{cc}-8 & 0 \\ 0 & -8\end{array}\right)$
$=-8\left(\begin{array}{ll}\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1}\end{array}\right)$
Since -8 could be taken common from each row or column. Hence C is a scalar matrix.
53. Question

If $A=\left(\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right)$ and $B=\left(\begin{array}{cc}a & 1 \\ b & -1\end{array}\right)$ and
$(A+B)^{2}=\left(A^{2}+B^{2}\right)$ then
A. $a=2, b=-3$
B. $a=-2, b=3$
C. $a=1, b=4$
D. none of these

Answer

$=\left(\begin{array}{ll}\mathbf{1} & \mathbf{- 1} \\ \mathbf{2} & \mathbf{- 1}\end{array}\right) \quad \mathrm{B}=\left(\begin{array}{cc}\mathrm{a} & 1 \\ \mathrm{~b} & -1\end{array}\right)$
$A+B=\left(\begin{array}{cc}1+a & 0 \\ 2+b & -2\end{array}\right)$
$(A+B)^{2}=\left(\begin{array}{cc}1+a & 0 \\ 2+b & -2\end{array}\right)\left(\begin{array}{cc}1+a & 0 \\ 2+b & -2\end{array}\right)$
$=\left(\begin{array}{cc}(1+a)^{2} & 0 \\ (2+b)(1+a)-4-2 b & -4\end{array}\right)$
$=\left(\begin{array}{cc}(1+a)^{2} & 0 \\ 2+2 a+b+a b-4-2 b & 4\end{array}\right)$
$=\left(\begin{array}{cc}(1+a)^{2} & 0 \\ 2 a+a b-b-2 & 4\end{array}\right)$
$A^{2}=\left(\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right)\left(\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right)$
$=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$
$B^{2}=\left(\begin{array}{cc}a & 1 \\ b & -1\end{array}\right)\left(\begin{array}{cc}a & 1 \\ b & -1\end{array}\right)$
$=\left(\begin{array}{ll}a^{2}+b & a-1 \\ a b-b & b+1\end{array}\right)$
$(A+B)^{2}=\left(A^{2}+B^{2}\right)$
$\left(\begin{array}{cc}(1+a)^{2} & 0 \\ 2 a+a b-b-2 & 4\end{array}\right)=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)+\left(\begin{array}{cc}a^{2}+b & a-1 \\ a b-b & b+1\end{array}\right)$
$=\left(\begin{array}{cc}-1+a^{2}+b & \mathbf{a}-1 \\ \mathbf{a b}-\mathbf{b} & b\end{array}\right)$
By comparison,
$a-1=0$
$a=1$
$b=4$

