14. Some Special Integrals

Exercise 14A

1. Question

Evaluate:
$\int \frac{d x}{(1-9 x)^{2}}$

Answer

To find: $\int \frac{d x}{(1-9 x)^{2}}$
Formula Used: $\int x^{n}=\frac{x^{n+1}}{n+1}+C$
Let $y=(1-9 x) \ldots(1)$
Differentiating with respect to x ,
$\frac{d y}{d x}=-9$
i.e., $d y=-9 d x$

Substituting in the equation to evaluate,
$\Rightarrow \int \frac{\frac{d y}{-9}}{y^{2}}$
$\Rightarrow \frac{-1}{9} \int \frac{d y}{y^{2}}$
$\Rightarrow \frac{-1}{9} \times \int y^{-2} d y$
$\Rightarrow \frac{-1}{9} \times \frac{y^{-2+1}}{-2+1}+C$
Simplifying and substituting the value of y from (1),
$\Rightarrow \frac{-1}{9} \times \frac{-1}{(1-9 x)}+C$
$\Rightarrow \frac{1}{9(1-9 x)}+C$
Therefore,
$\int \frac{d x}{(1-9 x)^{2}}=\frac{1}{9(1-9 x)}+C$

2. Question

Evaluate:
$\int \frac{d x}{\left(25-4 x^{2}\right)}$

To find: $\int \frac{d x}{\left(25-4 x^{2}\right)}$
Formula Used: $\frac{d x}{\left(a^{2}-x^{2}\right)}=\frac{1}{2 a} \times \log \left|\frac{a+x}{a-x}\right|+C$
Given equation $=\int \frac{d x}{4\left(\frac{25}{4}-x^{2}\right)}$
$\Rightarrow \frac{1}{4} \int \frac{d x}{\left(\left(\frac{5}{2}\right)^{2}-x^{2}\right)}$.
Here $a=\frac{5}{2}$
Therefore, (1) becomes
$\Rightarrow \frac{1}{4} \times \frac{1}{5} \times \log \left|\frac{\frac{5}{\frac{2}{5}}+x}{\frac{5}{2}-x}\right|+C$
$\Rightarrow \frac{1}{20} \times \log \left|\frac{5+2 x}{5-2 x}\right|+C$
Therefore,
$\int \frac{d x}{\left(25-4 x^{2}\right)}=\frac{1}{20} \times \log \left|\frac{5+2 x}{5-2 x}\right|+C$

3. Question

Evaluate:
$\int \frac{d x}{\left(x^{2}+16\right)}$

Answer

To find: $\int \frac{d x}{\left(x^{2}+16\right)}$
Formula Used: $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
Rewriting the given equation,
$\Rightarrow \int \frac{d x}{4^{2}+x^{2}}$
Here $\mathrm{a}=4$
$\Rightarrow \frac{1}{4} \times \tan ^{-1}\left(\frac{x}{4}\right)+C$
Therefore,
$\int \frac{d x}{\left(x^{2}+16\right)}=\frac{1}{4} \times \tan ^{-1}\left(\frac{x}{4}\right)+C$

4. Question

Evaluate:
$\int \frac{d x}{\left(4+9 x^{2}\right)}$

Answer

To find: $\int \frac{d x}{\left(4+9 x^{2}\right)}$
Formula Used: $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
Rewriting the given equation,
$\Rightarrow \frac{1}{9} \int \frac{d x}{\left(\frac{4}{9}\right)+x^{2}}$
$\Rightarrow \frac{1}{9} \int \frac{d x}{\left(\frac{2}{3}\right)^{2}+x^{2}}$
Here $a=\frac{2}{3}$
$\Rightarrow \frac{1}{9} \times \frac{3}{2} \times \tan ^{-1}\left(\frac{3 x}{2}\right)+C$
$\Rightarrow \frac{1}{6} \times \tan ^{-1}\left(\frac{3 x}{2}\right)+C$
Therefore,
$\int \frac{d x}{\left(4+9 x^{2}\right)}=\frac{1}{6} \times \tan ^{-1}\left(\frac{3 x}{2}\right)+C$

5. Question

Evaluate:
$\int \frac{d x}{\left(50+2 x^{2}\right)}$

Answer

To find: $\int \frac{d x}{\left(50+2 x^{2}\right)}$
Formula Used: $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
Rewriting the given equation,
$\Rightarrow \frac{1}{2} \int \frac{d x}{25+x^{2}}$
$\Rightarrow \frac{1}{2} \int \frac{d x}{5^{2}+x^{2}}$
Here a = 5
$\Rightarrow \frac{1}{10} \times \tan ^{-1}\left(\frac{x}{5}\right)+C$
Therefore,
$\int \frac{d x}{\left(x^{2}+16\right)}=\frac{1}{10} \times \tan ^{-1}\left(\frac{x}{5}\right)+C$
6. Question

Evaluate:
$\int \frac{d x}{\left(16 x^{2}-25\right)}$

Answer

To find: $\int \frac{d x}{\left(16 x^{2}-25\right)}$
Formula Used: $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|+C$
Rewriting the given equation,
$\Rightarrow \frac{1}{16} \int \frac{d x}{x^{2}-\left(\frac{25}{16}\right)}$
$\Rightarrow \frac{1}{16} \int \frac{d x}{x^{2}-\left(\frac{5}{4}\right)^{2}}$
Here $a=\frac{5}{4}$
$\Rightarrow \frac{1}{16} \times \frac{2}{5} \times \ln \left|\frac{x-\frac{5}{4}}{x+\frac{5}{4}}\right|+C$
$\Rightarrow \frac{1}{40} \times \ln \left|\frac{4 x-5}{4 x+5}\right|+C$
Therefore,
$\int \frac{d x}{\left(16 x^{2}-25\right)}=\frac{1}{40} \times \log \left|\frac{4 x-5}{4 x+5}\right|+C$

7. Question

Evaluate:
$\int \frac{\left(x^{2}-1\right)}{\left(x^{2}+4\right)} d x$

Answer

To find: $\int \frac{\left(x^{2}-1\right)}{\left(x^{2}+4\right)} d x$
Formula Used: $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
Given equation can be rewritten as the following:
$\Rightarrow \int \frac{\left(x^{2}+4-5\right)}{\left(x^{2}+4\right)} d x$
$\Rightarrow \int \frac{\left(x^{2}+4\right)}{\left(x^{2}+4\right)} d x-\int \frac{5}{\left(x^{2}+4\right)} d x$
$\Rightarrow \int d x-5 \int \frac{1}{\left(x^{2}+2^{2}\right)} d x$
Here $\mathrm{a}=2$,
$\Rightarrow x-\frac{5}{2} \tan ^{-1} \frac{x}{2}+C$
Therefore,
$\int \frac{\left(x^{2}-1\right)}{\left(x^{2}+4\right)} d x=x-\frac{5}{2} \tan ^{-1} \frac{x}{2}+C$

8. Question

Evaluate:
$\int \frac{x^{2}}{\left(9+4 x^{2}\right)} d x$

Answer

To find: $\int \frac{x^{2}}{\left(9+4 x^{2}\right)} d x$
Formula Used: $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
Given equation can be rewritten as the following:
$\Rightarrow \frac{1}{4} \int \frac{x^{2}}{\left(x^{2}+\frac{9}{4}\right)} d x$
$\Rightarrow \frac{1}{4} \int \frac{x^{2}+\frac{9}{4}-\frac{9}{4}}{\left(x^{2}+\frac{9}{4}\right)} d x$
$\Rightarrow \frac{1}{4} \int d x-\frac{9}{16} \int \frac{1}{\left(x^{2}+\left(\frac{3}{2}\right)^{2}\right)} d x$
Here $a=\frac{3}{2}$,
$\Rightarrow \frac{x}{4}-\left(\frac{9}{16} \times \frac{2}{3} \tan ^{-1} \frac{2 x}{3}\right)+C$
$\Rightarrow \frac{x}{4}-\frac{3}{8} \tan ^{-1}\left(\frac{2 x}{3}\right)+C$
Therefore,
$\int \frac{x^{2}}{\left(9+4 x^{2}\right)} d x=\frac{x}{4}-\frac{3}{8} \tan ^{-1}\left(\frac{2 x}{3}\right)+C$

9. Question

Evaluate:
$\int \frac{e^{x}}{\left(e^{2 x}+1\right)} d x$

Answer

To find: $\int \frac{e^{x}}{\left(e^{2 x}+1\right)} d x$
Formula Used: $\int \frac{d x}{1+x^{2}}=\tan ^{-1} x$

Let $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$.
Differentiating both sides, we get
$d y=e^{x} d x$
Substituting in given equation,
$\Rightarrow \int \frac{d y}{y^{2}+1}$
$\Rightarrow \tan ^{-1} y$
From (1),
$\Rightarrow \tan ^{-1}\left(\mathrm{e}^{\mathrm{x}}\right)$
Therefore,
$\int \frac{e^{x}}{\left(e^{2 x}+1\right)} d x=\tan ^{-1}\left(e^{x}\right)+C$

10. Question

Evaluate:
$\int \frac{\sin x}{\left(1+\cos ^{2} x\right)} d x$

Answer

To find: $\int \frac{\sin x}{\left(1+\cos ^{2} x\right)} d x$
Formula Used: $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
Let $y=\cos x$
Differentiating both sides, we get
$d y=-\sin x d x$
Substituting in given equation,
$\Rightarrow \int \frac{-d y}{1+y^{2}}$
$\Rightarrow-\tan ^{-1} \mathrm{y}$
From (1),
$\Rightarrow-\tan ^{-1}(\cos \mathrm{x})$
Therefore,
$\int \frac{\sin x}{\left(1+\cos ^{2} x\right)} d x=-\tan ^{-1}(\cos x)+C$
11. Question

Evaluate:
$\int \frac{\cos x}{\left(1+\sin ^{2} x\right)} d x$
Answer

To find: $\int \frac{\cos x}{\left(1+\sin ^{2} x\right)} d x$
Formula Used: $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
Let $\mathrm{y}=\sin \mathrm{x}$.
Differentiating both sides, we get
$d y=\cos x d x$
Substituting in given equation,
$\Rightarrow \int \frac{d y}{1+y^{2}}$
$\Rightarrow \tan ^{-1} \mathrm{y}$
From (1),
$\Rightarrow \tan ^{-1}(\sin \mathrm{x})$
Therefore,
$\int \frac{\cos x}{\left(1+\sin ^{2} x\right)} d x=\tan ^{-1}(\sin x)+C$

12. Question

Evaluate:
$\int \frac{3 x^{5}}{\left(1+x^{12}\right)} d x$

Answer

To find: $\int \frac{3 x^{5}}{\left(1+x^{12}\right)} d x$
Formula Used: $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
Let $\mathrm{y}=\mathrm{x}^{6}$..
Differentiating both sides, we get
$d y=6 x^{5} d x$
Substituting in given equation,
$\Rightarrow \int \frac{\frac{1}{2} d y}{1+y^{2}}$
$\Rightarrow \frac{1}{2} \tan ^{-1} y+C$
From (1),
$\Rightarrow \frac{1}{2} \tan ^{-1}\left(x^{6}\right)+C$
Therefore,
$\int \frac{3 x^{5}}{\left(1+x^{12}\right)} d x=\frac{1}{2} \tan ^{-1}\left(x^{6}\right)+C$
13. Question

Evaluate:
$\int \frac{2 x^{3}}{\left(4+x^{8}\right)} d x$

Answer

To find: $\int \frac{2 x^{3}}{\left(4+x^{8}\right)} d x$
Formula Used: $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
Let $\mathrm{y}=\mathrm{x}^{4}$..
Differentiating both sides, we get
$d y=4 x^{3} d x$
Substituting in given equation,
$\Rightarrow \int \frac{\frac{1}{2} d y}{4+y^{2}}$
$\Rightarrow \frac{1}{2} \int \frac{1}{2^{2}+y^{2}} d y$
$\Rightarrow \frac{1}{4} \tan ^{-1}\left(\frac{y}{2}\right)+C$
From (1),
$\Rightarrow \frac{1}{4} \tan ^{-1}\left(\frac{x^{4}}{2}\right)+C$
Therefore,
$\int \frac{2 x^{3}}{\left(4+x^{8}\right)} d x=\frac{1}{4} \tan ^{-1}\left(\frac{x^{4}}{2}\right)+C$

14. Question

Evaluate:
$\int \frac{d x}{\left(e^{x}+e^{-x}\right)}$

Answer

To find: $\int \frac{d x}{\left(e^{x}+e^{-x}\right)}$
Formula Used: $\int \frac{d x}{1+x^{2}}=\tan ^{-1} x$
Given equation is:
$\int \frac{d x}{\left(e^{x}+e^{-x}\right)}=\int \frac{e^{x} d x}{\left(e^{2 x}+1\right)}$.
Let $\mathrm{y}=\mathrm{e}^{\mathrm{x}} \ldots$ (1)
Differentiating both sides, we get
$d y=e^{x} d x$

Substituting in (1),
$\Rightarrow \int \frac{d y}{y^{2}+1}$
$\Rightarrow \tan ^{-1} \mathrm{y}$
From (1),
$\Rightarrow \tan ^{-1}\left(\mathrm{e}^{\mathrm{x}}\right)$
Therefore,
$\int \frac{d x}{\left(e^{x}+e^{-x}\right)}=\tan ^{-1}\left(e^{x}\right)+C$

15. Question

Evaluate:
$\int \frac{x}{\left(1-x^{4}\right)} d x$

Answer

To find: $\int \frac{x d x}{\left(1-x^{4}\right)}$
Formula Used: $\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+C$
Let $y=x^{2}$
Differentiating both sides, we get
$d y=2 x d x$
Substituting in given equation,
$\Rightarrow \int \frac{\frac{1}{2} d y}{1-y^{2}}$
Here $\mathrm{a}=1$,
$\Rightarrow \frac{1}{2} \times \frac{1}{2} \times \log \left|\frac{1+y}{1-y}\right|+C$
$\Rightarrow \frac{1}{4} \log \left|\frac{1+y}{1-y}\right|+C$
From (1),
$\Rightarrow \frac{1}{4} \log \left|\frac{1+x^{2}}{1-x^{2}}\right|+C$
Therefore,
$\int \frac{x d x}{\left(1-x^{4}\right)}=\frac{1}{4} \log \left|\frac{1+x^{2}}{1-x^{2}}\right|+C$

16. Question

Evaluate:
$\int \frac{x^{2}}{\left(a^{6}-x^{6}\right)} d x$

Answer

To find: $\int \frac{x^{2} d x}{\left(a^{6}-x^{6}\right)}$
Formula Used: $\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+C$
Let $\mathrm{y}=\mathrm{x}^{3}$
Differentiating both sides, we get
$d y=3 x^{2} d x$
Substituting in given equation,
$\Rightarrow \int \frac{\frac{1}{3} d y}{a^{6}-y^{2}}$
$\Rightarrow \frac{1}{3} \int \frac{1}{\left(a^{3}\right)^{2}-y^{2}} d y$
$\Rightarrow \frac{1}{3} \times \frac{1}{2 a^{3}} \times \log \left|\frac{a^{3}+y}{a^{3}-y}\right|+C$
$\Rightarrow \frac{1}{6 a^{3}} \log \left|\frac{a^{3}+y}{a^{3}-y}\right|+C$
From (1),
$\Rightarrow \frac{1}{6 a^{3}} \log \left|\frac{a^{3}+x^{3}}{a^{3}-x^{3}}\right|+C$
Therefore,
$\int \frac{x^{2} d x}{\left(a^{6}-x^{6}\right)}=\frac{1}{6 a^{3}} \log \left|\frac{a^{3}+x^{3}}{a^{3}-x^{3}}\right|+C$

17. Question

Evaluate:
$\int \frac{d x}{\left(x^{2}+4 x+8\right)}$

Answer

To find: $\int \frac{d x}{\left(x^{2}+4 x+8\right)}$
Formula Used: $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
Rewriting the given equation,
$\Rightarrow \int \frac{d x}{\left((x+2)^{2}+4\right)}$
$\Rightarrow \int \frac{d x}{\left((x+2)^{2}+2^{2}\right)} \ldots$
Let $\mathrm{y}=\mathrm{x}+2$

Differentiating both sides,
$d y=d x$
Substituting in (1),
$\Rightarrow \int \frac{d y}{\left(y^{2}+2^{2}\right)}$
Here $\mathrm{a}=2$,
$\Rightarrow \frac{1}{2} \tan ^{-1}\left(\frac{y}{2}\right)+C$
From (2),
$\Rightarrow \frac{1}{2} \tan ^{-1}\left(\frac{x+2}{2}\right)+C$
Therefore,
$\int \frac{d x}{\left(x^{2}+4 x+8\right)}=\frac{1}{2} \tan ^{-1}\left(\frac{x+2}{2}\right)+C$

18. Question

Evaluate:
$\int \frac{d x}{\left(4 x^{2}-4 x+3\right)}$

Answer

To find: $\int \frac{d x}{\left(4 x^{2}-4 x+3\right)}$
Formula Used: $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
Rewriting the given equation,
$\Rightarrow \int \frac{d x}{\left((2 x-1)^{2}+2\right)}$.
Let $\mathrm{y}=2 \mathrm{x}-1$
Differentiating both sides,
$d y=2 d x$
Substituting in (1),
$\Rightarrow \int \frac{\frac{1}{2} d y}{\left(y^{2}+(\sqrt{2})^{2}\right)}$
Here $a=\sqrt{ } 2$,
$\Rightarrow \frac{1}{2} \times \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{y}{\sqrt{2}}\right)+C$
From (2),
$\Rightarrow \frac{1}{2 \sqrt{2}} \tan ^{-1}\left(\frac{2 x-1}{\sqrt{2}}\right)+C$
Therefore,
$\int \frac{d x}{\left(4 x^{2}-4 x+3\right)}=\frac{1}{2 \sqrt{2}} \tan ^{-1}\left(\frac{2 x-1}{\sqrt{2}}\right)+C$

19. Question

Evaluate:
$\int \frac{d x}{\left(2 x^{2}+x+3\right)}$

Answer

To find: $\int \frac{d x}{\left(2 x^{2}+x+3\right)}$
Formula Used: $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
Rewriting the given equation,
$\Rightarrow \int \frac{d x}{\left(\left(\sqrt{2} x+\frac{1}{2 \sqrt{2}}\right)^{2}+3-\frac{1}{8}\right)}$
$\Rightarrow \int \frac{d x}{\left(\left(\sqrt{2} x+\frac{1}{2 \sqrt{2}}\right)^{2}+\frac{2 a}{8}\right)^{\prime}} \ldots$
Let $y=\sqrt{2} x+\frac{1}{2 \sqrt{2}} \ldots$
Differentiating both sides,
$d y=\sqrt{ } 2 d x$
Substituting in (1),
$\Rightarrow \int \frac{\frac{1}{\sqrt{2}} d y}{\left(y^{2}+\left(\frac{\sqrt{23}}{2 \sqrt{2}}\right)^{2}\right)}$
Here $a=\frac{\sqrt{23}}{2 \sqrt{2}}$
$\Rightarrow \frac{1}{\sqrt{2}} \times \frac{2 \sqrt{2}}{\sqrt{23}} \tan ^{-1}\left(\frac{y \times 2 \sqrt{2}}{\sqrt{23}}\right)+C$
From (2),
$\Rightarrow \frac{2}{\sqrt{23}} \tan ^{-1}\left(\frac{4 x+1}{\sqrt{23}}\right)+C$
Therefore,
$\int \frac{d x}{\left(2 x^{2}+x+3\right)}=\frac{2}{\sqrt{23}} \tan ^{-1}\left(\frac{4 x+1}{\sqrt{23}}\right)+C$

20. Question

Evaluate:
$\int \frac{d x}{\left(2 x^{2}-x-1\right)}$
Answer

To find: $\int \frac{d x}{\left(2 x^{2}-x-1\right)}$
Formula Used: $\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+C$
Rewriting the given equation,
$\Rightarrow \int \frac{d x}{\left(\left(\sqrt{2} x-\frac{1}{2 \sqrt{2}}\right)^{2}-1-\left(\frac{1}{2 \sqrt{2}}\right)^{2}\right)}$
$\Rightarrow \int \frac{d x}{\left(\left(\sqrt{2} x-\frac{1}{2 \sqrt{2}}\right)^{2}-1-\frac{1}{8}\right)}$
$\Rightarrow \int \frac{d x}{\left(\left(\sqrt{2} x-\frac{1}{2 \sqrt{2}}\right)^{2}-\frac{9}{8}\right)}$
$\Rightarrow \int \frac{d x}{\left(\left(\sqrt{2} x-\frac{1}{2 \sqrt{2}}\right)^{2}-\left(\frac{3}{2 \sqrt{2}}\right)^{2}\right)}$.
Let $y=\sqrt{2} x-\frac{1}{2 \sqrt{2}} \ldots$ (2)
Differentiating both sides,
$d y=\sqrt{ } 2 d x$
Substituting in (1),
$\Rightarrow \int \frac{\frac{1}{\sqrt{2}} d y}{\left(y^{2}-\left(\frac{3}{2 \sqrt{2}}\right)^{2}\right)}$
Here $a=\frac{3}{2 \sqrt{2}}$
$\Rightarrow \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{3} \times \log \left|\frac{\frac{3}{2 \sqrt{2}}+y}{\frac{3}{2 \sqrt{2}}-y}\right|+C$
$\Rightarrow \frac{1}{3} \times \log \left|\frac{3+2 \sqrt{2} y}{3-2 \sqrt{2} y}\right|+C$
From (2),
$\Rightarrow \frac{1}{3} \times \log \left|\frac{3+4 x-1}{3-4 x+1}\right|+C$
$\Rightarrow \frac{1}{3} \log \left|\frac{1+2 x}{2(1-x)}\right|+C$
$\Rightarrow \frac{1}{3} \log \left|\frac{2(x-1)}{2 x+1}\right|+C$
Therefore,
$\int \frac{d x}{\left(2 x^{2}-x-1\right)}=\frac{1}{3} \log \left|\frac{2(x-1)}{2 x+1}\right|+C$

21. Question

Evaluate:
$\int \frac{d x}{\left(3-2 x-x^{2}\right)}$

Answer

To find: $\int \frac{d x}{\left(3-2 x-x^{2}\right)}$
Formula Used: $\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+C$
Rewriting the given equation,
$\Rightarrow \int \frac{-d x}{\left(x^{2}+2 x-3\right)}$
$\Rightarrow \int \frac{-d x}{(x+1)^{2}-4}$
$\Rightarrow \int \frac{-d x}{(x+1)^{2}-2^{2}} \ldots$ (1)
Let $\mathrm{y}=\mathrm{x}+1 \ldots$ (2)
Differentiating both sides wrt x,
$d y=d x$
Substituting in (1),
$\Rightarrow \int \frac{-d y}{y^{2}-2^{2}}$
$\Rightarrow \int \frac{d y}{2^{2}-y^{2}}$
Here $\mathrm{a}=2$,
$\Rightarrow \frac{1}{4} \log \left|\frac{2+y}{2-y}\right|+C$
From (2),
$\Rightarrow \frac{1}{4} \log \left|\frac{x+3}{1-x}\right|+C$
Therefore,
$\int \frac{d x}{\left(3-2 x-x^{2}\right)}=\frac{1}{4} \log \left|\frac{x+3}{1-x}\right|+C$

22. Question

Evaluate:

$$
\int \frac{x}{\left(x^{2}+3 x+2\right)} d x
$$

Answer

To find: $\int \frac{x d x}{\left(x^{2}+3 x+2\right)}$

Formula Used:

1. $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C$
2. $\int \frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C$

Using partial fractions,
$x=A\left(\frac{d}{d x}\left(x^{2}+3 x+2\right)\right)+B$
$x=A(2 x+3)+B$
Equating the coefficients of x,
$1=2 \mathrm{~A}$
$A=\frac{1}{2}$
Also, $0=3 A+B$
$B=\frac{-3}{2}$
Therefore, the given equation becomes,
$\Rightarrow \int \frac{\frac{1}{2}(2 x+3)-\frac{3}{2}}{\left(x^{2}+3 x+2\right)} d x$
$\Rightarrow \frac{1}{2} \log \left|x^{2}+3 x+2\right|-\frac{3}{2} \int \frac{1}{\left(\left(x+\frac{3}{2}\right)^{2}+2-\left(\frac{3}{2}\right)^{2}\right)} d x$
$\Rightarrow \frac{1}{2} \log \left|x^{2}+3 x+2\right|-\frac{3}{2} \int \frac{1}{\left(\left(x+\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}\right)} d x$
$\Rightarrow \frac{1}{2} \log \left|x^{2}+3 x+2\right|-\frac{3}{2} \times \log \left|\frac{x+\frac{3}{2}-\frac{1}{2}}{x+\frac{3}{2}+\frac{1}{2}}\right|+C$
$\Rightarrow \frac{1}{2} \log \left|x^{2}+3 x+2\right|-\frac{3}{2} \log \left|\frac{x+1}{x+2}\right|+C$
Therefore,
$\int \frac{x d x}{\left(x^{2}+3 x+2\right)}=\frac{1}{2} \log \left|x^{2}+3 x+2\right|-\frac{3}{2} \log \left|\frac{x+1}{x+2}\right|+C$

23. Question

Evaluate:
$\int \frac{(x-3)}{\left(x^{2}+2 x-4\right)} d x$

Answer

To find: $\int \frac{(x-3) d x}{\left(x^{2}+2 x-4\right)}$
Formula Used:

1. $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C$
2. $\int \frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C$

Using partial fractions,
$(x-3)=A\left(\frac{d}{d x}\left(x^{2}+2 x-4\right)\right)+B$
$x-3=A(2 x+2)+B$
Equating the coefficients of x ,
$1=2 A$
$\Rightarrow A=\frac{1}{2}$
Also, $-3=2 A+B$
$\Rightarrow B=-4$
Substituting in the given equation,
$\Rightarrow \int \frac{\frac{1}{2}(2 x+2)-4}{\left(x^{2}+2 x-4\right)} d x$
$\Rightarrow \frac{1}{2} \log \left|x^{2}+2 x-4\right|-4 \int \frac{1}{(x+1)^{2}-(\sqrt{5})^{2}} d x$
$\Rightarrow \frac{1}{2} \log \left|x^{2}+2 x-4\right|-\left(4 \times \frac{1}{2 \sqrt{5}} \times \log \left|\frac{x+1-\sqrt{5}}{x+1+\sqrt{5}}\right|\right)+C$
$\Rightarrow \frac{1}{2} \log \left|x^{2}+2 x-4\right|-\frac{2}{\sqrt{5}} \log \left|\frac{x+1-\sqrt{5}}{x+1+\sqrt{5}}\right|+C$
Therefore,
$\int \frac{(x-3) d x}{\left(x^{2}+2 x-4\right)}=\frac{1}{2} \log \left|x^{2}+2 x-4\right|-\frac{2}{\sqrt{5}} \log \left|\frac{x+1-\sqrt{5}}{x+1+\sqrt{5}}\right|+C$

24. Question

Evaluate:
$\int \frac{(2 x-3)}{\left(x^{2}+3 x-18\right)} d x$

Answer

To find: $\int \frac{(2 x-3)}{\left(x^{2}+3 x-18\right)} d x$
Formula Used:

1. $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C$
2. $\int \frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C$

Using partial fractions,
$(2 x-3)=A\left(\frac{d}{d x}\left(x^{2}+3 x-18\right)\right)+B$
$2 x-3=A(2 x+3)+B$
Equating the coefficients of x ,
$2=2 \mathrm{~A}$
$\mathrm{A}=1$
Also, $-3=3 \mathrm{~A}+\mathrm{B}$
$\Rightarrow B=-6$
Substituting in the given equation,
$\Rightarrow \int \frac{(2 x+3)-6}{\left(x^{2}+3 x-18\right)} d x$
$\Rightarrow \log \left|x^{2}+3 x-18\right|+C_{1}-6 \int \frac{1}{\left(x+\frac{3}{2}\right)^{2}-18-\left(\frac{3}{2}\right)^{2}} d x$
Let I $=6 \int \frac{1}{\left(x+\frac{3}{2}\right)^{2}-18-\left(\frac{3}{2}\right)^{2}} d x$
$\Rightarrow 6 \int \frac{1}{\left(x+\frac{3}{2}\right)^{2}-\left(\frac{9}{2}\right)^{2}} d x$
Here $\mathrm{a}=\frac{9}{2}$
$\Rightarrow \frac{6}{9} \times \log \left|\frac{x+\frac{3}{2}-\frac{9}{2}}{x+\frac{3}{2}+\frac{9}{2}}\right|+C_{2}$
$\Rightarrow \frac{2}{3} \times \log \left|\frac{x-3}{x+6}\right|+C_{2} \ldots$ (2)
Substituting (2) in (1),
$\Rightarrow \log \left|x^{2}+3 x-18\right|-\frac{2}{3} \log \left|\frac{x-3}{x+6}\right|+C$
Therefore,
$\int \frac{(2 x-3)}{\left(x^{2}+3 x-18\right)} d x=\log \left|x^{2}+3 x-18\right|-\frac{2}{3} \log \left|\frac{x-3}{x+6}\right|+C$
25. Question

Evaluate:
$\int \frac{x^{2}}{\left(x^{2}+6 x-3\right)} d x$
Answer
To find: $\int \frac{x^{2}}{\left(x^{2}+6 x-3\right)} d x$
Formula Used:

1. $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C$
2. $\int \frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C$

Given equation can be rewritten as following:
$\Rightarrow \int \frac{x^{2}+(6 x-3)-(6 x-3)}{\left(x^{2}+6 x-3\right)} d x$
$\Rightarrow \int \frac{\left(x^{2}+6 x-3\right)-(6 x-3)}{\left(x^{2}+6 x-3\right)} d x$
$\Rightarrow x-\int \frac{6 x-3}{x^{2}+6 x-3} d x$
Let $\mathrm{I}=\int \frac{6 x-3}{x^{2}+6 x-3} d x$
Using partial fractions,
$(6 x-3)=A\left(\frac{d}{d x}\left(x^{2}+6 x-3\right)\right)+B$
$6 x-3=A(2 x+6)+B$
Equating the coefficients of x,
$6=2 A$
$A=3$
Also, $-3=6 A+B$
$\Rightarrow B=-21$
Substituting in (1),
$\Rightarrow \int \frac{3(2 x+6)-21}{\left(x^{2}+6 x-3\right)} d x$
$\Rightarrow 3 \times \log \left|x^{2}+6 x-3\right|+C_{1}-21 \int \frac{1}{(x+3)^{2}-(\sqrt{12})^{2}} d x$
$\Rightarrow 3 \times \log \left|x^{2}+6 x-3\right|+C_{1}-21 \times \frac{1}{2 \sqrt{12}} \times \log \left|\frac{x+3-\sqrt{12}}{x+3+\sqrt{12}}\right|+C_{2}$
$I=3 \log \left|x^{2}+6 x-3\right|-\frac{7 \sqrt{3}}{4} \times \log \left|\frac{x+3-2 \sqrt{3}}{x+3+2 \sqrt{3}}\right|+C$
Therefore,
$\int \frac{x^{2}}{\left(x^{2}+6 x-3\right)} d x=x-3 \log \left|x^{2}+6 x-3\right|+\frac{7 \sqrt{3}}{4} \times \log \left|\frac{x+3-2 \sqrt{3}}{x+3+2 \sqrt{3}}\right|+C$

26. Question

Evaluate:
$\int \frac{(2 \mathrm{x}-1)}{\left(2 \mathrm{x}^{2}+2 \mathrm{x}+1\right)} \mathrm{dx}$

Answer

To find: $\int \frac{2 x-1}{\left(2 x^{2}+2 x+1\right)} d x$
Formula Used:

1. $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C$
2. $\int \frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C$

Using partial fractions,
$(2 x-1)=A\left(\frac{d}{d x}\left(2 x^{2}+2 x+1\right)\right)+B$
$2 x-1=A(4 x+2)+B$
Equating the coefficients of x,
$2=4 \mathrm{~A}$
$A=\frac{1}{2}$
Also, $-1=2 \mathrm{~A}+\mathrm{B}$
$\Rightarrow B=-2$
Substituting in the given equation,
$\Rightarrow \int \frac{\frac{1}{2}(4 x+2)-2}{\left(2 x^{2}+2 x+1\right)} d x$
$\Rightarrow \frac{1}{2} \log \left|2 x^{2}+2 x+1\right|-2 \int \frac{1}{2\left(x^{2}+x+\frac{1}{2}\right)} d x$
Let $\mathrm{I}=2 \int \frac{1}{2\left(x^{2}+x+\frac{1}{2}\right)} d x$
$\Rightarrow \int \frac{1}{\left(x^{2}+x+\frac{1}{2}\right)} d x$
$\Rightarrow \int \frac{1}{\left(\left(x+\frac{1}{2}\right)^{2}+\frac{1}{2}-\left(\frac{1}{2}\right)^{2}\right)} d x$
$\Rightarrow \int \frac{1}{\left(\left(x+\frac{1}{2}\right)^{2}+\frac{1}{2}-\frac{1}{4}\right)} d x$
$\Rightarrow \int \frac{1}{\left(\left(x+\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right)} d x$
Here $a=\frac{1}{2}$
$\Rightarrow 2 \tan ^{-1}\left(\frac{x+\frac{1}{2}}{\frac{1}{2}}\right)+C$
$\Rightarrow 2 \tan ^{-1}(2 \mathrm{x}+1)+\mathrm{C}$
Substituting in (1) and combining with original equation,
$\Rightarrow \frac{1}{2} \log \left|2 x^{2}+2 x+1\right|-2 \tan ^{-1}(2 x+1)+C$

Therefore,
$\int \frac{2 x-1}{\left(2 x^{2}+2 x+1\right)} d x=\frac{1}{2} \log \left|2 x^{2}+2 x+1\right|-2 \tan ^{-1}(2 x+1)+C$

27. Question

Evaluate:
$\int \frac{(1-3 x)}{\left(3 x^{2}+4 x+2\right)} d x$

Answer

To find: $\int \frac{1-3 x}{\left(3 x^{2}+4 x+2\right)} d x$
Formula Used:

1. $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C$
2. $\int \frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C$

Rewriting the given equation,
$\Rightarrow-\int \frac{3 x-1}{\left(3 x^{2}+4 x+2\right)} d x$
Using partial fractions,
$(3 x-1)=A\left(\frac{d}{d x}\left(3 x^{2}+4 x+2\right)\right)+B$
$3 x-1=A(6 x+4)+B$
Equating the coefficients of x,
$3=6 A$
$A=\frac{1}{2}$
Also, $-1=4 \mathrm{~A}+\mathrm{B}$
$\Rightarrow B=-3$
Substituting in the original equation,
$\Rightarrow-\int \frac{\frac{1}{2}(6 x+4)-3}{\left(3 x^{2}+4 x+2\right)} d x$
$\Rightarrow-\frac{1}{2} \log \left|3 x^{2}+4 x+2\right|+3 \int \frac{1}{3\left(x^{2}+\frac{4}{3} x+\frac{2}{3}\right)} d x$
Let $\mathrm{I}=3 \int \frac{1}{3\left(x^{2}+\frac{4}{3} x+\frac{2}{3}\right)} d x$
$\Rightarrow \int \frac{1}{\left(x^{2}+\frac{4}{3} x+\frac{2}{3}\right)} d x$
$\Rightarrow \int \frac{1}{\left(\left(x+\frac{2}{3}\right)^{2}+\frac{2}{3}-\frac{4}{9}\right)} d x$
$\Rightarrow \int \frac{1}{\left(\left(x+\frac{2}{3}\right)^{2}+\left(\frac{\sqrt{2}}{3}\right)^{2}\right)} d x$
Here $a=\frac{\sqrt{2}}{3}$
$\Rightarrow \frac{3}{\sqrt{2}} \tan ^{-1}\left(\frac{x+\frac{2}{3}}{\frac{\sqrt{2}}{3}}\right)+C$
$\Rightarrow \frac{3}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+2}{\sqrt{2}}\right)+C$
Substituting in (1) and combining with original equation,
$\Rightarrow-\frac{1}{2} \log \left|3 x^{2}+4 x+2\right|+\frac{3}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+2}{\sqrt{2}}\right)+C$
Therefore,
$\int \frac{1-3 x}{\left(3 x^{2}+4 x+2\right)} d x=-\frac{1}{2} \log \left|3 x^{2}+4 x+2\right|+\frac{3}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+2}{\sqrt{2}}\right)+C$

28. Question

Evaluate:
$\int \frac{2 x}{\left(2+x-x^{2}\right)} d x$

Answer

To find: $\int \frac{2 x}{\left(2+x-x^{2}\right)} d x$
Formula Used:

1. $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C$
2. $\int \frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C$

Rewriting the given equation,
$\Rightarrow-2 \int \frac{x}{\left(x^{2}-x-2\right)} d x$
Using partial fractions,
$x=A\left(\frac{d}{d x}\left(x^{2}-x-2\right)\right)+B$
$x=A(2 x-1)+B$
Equating the coefficients of x,
$1=2 A$
$A=\frac{1}{2}$
Also, $0=-A+B$
$B=\frac{1}{2}$
Substituting in the original equation,
$\Rightarrow-2 \int \frac{\frac{1}{2}(2 x-1)+\frac{1}{2}}{\left(x^{2}-x-2\right)} d x$
$\Rightarrow-\log \left|x^{2}-x-2\right|-\int \frac{1}{\left(x^{2}-x-2\right)} d x$
Let $\mathrm{I}=\int \frac{1}{\left(x^{2}-x-2\right)} d x$
$\Rightarrow \int \frac{1}{\left(\left(x-\frac{1}{2}\right)^{2}-2-\frac{1}{4}\right)} d x$
$\Rightarrow \int \frac{1}{\left(\left(x-\frac{1}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}\right)} d x$
Here $a=\frac{3}{2}$
$\Rightarrow \frac{1}{3} \log \left|\frac{x-\frac{1}{2}-\frac{3}{2}}{x-\frac{1}{2}+\frac{3}{2}}\right|+C$
$\Rightarrow \frac{1}{3} \log \left|\frac{x-2}{x+1}\right|+C$
Substituting for I and combining with the original equation,
$\Rightarrow-\log \left|x^{2}-x-2\right|+\frac{1}{3} \log \left|\frac{x-2}{x+1}\right|+C$
Therefore,
$\int \frac{2 x}{\left(2+x-x^{2}\right)} d x=-\log \left|x^{2}-x-2\right|+\frac{1}{3} \log \left|\frac{x-2}{x+1}\right|+C$
or
$\int \frac{2 x}{\left(2+x-x^{2}\right)} d x=-\log \left|2+x-x^{2}\right|+\frac{1}{3} \log \left|\frac{1+x}{2-x}\right|+C$
29. Question

Evaluate:
$\int \frac{d x}{\left(1+\cos ^{2} x\right)}$

Answer

To find: $\int \frac{1}{\left(1+\cos ^{2} x\right)} d x$
Formula Used:

1. $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C$
2. $\sec ^{2} x=1+\tan ^{2} x$

Dividing the given equation by $\cos ^{2} \mathrm{x}$ in the numerator and denominator gives us,
$\Rightarrow \int \frac{\sec ^{2} x d x}{1+\sec ^{2} x} \ldots$
Let $\mathrm{y}=\tan \mathrm{x}$
$d y=\sec ^{2} x d x$
Also, $y^{2}=\tan ^{2} x$
i.e., $y^{2}=\sec ^{2} x-1$
$\sec ^{2} x=y^{2}+1$
Substituting (2) and (3) in (1),
$\Rightarrow \int \frac{d y}{1+y^{2}+1}$
$\Rightarrow \int \frac{d y}{y^{2}+(\sqrt{2})^{2}}$
$\Rightarrow \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{y}{\sqrt{2}}\right)+C$
Since $\mathrm{y}=\tan \mathrm{x}$,
$\Rightarrow \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\tan x}{\sqrt{2}}\right)+C$
Therefore,
$\int \frac{1}{\left(1+\cos ^{2} x\right)} d x=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\tan x}{\sqrt{2}}\right)+C$
30. Question

Evaluate:
$\int \frac{d x}{\left(2+\sin ^{2} x\right)}$

Answer

To find: $\int \frac{1}{\left(2+\sin ^{2} x\right)} d x$
Formula Used:

1. $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C$
2. $\sec ^{2} x=1+\tan ^{2} x$

Dividing the given equation by $\cos ^{2} \mathrm{x}$ in the numerator and denominator gives us,
$\Rightarrow \int \frac{\sec ^{2} x d x}{2 \sec ^{2} x+\tan ^{2} x} \ldots$
Let $\mathrm{y}=\tan \mathrm{x}$
$d y=\sec ^{2} x d x \ldots$
Also, $y^{2}=\tan ^{2} x$
i.e., $y^{2}=\sec ^{2} x-1$
$\sec ^{2} x=y^{2}+1$.
Substituting (2) and (3) in (1),
$\Rightarrow \int \frac{d y}{2 y^{2}+2+y^{2}}$
$\Rightarrow \int \frac{d y}{3 y^{2}+2}$
$\Rightarrow \frac{1}{3} \int \frac{d y}{y^{2}+\left(\frac{\sqrt{2}}{\sqrt{3}}\right)^{2}}$
$\Rightarrow \frac{1}{3} \times \frac{\sqrt{3}}{\sqrt{2}} \tan ^{-1}\left(\frac{y \sqrt{3}}{\sqrt{2}}\right)+C$
Since $y=\tan x$,
$\Rightarrow \frac{1}{\sqrt{6}} \tan ^{-1}\left(\frac{\sqrt{3} \tan x}{\sqrt{2}}\right)+C$
Therefore,
$\int \frac{1}{\left(2+\sin ^{2} x\right)} d x=\frac{1}{\sqrt{6}} \tan ^{-1}\left(\frac{\sqrt{3} \tan x}{\sqrt{2}}\right)+C$
31. Question

Evaluate:
$\int \frac{d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)}$

Answer

To find: $\int \frac{d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)}$
Formula Used:

1. $\operatorname{Sec}^{2} x=1+\tan ^{2} x$
2. $\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C$

Dividing by $\cos ^{2} x$ in the numerator and denominator,
$\Rightarrow \int \frac{\sec ^{2} x d x}{a^{2}+b^{2} \tan ^{2} x}$
Let $\mathrm{y}=\tan \mathrm{x}$
$d y=\sec ^{2} x d x$
Therefore,
$\Rightarrow \int \frac{d y}{a^{2}+b^{2} y^{2}}$
$\Rightarrow \frac{1}{b^{2}} \int \frac{d y}{\left(\frac{a}{b}\right)^{2}+y^{2}}$
$\Rightarrow \frac{1}{b^{2}} \times \frac{b}{a} \tan ^{-1} \frac{y b}{a}+C$
Since $\mathrm{y}=\tan \mathrm{x}$,
$\Rightarrow \frac{1}{a b} \tan ^{-1}\left(\frac{b \tan x}{a}\right)+C$
Therefore,
$\int \frac{d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)}=\frac{1}{a^{2}} \tan ^{-1}\left(\frac{b}{a} \tan x\right)+C$

32. Question

Evaluate:
$\int \frac{d x}{\left(\cos ^{2} x-3 \sin ^{2} x\right)}$

Answer

To find: $\int \frac{d x}{\left(\cos ^{2} x-3 \sin ^{2} x\right)}$
Formula Used:

1. $\sec ^{2} x=1+\tan ^{2} x$
2. $\int \frac{1}{a^{2}-x^{2}} d x=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+C$

Dividing by $\cos ^{2} \mathrm{x}$ in the numerator and denominator,
$\Rightarrow \int \frac{\sec ^{2} x d x}{1-3 \tan ^{2} x}$
Let $\mathrm{y}=\tan \mathrm{x}$
$d y=\sec ^{2} x d x$
Therefore,
$\Rightarrow \int \frac{d y}{1-3 y^{2}}$
$\Rightarrow \frac{1}{3} \int \frac{d y}{\left(\frac{1}{\sqrt{3}}\right)^{2}-y^{2}}$
$\Rightarrow \frac{1}{3} \times \frac{\sqrt{3}}{2} \log \left|\frac{\frac{1}{\sqrt{3}}+y}{\frac{1}{\sqrt{3}}-y}\right|+C$
$\Rightarrow \frac{1}{2 \sqrt{3}} \log \left|\frac{1+y \sqrt{3}}{1-y \sqrt{3}}\right|+C$
Since $\mathrm{y}=\tan \mathrm{x}$,
$\Rightarrow \frac{1}{2 \sqrt{3}} \log \left|\frac{1+\sqrt{3} \tan x}{1-\sqrt{3} \tan x}\right|+C$
Therefore,
$\int \frac{d x}{\left(\cos ^{2} x-3 \sin ^{2} x\right)}=\frac{1}{2 \sqrt{3}} \log \left|\frac{1+\sqrt{3} \tan x}{1-\sqrt{3} \tan x}\right|+C$
33. Question

Evaluate:
$\int \frac{d x}{\left(\sin ^{2} x-4 \cos ^{2} x\right)}$

Answer

To find: $\int \frac{d x}{\left(\sin ^{2} x-4 \cos ^{2} x\right)}$
Formula Used:

1. $\sec ^{2} x=1+\tan ^{2} x$
2. $\int \frac{1}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C$

Dividing by $\cos ^{2} \mathrm{x}$ in the numerator and denominator,
$\Rightarrow \int \frac{\sec ^{2} x d x}{\tan ^{2} x-4}$
Let $\mathrm{y}=\tan \mathrm{x}$
$d y=\sec ^{2} x d x$
Therefore,
$\Rightarrow \int \frac{d y}{y^{2}-2^{2}}$
$\Rightarrow \frac{1}{4} \log \left|\frac{y-2}{y+2}\right|+C$
Since $y=\tan x$,
$\Rightarrow \frac{1}{4} \log \left|\frac{\tan x-2}{\tan x+2}\right|+C$
Therefore,
$\int \frac{d x}{\left(\sin ^{2} x-4 \cos ^{2} x\right)}=\frac{1}{4} \log \left|\frac{\tan x-2}{\tan x+2}\right|+C$

34. Question

Evaluate:
$\int \frac{d x}{\left(\sin x \cos x+2 \cos ^{2} x\right)}$

Answer

To find: $\int \frac{d x}{\left(\sin x \cos x+2 \cos ^{2} x\right)}$
Formula Used:

1. $\sec ^{2} x=1+\tan ^{2} x$
2. $\int \frac{1}{x} d x=\log x+C$

Dividing by $\cos ^{2} x$ in the numerator and denominator,
$\Rightarrow \int \frac{\sec ^{2} x d x}{\tan x+2}$
Let $\mathrm{y}=\tan \mathrm{x}$
$d y=\sec ^{2} x d x$
Therefore,
$\Rightarrow \int \frac{d y}{y+2}$
$\Rightarrow \log |y+2|+C$
Since $y=\tan x$,
$\Rightarrow \log |\tan x+2|+C$
Therefore,
$\int \frac{d x}{\left(\sin x \cos x+2 \cos ^{2} x\right)}=\log |\tan x+2|+C$
35. Question

Evaluate:
$\int \frac{\sin 2 x}{\left(\sin ^{4} x+\cos ^{4} x\right.} d x$

Answer

To find: $\int \frac{\sin 2 x d x}{\left(\sin ^{4} x+\cos ^{4} x\right)}$
Formula Used:

1. $\sec ^{2} x=1+\tan ^{2} x$
2. $\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+C$
3. $\sin 2 x=2 \sin x \cos x$

Rewriting the given equation,
$\Rightarrow \int \frac{2 \sin x \cos x}{\sin ^{4} x+\cos ^{4} x} d x$
Dividing by $\cos ^{4} \mathrm{x}$ in the numerator and denominator,
$\Rightarrow \int \frac{2 \tan x \sec ^{2} x d x}{\tan ^{4} x+1}$
Let $\mathrm{y}=\tan \mathrm{x}$
$d y=\sec ^{2} x d x$
Therefore,
$\Rightarrow \int \frac{2 y}{y^{4}+1} d y$
Let $z=y^{2}$
$d z=2 y d y$
$\Rightarrow \int \frac{d z}{1+z^{2}}$
$\Rightarrow \tan ^{-1} z+C$
Since $z=y^{2}$,
$\Rightarrow \tan ^{-1}\left(y^{2}\right)+C$
Since $y=\tan x$,
$\Rightarrow \tan ^{-1}\left(\tan ^{2} \mathrm{x}\right)+\mathrm{C}$
Therefore,
$\int \frac{\sin 2 x d x}{\left(\sin ^{4} x+\cos ^{4} x\right)}=\tan ^{-1}\left(\tan ^{2} x\right)+C$

36. Question

Evaluate:

$$
\int \frac{(2 \sin 2 \phi-\cos \phi)}{\left(6-\cos ^{2} \phi-4 \sin \phi\right)} d \phi
$$

Answer

To find: $\int \frac{(2 \sin 2 \phi-\cos \phi)}{\left(6-\cos ^{2} \phi-4 \sin \phi\right)} d \phi$
Formula Used:

1. $\sec ^{2} x=1+\tan ^{2} x$
2. $\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+C$
3. $\sin 2 x=2 \sin x \cos x$

Rewriting the given equation,
$\Rightarrow \int \frac{4 \sin \phi \cos \phi-\cos \phi}{6-\cos ^{2} \phi-4 \sin \phi} d \phi$
$\Rightarrow \int \frac{\cos \phi(4 \sin \phi-1)}{6-\left(1-\sin ^{2} \phi\right)-4 \sin \phi} d \phi$
$\Rightarrow \int \frac{\cos \phi(4 \sin \phi-1)}{5+\sin ^{2} \phi-4 \sin \phi} d \phi$
Let $y=\sin \phi$
$d y=\cos \phi d \phi$
Substituting in the original equation,
$\Rightarrow \int \frac{4 y-1}{y^{2}-4 y+5} d y$
Using partial fraction,
$4 y-1=A\left(\frac{d}{d y}\left(y^{2}-4 y+5\right)\right)+B$
$4 y-1=A(2 y-4)+B$
Equating the coefficients of y,
$4=2 A$
$A=2$
Also, $-1=-4 A+B$
$B=7$
Substituting in (1),
$\Rightarrow \int \frac{2(2 y-4)+7}{y^{2}-4 y+5} d y$
$\Rightarrow 2 \log \left|y^{2}-4 y+5\right|+7 \int \frac{1}{\left((y-2)^{2}+1\right)} d y$
$\Rightarrow 2 \log \left|y^{2}-4 y+5\right|+7 \tan ^{-1}(y-2)+C$
But $y=\sin \phi$
$\Rightarrow 2 \log \left|\sin ^{2} \phi-4 \sin \phi+5\right|+7 \tan ^{-1}(\sin \phi-2)+C$
Therefore,
$\int \frac{(2 \sin 2 \phi-\cos \phi)}{\left(6-\cos ^{2} \phi-4 \sin \phi\right)} d \phi$

$$
=2 \log \left|\sin ^{2} \phi-4 \sin \phi+5\right|+7 \tan ^{-1}(\sin \phi-2)+C
$$

37. Question

Evaluate
$\int \frac{d x}{(\sin x-2 \cos x)(2 \sin x+\cos x)}$

Answer

To find: $\int \frac{d x}{(\sin x-2 \cos x)(2 \sin x+\cos x)}$
Formula Used:

1. $\sec ^{2} x=1+\tan ^{2} x$
2. $\int \frac{1}{x} d x=\log x+C$

Dividing by $\cos ^{2} \mathrm{x}$ in the numerator and denominator,
$\Rightarrow \int \frac{\sec ^{2} x d x}{(\tan x-2)(2 \tan x+1)}$
Let $\mathrm{y}=\tan \mathrm{x}$
$d y=\sec ^{2} x d x$
Therefore,
$\Rightarrow \int \frac{d y}{(y-2)(2 y+1)}$.
Let
$\frac{1}{(y-2)(2 y+1)}=\frac{A}{(y-2)}+\frac{B}{(2 y+1)}$
$1=A(2 y+1)+B(y-2)$

When $\mathrm{y}=0$,
$1=A-2 B$
When $\mathrm{y}=1$,
$1=3 A-B \Rightarrow 2=6 A-2 B$
Solving (2) and (3),
$1=5 \mathrm{~A}$
$A=\frac{1}{5}$
So, $B=\frac{-2}{5}$
(1) becomes,
$\Rightarrow \int \frac{\frac{1}{5}}{(y-2)}+\frac{\frac{-2}{5}}{(2 y+1)}$
$\Rightarrow \frac{1}{5} \log |y-2|-\frac{2}{5} \log |2 y+1| \times \frac{1}{2}+C$
Since $y=\tan x$,
$\Rightarrow \frac{1}{5} \log |\tan x-2|-\frac{1}{5} \log |2 \tan x+1|+C$
$\Rightarrow \frac{1}{5} \log \left|\frac{\tan x-2}{2 \tan x+1}\right|+C$
Therefore,
$\int \frac{d x}{(\sin x-2 \cos x)(2 \sin x+\cos x)}=\frac{1}{5} \log \left|\frac{\tan x-2}{2 \tan x+1}\right|+C$

38. Question

Evaluate:
$\int \frac{\left(1-x^{2}\right)}{\left(1+x^{4}\right)} d x$

Answer

To find: $\int \frac{\left(1-x^{2}\right)}{\left(1+x^{4}\right)} d x$
Formula used: $\int \frac{1}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C$
On dividing by x^{2} in the numerator and denominator of the given equation,
$\Rightarrow \int \frac{\frac{1}{x^{2}}-1}{\frac{1}{x^{2}}+x^{2}} d x$
$\Rightarrow \int \frac{\frac{1}{x^{2}}-1}{\frac{1}{x^{2}}+x^{2}+2-2} d x$
$\Rightarrow \int \frac{-\left(1-\frac{1}{x^{2}}\right)}{\left(x+\frac{1}{x}\right)^{2}-2} d x$
Let $y=x+\frac{1}{x}$
Differentiating wrt x ,
$d y=\left(1-\frac{1}{x^{2}}\right) d x$
Substituting in the original equation,
$\Rightarrow \int \frac{-d y}{y^{2}-(\sqrt{2})^{2}}$
$\Rightarrow \frac{-1}{2 \sqrt{2}} \log \left|\frac{y-\sqrt{2}}{y+\sqrt{2}}\right|+C$
Substituting for $y=x+\frac{1}{x}$ and taking reciprocal of the value within logarithm, we get
$\Rightarrow \frac{1}{2 \sqrt{2}} \log \left|\frac{x+\frac{1}{x}+\sqrt{2}}{x+\frac{1}{x}-\sqrt{2}}\right|+C$
$\Rightarrow \frac{1}{2 \sqrt{2}} \log \left|\frac{\sqrt{2} x+x^{2}+1}{\sqrt{2} x-x^{2}+1}\right|+C$
Therefore,
$\int \frac{\left(1-x^{2}\right)}{\left(1+x^{4}\right)} d x=\frac{1}{2 \sqrt{2}} \log \left|\frac{\sqrt{2} x+x^{2}+1}{\sqrt{2} x-x^{2}+1}\right|+C$

39. Question

Evaluate:
$\int \frac{\left(x^{2}+1\right)}{\left(x^{4}+x^{2}+1\right)} d x$

Answer

To find: $\int \frac{\left(x^{2}+1\right)}{\left(x^{4}+x^{2}+1\right)} d x$
Formula used: $\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C$
On dividing by x^{2} in the numerator and denominator of the given equation,
$\Rightarrow \int \frac{1+\frac{1}{x^{2}}}{x^{2}+1+\frac{1}{x^{2}}} d x$
$\Rightarrow \int \frac{\left(1+\frac{1}{x^{2}}\right)}{\left(x-\frac{1}{x}\right)^{2}+3} d x$
Let $y=x-\frac{1}{x}$

Differentiating wrt x,
$d y=\left(1+\frac{1}{x^{2}}\right) d x$
Substituting in the original equation,
$\Rightarrow \int \frac{d y}{y^{2}+(\sqrt{3})^{2}}$
$\Rightarrow \frac{1}{\sqrt{3}} \tan ^{-1} \frac{y}{\sqrt{3}}+C$
Substituting for $y=x-\frac{1}{x}$
$\Rightarrow \frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x-\frac{1}{x}}{\sqrt{3}}\right)+C$
$\Rightarrow \frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x^{2}-1}{\sqrt{3} x}\right)+C$
Therefore,
$\int \frac{\left(x^{2}+1\right)}{\left(x^{4}+x^{2}+1\right)} d x=\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x^{2}-1}{\sqrt{3} x}\right)+C$
40. Question

Evaluate:
$\int \frac{d x}{\left(\sin ^{4} x+\cos ^{4} x\right)}$

Answer

To find: $\int \frac{d x}{\left(\sin ^{4} x+\cos ^{4} x\right)}$
Formula used:

1. $\sec ^{2} x=1+\tan ^{2} x$
2. $\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C$

Dividing by $\cos ^{4} x$ in the numerator and denominator of the given equation,
$\Rightarrow \int \frac{\sec ^{4} x}{\left(\tan ^{4} x+1\right)} d x$
$\Rightarrow \int \frac{\sec ^{2} x\left(1+\tan ^{2} x\right)}{\left(1+\tan ^{4} x\right)} d x$
Let $\mathrm{y}=\tan \mathrm{x}$
$d y=\sec ^{2} x d x$
Substituting in the original equation,
$\Rightarrow \int \frac{1+y^{2}}{1+y^{4}} d y$

Dividing by y^{2} in the numerator and denominator,
$\Rightarrow \int \frac{y^{-2}+1}{y^{-2}+y^{2}} d y$
$\Rightarrow \int \frac{1+y^{-2}}{y^{2}+y^{-2}-2+2} d y$
$\Rightarrow \int \frac{1+y^{-2}}{\left(y-\frac{1}{y}\right)^{2}+2} d y$
Let $z=y-\frac{1}{y}$
$d z=\left(1+\frac{1}{y^{2}}\right) d y$
Therefore,
$\Rightarrow \int \frac{d z}{z^{2}+(\sqrt{2})^{2}}$
$\Rightarrow \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{Z}{\sqrt{2}}\right)+C$
Substituting for z,
$\Rightarrow \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{y-\frac{1}{y}}{\sqrt{2}}\right)+C$
$\Rightarrow \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{y^{2}-1}{y \sqrt{2}}\right)+C$
Substituting for $\mathrm{y}=\tan \mathrm{x}$,
$\Rightarrow \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\tan ^{2} x-1}{\sqrt{2} \tan x}\right)+C$
Therefore,
$\int \frac{d x}{\left(\sin ^{4} x+\cos ^{4} x\right)}=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\tan ^{2} x-1}{\sqrt{2} \tan x}\right)+C$

Exercise 14B

1. Question

Evaluate:
$\int \frac{d x}{\sqrt{16-x^{2}}}$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c$ where c is the integrating constant $\therefore \int \frac{\mathrm{dx}}{\sqrt{16-\mathrm{x}^{2}}}$
$=\int \frac{\mathrm{dx}}{\sqrt{4^{2}-\mathrm{x}^{2}}}$
$=\sin ^{-1} \frac{x}{4}+c, c$ being the integrating constant
2. Question

Evaluate:
$\int \frac{\mathrm{dx}}{\sqrt{1-9 x^{2}}}$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c$ where c is the integrating constant
$\therefore \int \frac{\mathrm{dx}}{\sqrt{1-9 \mathrm{x}^{2}}}$
$=\int \frac{d x}{\sqrt{9\left\{\left(\frac{1}{9}\right)-x^{2}\right\}}}$
$=\frac{1}{3} \int \frac{\mathrm{dx}}{\sqrt{1^{2}-\left(\frac{x}{3}\right)^{2}}}$
$=\frac{1}{3} \sin ^{-1} \frac{x}{\frac{1}{3}}+c$
$=\frac{1}{3} \sin ^{-1} 3 \mathrm{x}+\mathrm{c}, \mathrm{c}$ being the integrating constant

3. Question

Evaluate:
$\int \frac{d x}{\sqrt{15-8 x^{2}}}$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c$ where c is the integrating constant
$\therefore \int \frac{\mathrm{dx}}{\sqrt{15-8 \mathrm{x}^{2}}}$
$=\int \frac{\mathrm{dx}}{\sqrt{15\left\{1-\left(\frac{\sqrt{8}}{\sqrt{15}} \mathrm{x}\right)^{2}\right\}}}$
$=\frac{1}{\sqrt{15}} \int \frac{d x}{\sqrt{1^{2}-\left(\frac{\sqrt{8}}{\sqrt{15}} x\right)^{2}}}$
$=\frac{1}{\sqrt{15}} \sin ^{-1} \frac{x}{\left(\frac{\sqrt{15}}{\sqrt{8}}\right)}+c$
$=\frac{1}{\sqrt{15}} \sin ^{-1} \frac{\sqrt{8}}{\sqrt{15}} \mathrm{x}+\mathrm{c}, \mathrm{c}$ being the integrating constant

4. Question

Evaluate:
$\int \frac{d x}{\sqrt{x^{2}-4}}$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}\right)+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{2}-4}}$
$=\int \frac{d x}{\sqrt{x^{2}-2^{2}}}$
$=\log \left|x+\sqrt{x^{2}-4}\right|+c, c$ being the integrating constant

5. Question

Evaluate:
$\int \frac{\mathrm{dx}}{\sqrt{4 \mathrm{x}^{2}-1}}$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\log \left(x+\sqrt{x^{2} \pm a^{2}}\right)+c$ where c is the integrating constant
$\therefore \int \frac{\mathrm{dx}}{\sqrt{4 \mathrm{x}^{2}-1}}$
$=\int \frac{d x}{\sqrt{(2 x)^{2}-1^{2}}}$
$=\frac{1}{2} \log \left|2 \mathrm{x}+\sqrt{4 \mathrm{x}^{2}-1}\right|+\mathrm{c}, \mathrm{c}$ being the integrating constant

6. Question

Evaluate:
$\int \frac{d x}{\sqrt{9 x^{2}-7}}$
Answer
Formula to be used $-\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}\right)+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{\mathrm{dx}}{\sqrt{9 \mathrm{x}^{2}-7}}$
$=\int \frac{d x}{\sqrt{(3 x)^{2}-\sqrt{7}^{2}}}$
$=\log \left|3 \mathrm{x}+\sqrt{9 \mathrm{x}^{2}-7}\right|+\mathrm{c}, \mathrm{c}$ being the integrating constant

7. Question

Evaluate:
$\int \frac{d x}{\sqrt{x^{2}-9}}$
Answer
Formula to be used $-\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\log \left(x+\sqrt{x^{2} \pm a^{2}}\right)+c$ where c is the integrating constant
$\therefore \int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{2}-9}}$
$=\int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{2}-3^{2}}}$
$=\log \left|x+\sqrt{x^{2}-9}\right|+c, c$ being the integrating constant

8. Question

Evaluate:
$\int \frac{d x}{\sqrt{1+4 x^{2}}}$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}\right)+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{d \mathrm{x}}{\sqrt{1+4 \mathrm{x}^{2}}}$
$=\int \frac{\mathrm{dx}}{\sqrt{(2 \mathrm{x})^{2}+1^{2}}}$
$=\frac{1}{2} \log \left|2 \mathrm{x}+\sqrt{4 \mathrm{x}^{2}+1}\right|+\mathrm{c}, \mathrm{c}$ being the integrating constant

9. Question

Evaluate:
$\int \frac{d x}{\sqrt{9+4 x^{2}}}$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\log \left(x+\sqrt{x^{2} \pm a^{2}}\right)+c$ where c is the integrating constant
$\therefore \int \frac{d \mathrm{x}}{\sqrt{9+4 \mathrm{x}^{2}}}$
$=\int \frac{d x}{\sqrt{(2 x)^{2}+3^{2}}}$
$=\frac{1}{2} \log \left|2 \mathrm{x}+\sqrt{4 \mathrm{x}^{2}+9}\right|+\mathrm{c}, \mathrm{c}$ being the integrating constant

10. Question

Evaluate:
$\int \frac{x}{\sqrt{9-x^{4}}} d x$

Answer

Tip $-d\left(x^{2}\right)=2 x d x$ i.e. $x d x=(1 / 2) \times d\left(x^{2}\right)$
Formula to be used $-\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c$ where c is the integrating constant
$\therefore \int \frac{\mathrm{xdx}}{\sqrt{9-\mathrm{x}^{4}}}$
$=\frac{1}{2} \int \frac{\mathrm{~d}\left(\mathrm{x}^{2}\right)}{\sqrt{3^{2}-\left(\mathrm{x}^{2}\right)^{2}}}$
$=\frac{1}{2} \sin ^{-1} \frac{x^{2}}{3}+c, c$ being the integrating constant

11. Question

Evaluate:
$\int \frac{3 x^{2}}{\sqrt{9-16 x^{6}}} d x$

Answer

Tip $-d\left(x^{3}\right)=3 x^{2} d x$ so, $d\left(4 x^{3}\right)=4 \times 3 x^{2} d x$ i.e $3 x^{2} d x=(1 / 4) d\left(2 x^{3}\right)$
Formula to be used $-\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c$ where c is the integrating constant
$\therefore \int \frac{3 \mathrm{x}^{2} \mathrm{dx}}{\sqrt{9-16 \mathrm{x}^{6}}}$
$=\frac{1}{4} \int \frac{\mathrm{~d}\left(2 \mathrm{x}^{3}\right)}{\sqrt{3^{2}-\left(4 \mathrm{x}^{3}\right)^{2}}}$
$=\frac{1}{4} \sin ^{-1} \frac{4 x^{3}}{3}+c, c$ being the integrating constant

12. Question

Evaluate:
$\int \frac{\sec ^{2} x}{\sqrt{16+\tan ^{2} x}} d x$

Answer

Tip $-d(\tan x)=\sec ^{2} x d x$
Formula to be used $-\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\log \left(x+\sqrt{x^{2} \pm a^{2}}\right)+c$ where c is the integrating constant
$\therefore \int \frac{\sec ^{2} x d x}{\sqrt{16+\tan ^{2} x}}$
$=\int \frac{d(\tan x)}{\sqrt{4^{2}+(\tan x)^{2}}}$
$=\log \left|\tan \mathrm{x}+\sqrt{16+\tan ^{2} \mathrm{x}}\right|+\mathrm{c}, \mathrm{c}$ being the integrating constant

13. Question

Evaluate:
$\int \frac{\sin x}{\sqrt{4+\cos ^{2} x}} d x$
Answer
Tip $-d(\cos x)=-\sin x d x$ i.e. $\sin x d x=-d(\cos x)$
Formula to be used $-\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}\right)+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{\sin x d x}{\sqrt{4+\cos ^{2} x}}$
$=\int \frac{-d(\cos x)}{\sqrt{(\cos x)^{2}+2^{2}}}$
$=-\log \left|\cos x+\sqrt{4+\cos ^{2} x}\right|+c, c$ being the integrating constant

14. Question

Evaluate:
$\int \frac{\cos x}{\sqrt{9 \sin ^{2} x}-1} d x$
Answer
Tip $-d(\sin x)=\cos x d x$ so, $d(3 \sin x)=3 \cos x d x$ i.e. $\cos x d x=(1 / 3) d(3 \sin x)$
Formula to be used $-\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}\right)+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{\cos x d x}{\sqrt{9 \sin ^{2} x-1}}$
$=\frac{1}{3} \int \frac{d(3 \sin x)}{\sqrt{(3 \sin x)^{2}-1^{2}}}$
$=\frac{1}{3} \log \left|\cos x+\sqrt{4+\cos ^{2} x}\right|+c, c$ being the integrating constant

15. Question

Evaluate:
$\int \frac{e^{x}}{\sqrt{4+e^{2 x}}} d x$
Answer
Tip $-d\left(e^{x}\right)=e^{x} d x$
Formula to be used $-\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\log \left(x+\sqrt{x^{2} \pm a^{2}}\right)+c$ where c is the integrating constant
$\therefore \int \frac{\mathrm{e}^{\mathrm{x}} \mathrm{dx}}{\sqrt{4+\mathrm{e}^{2 \mathrm{x}}}}$
$=\int \frac{\mathrm{d}\left(\mathrm{e}^{\mathrm{x}}\right)}{\sqrt{2^{2}+\left(\mathrm{e}^{\mathrm{x}}\right)^{2}}}$
$=\log \left|\mathrm{e}^{\mathrm{x}}+\sqrt{4+\mathrm{e}^{2 \mathrm{x}}}\right|+\mathrm{c}, \mathrm{c}$ being the integrating constant

16. Question

Evaluate:
$\int \frac{2 \mathrm{e}^{\mathrm{x}}}{\sqrt{4-\mathrm{e}^{2 \mathrm{x}}}} d x$

Answer

Tip $-d\left(e^{x}\right)=e^{x} d x$
Formula to be used $-\int \frac{d \mathrm{x}}{\sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}}}=\sin ^{-1} \frac{\mathrm{x}}{\mathrm{a}}+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{2 \mathrm{e}^{\mathrm{x}} \mathrm{dx}}{\sqrt{4-\mathrm{e}^{2 \mathrm{x}}}}$
$=2 \int \frac{\mathrm{~d}\left(\mathrm{e}^{\mathrm{x}}\right)}{\sqrt{2^{2}-\left(\mathrm{e}^{\mathrm{x}}\right)^{2}}}$
$=2 \sin ^{-1}\left(\frac{e^{x}}{2}\right)+c, c$ being the integrating constant

17. Question

Evaluate:
$\int \frac{\mathrm{dx}}{\sqrt{1-\mathrm{e}^{\mathrm{x}}}}$

Answer

Formula to be used $-\int \frac{d \mathrm{x}}{\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}\right)+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{\mathrm{dx}}{\sqrt{1-\mathrm{e}^{\mathrm{x}}}}$
$=\int \frac{d x}{\sqrt{e^{x}\left(e^{-x}-1\right)}}$
$=\int \frac{e^{-\frac{x}{2}} d x}{\sqrt{e^{-x}-1}}$
$=\int \frac{e^{-\frac{x}{2}} d x}{\sqrt{\left(e^{-\frac{x}{2}}\right)^{2}-1^{2}}}$
Tip - Assuming $\mathrm{e}^{-(\mathrm{x} / 2)}=\mathrm{a},-(1 / 2) \mathrm{e}^{-(\mathrm{x} / 2)} \mathrm{dx}=$ da i.e. $\mathrm{e}^{-(\mathrm{x} / 2)} \mathrm{dx}=-2 d a$
$\therefore \int \frac{\mathrm{e}^{-\frac{x}{2}} \mathrm{dx}}{\sqrt{\left(\mathrm{e}^{-\frac{x}{2}}\right)^{2}-1^{2}}}$
$=\int \frac{-2 \mathrm{da}}{\sqrt{\mathrm{a}^{2}-1^{2}}}$
$=-2 \log \left|a+\sqrt{a^{2}-1}\right|+c$
$=-2 \log \left|e^{-\frac{x}{2}}+\sqrt{e^{-x}-1}\right|+c, c$ being the integrating constant

18. Question

Evaluate:
$\int \sqrt{\frac{a-x}{a+x}} d x$

Answer

Tip - Taking $\mathrm{x}=\operatorname{acos} 2 \theta$,
$\mathrm{dx}=-2 \mathrm{a} \sin 2 \theta \mathrm{~d} \theta$ and $\theta=\frac{1}{2} \cos ^{-1} \frac{\mathrm{x}}{\mathrm{a}}$
$x=\operatorname{acos} 2 \theta$ i.e $\cos 2 \theta=\frac{x}{a}$
$\therefore \sin 2 \theta=\sqrt{1-\frac{x^{2}}{a^{2}}}$
$\therefore \int \sqrt{\frac{a-x}{a+x}} d x$
$=\int \sqrt{\frac{a-a \cos 2 \theta}{a+a \cos 2 \theta}} \times(-2 a \sin 2 \theta d \theta)$
$=\int \sqrt{\frac{a(1-\cos 2 \theta)}{a(1+\cos 2 \theta)}} \times(-2 a \sin 2 \theta d \theta)$
Formula to be used $-\cos 2 \theta=1-2 \sin ^{2} \theta=2 \cos ^{2} \theta-1$
$\sin 2 \theta=2 \sin \theta \cos \theta$
$\therefore \int \sqrt{\frac{1-\cos 2 \theta}{1+\cos 2 \theta}} \times(-2 a \sin 2 \theta \mathrm{~d} \theta)$
$=\int \sqrt{\frac{2 \sin ^{2} \theta}{2 \cos ^{2} \theta}} \times(-2 \mathrm{a} \sin 2 \theta \mathrm{~d} \theta)$
$=\int \frac{\sin \theta}{\cos \theta} \times(-2 \mathrm{a} \times 2 \sin \theta \cos \theta \mathrm{~d} \theta)$
$=-2 \mathrm{a} \int 2 \sin ^{2} \theta \mathrm{~d} \theta$
$=-2 \mathrm{a} \int 1-\cos 2 \theta \mathrm{~d} \theta$
$=-2 a\left[\theta-\frac{\sin 2 \theta}{2}\right]$
$=-2 a\left[\theta-\frac{\sin 2 \theta}{2}\right]+c$
$=-2 a\left[\frac{1}{2} \cos ^{-1} \frac{x}{a}-\frac{\sqrt{1-\frac{x^{2}}{a^{2}}}}{2}\right]+c$
$=-a \cos ^{-1} \frac{x}{a}+a \sqrt{1-\frac{x^{2}}{a^{2}}}+c$
$=a \sin ^{-1} \frac{x}{a}+\sqrt{a^{2}-x^{2}}+c, c$ being the integrating constant

19. Question

Evaluate:
$\int \frac{d x}{\sqrt{x^{2}+6 x+5}}$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}\right)+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{d x}{\sqrt{x^{2}+6 x+5}}$
$=\int \frac{d x}{\sqrt{\left(x^{2}+2 \times x \times 3+3^{2}\right)+5-3^{2}}}$
$=\int \frac{d x}{\sqrt{(x+3)^{2}-2^{2}}}$
$=\log \left|(x+3)+\sqrt{x^{2}+6 x+5}\right|+c, c$ being the integrating constant

20. Question

Evaluate:
$\int \frac{d x}{\sqrt{(2-x)^{2}+1}}$

Answer

Tip $-d(2-x)=-d x$ i.e. $d x=-d(2-x)$
Formula to be used $-\int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}\right)+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{d x}{\sqrt{(2-x)^{2}+1}}$
$=\int \frac{-\mathrm{d}(2-\mathrm{x})}{\sqrt{(2-\mathrm{x})^{2}+1}}$
$=-\log \left|(2-x)+\sqrt{(2-x)^{2}+1}\right|+c$
$=-\log \left|(2-x)+\sqrt{x^{2}-4 x+5}\right|+c, c$ being the integrating constant

21. Question

Evaluate:
$\int \frac{d x}{\sqrt{(x-3)^{2}+1}}$

Answer

Formula to be used $-\int \frac{d \mathrm{x}}{\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}\right)+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{\mathrm{dx}}{\sqrt{(\mathrm{x}-3)^{2}+1}}$
$=\log \left|(x-3)+\sqrt{(x-3)^{2}+1}\right|+c$
$=\log \left|(x-3)+\sqrt{x^{2}-6 x+10}\right|+c, c$ being the integrating constant

22. Question

Evaluate:

$$
\int \frac{\mathrm{dx}}{\sqrt{x^{2}-6 x+10}}
$$

Answer

Formula to be used $-\int \frac{d \mathrm{x}}{\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}\right)+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{d x}{\sqrt{x^{2}-6 x+10}}$
$=\int \frac{d x}{\sqrt{(x-3)^{2}+1}}$
$=\log \left|(x-3)+\sqrt{(x-3)^{2}+1}\right|+c$
$=\log \left|(x-3)+\sqrt{x^{2}-6 x+10}\right|+c, c$ being the integrating constant

23. Question

Evaluate:

$$
\int \frac{\mathrm{dx}}{\sqrt{2+2 \mathrm{x}-\mathrm{x}^{2}}}
$$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}}}=\sin ^{-1} \frac{\mathrm{x}}{\mathrm{a}}+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{\mathrm{dx}}{\sqrt{2+2 \mathrm{x}-\mathrm{x}^{2}}}$
$=\int \frac{d x}{\sqrt{3-\left(x^{2}-2 x+1\right)}}$
$=\int \frac{d x}{\sqrt{(\sqrt{3})^{2}-(x-1)^{2}}}$
$=\sin ^{-1}\left(\frac{\mathrm{x}-1}{\sqrt{3}}\right)+\mathrm{c}, \mathrm{c}$ being the integrating constant

24. Question

Evaluate:

Answer

Formula to be used $-\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c$ where c is the integrating constant
$\therefore \int \frac{\mathrm{dx}}{\sqrt{8-4 \mathrm{x}-2 \mathrm{x}^{2}}}$
$=\int \frac{d x}{\sqrt{10-2\left(x^{2}+2 x+1\right)}}$
$=\int \frac{d x}{\sqrt{(\sqrt{10})^{2}-2(x+1)^{2}}}$
$=\frac{1}{\sqrt{2}} \int \frac{d x}{\sqrt{(\sqrt{5})^{2}-(x+1)^{2}}}$
$=\frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{x+1}{\sqrt{5}}\right)+c, c$ being the integrating constant

25. Question

Evaluate:
$\int \frac{d x}{\sqrt{16-6 x-x^{2}}}$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c$ where c is the integrating constant
$\therefore \int \frac{d x}{\sqrt{16-6 x-x^{2}}}$
$=\int \frac{\mathrm{dx}}{\sqrt{25-\left(\mathrm{x}^{2}+6 \mathrm{x}+9\right)}}$
$=\int \frac{d x}{\sqrt{(5)^{2}-(x+3)^{2}}}$
$=\sin ^{-1}\left(\frac{x+3}{5}\right)+c, c$ being the integrating constant

26. Question

Evaluate:
$\int \frac{d x}{\sqrt{7-6 x-x^{2}}}$
Answer

Formula to be used $-\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c$ where c is the integrating constant
$\therefore \int \frac{d x}{\sqrt{7-6 x-x^{2}}}$
$=\int \frac{d x}{\sqrt{16-\left(x^{2}+6 x+9\right)}}$
$=\int \frac{d x}{\sqrt{(4)^{2}-(x+3)^{2}}}$
$=\sin ^{-1}\left(\frac{x+3}{4}\right)+c, c$ being the integrating constant

27. Question

Evaluate:
$\int \frac{d x}{\sqrt{x-x^{2}}}$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c$ where c is the integrating constant
$\therefore \int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}-\mathrm{x}^{2}}}$
$=\int \frac{\mathrm{dx}}{\sqrt{\left(\frac{1}{2}\right)^{2}-\left(\mathrm{x}^{2}-2 \times \mathrm{x} \times \frac{1}{2}+\left(\frac{1}{2}\right)^{2}\right)}}$
$=\int \frac{d x}{\sqrt{\left(\frac{1}{2}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}}}$
$=\sin ^{-1}\left(\frac{x-\frac{1}{2}}{\frac{1}{2}}\right)+c$
$=\sin ^{-1}(2 x-1)+c, c$ being the integrating constant

28. Question

Evaluate:
$\int \frac{d x}{\sqrt{8+2 x-x^{2}}}$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c$ where c is the integrating constant
$\therefore \int \frac{\mathrm{dx}}{\sqrt{8+2 \mathrm{x}-\mathrm{x}^{2}}}$
$=\int \frac{\mathrm{dx}}{\sqrt{9-\left(\mathrm{x}^{2}-2 \mathrm{x}+1\right)}}$
$=\int \frac{\mathrm{dx}}{\sqrt{(3)^{2}-(x-1)^{2}}}$
$=\sin ^{-1}\left(\frac{x-1}{3}\right)+c, c$ being the integrating constant

29. Question

Evaluate:
$\int \frac{d x}{\sqrt{x^{2}-3 x+2}}$
Answer
Formula to be used $-\int \frac{d x}{\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}\right)+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{d x}{\sqrt{x^{2}-3 x+2}}$
$=\int \frac{d x}{\sqrt{x^{2}-2 \times x \times \frac{3}{2}+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}+2}}$
$=\int \frac{d x}{\sqrt{\left(x-\frac{3}{2}\right)^{2}-\frac{1}{4}}}$
$=\log \left|\left(x-\frac{3}{2}\right)+\sqrt{x^{2}-3 x+2}\right|+c, c$ being the integrating constant

30. Question

Evaluate:
$\int \frac{d x}{\sqrt{2 x^{2}+3 x-2}}$
Answer
Formula to be used $-\int \frac{d x}{\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}\right)+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{d x}{\sqrt{2 x^{2}+3 x-2}}$
$=\int \frac{d x}{\sqrt{2\left(x^{2}+2 \times x \times \frac{3}{4}+\left(\frac{3}{4}\right)^{2}\right)-\frac{7}{8}}}$
$=\frac{1}{\sqrt{2}} \int \frac{d x}{\sqrt{\left(x+\frac{3}{4}\right)^{2}-\left(\frac{\sqrt{7}}{4}\right)^{2}}}$
$=\frac{1}{\sqrt{2}} \log \left|\left(\mathrm{x}+\frac{3}{4}\right)+\sqrt{2 \mathrm{x}^{2}+3 \mathrm{x}-2}\right|+\mathrm{c}, \mathrm{c}$ being the integrating constant

31. Question

Evaluate:
$\int \frac{d \mathrm{x}}{\sqrt{2 \mathrm{x}^{2}+4 \mathrm{x}+6}}$

Answer

Formula to be used $-\int \frac{d \mathrm{x}}{\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}\right)+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{d x}{\sqrt{2 x^{2}+4 x+6}}$
$=\int \frac{d x}{\sqrt{2\left(x^{2}+2 x+1\right)+4}}$
$=\frac{1}{\sqrt{2}} \int \frac{d x}{\sqrt{(x+1)^{2}+(\sqrt{2})^{2}}}$
$=\frac{1}{\sqrt{2}} \log \left|(\mathrm{x}+1)+\sqrt{2 \mathrm{x}^{2}+4 \mathrm{x}+6}\right|+\mathrm{c}, \mathrm{c}$ being the integrating constant

32. Question

Evaluate:

Answer

Formula to be used $-\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c$ where c is the integrating constant
$\therefore \int \frac{\mathrm{dx}}{\sqrt{1+2 \mathrm{x}-3 \mathrm{x}^{2}}}$
$=\int \frac{d x}{\sqrt{\left(1-\frac{1}{3}\right)-3\left(x^{2}-2 \times x \times \frac{1}{3}+\left(\frac{1}{3}\right)^{2}\right)}}$
$=\int \frac{d x}{\sqrt{\left(\frac{\sqrt{2}}{\sqrt{3}}\right)^{2}-3\left(x-\frac{1}{3}\right)^{2}}}$
$=\frac{1}{\sqrt{3}} \int \frac{d x}{\sqrt{\left(\frac{\sqrt{2}}{3}\right)^{2}-\left(x-\frac{1}{3}\right)^{2}}}$
$=\frac{1}{\sqrt{3}} \sin ^{-1}\left(\frac{x-\frac{1}{3}}{\frac{\sqrt{2}}{3}}\right)+c$
$=\frac{1}{\sqrt{3}} \sin ^{-1}\left(\frac{3 x-1}{\sqrt{2}}\right)+c, c$ being the integrating constant

33. Question

Evaluate:
$\int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}} \sqrt{5-\mathrm{x}}}$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c$ where c is the integrating constant
$\therefore \int \frac{\mathrm{dx}}{\sqrt{5 \mathrm{x}-\mathrm{x}^{2}}}$
$=\int \frac{d x}{\sqrt{\left(\frac{5}{2}\right)^{2}-\left(x^{2}-2 \times x \times \frac{5}{2}+\left(\frac{5}{2}\right)^{2}\right)}}$
$=\int \frac{d x}{\sqrt{\left(\frac{5}{2}\right)^{2}-\left(x-\frac{5}{2}\right)^{2}}}$
$=\sin ^{-1}\left(\frac{x-\frac{5}{2}}{\frac{5}{2}}\right)+c$
$=\sin ^{-1}\left(\frac{2 x-5}{5}\right)+c, c$ being the integrating constant

34. Question

Evaluate:
$\int \frac{d x}{\sqrt{3+4 x-2 x^{2}}}$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c$ where c is the integrating constant
$\therefore \int \frac{d x}{\sqrt{3+4 \mathrm{x}-2 \mathrm{x}^{2}}}$
$=\int \frac{d x}{\sqrt{5-2\left(x^{2}-2 x+1\right)}}$
$=\int \frac{d x}{\sqrt{(\sqrt{5})^{2}-2(x-1)^{2}}}$
$=\frac{1}{\sqrt{2}} \int \frac{d x}{\sqrt{\left(\sqrt{\frac{5}{2}}\right)^{2}-(x-1)^{2}}}$
$=\frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{x-1}{\sqrt{\frac{5}{2}}}\right)+c$
$=\frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{\sqrt{2}(x-5)}{\sqrt{5}}\right)+c, c$ being the integrating constant

35. Question

Evaluate:
$\int \frac{x^{2}}{\sqrt{x^{6}+2 x^{3}+3}} d x$

Answer

Tip $-d\left(x^{3}\right)=3 x^{2} d x$ i.e. $x^{2} d x=(1 / 3) d\left(x^{3}\right)$
Formula to be used $-\int \frac{d x}{\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}\right)+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{x^{2} d x}{\sqrt{x^{6}+2 x^{3}+3}}$
$=\int \frac{\frac{1}{3} d\left(x^{3}\right)}{\sqrt{\left(x^{3}\right)^{2}+2 x^{3}+3}}$
$=\frac{1}{3} \int \frac{\mathrm{~d}\left(\mathrm{x}^{3}\right)}{\sqrt{\left(\mathrm{x}^{3}+1\right)^{2}+(\sqrt{2})^{2}}}$
$=\frac{1}{3} \log \left|\left(x^{3}+1\right)+\sqrt{x^{6}+2 x^{3}+3}\right|+c, c$ being the integrating constant

36. Question

Evaluate:
$\int \frac{(2 x+3)}{\sqrt{x^{2}+x+1}} d x$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\log \left(x+\sqrt{x^{2} \pm a^{2}}\right)+c$ where c is the integrating constant
$\therefore \int \frac{(2 \mathrm{x}+3)}{\sqrt{\mathrm{x}^{2}+\mathrm{x}+1}} \mathrm{dx}$
$=\int \frac{(2 x+1)+2}{\sqrt{x^{2}+x+1}} d x$
$=\int \frac{(2 x+1)}{\sqrt{x^{2}+x+1}} d x+\int \frac{2}{\sqrt{x^{2}+x+1}} d x$
Tip - Assuming $x^{2}+x+1=a^{2},(2 x+1) d x=2 a d a$
$\therefore \int \frac{(2 \mathrm{x}+1)}{\sqrt{\mathrm{x}^{2}+\mathrm{x}+1}} \mathrm{dx}$
$=\int \frac{2 a d a}{a}$
$=\int 2 d a$
$=2 \mathrm{a}+\mathrm{c}_{1}$
$=2 \sqrt{x^{2}+x+1}+c_{1}$
$\therefore \int \frac{2}{\sqrt{x^{2}+x+1}} d x$
$=2 \int \frac{d x}{\sqrt{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}}$
$=2 \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}\right|+c_{2}$
$\therefore \int \frac{(2 \mathrm{x}+1)}{\sqrt{\mathrm{x}^{2}+\mathrm{x}+1}} \mathrm{dx}+\int \frac{2}{\sqrt{\mathrm{x}^{2}+\mathrm{x}+1}} \mathrm{dx}$
$=2 \sqrt{x^{2}+x+1}+2 \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}\right|+c, c$ is the integrating constant

37. Question

Evaluate:
$\int \frac{(5 x+3)}{\sqrt{x^{2}+4 x+10}} d x$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}\right)+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{(5 x+3)}{\sqrt{x^{2}+4 x+10}} d x$
$=\int \frac{\frac{5}{2} \times(2 x+4)-7}{\sqrt{x^{2}+4 x+10}} d x$
$=\frac{5}{2} \int \frac{(2 x+4)}{\sqrt{x^{2}+4 x+10}} d x-\int \frac{7}{\sqrt{x^{2}+4 x+10}} d x$
Tip - Assuming $x^{2}+4 x+10=a^{2},(2 x+4) d x=2 a d a$
$\therefore \frac{5}{2} \int \frac{(2 x+4)}{\sqrt{x^{2}+4 x+10}} d x$
$=\frac{5}{2} \int \frac{2 \mathrm{ada}}{\mathrm{a}}$
$=\frac{5}{2} \int 2 \mathrm{da}$
$=5 a+c_{1}$
$=5 \sqrt{x^{2}+4 x+10}+c_{1}$
$\therefore \int \frac{7}{\sqrt{x^{2}+4 x+10}} d x$
$=7 \int \frac{d x}{\sqrt{(x+2)^{2}+(\sqrt{6})^{2}}}$
$=7 \log \left|(x+2)+\sqrt{x^{2}+4 x+10}\right|+c_{2}$
$\therefore \frac{5}{2} \int \frac{(2 x+4)}{\sqrt{x^{2}+4 x+10}} d x-\int \frac{7}{\sqrt{x^{2}+4 x+10}} d x$
$=5 \sqrt{x^{2}+4 x+10}-7 \log \left|(x+2)+\sqrt{x^{2}+4 x+10}\right|+c, c$ is the integrating constant

38. Question

Evaluate:
$\int \frac{(4 \mathrm{x}+3)}{\sqrt{2 \mathrm{x}^{2}+2 \mathrm{x}-3}}$

Answer

Formula to be used $-\int \frac{d \mathrm{x}}{\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}\right)+\mathrm{c}$ where c is the integrating constant
$\therefore \int \frac{(4 \mathrm{x}+3)}{\sqrt{2 \mathrm{x}^{2}+2 \mathrm{x}-3}} \mathrm{dx}$
$=\int \frac{(4 x+2)+1}{\sqrt{2 x^{2}+2 x-3}} d x$
$=\int \frac{(4 \mathrm{x}+2)}{\sqrt{2 \mathrm{x}^{2}+2 \mathrm{x}-3}} \mathrm{dx}+\int \frac{1}{\sqrt{2 \mathrm{x}^{2}+2 \mathrm{x}-3}} \mathrm{dx}$
Tip - Assuming $2 \mathrm{x}^{2}+2 \mathrm{x}-3=\mathrm{a}^{2},(4 \mathrm{x}+2) \mathrm{dx}=2$ ada
$=\int \frac{(4 \mathrm{x}+2)}{\sqrt{2 \mathrm{x}^{2}+2 \mathrm{x}-3}} \mathrm{dx}$
$=\int \frac{2 \mathrm{ada}}{\mathrm{a}}$
$=\int 2 d a$
$=2 \mathrm{a}+\mathrm{c}_{1}$
$=2 \sqrt{2 x^{2}+2 x-3}+c_{1}$
$\therefore \int \frac{1}{\sqrt{2 \mathrm{x}^{2}+2 \mathrm{x}-3}} \mathrm{dx}$
$=\int \frac{d x}{\sqrt{2\left(x+\frac{1}{2}\right)^{2}-\left(\sqrt{\frac{7}{2}}\right)^{2}}}$
$=\frac{1}{\sqrt{2}} \int \frac{\mathrm{dx}}{\sqrt{\left(\mathrm{x}+\frac{1}{2}\right)^{2}-\left(\frac{\sqrt{7}}{2}\right)^{2}}}$
$=\frac{1}{\sqrt{2}} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x-\frac{3}{2}}\right|+c_{2}$
$\therefore \int \frac{(4 x+2)}{\sqrt{2 x^{2}+2 x-3}} d x+\int \frac{1}{\sqrt{2 x^{2}+2 x-3}} d x$
$=2 \sqrt{2 x^{2}+2 x-3}+\frac{1}{\sqrt{2}} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x-\frac{3}{2}}\right|+c, c$ is the integrating constant

39. Question

Evaluate:
$\int \frac{(3-2 x)}{\sqrt{2+x-x^{2}}} d x$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c$ where c is the integrating constant
$\therefore \int \frac{(3-2 \mathrm{x})}{\sqrt{2+\mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx}$
$=\int \frac{(1-2 x)+2}{\sqrt{2+x-x^{2}}} d x$
$=\int \frac{(1-2 x)}{\sqrt{2+x-x^{2}}} d x+\int \frac{2}{\sqrt{2+x-x^{2}}} d x$
Tip - Assuming $2+x-x^{2}=a^{2},(1-2 x) d x=2 a d a$
$\therefore \int \frac{(1-2 \mathrm{x})}{\sqrt{2+\mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx}$
$=\int \frac{2 \mathrm{ada}}{\mathrm{a}}$
$=2 \mathrm{a}+\mathrm{c}_{1}$
$=2 \sqrt{2+x-x^{2}}+c_{1}$
$\therefore \int \frac{2}{\sqrt{2+\mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx}$
$=2 \int \frac{\mathrm{dx}}{\sqrt{\left(\frac{3}{2}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}}}$
$=2 \sin ^{-1} \frac{\left(x-\frac{1}{2}\right)}{\left(\frac{3}{2}\right)}+c_{2}$
$=2 \sin ^{-1}\left(\frac{2 x-1}{3}\right)+c_{2}$
$\therefore \int \frac{(1-2 \mathrm{x})}{\sqrt{2+\mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx}+\int \frac{2}{\sqrt{2+\mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx}$
$=2 \sqrt{2+x-x^{2}}+2 \sin ^{-1}\left(\frac{2 x-1}{3}\right)+c, c$ is the integrating constant

40. Question

Evaluate:
$\int \frac{(x+2)}{\sqrt{2 x^{2}+2 x-3}} d x$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\log \left(x+\sqrt{x^{2} \pm a^{2}}\right)+c$ where c is the integrating constant
$\therefore \int \frac{(x+2)}{\sqrt{2 x^{2}+2 x-3}} d x$
$=\int \frac{\frac{1}{4} \times(4 \mathrm{x}+2)+\frac{3}{2}}{\sqrt{2 \mathrm{x}^{2}+2 \mathrm{x}-3}} \mathrm{dx}$
$=\frac{1}{4} \int \frac{(4 x+2)}{\sqrt{2 x^{2}+2 x-3}} d x+\frac{3}{2} \int \frac{1}{\sqrt{2 x^{2}+2 x-3}} d x$
Tip - Assuming $2 x^{2}+2 x-3=a^{2},(4 x+2) d x=2 a d a$
$\therefore \frac{1}{4} \int \frac{(4 x+2)}{\sqrt{2 x^{2}+2 x-3}} d x$
$=\frac{1}{4} \int \frac{2 \mathrm{ada}}{\mathrm{a}}$
$=\frac{1}{2} \int \mathrm{da}$
$=\frac{a}{2}+c_{1}$
$=\frac{\sqrt{2 x^{2}+2 x-3}}{2}+c_{1}$
$\therefore \frac{3}{2} \int \frac{1}{\sqrt{2 \mathrm{x}^{2}+2 \mathrm{x}-3}} \mathrm{dx}$
$=\frac{3}{2} \int \frac{d x}{\sqrt{2\left(x+\frac{1}{2}\right)^{2}-\left(\sqrt{\frac{7}{2}}\right)^{2}}}$
$=\frac{3}{2 \sqrt{2}} \int \frac{d x}{\sqrt{\left(x+\frac{1}{2}\right)^{2}-\left(\frac{\sqrt{7}}{2}\right)^{2}}}$
$=\frac{3}{2 \sqrt{2}} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x-\frac{3}{2}}\right|+c_{2}$
$\therefore \frac{1}{4} \int \frac{(4 \mathrm{x}+2)}{\sqrt{2 \mathrm{x}^{2}+2 \mathrm{x}-3}} \mathrm{dx}+\frac{3}{2} \int \frac{1}{\sqrt{2 \mathrm{x}^{2}+2 \mathrm{x}-3}} \mathrm{dx}$
$=\frac{\sqrt{2 x^{2}+2 \mathrm{x}-3}}{2}+\frac{3}{2 \sqrt{2}} \log \left|\left(\mathrm{x}+\frac{1}{2}\right)+\sqrt{\mathrm{x}^{2}+\mathrm{x}-\frac{3}{2}}\right|+\mathrm{c}, \mathrm{c}$ is the integrating constant

41. Question

Evaluate:
$\int \frac{(3 x+1)}{\sqrt{5-2 x-x^{2}}} d x$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c$ where c is the integrating constant
$\therefore \int \frac{(3 \mathrm{x}+1)}{\sqrt{5-2 \mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx}$
$=\int \frac{3(\mathrm{x}+1)-2}{\sqrt{5-2 \mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx}$
$=\int \frac{3(x+1)}{\sqrt{5-2 x-x^{2}}} d x-\int \frac{2}{\sqrt{5-2 x-x^{2}}} d x$
Tip - Assuming $5-2 x-x^{2}=a^{2},(-2-2 x) d x=$ 2ada i.e. $(x+1) d x=-$ ada
$\therefore \int \frac{3(\mathrm{x}+1)}{\sqrt{5-2 \mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx}$
$=-3 \int \frac{\mathrm{ada}}{\mathrm{a}}$
$=-3 a+c_{1}$
$=-3 \sqrt{5-2 x-x^{2}}+c_{1}$
$\therefore \int \frac{2}{\sqrt{5-2 \mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx}$
$=2 \int \frac{d x}{\sqrt{(\sqrt{6})^{2}-(x+1)^{2}}}$
$=2 \sin ^{-1} \frac{(x+1)}{\sqrt{6}}+c_{2}$
$\therefore \int \frac{3(\mathrm{x}+1)}{\sqrt{5-2 \mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx}-\int \frac{2}{\sqrt{5-2 \mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx}$
$=-3 \sqrt{5-2 x-x^{2}}-2 \sin ^{-1}\left(\frac{x+1}{\sqrt{6}}\right)+c, c$ is the integrating constant

42. Question

Evaluate:
$\int \frac{(6 x+5)}{\sqrt{6+x-2 x^{2}}} d x$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c$ where c is the integrating constant
$\therefore \int \frac{(6 \mathrm{x}+5)}{\sqrt{6+\mathrm{x}-2 \mathrm{x}^{2}}} \mathrm{dx}$
$=\int \frac{\frac{6}{4}(4 x-1)+\frac{13}{2}}{\sqrt{6+x-2 x^{2}}} d x$
$=\frac{3}{2} \int \frac{(4 x-1)}{\sqrt{6+x-2 x^{2}}} d x+\frac{13}{2} \int \frac{1}{\sqrt{6+x-2 x^{2}}} d x$

Tip - Assuming $6+x-2 x^{2}=a^{2},(1-4 x) d x=2$ ada i.e. $(4 x-1) d x=-2 a d a$
$\therefore \frac{3}{2} \int \frac{(4 \mathrm{x}-1)}{\sqrt{6+\mathrm{x}-2 \mathrm{x}^{2}}} \mathrm{dx}$
$=-\frac{3}{2} \int \frac{2 \mathrm{ada}}{\mathrm{a}}$
$=-3 a+c_{1}$
$=-3 \sqrt{6+x-2 x^{2}}+c_{1}$
$\therefore \frac{13}{2} \int \frac{1}{\sqrt{6+\mathrm{x}-2 \mathrm{x}^{2}}} \mathrm{dx}$
$=\frac{13}{2} \int \frac{d x}{\sqrt{\left(\frac{7}{2 \sqrt{2}}\right)^{2}-2\left(x-\frac{1}{4}\right)^{2}}}$
$=\frac{13}{2 \sqrt{2}} \int \frac{\mathrm{dx}}{\sqrt{\left(\frac{7}{4}\right)^{2}-\left(x-\frac{1}{4}\right)^{2}}}$
$=\frac{13}{2 \sqrt{2}} \sin ^{-1} \frac{\left(x-\frac{1}{4}\right)}{\left(\frac{7}{4}\right)}+c_{2}$
$=\frac{13}{2 \sqrt{2}} \sin ^{-1}\left(\frac{4 x-1}{7}\right)+c_{2}$
$\therefore \frac{3}{2} \int \frac{(4 x-1)}{\sqrt{6+x-2 x^{2}}} d x+\frac{13}{2} \int \frac{1}{\sqrt{6+x-2 x^{2}}} d x$
$=-3 \sqrt{6+x-2 x^{2}}+\frac{13}{2 \sqrt{2}} \sin ^{-1}\left(\frac{4 x-1}{7}\right)+c, c$ is the integrating constant

43. Question

Evaluate:
$\int \sqrt{\frac{1+\mathrm{x}}{\mathrm{x}}} \mathrm{dx}$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\log \left(x+\sqrt{x^{2} \pm a^{2}}\right)+c$ where c is the integrating constant $\int \sqrt{\frac{1+x}{x}} d x$
$=\int \sqrt{\frac{(1+x)^{2}}{x(1+x)}} d x$
$=\int \frac{1+x}{\sqrt{x^{2}+x}} d x$
$=\int \frac{\frac{1}{2}(2 x+1)+\frac{1}{2}}{\sqrt{x^{2}+x}} d x$
$=\frac{1}{2} \int \frac{2 x+1}{\sqrt{x^{2}+x}} d x+\frac{1}{2} \int \frac{d x}{\sqrt{x^{2}+x}}$
Tip - Taking $x^{2}+x=a^{2},(2 x+1) d x=2 a d a$
$\therefore \frac{1}{2} \int \frac{2 \mathrm{x}+1}{\sqrt{\mathrm{x}^{2}+\mathrm{x}}} \mathrm{dx}$
$=\frac{1}{2} \int \frac{2 \mathrm{ada}}{\mathrm{a}}$
$=a+c_{1}$
$=\sqrt{x^{2}+x}+c_{1}$
$\therefore \frac{1}{2} \int \frac{1}{\sqrt{\mathrm{x}^{2}+\mathrm{x}}} \mathrm{dx}$
$=\frac{1}{2} \int \frac{d x}{\sqrt{\left(x+\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}}$
$=\frac{1}{2} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x}\right|+c_{2}$
$\therefore \frac{1}{2} \int \frac{2 \mathrm{x}+1}{\sqrt{\mathrm{x}^{2}+\mathrm{x}}} \mathrm{dx}+\frac{1}{2} \int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{2}+\mathrm{x}}}$
$=\sqrt{x^{2}+x}+\frac{1}{2} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x}\right|+c, c$ is the integrating constant

44. Question

Evaluate:
$\int \frac{(x+2)}{\sqrt{x^{2}+5 x+6}} d x$

Answer

Formula to be used $-\int \frac{d x}{\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2} \pm \mathrm{a}^{2}}\right)+\mathrm{c}$ where c is the integrating constant
$\int \frac{(x+2)}{\sqrt{x^{2}+5 x+6}} d x$
$=\int \frac{\frac{1}{2}(2 x+5)-\frac{1}{2}}{\sqrt{x^{2}+5 x+6}} d x$
$=\frac{1}{2} \int \frac{2 x+5}{\sqrt{x^{2}+5 x+6}} d x-\frac{1}{2} \int \frac{d x}{\sqrt{x^{2}+5 x+6}}$
Tip - Taking $x^{2}+5 x+6=a^{2},(2 x+5) d x=2 a d a$
$\therefore \frac{1}{2} \int \frac{2 x+5}{\sqrt{x^{2}+5 x+6}} d x$
$=\frac{1}{2} \int \frac{2 \mathrm{ada}}{\mathrm{a}}$
$=a+c_{1}$
$=\sqrt{x^{2}+5 x+6}+c_{1}$
$\therefore-\frac{1}{2} \int \frac{1}{\sqrt{\mathrm{x}^{2}+5 \mathrm{x}+6}} \mathrm{dx}$
$=-\frac{1}{2} \int \frac{d x}{\sqrt{\left(x+\frac{5}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}}$
$=-\frac{1}{2} \log \left|\left(x+\frac{5}{2}\right)+\sqrt{x^{2}+5 x+6}\right|+c_{2}$
$\therefore \frac{1}{2} \int \frac{2 \mathrm{x}+5}{\sqrt{\mathrm{x}^{2}+5 \mathrm{x}+6}} \mathrm{dx}-\frac{1}{2} \int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{2}+5 \mathrm{x}+6}}$
$=\sqrt{x^{2}+5 x+6}-\frac{1}{2} \log \left|\left(x+\frac{5}{2}\right)+\sqrt{x^{2}+5 x+6}\right|+c, c$ is the integrating constant

Exercise 14C

1. Question

Evaluate the following integrals:
$\int \sqrt{4-x^{2}} d x$

Answer

To Find : $\int \sqrt{4-x^{2}} d x$
Now, $\int \sqrt{4-x^{2}} d x$ can be written as $\int \sqrt{2^{2}-x^{2}} d x$
Formula Used: $\int \sqrt{a^{2}-x^{2}} d x=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+\mathrm{C}$
Since $\int \sqrt{2^{2}-x^{2}} d x$ is of the form $\int \sqrt{a^{2}-x^{2}} d x$,
Hence, $\int \sqrt{2^{2}-x^{2}} d x=\frac{1}{2} x \sqrt{2^{2}-x^{2}}+\frac{2^{2}}{2} \sin ^{-1} \frac{x}{2}+\mathrm{C}$
$=\frac{1}{2} x \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}+\mathrm{C}$
$=\frac{1}{2} x \sqrt{4-x^{2}}+2 \sin ^{-1} \frac{x}{2}+\mathrm{C}$
Therefore, $\int \sqrt{4-x^{2}} d x=\frac{1}{2} x \sqrt{4-x^{2}}+2 \sin ^{-1} \frac{x}{2}+\mathrm{C}$

2. Question

Evaluate the following integrals:
$\int \sqrt{4-9 x^{2}} d x$

Answer

To Find : $\int \sqrt{4-9 x^{2}} d x$
Now, $\int \sqrt{4-9 x^{2}} d x$ can be written as $\int \sqrt{2^{2}-(3 x)^{2}} d x$
Formula Used: $\int \sqrt{a^{2}-x^{2}} d x=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+\mathrm{C}$
Since $\int \sqrt{2^{2}-(3 x)^{2}} d x$ is of the form $\int \sqrt{a^{2}-x^{2}} d x$,

Hence, $\int \sqrt{2^{2}-(3 x)^{2}} d x=\frac{1}{2}(3 x) \sqrt{2^{2}-(3 x)^{2}}+\frac{2^{2}}{2} \sin ^{-1} \frac{3 x}{2}+\mathrm{C}$
$=\frac{x}{2} \sqrt{4-9 x^{2}}+\frac{4}{6} \sin ^{-1} \frac{3 x}{2}+\mathrm{C}$
$=\frac{x}{2} \sqrt{4-9 x^{2}}+\frac{2}{3} \sin ^{-1} \frac{3 x}{2}+\mathrm{C}$
Therefore, $\int \sqrt{4-9 x^{2}} d x=\frac{x}{2} \sqrt{4-9 x^{2}}+\frac{2}{3} \sin ^{-1} \frac{3 x}{2}+\mathrm{C}$

3. Question

Evaluate the following integrals:
$\int \sqrt{x^{2}-2} d x$

Answer

To Find : $\int \sqrt{x^{2}-2} d x$
Now, $\int \sqrt{x^{2}-2} d x$ can be written as $\int \sqrt{x^{2}-(\sqrt{2})^{2}} d x$
Formula Used: $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}-a^{2}}\right|+\mathrm{C}$
Since $\int \sqrt{x^{2}-(\sqrt{2})^{2}} d x$ is of the form $\int \sqrt{x^{2}-a^{2}} d x$,
Hence, $\int \sqrt{x^{2}-(\sqrt{2})^{2}} d x=\frac{x}{2} \sqrt{x^{2}-(\sqrt{2})^{2}}-\frac{(\sqrt{2})^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}-(\sqrt{2})^{2}}\right|+\mathrm{C}$
$=\frac{x}{2} \sqrt{x^{2}-2}-\frac{2}{2} \log \left|\mathrm{x}+\sqrt{x^{2}-2}\right|+\mathrm{C}$
$=\frac{x}{2} \sqrt{x^{2}-2}-\log \left|\mathrm{x}+\sqrt{x^{2}-2}\right|+\mathrm{C}$
Therefore, $\int \sqrt{x^{2}-2} d x=\frac{x}{2} \sqrt{x^{2}-2}-\log \left|\mathrm{x}+\sqrt{x^{2}-2}\right|+\mathrm{C}$

4. Question

Evaluate the following integrals:

$$
\int \sqrt{2 x^{2}-3} d x
$$

Answer

To Find: $\int \sqrt{2 \mathrm{x}^{2}-3} \mathrm{dx}$
Now, $\int \sqrt{2 x^{2}-3} d x$ can be written as $\int \sqrt{(\sqrt{2 x})^{2}-(\sqrt{3})^{2}} d x$
Formula Used: $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}-a^{2}}\right|+\mathrm{C}$
Since $\int \sqrt{(\sqrt{2} x)^{2}-(\sqrt{3})^{2}} d x$ is of the form $\int \sqrt{x^{2}-a^{2}} d x$,

$=\frac{\sqrt{2 x}}{2} \sqrt{2 x^{2}-3}-\frac{3}{2} \log \left|\sqrt{2} \mathrm{x}+\sqrt{2 x^{2}-3}\right|+\mathrm{C}$
$=\frac{x}{2} \sqrt{2 x^{2}-3}-\frac{3}{2 \sqrt{2}} \log \left|\sqrt{2} x+\sqrt{2 x^{2}-3}\right|+C$
Therefore, $\int \sqrt{2 x^{2}-3} d x=\frac{x}{2} \sqrt{2 x^{2}-3}-\frac{3}{2 \sqrt{2}} \log \left|\sqrt{2 x}+\sqrt{2 x^{2}-3}\right|+\mathrm{C}$

5. Question

Evaluate the following integrals:
$\int \sqrt{\mathrm{x}^{2}+5} \mathrm{dx}$

Answer

To Find : $\int \sqrt{x^{2}+5} d x$
Now, $\int \sqrt{x^{2}+5} d x$ can be written as $\int \sqrt{x^{2}+(\sqrt{5})^{2}} d x$
Formula Used: $\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}+a^{2}}\right|+\mathrm{C}$
Since $\int \sqrt{x^{2}+(\sqrt{5})^{2}} d x$ is of the form $\int \sqrt{x^{2}+a^{2}} d x$,
Hence, $\int \sqrt{x^{2}+(\sqrt{5})^{2}} d x=\frac{x}{2} \sqrt{x^{2}+(\sqrt{5})^{2}}+\frac{(\sqrt{5})^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}+(\sqrt{5})^{2}}\right|+\mathrm{C}$
$=\frac{x}{2} \sqrt{x^{2}+5}+\frac{5}{2} \log \left|\mathrm{x}+\sqrt{x^{2}+5}\right|+\mathrm{C}$
Therefore, $\int \sqrt{x^{2}+5} d x=\frac{x}{2} \sqrt{x^{2}+5}+\frac{5}{2} \log \left|\mathrm{x}+\sqrt{x^{2}+5}\right|+\mathrm{C}$

6. Question

Evaluate the following integrals:
$\int \sqrt{4 x^{2}+9} d x$

Answer

To Find : $\int \sqrt{4 x^{2}+9} d x$
Now, $\int \sqrt{4 x^{2}+9} d x$ can be written as $\int \sqrt{(2 x)^{2}+3^{2}} d x$
Formula Used: $\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}+a^{2}}\right|+\mathrm{C}$
Since $\int \sqrt{(2 x)^{2}+3^{2}} d x$ is of the form $\int \sqrt{x^{2}+a^{2}} d x$,
Hence, $\int \sqrt{(2 x)^{2}+3^{2}} d x=\frac{2 x}{2} \sqrt{(2 x)^{2}+3^{2}}+\frac{3^{2}}{2} \log \left|2 \mathrm{x}+\sqrt{(2 x)^{2}+3^{2}}\right|+\mathrm{C}$
$=\frac{2 x}{2} \sqrt{4 x^{2}+9}+\frac{9}{2} \log \left|2 x+\sqrt{4 x^{2}+9}\right|+\mathrm{C}$
$=\frac{x}{2} \sqrt{4 x^{2}+9}+\frac{9}{4} \log \left|2 \mathrm{x}+\sqrt{4 x^{2}+9}\right|+\mathrm{C}$
Therefore, $\int \sqrt{4 x^{2}+9} d x=\frac{x}{2} \sqrt{4 x^{2}+9}+\frac{9}{4} \log \left|2 \mathrm{x}+\sqrt{4 x^{2}+9}\right|+\mathrm{C}$

7. Question

Evaluate the following integrals:
$\int \sqrt{3 x^{2}+4} d x$

Answer

To Find: $\int \sqrt{3 x^{2}+4} d x$
Now, $\int \sqrt{3 x^{2}+4} d x$ can be written as $\int \sqrt{(\sqrt{3 x})^{2}+2^{2}} d x$
Formula Used: $\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}+a^{2}}\right|+\mathrm{C}$
Since $\int \sqrt{(\sqrt{3} x)^{2}+2^{2}} d x$ is of the form $\int \sqrt{x^{2}+a^{2}} d x$,
Hence, $\int \sqrt{(\sqrt{3} x)^{2}+2^{2}} d x=\frac{\sqrt{3 x}}{2} \sqrt{(\sqrt{3} x)^{2}+2^{2}}+\frac{2^{2}}{2} \log \left|\sqrt{3} \mathrm{x}+\sqrt{(\sqrt{3 x})^{2}+2^{2}}\right|+\mathrm{C}$
$=\frac{\sqrt{3 x}}{2} \sqrt{3 x^{2}+4}+\frac{4}{2} \log \left|\sqrt{3} \mathrm{x}+\sqrt{3 x^{2}+4}\right|+\mathrm{C}$
$=\frac{x}{2} \sqrt{3 x^{2}+4}+\frac{2}{\sqrt{3}} \log \left|\sqrt{3 x}+\sqrt{3 x^{2}+4}\right|+\mathrm{C}$
Therefore, $\int \sqrt{3 x^{2}+4} d x=\frac{x}{2} \sqrt{3 x^{2}+4}+\frac{2}{\sqrt{3}} \log \left|\sqrt{3} x+\sqrt{3 x^{2}+4}\right|+\mathrm{C}$

8. Question

Evaluate the following integrals:

$$
\int \cos x \sqrt{9-\sin ^{2} x} d x
$$

Answer

To Find : $\int \cos x \sqrt{9-\sin ^{2} x} d x$
Now, let $\sin \mathrm{x}=\mathrm{t}$
$\Rightarrow \cos x d x=d t$
Therefore, $\int \cos x \sqrt{9-\sin ^{2} x} d x$ can be written as $\int \sqrt{3^{2}-t^{2}} d t$
Formula Used: $\int \sqrt{a^{2}-x^{2}} d x=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+\mathrm{C}$
Since, $\int \sqrt{3^{2}-t^{2}} d t$ is in the form of $\int \sqrt{a^{2}-x^{2}} d x$ with t as a variable instead of x .
$\Rightarrow \int \sqrt{3^{2}-t^{2}} d t=\frac{1}{2} t \sqrt{3^{2}-t^{2}}+\frac{3^{2}}{2} \sin ^{-1} \frac{t}{3}+\mathrm{C}$
$=\frac{t}{2} \sqrt{9-t^{2}}+\frac{9}{2} \sin ^{-1} \frac{t}{3}+C$
Now since $\sin \mathrm{x}=\mathrm{t}$ and $\cos \mathrm{x} \mathrm{dx}=\mathrm{dt}$
$\Rightarrow \int \cos x \sqrt{9-\sin ^{2} x} d x=\frac{\sin x}{2} \sqrt{9-\sin ^{2} x}+\frac{9}{2} \sin ^{-1}\left(\frac{\sin x}{3}\right)+\mathrm{C}$

9. Question

Evaluate the following integrals:
$\int \sqrt{x^{2}-4 x+2} d x$

Answer

To Find : $\int \sqrt{x^{2}-4 x+2} d x$
Now, $\int \sqrt{x^{2}-4 x+2} d x$ can be written as $\int \sqrt{x^{2}-4 x+2^{2}-2^{2}+2} d x$
i.e., $\int \sqrt{(x-2)^{2}-2} d x$

Here, let $\mathrm{x}-2=\mathrm{y} \Rightarrow \mathrm{dx}=\mathrm{dy}$
Therefore, $\int \sqrt{(x-2)^{2}-2} d x$ can be written as $\int \sqrt{y^{2}-(\sqrt{2})^{2}} d y$
Formula Used: $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}-a^{2}}\right|+\mathrm{C}$
Since $\int \sqrt{y^{2}-(\sqrt{2})^{2}} d y$ is of the form $\int \sqrt{x^{2}-a^{2}} d x$ with change in variable.
$\Rightarrow \int \sqrt{y^{2}-(\sqrt{2})^{2}} d y=\frac{y}{2} \sqrt{y^{2}-(\sqrt{2})^{2}}-\frac{(\sqrt{2})^{2}}{2} \log \left|y+\sqrt{y^{2}-(\sqrt{2})^{2}}\right|+C$
$=\frac{y}{2} \sqrt{y^{2}-2}-\frac{4}{2} \log \left|y+\sqrt{y^{2}-2}\right|+\mathrm{C}$
$=\frac{y}{2} \sqrt{y^{2}-2}-2 \log \left|y+\sqrt{y^{2}-2}\right|+C$
Since,$x-2=y$ and $d x=d y$
$\Rightarrow \int \sqrt{(x-2)^{2}-2} d x=\frac{(x-2)}{2} \sqrt{(x-2)^{2}-2}-2 \log \left|(x-2)+\sqrt{(x-2)^{2}-2}\right|+C$ Therefore,
$\int \sqrt{x^{2}-4 x+2} d x=\frac{(x-2)}{2} \sqrt{x^{2}-4 x+2}-2 \log \left|(x-2)+\sqrt{x^{2}-4 x+2}\right|+C$

10. Question

Evaluate the following integrals:
$\int \sqrt{x^{2}+6 x-4} d x$

Answer

To Find: $\int \sqrt{x^{2}+6 x-4} d x$
Now, $\int \sqrt{x^{2}+6 x-4} d x$ can be written as $\int \sqrt{x^{2}+6 x+3^{2}-3^{2}-4} d x$
i.e, $\int \sqrt{(x+3)^{2}-13} d x$

Here, let $x+3=y \Rightarrow d x=d y$
Therefore, $\int \sqrt{(x+3)^{2}-13} d x$ can be written as $\int \sqrt{y^{2}-(\sqrt{13})^{2}} d y$
Formula Used: $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}-a^{2}}\right|+\mathrm{C}$
Since $\int \sqrt{y^{2}-(\sqrt{13})^{2}} d y$ is of the form $\int \sqrt{x^{2}-a^{2}} d x$ with change in variable.
$\Rightarrow \int \sqrt{y^{2}-(\sqrt{13})^{2}} d y=\frac{y}{2} \sqrt{y^{2}-(\sqrt{13})^{2}}-\frac{(\sqrt{13})^{2}}{2} \log \left|y+\sqrt{y^{2}-(\sqrt{13})^{2}}\right|+C$
$=\frac{y}{2} \sqrt{y^{2}-13}-\frac{13}{2} \log \left|y+\sqrt{y^{2}-13}\right|+C$
Since,$x+3=y$ and $d x=d y$
$\Rightarrow \int \sqrt{(x+3)^{2}-13} d x=\frac{(x+3)}{2} \sqrt{(x+3)^{2}-13}-\frac{13}{2} \log \left|(x+3)+\sqrt{(x+3)^{2}-13}\right|+C$
Therefore,
$\int \sqrt{x^{2}+6 x-4} d x=\frac{(x+3)}{2} \sqrt{x^{2}+6 x-4}-\frac{13}{2} \log \left|(x+3)+\sqrt{x^{2}+6 x-4}\right|+C$

11. Question

Evaluate the following integrals:
$\int \sqrt{2 x-x^{2}} d x$

Answer

To Find : $\int \sqrt{2 x-x^{2}} \mathrm{dx}$
Now, $\int \sqrt{2 x-x^{2}} d x$ can be written as $\int \sqrt{2 x-x^{2}-1^{2}+1^{2}} d x$
i.e, $\int \sqrt{1-(x-1)^{2}} d x$

Let $\mathrm{x}-1=\mathrm{y} \Rightarrow \mathrm{dx}=\mathrm{dy}$
Therefore, $\int \sqrt{1-(x-1)^{2}} d x$ becomes $\int \sqrt{1^{2}-y^{2}} d y$
Formula Used: $\int \sqrt{a^{2}-x^{2}} d x=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+\mathrm{C}$
Since $\int \sqrt{1^{2}-y^{2}} d y$ is of the form $\int \sqrt{a^{2}-x^{2}} d x$ with change in variable,
Hence $\int \sqrt{1^{2}-y^{2}} d y=\frac{1}{2} y \sqrt{1^{2}-y^{2}}+\frac{1^{2}}{2} \sin ^{-1} \frac{y}{1}+\mathrm{C}$
$=\frac{y}{2} \sqrt{1-y^{2}}+\frac{1}{2} \sin ^{-1} \frac{y}{1}+\mathrm{C}$
Here we have $\mathrm{x}-1=\mathrm{y}$ and $\mathrm{dx}=\mathrm{dy}$
$\Rightarrow \int \sqrt{1-(x-1)^{2}} d x=\frac{(x-1)}{2} \sqrt{1-(x-1)^{2}}+\frac{1}{2} \sin ^{-1} \frac{(x-1)}{1}+\mathrm{C}$
Therefore, $\int \sqrt{2 x-x^{2}} d x=\frac{(x-1)}{2} \sqrt{2 x-x^{2}}+\frac{1}{2} \sin ^{-1}(x-1)+\mathrm{C}$

12. Question

Evaluate the following integrals:
$\int \sqrt{1-4 \mathrm{x}-\mathrm{x}^{2}} \mathrm{dx}$

Answer

To Find : $\int \sqrt{1-4 x-x^{2}} \mathrm{dx}$
Now, $\int \sqrt{1-4 x-x^{2}} d x$ can be written as $\int \sqrt{1-4 x-x^{2}-2^{2}+2^{2}} d x$
i.e, $\int \sqrt{5-(x+2)^{2}} d x$

Let $\mathrm{x}+2=\mathrm{y} \Rightarrow \mathrm{dx}=\mathrm{dy}$
Therefore, $\int \sqrt{5-(x+2)^{2}} d x$ becomes $\int \sqrt{(\sqrt{5})^{2}-y^{2}} d y$
Formula Used: $\int \sqrt{a^{2}-x^{2}} d x=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+\mathrm{C}$

Since $\int \sqrt{(\sqrt{5})^{2}-y^{2}} d y$ is of the form $\int \sqrt{a^{2}-x^{2}} d x$ with change in variable,
Hence $\int \sqrt{(\sqrt{5})^{2}-y^{2}} d y=\frac{1}{2} y \sqrt{(\sqrt{5})^{2}-y^{2}}+\frac{(\sqrt{5})^{2}}{2} \sin ^{-1} \frac{y}{\sqrt{5}}+C$
$=\frac{y}{2} \sqrt{5-y^{2}}+\frac{5}{2} \sin ^{-1} \frac{y}{\sqrt{5}}+\mathrm{C}$
Here we have $x+2=y$ and $d x=d y$
$\Rightarrow \int \sqrt{5-(x+2)^{2}} d x=\frac{(x+2)}{2} \sqrt{5-(x+2)^{2}}+\frac{5}{2} \sin ^{-1}\left(\frac{x+2}{\sqrt{5}}\right)+\mathrm{C}$
Therefore, $\int \sqrt{1-4 x-x^{2}} d x=\frac{(x+2)}{2} \sqrt{1-4 x-x^{2}}+\frac{5}{2} \sin ^{-1}\left(\frac{x+2}{\sqrt{5}}\right)+\mathrm{C}$

13. Question

Evaluate the following integrals:
$\int \sqrt{2 a x-x^{2}} d x$

Answer

To Find : $\int \sqrt{2 a x-x^{2}} \mathrm{dx}$
Now, $\int \sqrt{2 a x-x^{2}} d x$ can be written as $\int \sqrt{2 a x-x^{2}-a^{2}+a^{2}} d x$
i.e, $\int \sqrt{a^{2}-(x-a)^{2}} d x$

Let $x-a=y \Rightarrow d x=d y$
Therefore, $\int \sqrt{a^{2}-(x-a)^{2}} d x$ becomes $\int \sqrt{a^{2}-y^{2}} d y$
Formula Used: $\int \sqrt{a^{2}-x^{2}} d x=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+\mathrm{C}$
Since $\int \sqrt{a^{2}-y^{2}} d y$ is of the form $\int \sqrt{a^{2}-x^{2}} d x$ with change in variable,
Hence $\int \sqrt{a^{2}-y^{2}} d y=\frac{1}{2} y \sqrt{a^{2}-y^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{y}{a}+\mathrm{C}$
$=\frac{y}{2} \sqrt{a^{2}-y^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{y}{a}+\mathrm{C}$
Here we have $x-a=y$ and $d x=d y$
$\Rightarrow \int \sqrt{a^{2}-(x-a)^{2}} d x=\frac{(x-a)}{2} \sqrt{a^{2}-(x-a)^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x-a}{a}\right)+\mathrm{C}$
Therefore , $\int \sqrt{2 a x-x^{2}} d x=\frac{(x-a)}{2} \sqrt{2 a x-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x-a}{a}\right)+C$

14. Question

Evaluate the following integrals:
$\int \sqrt{2 x^{2}+3 x+4} d x$

Answer

To Find : $\int \sqrt{2 x^{2}+3 x+4} d x$
Now, consider $\int \sqrt{2 x^{2}+3 x+4} d x=\int \sqrt{2\left[x^{2}+\frac{3}{2} x+2\right]} d x$
$=\sqrt{2} \int \sqrt{x^{2}+\frac{3}{2} x+2} d x$
$=\sqrt{2} \int \sqrt{x^{2}+\frac{3}{2} x+\left(\frac{3}{4}\right)^{2}-\left(\frac{3}{4}\right)^{2}+2} d x$
$=\sqrt{2} \int \sqrt{\left(x+\frac{3}{4}\right)^{2}+\frac{23}{16}} d x$
Let $x+\frac{3}{4}=y \Rightarrow d x=d y$
Hence $\sqrt{2} \int \sqrt{\left(x+\frac{3}{4}\right)^{2}+\frac{23}{16}} d x$ becomes $\sqrt{2} \int \sqrt{y^{2}+\left(\frac{\sqrt{23}}{4}\right)^{2}} d y$
Formula Used: $\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}+a^{2}}\right|+\mathrm{C}$
Now consider $\int \sqrt{y^{2}+\left(\frac{\sqrt{23}}{4}\right)^{2}} d y$ which is in the form of $\int \sqrt{x^{2}+a^{2}} d x$ with change in variable.
$\Rightarrow \int \sqrt{y^{2}+\left(\frac{\sqrt{23}}{4}\right)^{2}} d y=\frac{y}{2} \sqrt{y^{2}+\left(\frac{\sqrt{23}}{4}\right)^{2}}+\frac{\left(\frac{\sqrt{23}}{4}\right)^{2}}{2} \log \left|y+\sqrt{y^{2}+\left(\frac{\sqrt{23}}{4}\right)^{2}}\right|+C$
$=\frac{y}{2} \sqrt{y^{2}+\frac{23}{16}}+\frac{23}{32} \log \left|y+\sqrt{y^{2}+\frac{23}{16}}\right|+C$
Since $x+\frac{3}{4}=y$ and $d x=d y$
$\Rightarrow \int \sqrt{\left(x+\frac{3}{4}\right)^{2}+\frac{23}{16}} d x=\frac{1}{8}(4 x+3) \sqrt{\left(x+\frac{3}{4}\right)^{2}+\frac{23}{16}}+\frac{23}{32} \log \left|x+\frac{3}{4}+\sqrt{\left(x+\frac{3}{4}\right)^{2}+\frac{23}{16}}\right|+\mathrm{C}$
Now, $\sqrt{2} \int \sqrt{\left(x+\frac{3}{4}\right)^{2}+\frac{23}{16}} d x=\frac{\sqrt{2}}{8}(4 x+3) \sqrt{\left(x+\frac{3}{4}\right)^{2}+\frac{23}{16}}+\frac{23 \sqrt{2}}{32} \log \left|x+\frac{3}{4}+\sqrt{\left(x+\frac{3}{4}\right)^{2}+\frac{23}{16}}\right|+\mathrm{C}$
Therefore,
$\int \sqrt{2 x^{2}+3 x+4} d x=\frac{1}{8}(4 x+3) \sqrt{2 x^{2}+3 x+4}+\frac{23}{32} \log \left|\left(x+\frac{3}{4}\right)+\sqrt{2 x^{2}+3 x+4}\right|+\mathrm{C}$

15. Question

Evaluate the following integrals:
$\int \sqrt{x^{2}+x} d x$

Answer

To Find : $\int \sqrt{x^{2}+x} d x$
Now, $\int \sqrt{x^{2}+x} d x$ can be written as $\int \sqrt{x^{2}+x+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}} d x$
i.e, $\int \sqrt{\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}} d x$

Here, let $x+\frac{1}{2}=y \Rightarrow d x=d y$
Therefore, $\int \sqrt{\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}} d x$ can be written as $\int \sqrt{y^{2}-\left(\frac{1}{2}\right)^{2}} d y$
Formula Used: $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}-a^{2}}\right|+\mathrm{C}$

Since $\int \sqrt{y^{2}-\left(\frac{1}{2}\right)^{2}} d y$ is of the form $\int \sqrt{x^{2}-a^{2}} d x$ with change in variable.
$\Rightarrow \int \sqrt{y^{2}-\left(\frac{1}{2}\right)^{2}} d y=\frac{y}{2} \sqrt{y^{2}-\left(\frac{1}{2}\right)^{2}}-\frac{\left(\frac{1}{\frac{1}{2}}\right)^{2}}{2} \log \left|y+\sqrt{y^{2}-\left(\frac{1}{2}\right)^{2}}\right|+\mathrm{C}$
$=\frac{y}{2} \sqrt{y^{2}-\frac{1}{4}}-\frac{1}{8} \log \left|y+\sqrt{y^{2}-\frac{1}{4}}\right|+C$
Since, $x+\frac{1}{2}=y$ and $d x=d y$
$\Rightarrow \int \sqrt{\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}} d x=\frac{1}{4}(2 x+1) \sqrt{\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}}-\frac{1}{8} \log \left|\left(\mathrm{x}+\frac{1}{2}\right)+\sqrt{\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}}\right|+C$
Therefore,
$\int \sqrt{x^{2}+x} d x=\frac{1}{4}(2 x+1) \sqrt{x^{2}+x}-\frac{1}{8} \log \left|\mathrm{x}+\frac{1}{2}+\sqrt{x^{2}+x}\right|+\mathrm{C}$

16. Question

Evaluate the following integrals:
$\int \sqrt{x^{2}+x+1} d x$

Answer

To Find: $\int \sqrt{x^{2}+x+1} d x$
Now, $\int \sqrt{x^{2}+x+1} d x$ can be written as $\int \sqrt{x^{2}+x+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}+1} d x$
i.e, $\int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}} d x$

Here, let $x+\frac{1}{2}=y \Rightarrow d x=d y$
Therefore, $\int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}} d x$ can be written as $\int \sqrt{y^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d y$
Formula Used: $\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}+a^{2}}\right|+\mathrm{C}$
Since $\int \sqrt{y^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d y$ is of the form $\int \sqrt{x^{2}+a^{2}} d x$ with change in variable.
$\Rightarrow \int \sqrt{y^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d y=\frac{y}{2} \sqrt{y^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}+\frac{\left(\frac{\sqrt{3}}{2}\right)^{2}}{2} \log \left|y+\sqrt{y^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right|+C$
$=\frac{y}{2} \sqrt{y^{2}+\frac{3}{4}}+\frac{3}{8} \log \left|y+\sqrt{y^{2}+\frac{3}{4}}\right|+C$
Since, $x+\frac{1}{2}=y$ and $d x=d y$
$\Rightarrow \int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}} d x=\frac{1}{4}(2 x+1) \sqrt{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}}+\frac{1}{8} \log \left|\left(\mathrm{x}+\frac{1}{2}\right)+\sqrt{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}}\right|+\mathrm{C}$
Therefore,
$\int \sqrt{x^{2}+x+1} d x=\frac{1}{4}(2 x+1) \sqrt{x^{2}+x+1}+\frac{3}{8} \log \left|\mathrm{x}+\frac{1}{2}+\sqrt{x^{2}+x+1}\right|+\mathrm{C}$

17. Question

Evaluate the following integrals:
$\int(2 x-5) \sqrt{x^{2}-4 x+3} d x$

Answer

To Find : $\int(2 x-5) \sqrt{x^{2}-4 x+3} d x$
Now, let $2 x-5$ be written as $(2 x-4)-1$ and split
Therefore ,
$\int(2 x-5) \sqrt{x^{2}-4 x+3} d x=\int\left\{(2 x-4) \sqrt{x^{2}-4 x+3}-1 \sqrt{x^{2}-4 x+3}\right\} d x$
$=\int(2 x-4) \sqrt{x^{2}-4 x+3} d x-\int \sqrt{x^{2}-4 x+3} d x$
Now solving, $\int(2 x-4) \sqrt{x^{2}-4 x+3} d x$
Let $x^{2}-4 x+3=\mathrm{u} \Rightarrow \mathrm{dx}=\frac{d u}{(2 x-4)}$
Thus, $\int(2 x-4) \sqrt{x^{2}-4 x+3} d x$ becomes $\int \sqrt{u} d u$
Now, $\int \sqrt{u} d u=\int u^{\frac{1}{2}} d u=\frac{\frac{1}{2}+1}{\frac{1}{2}+1}=\frac{2}{3} u^{\frac{3}{2}}$
$=\frac{2}{3}\left(x^{2}-4 x+3\right)^{\frac{3}{2}}$
Now solving, $\int \sqrt{x^{2}-4 x+3} d x$
$\int \sqrt{x^{2}-4 x+3} d x=\int \sqrt{x^{2}-4 x+2^{2}-2^{2}+3} d x$
$=\int \sqrt{(x-2)^{2}-1} d x$
Let $\mathrm{x}-2=\mathrm{y} \Rightarrow \mathrm{dx}=\mathrm{dy}$
Then $\int \sqrt{(x-2)^{2}-1} d x$ becomes $\int \sqrt{y^{2}-1^{2}} d y$
Formula Used: $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}-a^{2}}\right|+\mathrm{C}$
Since $\int \sqrt{y^{2}-1^{2}} d y$ is in the form of $\int \sqrt{x^{2}-a^{2}} d x$ with change in variable.
Hence $\int \sqrt{y^{2}-1^{2}} d y=\frac{y}{2} \sqrt{y^{2}-1^{2}}-\frac{1^{2}}{2} \log \left|y+\sqrt{y^{2}-1^{2}}\right|+\mathrm{C}$
$=\frac{y}{2} \sqrt{y^{2}-1}-\frac{1}{2} \log \left|y+\sqrt{y^{2}-1}\right|+\mathrm{C}$
Now, since $x-2=y$ and $d x=d y$
$\int \sqrt{(x-2)^{2}-1} d x=\frac{(x-2)}{2} \sqrt{(x-2)^{2}-1}-\frac{1}{2} \log \left|(x-2)+\sqrt{(x-2)^{2}-1}\right|+C$
Hence $\int \sqrt{x^{2}-4 x+3} d x=\frac{(x-2)}{2} \sqrt{x^{2}-4 x+3}-\frac{1}{2} \log \left|(x-2)+\sqrt{x^{2}-4 x+3}\right|+\mathrm{C}$
Therefore, $\int(2 x-4) \sqrt{x^{2}-4 x+3} d x-\int \sqrt{x^{2}-4 x+3} d x=\frac{2}{3}\left(x^{2}-4 x+3\right)^{\frac{3}{2}}$
$-\frac{(x-2)}{2} \sqrt{x^{2}-4 x+3}+\frac{1}{2} \log \left|(x-2)+\sqrt{x^{2}-4 x+3}\right|+C$
i.e, $\int(2 x-5) \sqrt{x^{2}-4 x+3} d x=\frac{2}{3}\left(x^{2}-4 x+3\right)^{\frac{3}{2}}$
$-\frac{(x-2)}{2} \sqrt{x^{2}-4 x+3}+\frac{1}{2} \log \left|\mathrm{x}-2+\sqrt{x^{2}-4 x+3}\right|+\mathrm{C}$

18. Question

Evaluate the following integrals:

$$
\int(x+2) \sqrt{x^{2}+x+1} d x
$$

Answer

To Find : $\int(x+2) \sqrt{x^{2}+x+1} d x$
Now, let $x+2$ be written as $\frac{1}{2}(2 x+1)+\frac{3}{2}$ and split
Therefore ,
$\int(x+2) \sqrt{x^{2}+x+1} d x=\int\left\{\frac{(2 \mathrm{x}+1) \sqrt{x^{2}+x+1}}{2}+\frac{3}{2} \sqrt{x^{2}+x+1}\right\} d x$
$=\frac{1}{2} \int(2 \mathrm{x}+1) \sqrt{x^{2}+x+1} d x+\frac{3}{2} \int \sqrt{x^{2}+x+1} d x$
Now solving, $\frac{1}{2} \int(2 \mathrm{x}+1) \sqrt{x^{2}+x+1} d x$
Let $x^{2}+x+1=\mathrm{u} \Rightarrow \mathrm{dx}=\frac{d u}{(2 x+1)}$
Thus, $\frac{1}{2} \int(2 \mathrm{x}+1) \sqrt{x^{2}+x+1} d x$ becomes $\frac{1}{2} \int \sqrt{u} d u$
Now, $\frac{1}{2} \int \sqrt{u} d u=\frac{1}{2} \int u^{\frac{1}{2}} d u=\frac{1}{2}\left(\frac{u^{\frac{1}{2}}+1}{\frac{1}{2}+1}\right)=\frac{1}{3} u^{\frac{3}{2}}$
$=\frac{1}{3}\left(x^{2}+x+1\right)^{\frac{3}{2}}$
Now solving, $\int \sqrt{x^{2}+x+1} d x$
Now, $\int \sqrt{x^{2}+x+1} d x$ can be written as $\int \sqrt{x^{2}+x+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}+1} d x$
i.e, $\int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}} d x$

Here, let $x+\frac{1}{2}=y \Rightarrow d x=d y$
Therefore, $\int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}} d x$ can be written as $\int \sqrt{y^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d y$
Formula Used: $\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}+a^{2}}\right|+\mathrm{C}$
Since $\int \sqrt{y^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d y$ is of the form $\int \sqrt{x^{2}+a^{2}} d x$ with change in variable.
$\Rightarrow \int \sqrt{y^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d y=\frac{y}{2} \sqrt{y^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}+\frac{\left(\frac{\sqrt{3}}{2}\right)^{2}}{2} \log \left|y+\sqrt{y^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right|+\mathrm{C}$
$=\frac{y}{2} \sqrt{y^{2}+\frac{3}{4}}+\frac{3}{8} \log \left|y+\sqrt{y^{2}+\frac{3}{4}}\right|+C$
Since, $x+\frac{1}{2}=y$ and $d x=d y$
$\Rightarrow \int \sqrt{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}} d x=\frac{1}{4}(2 x+1) \sqrt{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}}+\frac{1}{8} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}}\right|+C$
Therefore,
$\int \sqrt{x^{2}+x+1} d x=\frac{1}{4}(2 x+1) \sqrt{x^{2}+x+1}+\frac{3}{8} \log \left|\mathrm{x}+\frac{1}{2}+\sqrt{x^{2}+x+1}\right|+\mathrm{C}$
Hence,
$\left.\frac{1}{2} \int(2 \mathrm{x}+1) \sqrt{x^{2}+x+1} d x+\frac{3}{2} \int \sqrt{x^{2}+x+1} d x=\frac{1}{3}\left(x^{2}+x+1\right)^{\frac{3}{2}}+\frac{3}{8}(2 x+1) \sqrt{x^{2}+x+1}+\frac{9}{16} \log \right\rvert\,\left(x+\frac{1}{2}\right)+$ $\sqrt{x^{2}+x+1} \mid+C$

Therefore, $\left.\int(x+2) \sqrt{x^{2}+x+1} d x=\frac{1}{3}\left(x^{2}+x+1\right)^{\frac{3}{2}}+\frac{3}{8}(2 x+1) \sqrt{x^{2}+x+1}+\frac{9}{16} \log \right\rvert\,\left(x+\frac{1}{2}\right)+\sqrt{x^{2}+x+1}$ I+C

19. Question

Evaluate the following integrals:
$\int(x-5) \sqrt{x^{2}+x} d x$

Answer

To Find : $\int(x-5) \sqrt{x^{2}+x} d x$
Now, let $x-5$ be written as $\frac{1}{2}(2 x+1)-\frac{11}{2}$ and split
Therefore ,
$\int(x-5) \sqrt{x^{2}+x} d x=\int\left\{\frac{(2 \mathrm{x}+1) \sqrt{x^{2}+x}}{2}-\frac{11}{2} \sqrt{x^{2}+x}\right\} d x$
$=\frac{1}{2} \int(2 \mathrm{x}+1) \sqrt{x^{2}+x} d x-\frac{11}{2} \int \sqrt{x^{2}+x} d x$
Now solving, $\frac{1}{2} \int(2 \mathrm{x}+1) \sqrt{x^{2}+x} d x$
Let $x^{2}+x=\mathrm{u} \Rightarrow \mathrm{dx}=\frac{d u}{(2 x+1)}$
Thus, $\frac{1}{2} \int(2 \mathrm{x}+1) \sqrt{x^{2}+x} d x$ becomes $\frac{1}{2} \int \sqrt{u} d u$
Now, $\frac{1}{2} \int \sqrt{u} d u=\frac{1}{2} \int u^{\frac{1}{2}} d u=\frac{1}{2}\left(\frac{u^{\frac{1}{2}}+1}{\frac{1}{2}+1}\right)=\frac{1}{3} u^{\frac{3}{2}}$
$=\frac{1}{3}\left(x^{2}+x\right)^{\frac{3}{2}}$
Now solving, $\int \sqrt{x^{2}+x} d x$
Now, $\int \sqrt{x^{2}+x} d x$ can be written as $\int \sqrt{x^{2}+x+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}} d x$
i.e, $\int \sqrt{\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}} d x$

Here, let $x+\frac{1}{2}=y \Rightarrow d x=d y$
Therefore, $\int \sqrt{\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}} d x$ can be written as $\int \sqrt{y^{2}-\left(\frac{1}{2}\right)^{2}} d y$

Formula Used: $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}-a^{2}}\right|+\mathrm{C}$
Since $\int \sqrt{y^{2}-\left(\frac{1}{2}\right)^{2}} d y$ is of the form $\int \sqrt{x^{2}-a^{2}} d x$ with change in variable.
$\Rightarrow \int \sqrt{y^{2}-\left(\frac{1}{2}\right)^{2}} d y=\frac{y}{2} \sqrt{y^{2}-\left(\frac{1}{2}\right)^{2}}-\frac{\left(\frac{1}{2}\right)^{2}}{2} \log \left|y+\sqrt{y^{2}-\left(\frac{1}{2}\right)^{2}}\right|+\mathrm{C}$
$=\frac{y}{2} \sqrt{y^{2}-\frac{1}{4}}-\frac{1}{8} \log \left|y+\sqrt{y^{2}-\frac{1}{4}}\right|+C$
Since,$x+\frac{1}{2}=y$ and $d x=d y$
$\Rightarrow \int \sqrt{\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}} d x=\frac{1}{4}(2 x+1) \sqrt{\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}}-\frac{1}{8} \log \left|\left(x+\frac{1}{2}\right)+\sqrt{\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}}\right|+C$
Therefore,
$\int \sqrt{x^{2}+x} d x=\frac{1}{4}(2 x+1) \sqrt{x^{2}+x}-\frac{1}{8} \log \left|\mathrm{x}+\frac{1}{2}+\sqrt{x^{2}+x}\right|+\mathrm{C}$
Now,
$\frac{1}{2} \int(2 \mathrm{x}+1) \sqrt{x^{2}+x} d x-\frac{11}{2} \int \sqrt{x^{2}+x} d x=\frac{1}{3}\left(x^{2}+x\right)^{\frac{3}{2}}-\frac{11}{8}(2 x+1) \sqrt{x^{2}+x}+\frac{11}{16} \log \left|\mathrm{x}+\frac{1}{2}+\sqrt{x^{2}+x}\right|+\mathrm{C}$ Therefore ,
$\int(x-5) \sqrt{x^{2}+x} d x=\frac{1}{3}\left(x^{2}+x\right)^{\frac{3}{2}}-\frac{11}{8}(2 x+1) \sqrt{x^{2}+x}+\frac{11}{16} \log \left|\mathrm{x}+\frac{1}{2}+\sqrt{x^{2}+x}\right|+\mathrm{C}$
20. Question

Evaluate the following integrals:
$\int(4 x+1) \sqrt{x^{2}-x-2} d x$

Answer

To Find : $\int(4 x+1) \sqrt{x^{2}-x-2} d x$
Now, let $4 x+1$ be written as $2(2 x-1)+3$ and split
Therefore ,
$\int(4 x+1) \sqrt{x^{2}-x-2} d x=\int\left\{2(2 x-1) \sqrt{x^{2}-x-2}+3 \sqrt{x^{2}-x-2}\right\} d x$
$=2 \int(2 \mathrm{x}-1) \sqrt{x^{2}-x-2} d x+3 \int \sqrt{x^{2}-x-2} d x$
Now solving, $2 \int(2 \mathrm{x}-1) \sqrt{x^{2}-x-2} d x$
Let $x^{2}-x-2=\mathrm{u} \Rightarrow \mathrm{dx}=\frac{d u}{(2 x-1)}$
Thus, $2 \int(2 \mathrm{x}-1) \sqrt{x^{2}-x-2} d x$ becomes $2 \int \sqrt{u} d u$
Now, $2 \int \sqrt{u} d u=2 \int u^{\frac{1}{2}} d u=2\left(\frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right)=\frac{4}{3} u^{\frac{3}{2}}$
$=\frac{4}{3}\left(x^{2}-x-2\right)^{\frac{3}{2}}$
Now solving, $\int \sqrt{x^{2}-x-2} d x$

Now, $\int \sqrt{x^{2}-x-2} d x$ can be written as $\int \sqrt{x^{2}-x+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}-2} d x$
i.e, $\int \sqrt{\left(x-\frac{1}{2}\right)^{2}-\frac{9}{4}} d x$

Here, let $x-\frac{1}{2}=y \Rightarrow d x=d y$
Therefore, $\int \sqrt{\left(x-\frac{1}{2}\right)^{2}-\frac{9}{4}} d x$ can be written as $\int \sqrt{y^{2}-\left(\frac{3}{2}\right)^{2}} d y$
Formula Used: $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}-a^{2}}\right|+\mathrm{C}$
Since $\int \sqrt{y^{2}-\left(\frac{3}{2}\right)^{2}} d y$ is of the form $\int \sqrt{x^{2}-a^{2}} d x$ with change in variable.
$\Rightarrow \int \sqrt{y^{2}-\left(\frac{3}{2}\right)^{2}} d y=\frac{y}{2} \sqrt{y^{2}-\left(\frac{3}{2}\right)^{2}}-\frac{\left(\frac{3}{2}\right)^{2}}{2} \log \left|y+\sqrt{y^{2}-\left(\frac{3}{2}\right)^{2}}\right|+\mathrm{C}$
$=\frac{y}{2} \sqrt{y^{2}-\frac{9}{4}}-\frac{9}{8} \log \left|y+\sqrt{y^{2}-\frac{9}{4}}\right|+\mathrm{C}$
Since, $x-\frac{1}{2}=y$ and $d x=d y$
$\Rightarrow \int \sqrt{\left(x-\frac{1}{2}\right)^{2}-\frac{9}{4}} d x=\frac{1}{4}(2 x-1) \sqrt{\left(x-\frac{1}{2}\right)^{2}-\frac{9}{4}}-\frac{9}{8} \log \left|\left(x-\frac{1}{2}\right)+\sqrt{\left(x-\frac{1}{2}\right)^{2}-\frac{9}{4}}\right|+C$
Therefore,
$\int \sqrt{x^{2}-x-2} d x=\frac{1}{4}(2 x-1) \sqrt{x^{2}-x-2}-\frac{9}{8} \log \left|\mathrm{x}-\frac{1}{2}+\sqrt{x^{2}-x-2}\right|+\mathrm{C}$
Hence,
$\left.2 \int(2 \mathrm{x}-1) \sqrt{x^{2}-x-2} d x+3 \int \sqrt{x^{2}-x-2} d x=\frac{4}{3}\left(x^{2}-x-2\right)^{\frac{3}{2}}+\frac{3}{4}(2 x-1) \sqrt{x^{2}-x-2}-\frac{27}{8} \log \right\rvert\, \mathrm{x}-\frac{1}{2}+$ $\sqrt{x^{2}-x-2} \mid+C$

Therefore ,
$\int(4 x+1) \sqrt{x^{2}-x-2} d x=\frac{4}{3}\left(x^{2}-x-2\right)^{\frac{3}{2}}+\frac{3}{4}(2 x-1) \sqrt{x^{2}-x-2}-\frac{27}{8} \log \left|\mathrm{x}-\frac{1}{2}+\sqrt{x^{2}-x-2}\right|+\mathrm{C}$

21. Question

Evaluate the following integrals:
$\int(x+1) \sqrt{2 x^{2}+3} d x$

Answer

To Find : $\int(x+1) \sqrt{2 x^{2}+3} d x$
Now, $\int(x+1) \sqrt{2 x^{2}+3} d x$ can be written as
$\int(x+1) \sqrt{2 x^{2}+3} d x=\int\left\{x \sqrt{2 x^{2}+3}+\sqrt{2 x^{2}+3}\right\} d x$
$=\int x \sqrt{2 x^{2}+3} d x+\int \sqrt{2 x^{2}+3} d x$
Now solving, $\int x \sqrt{2 x^{2}+3} d x$
Let $2 x^{2}+3=\mathrm{u} \Rightarrow \mathrm{dx}=\frac{1 d u}{4 x}$

Thus, $\int x \sqrt{2 x^{2}+3} d x$ becomes $\frac{1}{4} \int \sqrt{u} d u$
Now, $\frac{1}{4} \int \sqrt{u} d u=\frac{1}{4} \int u^{\frac{1}{2}} d u=\frac{1}{4}\left(\frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right)=\frac{1}{6} u^{\frac{3}{2}}$
$=\frac{1}{6}\left(2 x^{2}+3\right)^{\frac{3}{2}}$
Now solving, $\int \sqrt{2 x^{2}+3} d x$
Now, $\int \sqrt{2 x^{2}+3} d x$ can be written as $\int \sqrt{(\sqrt{2 x})^{2}+(\sqrt{3})^{2}} d x$
Formula Used: $\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}+a^{2}}\right|+\mathrm{C}$
Since $\int \sqrt{2 x^{2}+3} d x$ is of the form $\int \sqrt{x^{2}+a^{2}} d x$.
$\Rightarrow \int \sqrt{2 x^{2}+3} d x=\frac{\sqrt{2 x}}{2} \sqrt{(\sqrt{2 x})^{2}+(\sqrt{3})^{2}}+\frac{(\sqrt{3})^{2}}{2} \log \left|\sqrt{2 x}+\sqrt{(\sqrt{2 x})^{2}+(\sqrt{3})^{2}}\right|+C$
$=\frac{x}{2} \sqrt{2 x^{2}+3}+\frac{3}{2 \sqrt{2}} \log \left|\sqrt{2 x}+\sqrt{2 x^{2}+3}\right|+\mathrm{C}$
Therefore,
$\int x \sqrt{2 x^{2}+3} d x+\int \sqrt{2 x^{2}+3} d x=\frac{1}{6}\left(2 x^{2}+3\right)^{\frac{3}{2}}+\frac{x}{2} \sqrt{2 x^{2}+3}+\frac{3}{2 \sqrt{2}} \log \left|\sqrt{2} \mathrm{x}+\sqrt{2 x^{2}+3}\right|+\mathrm{C}$
Hence,
$\int(x+1) \sqrt{2 x^{2}+3} d x=\frac{1}{6}\left(2 x^{2}+3\right)^{\frac{3}{2}+\frac{x}{2}} \sqrt{2 x^{2}+3}+\frac{3}{2 \sqrt{2}} \log \left|\sqrt{2 x}+\sqrt{2 x^{2}+3}\right|+\mathrm{C}$

22. Question

Evaluate the following integrals:
$\int \mathrm{x} \sqrt{1+\mathrm{x}-\mathrm{x}^{2}} \mathrm{dx}$

Answer

To Find : $\int x \sqrt{1+x-x^{2}} d x$
Now, let x be written as $\frac{1}{2}-\frac{1}{2}(1-2 x)$ and split
Therefore,
$\int x \sqrt{1+x-x^{2}} d x=\int\left\{\frac{\sqrt{-x^{2}+x+1}}{2}-\frac{(1-2 \mathrm{x}) \sqrt{-x^{2}+x+1}}{2}\right\} d x$
$=\frac{1}{2} \int(2 \mathrm{x}-1) \sqrt{-x^{2}+x+1} d x+\frac{1}{2} \int \sqrt{-x^{2}+x+1} d x$
Now solving, $\frac{1}{2} \int(2 \mathrm{x}-1) \sqrt{-x^{2}+x+1} d x$
Let $-x^{2}+x+1=\mathrm{u} \Rightarrow \mathrm{dx}=\frac{\mathrm{du}}{(1-2 x)}$
Thus, $\frac{1}{2} \int(2 \mathrm{x}-1) \sqrt{-x^{2}+x+1} d x$ becomes $-\frac{1}{2} \int \sqrt{u} d u$
Now, $-\frac{1}{2} \int \sqrt{u} d u=-\frac{1}{2} \int u^{\frac{1}{2}} d u=-\frac{1}{2}\left(\frac{\frac{1}{u^{2}+1}}{\frac{1}{2}+1}\right)=-\frac{1}{3} u^{\frac{3}{2}}$
$=-\frac{1}{3}\left(-x^{2}+x+1\right)^{\frac{3}{2}}$
Now solving, $\int \sqrt{-x^{2}+x+1} d x$
$\int \sqrt{-x^{2}+x+1} d x$ can be written as $\int \sqrt{-x^{2}+x-\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+1} d x$
i.e, $\int \sqrt{\frac{5}{4}-\left(x-\frac{1}{2}\right)^{2}} d x=\frac{1}{2} \int \sqrt{5-(2 x-1)^{2}} d x$
let $2 \mathrm{x}-1=\mathrm{y} \Rightarrow \mathrm{dx}=\frac{1 d y}{2}$
Therefore,$\frac{1}{4} \int \sqrt{5-(2 x-1)^{2}} d x$ becomes $\frac{1}{4} \int \sqrt{(\sqrt{5})^{2}-y^{2}} d y$
Formula Used: $\int \sqrt{a^{2}-x^{2}} d x=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+\mathrm{C}$
Since $\int \sqrt{(\sqrt{5})^{2}-y^{2}} d y$ is of the form $\int \sqrt{a^{2}-x^{2}} d x$ with change in variable.
Hence, $\int \sqrt{(\sqrt{5})^{2}-y^{2}} d y=\frac{1}{2} y \sqrt{(\sqrt{5})^{2}-y^{2}}+\frac{(\sqrt{5})^{2}}{2} \sin ^{-1} \frac{y}{\sqrt{5}}+\mathrm{C}$
$=\frac{1}{2} y \sqrt{5-y^{2}}+\frac{5}{2} \sin ^{-1} \frac{y}{\sqrt{5}}+\mathrm{C}$
Since, $2 \mathrm{x}-1=\mathrm{y}$ and $\mathrm{dx}=\frac{1 d y}{2}$
Therefore,
$\frac{1}{4} \int \sqrt{5-(2 x-1)^{2}} d x=\frac{1}{8}(2 x-1) \sqrt{5-(2 x-1)^{2}}+\frac{5}{8} \sin ^{-1} \frac{(2 x-1)}{\sqrt{5}}+C$
i.e, $\int \sqrt{-x^{2}+x+1} d x=\frac{1}{8}(2 x-1) \sqrt{-x^{2}+x+1}+\frac{5}{8} \sin ^{-1} \frac{(2 x-1)}{\sqrt{5}}+C$
hence, $\int x \sqrt{1+x-x^{2}} d x=\frac{1}{2} \int(2 \mathrm{x}-1) \sqrt{-x^{2}+x+1} d x+\frac{1}{2} \int \sqrt{-x^{2}+x+1} d x==-\frac{1}{3}\left(-x^{2}+x+1\right)^{\frac{3}{2}}+$ $\frac{1}{16}(2 x-1) \sqrt{-x^{2}+x+1}+\frac{5}{16} \sin ^{-1}\left(\frac{2 x-1}{\sqrt{5}}\right)+C$

23. Question

Evaluate the following integrals:

Answer

To Find : $\int(2 x-5) \sqrt{2+3 x-x^{2}} d x \int(2 \mathrm{x}-5) \sqrt{2+3 \mathrm{x}-\mathrm{x}^{2}} \mathrm{dx}$
Now, let $2 x-5$ be written as $(2 x-3)-2$ and split
Therefore ,
$\int(2 x-5) \sqrt{2+3 x-x^{2}} d x=\int\left\{(2 x-3) \sqrt{-x^{2}+3 x+2}-2 \sqrt{-x^{2}+3 x+2}\right\} d x$
$=\int(2 \mathrm{x}-3) \sqrt{-x^{2}+3 x+2} d x-2 \int \sqrt{-x^{2}+3 x+2} d x$
Now solving, $\int(2 \mathrm{x}-3) \sqrt{-x^{2}+3 x+2} d x$
Let $-x^{2}+3 x+2=u \Rightarrow \mathrm{dx}=\frac{d u}{(3-2 x)}$
Thus, $\int(2 \mathrm{x}-3) \sqrt{-x^{2}+3 x+2} d x$ becomes $-\int \sqrt{u} d u$

Now, $-\int \sqrt{u} d u=-\int u^{\frac{1}{2}} d u=-\left(\frac{u^{\frac{1}{2}}+1}{\frac{1}{2}+1}\right)=-\frac{2}{3} u^{\frac{3}{2}}$
$=-\frac{2}{3}\left(-x^{2}+3 x+2\right)^{\frac{3}{2}}$
Now solving, $\int \sqrt{-x^{2}+3 x+2} d x$
$\int \sqrt{-x^{2}+3 x+2} d x$ can be written as $\int \sqrt{-x^{2}+3 x-\left(\frac{3}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}+2} d x$
i.e, $\int \sqrt{\frac{17}{4}-\left(x-\frac{3}{2}\right)^{2}} d x$
let $x-\frac{3}{2}=y \Rightarrow d x=d y$
Therefore, $\int \sqrt{\frac{17}{4}-\left(x-\frac{3}{2}\right)^{2}} d x$ becomes $\int \sqrt{\left(\frac{\sqrt{17}}{2}\right)^{2}-y^{2}} d y$
Formula Used: $\int \sqrt{a^{2}-x^{2}} d x=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+\mathrm{C}$
Since $\int \sqrt{\left(\frac{\sqrt{17}}{2}\right)^{2}-y^{2}} d y$ is of the form $\int \sqrt{a^{2}-x^{2}} d x$ with change in variable.
Hence, $\int \sqrt{\left(\frac{\sqrt{17}}{2}\right)^{2}-y^{2}} d y=\frac{1}{2} y \sqrt{\left(\frac{\sqrt{17}}{2}\right)^{2}-y^{2}}+\frac{\left(\frac{\sqrt{17}}{2}\right)^{2}}{2} \sin ^{-1} \frac{y}{\frac{\sqrt{17}}{2}}+\mathrm{C}$
$=\frac{1}{2} y \sqrt{\frac{17}{4}-y^{2}}+\frac{17}{8} \sin ^{-1} \frac{y}{\frac{\sqrt{17}}{2}}+\mathrm{C}$
Since, $x-\frac{3}{2}=y$ and $d x=d y$
Therefore,
$\int \sqrt{\frac{17}{4}-\left(x-\frac{3}{2}\right)^{2}} d x=\frac{1}{4}(2 x-3) \sqrt{\frac{17}{4}-\left(x-\frac{3}{2}\right)^{2}}+\frac{17}{8} \sin ^{-1}\left(\frac{2 x-3}{\sqrt{17}}\right)+C$
i.e, $\int \sqrt{-x^{2}+3 x+2} d x=\frac{1}{4}(2 x-3) \sqrt{-x^{2}+3 x+2}+\frac{17}{8} \sin ^{-1}\left(\frac{2 x-3}{\sqrt{17}}\right)+C$
hence,
$\int(2 x-5) \sqrt{2+3 x-x^{2}} d x=\int(2 \mathrm{x}-3) \sqrt{-x^{2}+3 x+2} d x-2 \int \sqrt{-x^{2}+3 x+2} d x=-\frac{2}{3}\left(-x^{2}+3 x+2\right)^{\frac{3}{2}-}$ $\frac{1}{2}(2 x-3) \sqrt{-x^{2}+3 x+2}-\frac{17}{4} \sin ^{-1}\left(\frac{2 x-3}{\sqrt{17}}\right)+C$

24. Question

Evaluate the following integrals:

$$
\int(6 x+5) \sqrt{6+x-2 x^{2}} d x
$$

Answer

To Find : $\int(6 x+5) \sqrt{6+x-2 x^{2}} d x$
Now, let $6 x+5$ be written as $\frac{13}{2}-\frac{3}{2}(1-4 x)$ and split
Therefore ,
$\int(6 x+5) \sqrt{6+x-2 x^{2}} d x=\int\left\{\frac{13 \sqrt{-2 x^{2}+x+6}}{2}-\frac{3(1-4 x) \sqrt{-2 x^{2}+x+6}}{2}\right\} d x$
$=\frac{3}{2} \int(4 \mathrm{x}-1) \sqrt{-2 x^{2}+x+6} d x+\frac{13}{2} \int \sqrt{-2 x^{2}+x+6} d x$
Now solving, $\int(4 \mathrm{x}-1) \sqrt{-2 x^{2}+x+6} d x$
Let $-2 x^{2}+x+6=\mathrm{u} \Rightarrow \mathrm{dx}=\frac{d u}{(1-4 x)}$
Thus, $\int(4 \mathrm{x}-1) \sqrt{-2 x^{2}+x+6} d x$ becomes $-\int \sqrt{u} d u$
Now, $-\int \sqrt{u} d u=-\int u^{\frac{1}{2}} d u=-\left(\frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right)=-\frac{2}{3} u^{\frac{3}{2}}$
$=-\frac{2}{3}\left(-2 x^{2}+x+6\right)^{\frac{3}{2}}$
Now solving, $\int \sqrt{-2 x^{2}+x+6} d x$
$\int \sqrt{-2 x^{2}+x+6} d x$ can be written as $\int \sqrt{-(\sqrt{2} x)^{2}+x-\left(\frac{1}{2 \sqrt{2}}\right)^{2}+\left(\frac{1}{2 \sqrt{2}}\right)^{2}+6} d x$
i.e, $\int \sqrt{\frac{49}{8}-\left(\sqrt{2} x-\frac{1}{2 \sqrt{2}}\right)^{2}} d x$
let $\sqrt{2 x}-\frac{1}{2 \sqrt{2}}=\mathrm{y} \Rightarrow \mathrm{dx}=\frac{d y}{\sqrt{2}}$

Formula Used: $\int \sqrt{a^{2}-x^{2}} d x=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C$
Since $\int \sqrt{\left(\frac{7}{2 \sqrt{2}}\right)^{2}-y^{2}} d y$ is of the form $\int \sqrt{a^{2}-x^{2}} d x$ with change in variable.
Hence, $\int \sqrt{\left(\frac{7}{2 \sqrt{2}}\right)^{2}-y^{2}} d y=\frac{1}{2} y \sqrt{\left(\frac{7}{2 \sqrt{2}}\right)^{2}-y^{2}}+\frac{\left(\frac{7}{2}\right)^{2}}{2} \sin ^{-1} \frac{y}{\frac{7}{2 \sqrt{2}}}+\mathrm{C}$
$=\frac{1}{2} y \sqrt{\frac{49}{8}-y^{2}}+\frac{7}{16} \sin ^{-1} \frac{y}{\frac{\sqrt{17}}{2}}+\mathrm{C}$
Since,$\sqrt{2 x}-\frac{1}{2 \sqrt{2}}=\mathrm{y}$ and $\mathrm{dx}=\frac{d y}{\sqrt{2}}$
Therefore,
$\int \sqrt{\frac{49}{8}-\left(\sqrt{2} x-\frac{1}{2 \sqrt{2}}\right)^{2}} d x=\frac{1}{4 \sqrt{2}}(4 x-1) \sqrt{\frac{49}{8}-\left(\sqrt{2 x-\frac{1}{2 \sqrt{2}}}\right)^{2}}+\frac{49}{16} \sin ^{-1}\left(\frac{4 x-1}{7}\right)+C$
i.e, $\int \sqrt{-2 x^{2}+x+6} d x=\frac{1}{4 \sqrt{2}}(4 x-1) \sqrt{-2 x^{2}+x+6}+\frac{49}{16} \sin ^{-1}\left(\frac{4 x-1}{7}\right)+C$
hence,
$\int(6 x+5) \sqrt{6+x-2 x^{2}} d x=\frac{3}{2} \int(4 \mathrm{x}-1) \sqrt{-2 x^{2}+x+6} d x+\frac{13}{2} \int \sqrt{-2 x^{2}+x+6} d x=-\left(-2 x^{2}+x+6\right)^{\frac{3}{2}}+$ $\frac{13}{16}(4 x-1) \sqrt{-2 x^{2}+x+6}+\frac{637}{32 \sqrt{2}} \sin ^{-1}\left(\frac{4 x-1}{7}\right)+C$

25. Question

Evaluate the following integrals:

$$
\int(x+1) \sqrt{1-x-x^{2}} d x
$$

Answer

To Find : $\int(x+1) \sqrt{1-x-x^{2}} d x$
Now, let $x+1$ be written as $\frac{1}{2}-\frac{1}{2}(-2 x-1)$ and split
Therefore ,
$\int(x+1) \sqrt{1-x-x^{2}} d x=\int\left\{\frac{\sqrt{-x^{2}-x+1}}{2}-\frac{(-2 x-1) \sqrt{-x^{2}-x+1}}{2}\right\} d x$
$=\frac{1}{2} \int(2 \mathrm{x}-1) \sqrt{-x^{2}-x+1} d x+\frac{1}{2} \int \sqrt{-x^{2}-x+1} d x$
Now solving, $\int(2 \mathrm{x}-1) \sqrt{-x^{2}-x+1} d x$
Let $-x^{2}-x+1=\mathrm{u} \Rightarrow \mathrm{dx}=\frac{d u}{-2 x-1}$
Thus, $\int(2 \mathrm{x}-1) \sqrt{-x^{2}-x+1} d x$ becomes $-\int \sqrt{u} d u$
Now, $-\int \sqrt{u} d u=-\int u^{\frac{1}{2}} d u=-\left(\frac{\frac{1}{2}+1}{\frac{1}{2}+1}\right)=-\frac{2}{3} u^{\frac{3}{2}}$
$=-\frac{2}{3}\left(-x^{2}-x+1\right)^{\frac{3}{2}}$
Now solving, $\int \sqrt{-x^{2}-x+1} d x$
$\int \sqrt{-x^{2}-x+1} d x$ can be written as $\int \sqrt{-x^{2}-x-\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+1} d x$
i.e, $\int \sqrt{\frac{5}{4}-\left(x+\frac{1}{2}\right)^{2}} d x$
let $x+\frac{1}{2}=y \Rightarrow d x=d y$
Therefore, $\int \sqrt{\frac{5}{4}-\left(x+\frac{1}{2}\right)^{2}} d x$ becomes $\int \sqrt{\left(\frac{\sqrt{5}}{2}\right)^{2}-y^{2}} d y$
Formula Used: $\int \sqrt{a^{2}-x^{2}} d x=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+\mathrm{C}$
Since $\int \sqrt{\left(\frac{\sqrt{5}}{2}\right)^{2}-y^{2}} d y$ is of the form $\int \sqrt{a^{2}-x^{2}} d x$ with change in variable.
Hence, $\int \sqrt{\left(\frac{\sqrt{5}}{2}\right)^{2}-y^{2}} d y=\frac{1}{2} y \sqrt{\left(\frac{\sqrt{5}}{2}\right)^{2}-y^{2}}+\frac{\left(\frac{\sqrt{5}}{2}\right)^{2}}{2} \sin ^{-1} \frac{y}{\frac{\sqrt{5}}{2}}+\mathrm{C}$
$=\frac{1}{2} y \sqrt{\frac{5}{4}-y^{2}}+\frac{5}{8} \sin ^{-1} \frac{y}{\frac{\sqrt{5}}{2}}+\mathrm{C}$
Since , $x+\frac{1}{2}=y$ and $d x=d y$
Therefore,
$\int \sqrt{\frac{5}{4}-\left(x+\frac{1}{2}\right)^{2}} d x=\frac{1}{4}(2 x+1) \sqrt{\frac{5}{4}-\left(x+\frac{1}{2}\right)^{2}}+\frac{5}{8} \sin ^{-1}\left(\frac{2 x+1}{\sqrt{5}}\right)+\mathrm{C}$
i.e, $\int \sqrt{-x^{2}-x+1} d x=\frac{1}{4}(2 x+1) \sqrt{-x^{2}-x+1}+\frac{5}{8} \sin ^{-1}\left(\frac{2 x+1}{\sqrt{5}}\right)+C$
hence,
$\int(x+1) \sqrt{1-x-x^{2}} d x=\frac{1}{2} \int(2 \mathrm{x}-1) \sqrt{-x^{2}-x+1} d x+\frac{1}{2} \int \sqrt{-x^{2}-x+1} d x=-\frac{1}{3}\left(-x^{2}-x+1\right)^{\frac{2}{2}}+$
$\frac{1}{8}(2 x+1) \sqrt{-x^{2}-x+1}+\frac{5}{16} \sin ^{-1}\left(\frac{2 x+1}{\sqrt{5}}\right)+C$

26. Question

Evaluate the following integrals:
$\int(x-3) \sqrt{x^{2}+3 x-18} d x$

Answer

To Find : $\int(x-3) \sqrt{x^{2}+3 x-18} d x$
Now, let $x-3$ be written as $\frac{1}{2}(2 x+3)-\frac{9}{2}$ and split
Therefore ,
$\int(x-3) \sqrt{x^{2}+3 x-18} d x=\int\left\{\frac{(2 x+3) \sqrt{x^{2}+3 x-18}}{2}-\frac{9 \sqrt{x^{2}+3 x-18}}{2}\right\} d x$
$=\frac{1}{2} \int(2 \mathrm{x}+3) \sqrt{x^{2}+3 x-18} d x-\frac{9}{2} \int \sqrt{x^{2}+3 x-18} d x$
Now solving, $\int(2 \mathrm{x}+3) \sqrt{x^{2}+3 x-18} d x$
Let $x^{2}+3 x-18=\mathrm{u} \Rightarrow \mathrm{dx}=\frac{d u}{2 x+3}$
Thus, $\int(2 \mathrm{x}+3) \sqrt{x^{2}+3 x-18} d x$ becomes $\int \sqrt{u} d u$
Now, $\int \sqrt{u} d u=\int u^{\frac{1}{2}} d u=\left(\frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right)=\frac{2}{3} u^{\frac{3}{2}}$
$=\frac{2}{3}\left(x^{2}+3 x-18\right)^{\frac{3}{2}}$
Now solving, $\int \sqrt{x^{2}+3 x-18} d x$
$\int \sqrt{x^{2}+3 x-18} d x$ can be written as $\int \sqrt{x^{2}+3 x+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}-18} d x$
i.e, $\int \sqrt{\left(x+\frac{3}{2}\right)^{2}-\frac{81}{4}} d x$
let $x+\frac{3}{2}=\mathrm{y} \Rightarrow \mathrm{dx}=\mathrm{dy}$
Therefore, $\int \sqrt{\left(x+\frac{3}{2}\right)^{2}-\frac{81}{4}} d x$ can be written as $\int \sqrt{y^{2}-\left(\frac{9}{2}\right)^{2}} d y$
Formula Used: $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|\mathrm{x}+\sqrt{x^{2}-a^{2}}\right|+\mathrm{C}$
Since $\int \sqrt{y^{2}-\left(\frac{9}{2}\right)^{2}} d y$ is of the form $\int \sqrt{x^{2}-a^{2}} d x$ with change in variable.
$\Rightarrow \int \sqrt{y^{2}-\left(\frac{9}{2}\right)^{2}} d y=\frac{y}{2} \sqrt{y^{2}-\left(\frac{9}{2}\right)^{2}}-\frac{\left(\frac{9}{-}\right)^{2}}{2} \log \left|y+\sqrt{y^{2}-\left(\frac{9}{2}\right)^{2}}\right|+\mathrm{C}$
$=\frac{y}{2} \sqrt{y^{2}-\frac{81}{4}}-\frac{81}{8} \log \left|y+\sqrt{y^{2}-\frac{81}{4}}\right|+C$
Since,$x+\frac{3}{2}=y$ and $d x=d y$
$\Rightarrow \int \sqrt{\left(x+\frac{3}{2}\right)^{2}-\frac{81}{4}} d x=\frac{1}{4}(2 x+3) \sqrt{\left(x+\frac{3}{2}\right)^{2}-\frac{81}{4}}-\frac{81}{8} \log \left|\left(\mathrm{x}+\frac{3}{2}\right)+\sqrt{\left(x+\frac{3}{2}\right)^{2}-\frac{81}{4}}\right|+\mathrm{C}$
Therefore,

$$
\int \sqrt{x^{2}+3 x-18} d x=\frac{1}{4}(2 x+3) \sqrt{x^{2}+3 x-18}-\frac{81}{8} \log \left|\mathrm{x}+\frac{3}{2}+\sqrt{x^{2}+3 x-18}\right|+\mathrm{C}
$$

Hence,
$\int(x-3) \sqrt{x^{2}+3 x-18} d x=\frac{1}{2} \int(2 \mathrm{x}+3) \sqrt{x^{2}+3 x-18} d x-\frac{9}{2} \int \sqrt{x^{2}+3 x-18} d x=$ $\frac{1}{3}\left(x^{2}+3 x-18\right)^{\frac{3}{2}}-\frac{9}{8}(2 x+3) \sqrt{x^{2}+3 x-18}+\frac{726}{16} \log \left|\mathrm{x}+\frac{3}{2}+\sqrt{x^{2}+3 x-18}\right|+\mathrm{C}$

