15. Integration Using Partial Fractions

Exercise 15A

1. Question

Evaluate:
$\int \frac{d x}{x(x+2)}$

Answer

Let $I=\int \frac{d x}{x(x+2)^{\prime}}$,
Putting $\frac{1}{x(x+2)}=\frac{A}{x}+\frac{B}{x+2}$.
Which implies $A(x+2)+B x=1$, putting $x+2=0$
Therefore $x=-2$,
And $B=-0.5$
Now put $x=0, A=\geqslant$,
From equation (1), we get
$\frac{1}{x(x+2)}=\frac{1}{2} \times \frac{1}{x}-\frac{1}{2} \times \frac{1}{x+2}$
$\int \frac{1}{x(x+2)} d x=\frac{1}{2} \int \frac{1}{x} d x-\frac{1}{2} \int \frac{1}{x+2} d x$
$=\frac{1}{2} \log |x|-\frac{1}{2} \log |x+2|+c$
$=\frac{1}{2}[\log |x|-\log |x+2|]+c$
$=\frac{1}{2} \log \left|\frac{x}{x+2}\right|+c$

2. Question

Evaluate:
$\int \frac{(2 x+1)}{(x+2)(x+3)} d x$

Answer

Let $I=\int \frac{(2 x+1)}{(x+2)(x+3)} d x$,
Putting $\frac{2 x+1}{(x+2)(x-3)}=\frac{A}{x+2}+\frac{B}{x-3}$...
Which implies $2 \mathrm{x}=1=\mathrm{A}(\mathrm{x}-3)+\mathrm{B}(\mathrm{x}+2)$
Now put $x-3=0, x=3$
$2 \times 3+1=A(0)+B 3+2)$
So $B=\frac{7}{5}$
Now put $x+2=0, x=-2$
$-4+1=A(-2-3)+B(0)$

So $A=\frac{3}{5}$
From equation (1), we get ,
$\frac{2 x+1}{(x+2)(x-3)}=\frac{3}{5} \times \frac{1}{x+2}+\frac{7}{5} \times \frac{1}{x-3}$
$\int \frac{2 x+1}{(x+2)(x-3)} d x=\frac{3}{5} \int \frac{1}{x+2} d x+\frac{7}{5} \int \frac{1}{x-3} d x$
$=\frac{3}{5} \log |x+2|+\frac{7}{5} \log |x-3|+c$

3. Question

Evaluate:
$\int \frac{x}{(x+2)(3-2 x)} d x$

Answer

Let $I=\int \frac{x}{(x+2)(3-2 x)} d x$,
Putting $\frac{x}{(x+2)(3-2 x)}=\frac{A}{x+2}+\frac{B}{3-2 x}$.
Which implies $A(3-2 x)+B(x+2)=x$
Now put $3-2 x=0$
Therefore, $x=\frac{3}{2}$
$A(0)+B\left(\frac{3}{2}+2\right)=\frac{3}{2}$
$B\left(\frac{7}{2}\right)=\frac{3}{2}$
$B=\frac{3}{7}$
Now put $\mathrm{x}+2=0$
Therefore, $x=-2$
$A(7)+B(0)=-2$
$A=\frac{-2}{7}$
Now From equation (1) we get
$\frac{x}{(x+2)(3-2 x)}=\frac{-2}{7} \times \frac{1}{x+2}+\frac{3}{7} \times \frac{1}{3-2 x}$
$\int \frac{x}{(x+2)(3-2 x)} d x=\frac{-2}{7} \int \frac{1}{x+2} d x+\frac{3}{7} \int \frac{1}{3-2 x} d x$
$=\frac{-2}{7} \log |x+2|+\frac{3}{7} \times \frac{1}{-2} \log |3-2 x|+c$
$=\frac{-2}{7} \log |x+2|+\frac{3}{7} \times \frac{1}{-2} \log |3-2 x|+c$
$=\frac{-2}{7} \log |x+2|-\frac{3}{14} \log |3-2 x|+c$

4. Question

Evaluate:
$\int \frac{d x}{x(x-2)(x-4)}$

Answer

Let $I=\int \frac{d x}{x(x-2)(x-4)}$,
Putting $\frac{1}{x(x-2)(x-4)}=\frac{A}{x}+\frac{B}{x-2}+\frac{C}{x-4} \ldots \ldots$.
Which implies,
$A(x-2)(x-4)+B x(x-4)+C x(x-2)=1$
Now put $x-2=0$
Therefore, $x=2$
$A(0)+B \times 2(2-4)+C(0)=1$
$B \times 2(-2)=1$
$B=-\frac{1}{4}$
Now put $x-4=0$
Therefore, $x=4$
$A(0)+B \times(0)+C \times 4(4-2)=1$
$C \times 4(2)=1$
$C=\frac{1}{8}$
Now put $x=0$
$A(0-2)(0-4)+B(0)+C(0)=1$
$A=\frac{1}{8}$
Now From equation (1) we get
$\frac{1}{x(x-2)(x-4)}=\frac{1}{8} \times \frac{1}{x}-\frac{1}{4} \times \frac{1}{x-2}+\frac{1}{8} \times \frac{1}{x-4}$
$\int \frac{d x}{x(x-2)(x-4)}=\frac{1}{8} \int \frac{1}{x} d x-\frac{1}{4} \int \frac{1}{x-2} d x+\frac{1}{8} \int \frac{1}{x-4} d x$
$=\frac{1}{8} \log |x|-\frac{1}{4} \log |x-2|+\frac{1}{8} \log |x-4|+c$

5. Question

Evaluate:
$\int \frac{(2 x-1)}{(x-1)(x+2)(x-3)} d x$

Answer

Let $I=\int \frac{(2 x-1)}{(x-1)(x+2)(x-3)} d x$

Putting $\frac{(2 x-1)}{(x-1)(x+2)(x-3)}=\frac{A}{x-1}+\frac{B}{x+2}+\frac{C}{x-3} \ldots \ldots$.
Which implies,
$A(x+2)(x-2)+B(x-1)(x-3)+C(x-1)(x+2)=2 x-1$
Now put $\mathrm{x}+2=0$
Therefore, $x=-2$
$A(0)+B(-2-1)(-2-3)+C(0)=2 x-2-1$
$B(-3)(-5)=-5$
$B=-\frac{1}{3}$
Now put $x-3=0$
Therefore, $x=3$
$\mathrm{A}(0)+\mathrm{B}(0)+\mathrm{C}(2)(5)=5$
$C=\frac{1}{2}$
Now put $x-1=0$
Therefore, $x=1$
$A(3)(-2)+B(0)+C(0)=1$
$A=-\frac{1}{6}$
Now From equation (1) we get,
$\frac{(2 x-1)}{(x-1)(x+2)(x-3)}=\frac{-1}{6} \times \frac{1}{x-1}-\frac{1}{3} \times \frac{1}{x+2}+\frac{1}{2} \times \frac{1}{x-3}$
$\int \frac{(2 x-1)}{(x-1)(x+2)(x-3)} d x=\frac{-1}{6} \int \frac{1}{x-1} d x-\frac{1}{3} \int \frac{1}{x+2} d x+\frac{1}{2} \int \frac{1}{x-3} d x$
$=\frac{-1}{6} \log |x-1|-\frac{1}{3} \log |x+2|+\frac{1}{2} \log |x-3|+c$

6. Question

Evaluate:
$\int \frac{(2 x-3)}{\left(x^{2}-1\right)(2 x+3)} d x$

Answer

Let $I=\int \frac{(2 x-3)}{\left(x^{2}-1\right)(2 x+3)} d x$
Putting $\frac{(2 x-3)}{(x-1)(x+1)(2 x+3)}=\frac{A}{x-1}+\frac{B}{x+1}+\frac{C}{2 x+3} \ldots \ldots$.
Which implies,
$A(x+1)(2 x+3)+B(x-1)(2 x+3)+C(x-1)(x+1)=2 x-3$
Now put $\mathrm{x}+1=0$
Therefore, $x=-1$
$A(0)+B(-1-1)(-2+3)+C(0)=-2-3$
$B=-\frac{5}{2}$
Now put $x-1=0$
Therefore, $x=1$
$A(2)(2+3)+B(0)+C(0)=-1$
$A=-\frac{1}{10}$
Now put $2 x+3=0$
Therefore, $x=-\frac{3}{2}$
$A(0)+B(0)+C\left(\frac{-3}{2}-1\right)\left(\frac{-3}{2}+1\right)=2\left(\frac{-3}{2}\right)-3$
$C\left(\frac{-5}{2}\right)\left(\frac{-1}{2}\right)=-3-3$
$C=-\frac{24}{5}$
.Now From equation (1) we get,
$\frac{(2 x-3)}{\left(x^{2}-1\right)(2 x+3)}=\frac{-1}{10} \times \frac{1}{x-1}+\frac{5}{2} \times \frac{1}{x+1}-\frac{24}{5} \times \frac{1}{2 x+3}$
$\int \frac{(2 x-3)}{\left(x^{2}-1\right)(2 x+3)} d x=\frac{-1}{10} \int \frac{1}{x-1} d x+\frac{5}{2} \int \frac{1}{x+1} d x-\frac{24}{5} \int \frac{1}{2 x+3} d x$
$=\frac{-1}{10} \log |x-1|+\frac{5}{2} \log |x+1|-\frac{24}{5} \frac{\log |2 x+3|}{2}+c$
$=\frac{-1}{10} \log |x-1|+\frac{5}{2} \log |x+1|-\frac{12}{5} \log |2 x+3|+c$

7. Question

Evaluate:
$\int \frac{(2 x+5)}{\left(x^{2}-x-2\right)} d x$

Answer

Let $I=\int \frac{(2 x+5)}{\left(x^{2}-x-2\right)} d x=\int \frac{(2 x+5)}{(x-2)(x+1)} d x$
Putting $\frac{(2 x+5)}{(x-2)(x+1)}=\frac{A}{x-2}+\frac{B}{x+1}$.
Which implies,
$A(x+1)+B(x-2)=2 x+5$
Now put $x+1=0$
Therefore, $x=-1$
$A(0)+B(-1-2)=3$
$B=-1$
Now put $x-2=0$
Therefore, $x=2$
$\mathrm{A}(2+1)+\mathrm{B}(0)=2 \times 2+5=9$
$A=3$
Now From equation (1) we get,
$\frac{(2 x+5)}{(x-2)(x+1)}=\frac{3}{x-2}+\frac{-1}{x+1}$
$\int \frac{(2 x+5)}{(x-2)(x+1)} d x=\int \frac{3}{x-2}+\int \frac{-1}{x+1}$
$=3 \log |x-2|-\log |x+1|+c$

8. Question

Evaluate:
$\int \frac{\left(x^{2}+5 x+3\right)}{\left(x^{2}+3 x+2\right)} d x$

Answer

Let $I=\int \frac{\left(x^{2}+5 x+3\right)}{\left(x^{2}+3 x+2\right)} d x=\int \frac{x^{2}+3 x+2+2 x+1}{\left(x^{2}+3 x+2\right)} d x=\int \frac{x^{2}+3 x+2}{\left(x^{2}+3 x+2\right)} d x+\int \frac{2 x+1}{\left(x^{2}+3 x+2\right)} d x$
Which implies $I=\int d x+\int \frac{2 x+1}{\left(x^{2}+3 x+2\right)} d x$
Therefore, $\mathrm{I}=\mathrm{x}+\mathrm{I}_{1}$
Where, $\mathrm{I}_{1}=\int \frac{2 x+1}{\left(x^{2}+3 x+2\right)} d x$
Putting $\frac{(2 x+1)}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2} \ldots \ldots$ (1)
Which implies,
$A(x+2)+B(x+1)=2 x+1$
Now put $x+2=0$
Therefore, $x=-2$
$A(0)+B(-1)=-4+1$
$B=3$
Now put $x+1=0$
Therefore, $x=-1$
$\mathrm{A}(-1+2)+\mathrm{B}(0)=-2+1$
$A=-1$
Now From equation (1) we get,
$\frac{(2 x+1)}{(x+1)(x+2)}=\frac{-1}{x+1}+\frac{3}{x+2}$
$\int \frac{(2 x+1)}{(x+1)(x+2)} d x=-\int \frac{1}{x+1} d x+\int \frac{3}{x+2} d x$
$=-\log |x+1|+3 \log |x+2|+c$

9. Question

Evaluate:
$\int \frac{\left(x^{2}+1\right)}{\left(x^{2}-1\right)} d x$

Answer

Let $I=\int \frac{x^{2}+1}{x^{2}-1} d x$
$I=\int\left(1+\frac{2}{x^{2}-1}\right) d x$
$I=\int d x+2 \int \frac{1}{x^{2}-1} d x$
$I=x+2 \times \frac{1}{2} \log \left|\frac{x-1}{x+1}\right|+c$
$I=x+\log \left|\frac{x-1}{x+1}\right|+c$
10. Question

Evaluate:
$\int \frac{x^{3}}{\left(x^{2}-4\right)} d x$

Answer

Let $I=\int \frac{x^{3}}{x^{2}-4} d x$
$I=\int x+\frac{4 x}{x^{2}-4} d x$
$I=\int x d x+\int \frac{4 x}{x^{2}-4} d x$
$=\frac{x^{2}}{2}+\int \frac{4 x}{(x-2)(x+2)} d x$
Let $I_{1}=\int \frac{4 x}{(x-2)(x+2)} d x$
So
$I=\frac{x^{2}}{2}+I_{1}$
Therefore $I_{1}=\int \frac{4 x}{x^{2}-4} d x$
Putting $x^{2}-4=t$
$2 x d x=d t$
$I_{1}=2 \int \frac{d t}{t}$
$I_{1}=2 \log \left|x^{2}-4\right|+c$
Putting the value of I_{1} in I,
$I=\frac{x^{2}}{2}+2 \log \left|x^{2}-4\right|+c$
11. Question

Evaluate:
$\int \frac{\left(3+4 x-x^{2}\right)}{(x+2)(x-1)} d x$

Answer

Let $I=\int \frac{3+4 x-x^{2}}{(x+2)(x-1)} d x$
$=\int\left(-1+\frac{5 x+1}{(x+2)(x-1)}\right) d x$
$=\int-d x+\int \frac{5 x+1}{(x+2)(x-1)} d x$
$=-x+I_{1}$
$I_{1}=\int \frac{5 x+1}{(x+2)(x-1)} d x$
Put $\frac{5 x+1}{(x+2)(x-1)}=\frac{A}{(x+2)}+\frac{B}{(x-1)}$
$A(x-1)+B(x+2)=5 x+1$
Now put $x-1=0$
Therefore, $x=1$
$A(0)+B(1+2)=5+1=6$
$B=2$
Now put $x+2=0$
Therefore, $x=-2$
$A(-2-1)+B(0)=5 \times(-2)+1$
$A=3$
Now From equation (1) we get,
$\frac{5 x+1}{(x+2)(x-1)}=\frac{3}{(x+2)}+\frac{2}{(x-1)}$
$\int \frac{5 x+1}{(x+2)(x-1)} d x=3 \int \frac{1}{(x+2)} d x+2 \int \frac{1}{(x-1)} d x$
$3 \log |x+2|+2 \log |x-1|+c$
Therefore,
$I=-x+3 \log |x+2|+2 \log |x-1|+c$

12. Question

Evaluate:
$\int \frac{x^{3}}{(x-1)(x-2)} d x$

Answer

Let $I=\int \frac{x^{3}}{(x-1)(x-2)} d x$
$=\int\left\{(x+3)+\frac{7 x-6}{(x-1)(x-2)}\right\} d x$
$=\frac{x^{2}}{2}+3 x+\int \frac{7 x-6}{(x-1)(x-2)} d x$
$=\frac{x^{2}}{2}+3 x+I_{1}$
Where,
$I_{1}=\int \frac{7 x-6}{(x-1)(x-2)} d x$
Putting $\frac{7 x-6}{(x-1)(x-2)}=\frac{A}{x-1}+\frac{B}{x-2}$.
$A(x-2)+B(x-1)=7 x-6$
Now put $x-2=0$
Therefore, $x=2$
$A(0)+B(2-1)=7 \times 2-6$
$B=8$
Now put $\mathrm{x}-1=0$
Therefore, $x=1$
$A(1-2)+B(0)=7-6=1$
$A=-1$
Now From equation (2) we get,
$\frac{7 x-6}{(x-1)(x-2)}=\frac{-1}{x-1}+\frac{8}{x-2}$
$I_{1}=\int \frac{7 x-6}{(x-1)(x-2)} d x=-\int \frac{1}{x-1} d x+8 \int \frac{1}{x-2} d x$
$=-\log |x-1|+8 \log |x-2|+c$
Now From equation (1) we get,
$I=\frac{x^{2}}{2}+3 x-\log |x-1|+8 \log |x-2|+c$
13. Question

Evaluate:
$\int \frac{\left(x^{3}-x-2\right)}{\left(1-x^{2}\right)} d x$

Answer

Let $I=\int \frac{\left(x^{3}-x-2\right)}{\left(1-x^{2}\right)} d x$
$=\int\left(-x+\frac{-2}{1-x^{2}}\right) d x$
$=\int-x d x+(-2) \int \frac{1}{1-x^{2}} d x$
$=\frac{-x^{2}}{2}-\log \left|\frac{1+x}{1-x}\right|+c$
$=\frac{-x^{2}}{2}+\log \left|\frac{1-x}{1+x}\right|+c$

14. Question

Evaluate:
$\frac{(2 x+1)}{\left(4-3 x-x^{2}\right)} d x$

Answer

Let $I=\int \frac{2 x+1}{\left(4-3 x-x^{2}\right)} d x$
$=\int \frac{2 x+1}{(1-x)(4+x)} d x$
Putting $\frac{2 x+1}{(1-x)(4+x)}=\frac{A}{1-x}+\frac{B}{4+x} \ldots \ldots$.
$\mathrm{A}(4+\mathrm{x})+\mathrm{B}(1-\mathrm{x})=2 \mathrm{x}+1$
Now put 1-x=0
Therefore, $x=1$
$A(5)+B(0)=3$
$A=\frac{3}{5}$
Now put $4+x=0$
Therefore, $x=-4$
$A(0)+B(5)=-8+1=-7$
$B=\frac{-7}{5}$
Now From equation (1) we get,
$\frac{2 x+1}{(1-x)(4+x)}=\frac{3}{5} \times \frac{1}{1-x}+\frac{-7}{5} \times \frac{1}{4+x}$
$\int \frac{2 x+1}{(1-x)(4+x)} d x=\frac{3}{5} \int \frac{1}{1-x} d x+\frac{-7}{5} \int \frac{1}{4+x} d x$
$=\frac{-3}{5} \log |1-x|-\frac{7}{5} \log |4+x|+c$
$=-\frac{1}{5}[3 \log |1-x|+7 \log |4+x|]+c$

15. Question

Evaluate:
$\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x$

Answer

Put $x^{2}=t$
$2 x d x=d t$
$\int \frac{d t}{(1+t)(3+t)}=\frac{1}{2} \int\left(\frac{1}{1+t}-\frac{1}{3+t}\right) d t$
$\frac{1}{2}[\log |1+t|-\log |3+t|]+c=\frac{1}{2} \log \left|\frac{1+t}{3+t}\right|+c$
$=\frac{1}{2} \log \left|\frac{1+x^{2}}{3+x^{2}}\right|+c$

16. Question

Evaluate:
$\int \frac{\cos x}{\left(\cos ^{2} x-\cos x-2\right)} d x$

Answer

Let $I=\int \frac{\cos x}{(1+\sin x)(2+\sin x)} d x$
Putting $t=\sin x$
$d t=\cos x d x$
$I=\int \frac{d t}{(1+t)(2+t)}$,
Now putting, $\frac{1}{(1+t)(2+t)}=\frac{A}{1+t}+\frac{B}{2+t}$.
$\mathrm{A}(2+\mathrm{t})+\mathrm{B}(1+\mathrm{t})=1$
Now put $\mathrm{t}+1=0$
Therefore, $\mathrm{t}=-1$
$A(2-1)+B(0)=1$
$A=1$
Now put $\mathrm{t}+2=0$
Therefore, $\mathrm{t}=-2$
$A(0)+B(-2+1)=1$
$B=-1$
Now From equation (1) we get,
$\frac{1}{(1+t)(2+t)}=\frac{1}{1+t}+\frac{-1}{2+t}$
$\int \frac{1}{(1+t)(2+t)} d t=\int \frac{1}{1+t} d t-\int \frac{1}{2+t} d t$
$=\log |1+t|-\log |t+2|+c$
$=\log \left|\frac{t+1}{t+2}\right|+c$
So,
$I=\int \frac{\cos x}{(1+\sin x)(2+\sin x)} d x=\log \left|\frac{\sin x+1}{\sin x+2}\right|+c$

17. Question

Evaluate:
$\int \frac{\sec ^{2} x}{(2+\tan x)(3+\tan x)} d x$

Answer

Let $I=\int \frac{\sec ^{2} x}{(2+\tan x)(3+\tan x)} d x$
Putting $t=\tan x$
$d t=\sec ^{2} x d x$
$I=\int \frac{d t}{(2+t)(3+t)}$,
Now putting, $\frac{1}{(3+t)(2+t)}=\frac{A}{2+t}+\frac{B}{3+t} \ldots \ldots \ldots$. (1)
$A(3+t)+B(2+t)=1$
Now put $\mathrm{t}+2=0$
Therefore, $t=-2$
$A(3-2)+B(0)=1$
$A=1$
Now put $\mathrm{t}+3=0$
Therefore, $\mathrm{t}=-3$
$A(0)+B(2-3)=1$
$B=-1$
Now From equation (1) we get,
$\frac{1}{(2+t)(3+t)}=\frac{1}{2+t}+\frac{-1}{3+t}$
$\int \frac{1}{(2+t)(3+t)} d t=\int \frac{1}{2+t} d t-\int \frac{1}{3+t} d t$
$=\log |2+t|-\log |t+3|+c$
$=\log \left|\frac{t+2}{t+3}\right|+c$
So,
$I=\int \frac{\sec ^{2} x}{(2+\tan x)(3+\tan x)} d x=\log \left|\frac{\tan x+2}{\tan x+3}\right|+c$

18. Question

Evaluate:
$\int \frac{\sin x \cos x}{\left(\cos ^{2} x-\cos x-2\right)} d x$

Answer

Let $I=\int \frac{\sin x \cos x}{\cos ^{2} x-\cos x-2} d x$
Putting $t=\cos x$
$d t=-\sin x d x$
$I=\int \frac{(-d t) t}{t^{2}-t-2}=,-\int \frac{t d t}{(t+1)(t-2)}$,

Now putting, $\frac{-t}{(t+1)(t-2)}=\frac{A}{t+1}+\frac{B}{t-2}$
$A(t-2)+B(t+1)=-t$
Now put $\mathrm{t}-2=0$
Therefore, $\mathrm{t}=2$
$A(0)+B(2+1)=-2$
$B=\frac{-2}{3}$
Now put $\mathrm{t}+1=0$
Therefore, $\mathrm{t}=-1$
$A(-1-2)+B(0)=1$
$A=\frac{-1}{3}$
Now From equation (1) we get,
$\frac{-t}{(t+1)(t-2)}=\frac{-1}{3} \times \frac{1}{t+1}-\frac{2}{3} \times \frac{1}{t-2}$
$\int \frac{-t}{(t+1)(t-2)} d t=\frac{-1}{3} \int \frac{1}{t+1}-\frac{2}{3} \int \frac{1}{t-2}$
$=\frac{-1}{3} \log |t+1|-\frac{2}{3} \log |t-2|+c$
So,
$I=\int \frac{\sin x \cos x}{\cos ^{2} x-\cos x-2} d x=\frac{-1}{3} \log |\cos x+1|-\frac{2}{3} \log |\cos x-2|+c$
19. Question

Evaluate:
$\int \frac{e^{x}}{\left(e^{2 x}+5 e^{x}+6\right)} d x$

Answer

Let $I=\int \frac{e^{x}}{e^{2 x}+5 e^{x}+6} d x$
Putting $\mathrm{t}=\mathrm{e}^{\mathrm{x}}$
$d t=e^{x} d x$
$I=\int \frac{d t}{\left(t^{2}+5 t+6\right)}$,
Now putting, $\frac{1}{\left(t^{2}+5 t+6\right)}=\frac{A}{2+t}+\frac{B}{3+t}$
$A(3+t)+B(2+t)=1$
Now put $\mathrm{t}+2=0$
Therefore, $\mathrm{t}=-2$
$A(3-2)+B(0)=1$
$A=1$

Now put $\mathrm{t}+3=0$
Therefore, $\mathrm{t}=-3$
$A(0)+B(2-3)=1$
$B=-1$
Now From equation (1) we get,
$\frac{1}{(2+t)(3+t)}=\frac{1}{2+t}+\frac{-1}{3+t}$
$\int \frac{1}{(2+t)(3+t)} d t=\int \frac{1}{2+t} d t-\int \frac{1}{3+t} d t$
$=\log |2+t|-\log |t+3|+c$
$=\log \left|\frac{t+2}{t+3}\right|+c$
$=\log \left|\frac{e^{x}+2}{e^{x}+3}\right|+c$

20. Question

Evaluate:
$\int \frac{e^{x}}{\left(e^{3 x}-3 e^{2 x}-e^{x}+3\right)} d x$

Answer

Let $I=\int \frac{e^{x}}{e^{3 x}-3 e^{2 x}-e^{x}+3} d x$
Putting $t=e^{x}$
$d t=e^{x} d x$
$I=\int \frac{d t}{\left(t^{3}-3 t^{2}-t+3\right)}=, \int \frac{d t}{\left(t^{2}\right)(t-3)-(t-3)}=\int \frac{d t}{\left(t^{2}-1\right)(t-3)}$
Now putting, $\frac{1}{(t-1)(t+1)(t-3)}=\frac{A}{t-1}+\frac{B}{t+1}+\frac{c}{t-3} \ldots$
$A(t+1)(t-3)+B(t-1)(t-3)+C(t-1)(t+1)=1$
Now put $\mathrm{t}+1=0$
Therefore, $\mathrm{t}=-1$
$A(0)+B(-1-1)(-1-3)+C(0)=1$
$B(-2)(-4)=1$
$B=\frac{1}{8}$
Now put $\mathrm{t}-1=0$
Therefore, $\mathrm{t}=1$
$A(1+1)(1-3)+B(0)+C(0)=1$
$A=\frac{-1}{4}$
Now put $\mathrm{t}-3=0$
Therefore, $\mathrm{t}=3$
$A(0)+B(0)+C(3-1)(3+1)=1$
$C=\frac{1}{8}$
Now From equation (1) we get,
$\frac{1}{(t-1)(t+1)(t-3)}=\frac{-1}{4} \times \frac{1}{t-1}+\frac{1}{8} \times \frac{1}{t+1}+\frac{1}{8} \times \frac{1}{t-3}$
$\int \frac{1}{(t-1)(t+1)(t-3)}=\frac{-1}{4} \int \frac{1}{t-1}+\frac{1}{8} \int \frac{1}{t+1}+\frac{1}{8} \int \frac{1}{t-3}$
$=\frac{-1}{4} \log |t-1|+\frac{1}{8} \log |t+1|+\frac{1}{8} \log |t-3|+c$
$\int \frac{e^{x}}{e^{3 x}-3 e^{2 x}-e^{x}+3} d x=\frac{-1}{4} \log \left|e^{x}-1\right|+\frac{1}{8} \log \left|e^{x}+1\right|+\frac{1}{8} \log \left|e^{x}-3\right|+c$

21. Question

Evaluate:
$\int \frac{2 \log x}{x\left[2(\log x)^{2}-\log x-3\right]} d x$

Answer

Let $I=\int \frac{2 \log x}{x\left[2(\log x)^{2}-\log x-3\right]} d x$
Putting $t=\log x$
$\mathrm{dt}=\mathrm{dx} / \mathrm{x}$
$I=\int \frac{2 t d t}{\left(2 t^{2}-t-3\right)}$,
Now putting, $\frac{2 t}{\left(2 t^{2}-t-3\right)}=\frac{A}{2 t-3}+\frac{B}{t+1}$
$A(t+1)+B(2 t-3)=2 t$
Now put $2 \mathrm{t}-3=0$
Therefore, $t=\frac{3}{2}$
$A\left(\frac{3}{2}+1\right)+B(0)=2 \times \frac{3}{2}=3$
$A=\frac{6}{5}$
Now put $\mathrm{t}+1=0$
Therefore, $\mathrm{t}=-1$
$A(0)+B(-2-3)=-2$
$B=\frac{2}{5}$
Now From equation (1) we get,
$\frac{2 t}{\left(2 t^{2}-t-3\right)}=\frac{6}{5} \times \frac{1}{2 t-3}+\frac{2}{5} \times \frac{1}{t+1}$
$\int \frac{2 t}{\left(2 t^{2}-t-3\right)} d t=\frac{6}{5} \int \frac{1}{2 t-3} d t+\frac{2}{5} \int \frac{1}{t+1} d t$
$=\frac{6}{5} \log \left|\frac{6}{5} \times \frac{\log (2 t-3)}{2}\right|+\frac{2}{5} \log |\log x+1|+c$
$\int \frac{2 \log x}{x\left[2(\log x)^{2}-\log x-3\right]} d x=\frac{3}{5} \log |2 \log x-3|+\frac{2}{5} \log |\log x+1|+c$

22. Question

Evaluate:
$\int \frac{\operatorname{cosec}^{2} x}{\left(1-\cot ^{2} x\right)} d x$

Answer

Let $I=\int \frac{\operatorname{cosec}^{2} x}{\left(1-\cot ^{2} x\right)} d x$
Putting $t=\cot x$
$d t=-\operatorname{cosec}^{2} x d x$
$I=\int \frac{-d t}{\left(1-t^{2}\right)}=-\int \frac{1}{\left(1-t^{2}\right)} d t$
$=\frac{-1}{2} \log \left|\frac{1+\cot x}{1-\cot x}\right|+c$

23. Question

Evaluate:
$\int \frac{\sec ^{2} x}{\left(\tan ^{3} x+4 \tan x\right)} d x$

Answer

Let $I=\int \frac{\sec ^{2} x}{\left(\tan ^{3} x+4 \tan x\right)} d x$
Putting $t=\tan x$
$d t=\sec ^{2} x d x$
$I=\int \frac{d t}{\left(t^{3}+4 t\right)}=\int \frac{d t}{t\left(t^{2}+4\right)}$
Now putting, $\frac{1}{t\left(t^{2}+4\right)}=\frac{A}{t}+\frac{B t+C}{t^{2}+4}$.
$A\left(t^{2}+4\right)+(B t+C) t=1$
Putting $\mathrm{t}=0$,
$A(0+4) \times B(0)=1$
$A=\frac{1}{4}$
By equating the coefficients of t^{2} and constant here,
$A+B=0$
$\frac{1}{4}+B=0$
$B=-\frac{1}{4}, C=0$
Now From equation (1) we get,
$\int \frac{1}{t\left(t^{2}+4\right)} d t=\frac{1}{4} \int \frac{d t}{t}-\frac{1}{4} \int \frac{t}{t^{2}+4} d t$
$=\frac{1}{4} \log t-\frac{1}{4} \times \frac{1}{2} \log \left(t^{2}+4\right)+c$
$=\frac{1}{4} \log \tan x-\frac{1}{8} \log \left(\tan ^{2} x+4\right)+c$

41. Question

$\int \frac{d x}{\left(x^{3}-1\right)}$

Answer

Let $I=\int \frac{d x}{x^{3}-1}$
Put $\frac{1}{x^{3}-1}=\frac{1}{(x-1)\left(x^{2}+x+1\right)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+x+1}$
$A\left(x^{2}+x+1\right)+(B x+C)(x-1)=1$
Now putting $x-1=0$
$X=1$
$\mathrm{A}(1+1+1)+0=1$
$A=\frac{1}{3}$
By equating the coefficient of x^{2} and constant term, $A+B=0$
$\frac{1}{3}+B=0$
$B=-\frac{1}{3}$
$\mathrm{A}-\mathrm{C}=1$
$\frac{1}{3}-C=1$
$C=\frac{1}{3}-1$
$C=\frac{-2}{3}$
From the equation(1), we get,
$\frac{1}{(x-1)\left(x^{2}+x+1\right)}=\frac{1}{3} \times \frac{1}{x-1}+\frac{-\frac{1}{3} x-\frac{2}{3}}{x^{2}+x+1}$
$I=\int \frac{1}{(x-1)\left(x^{2}+x+1\right)} d x$

$$
=\frac{1}{3} \int \frac{1}{x-1} d x-\frac{1}{3} \int \frac{x}{x^{2}+x+1} d x-\frac{2}{3} \int \frac{1}{x^{2}+x+1} d x
$$

$=\frac{1}{3} \log |x-1|-\frac{1}{6} \int \frac{2 x+1-1}{x^{2}+x+1} d x-\frac{2}{3} \int \frac{1}{x^{2}+x+1} d x$
$=\frac{1}{3} \log |x-1|-\frac{1}{6} \int \frac{2 x+1}{x^{2}+x+1} d x+\frac{1}{6} \int \frac{1}{x^{2}+x+1} d x-\frac{2}{3} \int \frac{1}{x^{2}+x+1} d x$
Put $t=x^{2}+x+1$
$d t=(2 x+1) d x$
$I=\frac{1}{3} \log |x-1|-\frac{1}{6} \int \frac{d t}{t}+\left(\frac{1}{6}-\frac{2}{3}\right) \int \frac{d x}{x^{2}+x+1}$
$=\frac{1}{3} \log |x-1|-\frac{1}{6} \log t+\left(\frac{1-4}{6}\right) \int \frac{d x}{x^{2}+2 \times \frac{1}{2}+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}+1}$
$=\frac{1}{3} \log |x-1|-\frac{1}{6} \log \left|x^{2}+x+1\right|-\frac{1}{2} \times \frac{1}{\sqrt{3} / 2} \tan ^{-1} \frac{x+1 / 2}{\sqrt{3} / 2}+c$
$=\frac{1}{3} \log |x-1|-\frac{1}{6} \log \left|x^{2}+x+1\right|-\frac{1}{\sqrt{3}} \tan ^{-1} \frac{2 x+1}{\sqrt{3}}+c$

42. Question

$\int \frac{d x}{\left(x^{3}+1\right)}$

Answer

Let $I=\int \frac{d x}{x^{3}+1}$
Put $\frac{1}{x^{3}-1}=\frac{1}{(x+1)\left(x^{2}-x+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}-x+1}$
$A\left(x^{2}-x+1\right)+(B x+C)(x+1)=1$
Now putting $x+1=0$
$X=-1$
$\mathrm{A}(1+1+1)+\mathrm{C}(0)=1$
$A=\frac{1}{3}$
By equating the coefficient of x^{2} and constant term, $A+B=0$
$\frac{1}{3}+B=0$
$B=-\frac{1}{3}$
$A+C+=1$
$\frac{1}{3}+C=1$
$C=1-\frac{1}{3}$
$C=\frac{2}{3}$
From the equation(1), we get,
$\frac{1}{(x+1)\left(x^{2}-x+1\right)}=\frac{1}{3} \times \frac{1}{x+1}+\frac{-\frac{1}{3} x+\frac{2}{3}}{x^{2}-x+1}$
$I=\int \frac{1}{(x+1)\left(x^{2}-x+1\right)} d x$

$$
=\frac{1}{3} \int \frac{1}{x+1} d x-\frac{1}{3} \int \frac{x}{x^{2}-x+1} d x+\frac{2}{3} \int \frac{1}{x^{2}-x+1} d x
$$

$=\frac{1}{3} \log |x+1|-\frac{1}{6} \int \frac{2 x-1+1}{x^{2}-x+1} d x+\frac{2}{3} \int \frac{1}{x^{2}-x+1} d x$
$=\frac{1}{3} \log |x+1|-\frac{1}{6} \int \frac{2 x-1}{x^{2}-x+1} d x-\frac{1}{6} \int \frac{1}{x^{2}-x+1} d x+\frac{2}{3} \int \frac{1}{x^{2}-x+1} d x$
$=\frac{1}{3} \log |x+1|-\frac{1}{6} \log \left|x^{2}-x+1\right|-\frac{1}{2} \times \frac{1}{\sqrt{3} / 2} \tan ^{-1} \frac{x-1 / 2}{\sqrt{3} / 2}+c$
$=\frac{1}{3} \log |x+1|-\frac{1}{6} \log \left|x^{2}-x+1\right|+\frac{1}{\sqrt{3}} \tan ^{-1} \frac{2 x-1}{\sqrt{3}}+c$

24. Question

Evaluate:
$\int \frac{\sin 2 x}{(1+\sin x)(2+\sin x)} d x$

Answer

Let $I=\int \frac{\sin 2 x}{(1+\sin x)(2+\sin x)} d x$
Putting $t=\sin x$
$d t=\cos x d x$
$I=\int \frac{2 t}{(1+t)(2+t)} d t$
Now putting, $\frac{2 t}{(1+t)(2+t)}=\frac{A}{1+t}+\frac{B}{2+t}$.
$A(2+t)+B(1+t)=2 t$
Now put $\mathrm{t}+2=0$
Therefore, $\mathrm{t}=-2$
$A(0)+B(1-2)=-4$
$B=4$
Now put $\mathrm{t}+1=0$
Therefore, $\mathrm{t}=-1$
$A(2-)+B(0)=-2$
$A=-2$
Now from equation (1), we get,
$\frac{2 t}{(1+t)(2+t)}=\frac{-2}{1+t}+\frac{4}{2+t}$
$\int \frac{2 t}{(1+t)(2+t)} d t=-2 \int \frac{1}{1+t} d t+4 \int \frac{1}{2+t} d t$
$=4 \log |2+t|-2 \log |1+t|+c$
So,
$\int \frac{\sin 2 x}{(1+\sin x)(2+\sin x)} d x=4 \log |2+t|-2 \log |1+t|+c$

25. Question

Evaluate:
$\frac{e^{x}}{e^{x}\left(e^{x}-1\right)} d x$

Answer

Let $I=\int \frac{e^{x}}{e^{x}\left(e^{x}-1\right)} d x$
Putting $\mathrm{t}=\mathrm{e}^{\mathrm{x}}$
$d t=e^{x} d x$
$I=\int \frac{d t}{t(t-1)}$
Now putting, $\frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{t-1}$
$A(t-1)+B t=1$
Now put t-1=0
Therefore, $\mathrm{t}=1$
$A(0)+B(1)=1$
$B=1$
Now put $\mathrm{t}=0$
$\mathrm{A}(0-1)+\mathrm{B}(0)=1$
$A=-1$
Now From equation (1) we get,
$\frac{1}{t(t-1)}=\frac{-1}{t}+\frac{1}{t-1}$
$\int \frac{1}{t(t-1)} d t=-\int \frac{1}{t} d t+\int \frac{1}{t-1} d t$
$=-\log t+\log |t-1|+c$
$=\log \left|\frac{t-1}{t}\right|+c$
$=\log \left|\frac{e^{x}-1}{e^{x}}\right|+c$

43. Question

$\int \frac{d x}{(x+1)^{2}\left(x^{2}+1\right)}$

Answer

Let $I=\int \frac{d x}{\left(x^{2}+1\right)(x+1)^{2}}$

Put $\frac{1}{\left(x^{2}+1\right)(x+1)^{2}}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C x+D}{x^{2}+1}$.
$A(x+1)\left(x^{2}+1\right)+B\left(x^{2}+1\right)+(C x+D)(x+1)^{2}=1$
Put $x+1=0$
$X=-1$
$\mathrm{A}(0)+\mathrm{B}(1+1)+0=1$
$B=\frac{1}{2}$
By equating the coefficient of x^{2} and constant term, $A+C=0$
$A+B+2 C=0$
$A+2 C=\frac{-1}{2}$
$A+B+D=1$
Solving (2) and (3), we get,
$\frac{1}{\left(x^{2}+1\right)(x+1)^{2}}=\frac{1}{2} \times \frac{1}{x+1}+\frac{1}{2} \times \frac{1}{(x+1)^{2}}+\frac{-\frac{1}{2} x+0}{x^{2}+1}$
$\int \frac{1}{\left(x^{2}+1\right)(x+1)^{2}} d x=\frac{1}{2} \int \frac{1}{x+1} d x+\frac{1}{2} \int \frac{1}{(x+1)^{2}} d x-\frac{1}{2} \int \frac{x}{x^{2}+1} d x$
$=\frac{1}{2} \log |x+1|-\frac{1}{2} \times \frac{1}{x+1}-\frac{1}{4} \log \left|x^{2}+1\right|+c$

26. Question

Evaluate:
$\int \frac{d x}{x\left(x^{4}-1\right)}$

Answer

Let $I=\int \frac{d x}{x\left(x^{4}-1\right)} d x$
Putting $t=x^{4}$
$d t=4 x^{3} d x$
$I=\int \frac{x^{3} d x}{x^{4}\left(x^{4}-1\right)}=\frac{1}{4} \times \int \frac{d t}{t(t-1)}$
Now putting, $\frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{t-1} \ldots \ldots$.
$A(t-1)+B t=1$
Now put $\mathrm{t}-1=0$
Therefore, $\mathrm{t}=1$
$A(0)+B(1)=1$
$B=1$
Now put $\mathrm{t}=0$
$A(0-1)+B(0)=1$
$A=-1$
Now From equation (1) we get,
$\frac{1}{t(t-1)}=\frac{-1}{t}+\frac{1}{t-1}$
$\frac{1}{4} \int \frac{1}{t(t-1)} d t=-\frac{1}{4} \int \frac{1}{t} d t+\frac{1}{4} \int \frac{1}{t-1} d t$
$=-\frac{1}{4} \log t+\frac{1}{4} \log |t-1|+c$
$=-\frac{1}{4} \log x^{4}+\frac{1}{4} \log \left|x^{4}-1\right|+c$
$=-\log |x|+\frac{1}{4} \log \left|x^{4}-1\right|+c$

44. Question

$\int \frac{17}{(2 x+1)\left(x^{2}+4\right)} d x$

Answer

Let $I=\int \frac{17}{(2 x+1)\left(x^{2}+4\right)} d x$
Put $\frac{17}{(2 x+1)\left(x^{2}+4\right)}=\frac{A}{2 x+1}+\frac{B x+C}{x^{2}+4}$.
$A\left(x^{2}+4\right)+(B x+C)(2 x+1)=17$
Put $2 x+1=0$
$x=-\frac{1}{2}$
$A\left(\frac{1}{4}+4\right)+0=17$
$A\left(\frac{17}{4}\right)=17$
$A=4$
By equating the coefficient of x^{2} and constant term,
$A+2 B=0$
$4+2 B=0$
$B=-2$
$4 \mathrm{~A}+\mathrm{C}=17$
$4 \times 4+C=17$
$C=1$
From the equation(1), we get,
$\frac{17}{(2 x+1)\left(x^{2}+4\right)}=\frac{4}{2 x+1}+\frac{-2 x+1}{x^{2}+4}$
$\int \frac{17}{(2 x+1)\left(x^{2}+4\right)} d x=4 \int \frac{1}{2 x+1} d x-2 \int \frac{2 x}{x^{2}+4} d x+\int \frac{1}{x^{2}+2^{2}} d x$
$=\frac{4 \log |2 x+1|}{2}-\log \left|x^{2}+4\right|+\frac{1}{2} \tan ^{-1} \frac{x}{2}+c$
$=2 \log |2 x+1|-\log \left|x^{2}+4\right|+\frac{1}{2} \tan ^{-1} \frac{x}{2}+c$

27. Question

Evaluate:
$\int \frac{\left(1-x^{2}\right)}{x(1-2 x)} d x$

Answer

Let $I=\int \frac{\left(x^{2}-1\right)}{x(2 x-1)} d x=\int\left(\frac{1}{2}+\frac{\left(\frac{1}{2} x-1\right)}{x(2 x-1)}\right) d x=\int \frac{1}{2} d x+\int \frac{x}{x(2 x-1)} d x-\int \frac{1}{x(2 x-1)} d x$
$I=\frac{1}{2} x+\frac{1}{2} \times \frac{\log |2 x-1|}{2}-I_{1} \ldots \ldots$.
Where $I_{1}=\int \frac{1}{x(2 x-1)} d x$.
Now putting, $\frac{1}{x(2 x-1)}=\frac{A}{x}+\frac{B}{2 x-1}$
$A(2 x-1)+B x=1$
Putting $2 x-1=0$
$x=\frac{1}{2}$
$A(0)+B\left(\frac{1}{2}\right)=1$
$B=2$
Putting $x=0$,
$A(0-1)+B(0)=1$
$A=-1$
From equation (2), we get,
$\frac{1}{x(2 x-1)}=-\frac{1}{x}+\frac{2}{2 x-1}$
$\int \frac{1}{x(2 x-1)} d x=-\int \frac{1}{x} d x+2 \int \frac{1}{2 x-1} d x$
$=-\log |x|+\frac{2 \log |2 x-1|}{2}+c$
$=\log |2 x-1|-\log x+c$
From equation (1),
$I=\frac{1}{2} x+\frac{1}{4} \log |2 x-1|-\log |2 x-1|+\log x+c$
$=\frac{1}{2} x-\frac{3}{4} \log |1-2 x|+\log |x|+c$
45. Question
$\int \frac{d x}{\left(x^{2}+2\right)\left(x^{2}+4\right)}$

Answer

Let $I=\int \frac{d x}{\left(x^{2}+2\right)\left(x^{2}+4\right)} d x$
Put $\frac{1}{\left(x^{2}+2\right)\left(x^{2}+4\right)}=\frac{1}{(t+2)(t+4)}=\frac{A}{t+2}+\frac{B}{t+4}$
$A(t+4)+B(t+2)=1$
Put $\mathrm{t}+4=0$
$t=-4$
$A(0)+B(-4+2)=1$
$B=-\frac{1}{2}$
Put $t+2=0$
$t=-2$
$A(-2+4)+B(0)=1$
$A=\frac{1}{2}$
From equation(1), we get,
$\frac{1}{(t+2)(t+4)}=\frac{1}{2} \times \frac{1}{t+2}-\frac{1}{2} \times \frac{1}{t+4}$
$\int \frac{1}{\left(x^{2}+2\right)\left(x^{2}+4\right)} d x=\frac{1}{2} \int \frac{1}{x^{2}+2} d x-\frac{1}{2} \int \frac{1}{x^{2}+4} d x$
$=\frac{1}{2} \times \frac{1}{\sqrt{2}} \tan ^{-1} \frac{x}{\sqrt{2}}-\frac{1}{2} \times \frac{1}{2} \tan ^{-1} \frac{x}{2}+c$
$=\frac{1}{4} \tan ^{-1} \frac{x}{\sqrt{2}}-\frac{1}{4} \tan ^{-1} \frac{x}{2}+c$

28. Question

Evaluate:
$\int \frac{\left(x^{2}+x+1\right)}{(x+2)(x+1)^{2}} d x$

Answer

Let $I=\int \frac{x^{2}+x+1}{(x+2)(x+1)^{2}} d x$
Now putting, $\frac{x^{2}+x+1}{(x+2)(x+1)^{2}}=\frac{A}{(x+2)}+\frac{B}{(x+1)}+\frac{C}{(x+1)^{2}} \ldots \ldots$. .
$A(x+1)^{2}+B(x+2)(x+1)+C(x+2)=x^{2}+x+1$
Now put $x+1=0$
Therefore, $x=-1$
$A(0)+B(0)+C(-1+2)=1-1+1=1$
$C=1$

Now put $x+2=0$
Therefore, $x=-2$
$A(-2+1)^{2}+B(0)+C(0)=4-2+1=3$
$A=3$
Equating the coefficient of $x^{2}, A+B=1$
$3+B=1$
$B=-2$
Form equation (1), we get,
$\frac{x^{2}+x+1}{(x+2)(x+1)^{2}}=\frac{3}{(x+2)}-\frac{2}{(x+1)}+\frac{1}{(x+1)^{2}}$
So,
$\int \frac{x^{2}+x+1}{(x+2)(x+1)^{2}} d x=\int \frac{3}{(x+2)} d x-\int \frac{2}{(x+1)} d x+\int \frac{1}{(x+1)^{2}} d x$
$=3 \log |x+2|-2 \log |x+1|-\frac{1}{1+x}+c$

46. Question

$\frac{x^{2}+1}{\left(x^{2}+4\right)\left(x^{2}+25\right)} d x$

Answer

Let $I=\int \frac{x^{2}+1}{\left(x^{2}+4\right)\left(x^{2}+25\right)} d x$
Putting $\frac{x^{2}+1}{\left(x^{2}+4\right)\left(x^{2}+25\right)}=\frac{t+1}{(t+4)(t+25)}=\frac{A}{t+4}+\frac{B}{t+25} \ldots \ldots \ldots$. 1
Where $t=x^{2}$
$(A+B) t+(25 A+4 B)=t+1$
$A+B=1$
$25 A+4 B=1$
Solving equation (1)and(2), we get,
$A=\frac{-1}{7}$ and $B=\frac{8}{7}$
Now,
$\frac{t+1}{(t+4)(t+25)}=\frac{-1}{7} \times \frac{1}{t+4}+\frac{8}{7} \times \frac{1}{t+25}$
$\frac{x^{2}+1}{\left(x^{2}+4\right)\left(x^{2}+25\right)}=\frac{-1}{7} \times \frac{1}{x^{2}+4}+\frac{8}{7} \times \frac{1}{x^{2}+25}$
$\int \frac{x^{2}+1}{\left(x^{2}+4\right)\left(x^{2}+25\right)} d x=\frac{-1}{7} \int \frac{1}{x^{2}+2^{2}} d x+\frac{8}{7} \int \frac{1}{x^{2}+5^{2}} d x$
$=-\frac{1}{7} \times \frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)+\frac{8}{7} \times \frac{1}{5} \tan ^{-1}\left(\frac{x}{5}\right)+c$
$=-\frac{1}{14} \tan ^{-1}\left(\frac{x}{2}\right)+\frac{8}{35} \tan ^{-1}\left(\frac{x}{5}\right)+c$

29. Question

Evaluate:
$\int \frac{(2 x+9)}{(x+2)(x-3)^{2}} d x$

Answer

Let $I=\int \frac{2 x+9}{(x+2)(x-3)^{2}} d x$
Now putting, $\frac{2 x+9}{(x+2)(x-3)^{2}}=\frac{A}{(x+2)}+\frac{B}{(x-3)}+\frac{C}{(x-3)^{2}}$
$A(x-3)^{2}+B(x+2)(x-3)+C(x+2)=2 x+9$
Now put $x-3=0$
Therefore, $x=3$
$A(0)+B(0)+C(3+2)=6+9=15$
$C=3$
Now put $x+2=0$
Therefore, $x=-2$
$A(-2-3)^{2}+B(0)+C(0)=-4+9=5$
$A=\frac{1}{5}$
Equating the coefficient of x^{2}, we get,
$A+B=0$
$\frac{1}{5}+B=0$
$B=-\frac{1}{5}$
From equation (1), we get,
$\frac{2 x+9}{(x+2)(x-3)^{2}}=\frac{1}{5} \times \frac{1}{(x+2)}-\frac{1}{5} \times \frac{1}{(x-3)}+\frac{3}{(x-3)^{2}}$
$\int \frac{2 x+9}{(x+2)(x-3)^{2}} d x=\frac{1}{5} \int \frac{1}{(x+2)} d x-\frac{1}{5} \int \frac{1}{(x-3)} d x+3 \int \frac{1}{(x-3)^{2}} d x$
$=\frac{1}{5} \log |x+2|-\frac{1}{5} \log |x-3|-\frac{3}{x-3}+c$

47. Question

$\int \frac{d x}{\left(e^{x}-1\right)^{2}}$

Answer

putting $t=e^{x}-1$
$e^{x}=t+1$
$d t=e^{x} d x$
$\frac{d t}{e^{x}}=d x$
$\frac{d t}{t+1}=d x$
Put $\frac{1}{(1+t) t^{2}}=\frac{A}{t+1}+\frac{B t+C}{t^{2}}$
$\mathrm{A}\left(\mathrm{t}^{2}\right)+(\mathrm{Bt}+\mathrm{C})(\mathrm{t}+1)=1$
Put $\mathrm{t}+1=0$
$t=-1$
$\mathrm{A}=1$
Equating coefficients
$A+B=0$
$1+B=0$
$B=-1$
$\mathrm{C}=1$
From equation (1), we get,
$\frac{1}{(1+t) t^{2}}=\frac{1}{t+1}+\frac{-t+1}{t^{2}}$
$\int \frac{1}{(1+t) t^{2}} d t=\int \frac{1}{t+1} d t-\int \frac{t}{t^{2}} d t+\int \frac{1}{t^{2}} d t$
$=\log |t+1|-\int \frac{1}{t} d t+\int \frac{1}{t^{2}} d t$
$=\log |t+1|-\log |t|-\frac{1}{t}+c$
$\int \frac{1}{\left(e^{x}-1\right)^{2}} d x=\log \left|e^{x}\right|-\log \left|e^{x}-1\right|-\frac{1}{e^{x}-1}+c$

48. Question

$\int \frac{d x}{x\left(x^{3}+1\right)}$

Answer

Let $I=\int \frac{d x}{x\left(x^{5}+1\right)}$
Put $t=x^{5}$
$d t=5 x^{4} d x$
$\int \frac{d t}{\frac{\left(5 x^{4}\right)}{x(t+1)}}=\frac{1}{5} \int \frac{d t}{x^{5}(t+1)}=\frac{1}{5} \int \frac{d t}{t(t+1)}$
Putting $\frac{1}{t(t+1)}=\frac{A}{t}+\frac{B}{t+1} \ldots \ldots$.
$A(t+1)+B t=1$
Now put $\mathrm{t}+1=0$
$t=-1$
$A(0)+B(-1)=1$
$B=-1$
Now put $\mathrm{t}=0$
$\mathrm{A}(0+1)+\mathrm{B}(0)=1$
$A=1$
$\frac{1}{t(t+1)}=\frac{1}{t}-\frac{1}{t+1}$
$\int \frac{1}{t(t+1)} d t=\int \frac{1}{t} d t-\int \frac{1}{t+1} d t$
$=\log t-\log |t+1|+c$
$=\log \left|\frac{t}{t+1}\right|+c$
$\int \frac{d x}{x\left(x^{5}+1\right)}=\frac{1}{5} \int \frac{d t}{t(t+1)}=\frac{1}{5} \log \left|\frac{x^{5}}{x^{5}+1}\right|+c$
$=\log x-\frac{1}{5} \log \left|x^{5}+1\right|+c$
30. Question

Evaluate:
$\int \frac{\left(x^{2}+1\right)}{(x-1)^{2}(x+3)} d x$

Answer

Let $I=\int \frac{x^{2}+1}{(x+3)(x-1)^{2}} d x$
Now putting, $\frac{x^{2}+1}{(x+3)(x-1)^{2}}=\frac{A}{(x+3)}+\frac{B}{(x-1)}+\frac{C}{(x-1)^{2}} \ldots \ldots$.
$A(x-1)^{2}+B(x+3)(x-1)+C(x+3)=x^{2}+1$
Now put $x-1=0$
Therefore, $x=1$
$\mathrm{A}(0)+\mathrm{B}(0)+\mathrm{C}(4)=2$
$C=\frac{1}{2}$
Now put $x+3=0$
Therefore, $x=-3$
$A(-3-1)^{2}+B(0)+C(0)=9+1=10$
$A=\frac{5}{8}$
By equating the coefficient of x^{2}, we get, $A+B=1$
$\frac{5}{8}+B=1$
$B=1-\frac{5}{8}=\frac{3}{8}$

From equation (1), we get,
$\frac{x^{2}+1}{(x+3)(x-2)^{2}}=\frac{5}{8} \times \frac{1}{(x+3)}+\frac{3}{8} \times \frac{1}{(x-2)}+\frac{1}{(x-2)^{2}}$
$\int \frac{x^{2}+1}{(x+3)(x-2)^{2}} d x=\frac{5}{8} \int \frac{1}{(x+3)} d x+\frac{3}{8} \int \frac{1}{(x-2)} d x+\int \frac{1}{(x-2)^{2}} d x$
$=\frac{5}{8} \log |x+3|+\frac{3}{8} \log |x-1|-\frac{1}{2(x-1)}+c$

31. Question

Evaluate:
$\int \frac{\left(x^{2}+1\right)}{(x+3)(x-1)} d x$

Answer

Let $I=\int \frac{x^{2}+1}{(x-3)(x-1)^{2}} d x$
Now putting, $\frac{x^{2}+1}{(x-3)(x-1)^{2}}=\frac{A}{(x-3)}+\frac{B}{(x-1)}+\frac{C}{(x-1)^{2}} \ldots \ldots$.
$A(x-1)^{2}+B(x-3)(x-1)+C(x-3)=x^{2}+1$
Putting $x-1=0$,
$X=1$
$\mathrm{A}(0)+\mathrm{B}(0)+\mathrm{C}(1-3)=1+1$
$C=-1$
Putting $x-3=0$,
$X=3$
$A(3-1)^{2}+B(0)+C(0)=9+1$
$A(4)=10$
$A=\frac{5}{2}$
Equating the coefficient of x^{2}
$A+B=1$
$\frac{5}{2}+B=1$
$B=1-\frac{5}{2}=\frac{-3}{2}$
From (i) $\int \frac{x^{2}+1}{(x-3)(x-1)^{2}} d x=\frac{5}{2} \int \frac{1}{x-3} d x-\frac{3}{2} \int \frac{1}{x-1} d x-\int \frac{1}{(x-1)^{2}} d x$
$=\frac{5}{2} \log |x-3|-\frac{3}{2} \log |x-1|+\frac{1}{x-1}+C$

49. Question

$\int \frac{d x}{x\left(x^{5}+1\right)}$

Answer

Let $I=\int \frac{d x}{x\left(x^{6}+1\right)}$
Put $t=x^{6}$
$d t=6 x^{5} d x$
$\int \frac{d t}{\frac{\left(6 x^{5}\right)}{x(t+1)}}=\frac{1}{6} \int \frac{d t}{x^{6}(t+1)}=\frac{1}{6} \int \frac{d t}{t(t+1)}$
Putting $\frac{1}{t(t+1)}=\frac{A}{t}+\frac{B}{t+1}$.
$A(t+1)+B t=1$
Now put $\mathrm{t}+1=0$
$t=-1$
$A(0)+B(-1)=1$
$B=-1$
Now put $\mathrm{t}=0$
$\mathrm{A}(0+1)+\mathrm{B}(0)=1$
$A=1$
$\frac{1}{t(t+1)}=\frac{1}{t}-\frac{1}{t+1}$
$\int \frac{1}{t(t+1)} d t=\int \frac{1}{t} d t-\int \frac{1}{t+1} d t$
$=\log t-\log |t+1|+c$
$=\log \left|\frac{t}{t+1}\right|+c$
$\int \frac{d x}{x\left(x^{6}+1\right)}=\frac{1}{6} \int \frac{d t}{t(t+1)}=\frac{1}{6} \log \left|\frac{x^{6}}{x^{6}+1}\right|+c$
$=\log x-\frac{1}{6} \log \left|x^{6}+1\right|+c$

32. Question

Evaluate:
$\int \frac{\left(x^{2}+x+1\right)}{(x+2)\left(x^{2}+1\right)} d x$

Answer

Let $I=\int \frac{x^{2}+x+1}{(x+2)\left(x^{2}+1\right)} d x$
Now putting, $\frac{x^{2}+x+1}{(x+2)\left(x^{2}+1\right)}=\frac{A}{(x+2)}+\frac{B x+C}{\left(x^{2}+1\right)}$
$A\left(x^{2}+1\right)+(B x+C)(x+2)=x^{2}+x+1$
$A x^{2}+A+B x^{2}+C x+2 B x+2 C=x^{2}+x+1$
$(A+B) x^{2}+(C+2 B) x+(A+2 C)=x^{2}+x+1$
Equating coefficients $A+B=1$.
$A+2 C=1$
$A=1-2 C$
$2 B+C=1$
$2 B=1-C$
$B=\frac{1-C}{2} \ldots \ldots$.
$(1-2 C)+\frac{1-C}{2}=1$
$2-4 C+1-C=2$
$3-5 C=2$
$-5 C=-1$
$C=\frac{1}{5}$
And $2 B=1-\frac{1}{5}=\frac{4}{5}$
$B=\frac{2}{5}$
$A=1-2 \times \frac{1}{5}$
$=1-\frac{2}{5}$
$=\frac{3}{5}$
$I=\int \frac{x^{2}+x+1}{(x+2)\left(x^{2}+1\right)} d x=\int \frac{A}{(x+2)} d x+\int \frac{B x+C}{\left(x^{2}+1\right)} d x$
$=\frac{3}{5} \times \int \frac{1}{(x+2)} d x+\frac{1}{5} \times \int \frac{2 x+1}{\left(x^{2}+1\right)} d x$
$=\frac{3}{5} \log |x+2|+\frac{1}{5} I_{1}+C_{1}$
$I_{1}=\int \frac{2 x+1}{\left(x^{2}+1\right)} d x=\int \frac{2 x}{\left(x^{2}+1\right)} d x+\int \frac{1}{\left(x^{2}+1\right)} d x$
$=\log \left|x^{2}+1\right|+\tan ^{-1} x+C_{2}$
$I=\int \frac{x^{2}+x+1}{(x+2)\left(x^{2}+1\right)} d x=\frac{3}{5} \log |x+2|+\frac{1}{5} \log \left|x^{2}+1\right|+\frac{1}{5} \tan ^{-1} x+C$

50. Question

$\int \frac{d x}{\sin x(3+2 \cos x)}$

Answer

let $I=\int \frac{d x}{\sin x(3+2 \cos x)}$
Put $t=\cos x$
$d t=-\sin x d x$
$\frac{d t}{-\sin x}=d x$
$I=\int \frac{d t}{\frac{-\sin x}{\sin x(3+2 t)}}$

$$
\begin{aligned}
& =-\int \frac{d t}{\sin ^{2} x(3+2 t)}=-\int \frac{d t}{\left(1-\cos ^{2} x\right)(3+2 t)} \\
& =-\int \frac{d t}{\left(1-t^{2}\right)(3+2 t)}
\end{aligned}
$$

$\frac{1}{\left(1-t^{2}\right)(3+2 t)}=\frac{1}{(1-t)(1+t)(3+2 t)}$
Putting $\frac{1}{(1-t)(1+t)(3+2 t)}=\frac{A}{1-t}+\frac{B}{1+t}+\frac{c}{3+2 t} \ldots \ldots$.
$\mathrm{A}(1+\mathrm{t})(3+2 \mathrm{t})+\mathrm{B}(1-\mathrm{t})(3+2 \mathrm{t})+\mathrm{C}(1+\mathrm{t})(1-\mathrm{t})=1$
Now Putting $1+\mathrm{t}=0$
$t=-1$
$A(0)+B(2)(3-2)+C(0)=1$
$B=\frac{1}{2}$
Now Putting 1-t=0
$t=1$
$A(2)(5)+B(0)+C(0)=1$
$A=\frac{1}{10}$
Now Putting $3+2 \mathrm{t}=0$
$t=-\frac{3}{2}$
$A(0)+B(0)+C\left(1-\frac{9}{4}\right)=1$
$C=\frac{-4}{5}$
$\frac{1}{(1-t)(1+t)(3+2 t)}=\frac{1}{10} \times \frac{1}{1-t}+\frac{1}{2} \times \frac{1}{1+t}-\frac{4}{5} \times \frac{1}{3+2 t}$
$\int \frac{1}{(1-t)(1+t)(3+2 t)} d t=\frac{1}{10} \int \frac{1}{1-t} d t+\frac{1}{2} \int \frac{1}{1+t} d t-\frac{4}{5} \int \frac{1}{3+2 t} d t$
$=-\frac{1}{10} \log |1-t|+\frac{1}{2} \log |1+t|-\frac{4}{5} \times \frac{\log |3+2 t|}{2}+c$
$=-\frac{1}{10} \log |1-\cos x|+\frac{1}{2} \log |1+\cos x|-\frac{2}{5} \log |3+2 \cos x|+c$
33. Question

Evaluate:
$\int \frac{2 x}{(2 x+1)^{2}} d x$
Answer

Let $I=\int \frac{2 x}{(2 x+1)^{2}} d x$
Now putting, $\frac{2 x}{(2 x+1)^{2}}=\frac{A}{(2 x+1)}+\frac{B}{(2 x+1)^{2}}$.
$A(2 x+1)+B=2 x$
Putting $2 x+1=0$,
$x=\frac{-1}{2}$
$A(0)+B=-1$
$B=-1$
By equating the coefficient of x,
$2 \mathrm{~A}=2$
$\mathrm{A}=1$
From equation (1), we get,
$\frac{2 x}{(2 x+1)^{2}}=\frac{1}{(2 x+1)}-\frac{1}{(2 x+1)^{2}}$
$\int \frac{2 x}{(2 x+1)^{2}} d x=\int \frac{1}{(2 x+1)} d x-\int \frac{1}{(2 x+1)^{2}} d x$
$=\frac{\log |2 x+1|}{2}+\frac{1}{2(2 x+1)}+c$
$=\frac{1}{2}\left[\log |2 x+1|+\frac{1}{2 x+1}\right]+c$

51. Question

$\int \frac{d x}{\cos x(5-4 \sin x)}$

Answer

let $I=\int \frac{d x}{\cos x(5-4 \sin x)}$
Put $t=\sin x$
$d t=\cos x d x$
$I=\int \frac{d t}{\left(1-\sin ^{2} x\right)(5-4 t)}=\int \frac{d t}{\left(1-t^{2}\right)(5-4 t)}$
$\frac{1}{\left(1-t^{2}\right)(5-4 t)}=\frac{1}{(1-t)(1+t)(5-4 t)}$
Putting $\frac{1}{(1-t)(1+t)(5-4 t)}=\frac{A}{1-t}+\frac{B}{1+t}+\frac{c}{5-4 t}$.
$\mathrm{A}(1+\mathrm{t})(5-4 \mathrm{t})+\mathrm{B}(1-\mathrm{t})(5-4 \mathrm{t})+\mathrm{C}(1+\mathrm{t})(1-\mathrm{t})=1$
Now Putting $1+\mathrm{t}=0$
$\mathrm{t}=-1$
$\mathrm{A}(0)+\mathrm{B}(2)(9)+\mathrm{C}(0)=1$
$B=\frac{1}{18}$

Now Putting 1-t=0
$t=1$
$A(2)+B(0)+C(0)=1$
$A=\frac{1}{2}$
Now Putting $5-4 \mathrm{t}=0$
$t=\frac{5}{4}$
$A(0)+B(0)+C\left(1-\frac{25}{16}\right)=1$
$C=\frac{-16}{9}$
From equation(1), we get,
$\frac{1}{(1-t)(1+t)(5-4 t)}=\frac{1}{2} \times \frac{1}{1-t}+\frac{1}{18} \times \frac{1}{1+t}-\frac{16}{9} \times \frac{1}{5-4 t}$
$\int \frac{1}{(1-t)(1+t)(5-4 t)} d t=\frac{1}{2} \int \frac{1}{1-t} d t+\frac{1}{18} \int \frac{1}{1+t} d t-\frac{16}{9} \int \frac{1}{5-4 t} d t$
$=-\frac{1}{2} \log |1-t|+\frac{1}{18} \log |1+t|-\frac{16}{9} \times \frac{\log |5-4 t|}{-4}+c$
$=-\frac{1}{2} \log |1-\sin x|+\frac{1}{18} \log |1+\sin x|+\frac{4}{9} \log |5-4 \sin x|+c$
34. Question

Evaluate:
$\int \frac{3 x+1}{(x+2)(x-2)^{2}} d x$

Answer

Let $I=\int \frac{3 x+1}{(x+2)(x-2)^{2}} d x$
Now putting, $\frac{3 x+1}{(x+2)(x-2)^{2}}=\frac{A}{(x+2)}+\frac{B}{(x-2)}+\frac{C}{(x-2)^{2}} \ldots \ldots$
$A(x-2)^{2}+B(x+2)(x-2)+C(x+2)=3 x+1$
Putting $x-2=0$,
$X=2$
$A(0)+B(0)+C(2+1)=3 \times 2+1$
$C=\frac{7}{4}$
Putting $x+2=0$,
$X=-2$
$A(-4)^{2}+B(0)+C(0)=-6+1=-5$
$A=\frac{-5}{16}$
By equation the coefficient of x^{2}, we get, $A+B=0$
$\frac{-5}{16}+B=0$
$B=\frac{5}{16}$
$I=-\frac{5}{16} \log |x+2|+\frac{5}{16} \log |x-2|-\frac{7}{4(x-2)}+c$

52. Question

$\int \frac{d x}{\sin x \cos ^{2} x}$

Answer

Let $I=\int \frac{1}{\sin x \times \cos ^{2} x} d x=\int \frac{\sin ^{2} x+\cos ^{2} x}{\sin x \times \cos ^{2} x} d x=\int \frac{\sin ^{2} x}{\sin x \times \cos ^{2} x} d x+\int \frac{\cos ^{2} x}{\sin x \times \cos ^{2} x} d x$
$=\int \frac{\sin x}{\cos ^{2} x} d x+\int \frac{1}{\sin x} d x$
$=\int(\tan x \sec x+\operatorname{cosec} x) d x$
$=\sec x-\frac{1}{2} \log \cot ^{2} \frac{x}{2}=\sec x-\frac{1}{2} \log \left(\frac{1+\cos x}{1-\cos x}\right)+c$

53. Question

$\int \frac{\tan x}{(1-\sin x)} d x$

Answer

let $I=\int \frac{\tan x}{(1-\sin x)} \mathrm{dx}=\int \frac{\sin x}{\cos x(1-\sin x)} \mathrm{dx}$
Put $t=\sin x$
$d t=\cos x d x$
$I=\int \frac{\sin x \times \cos x}{\cos ^{2} x(1-\sin x)} d x=\int \frac{t d t}{\left(1-\sin ^{2} x\right)(1-t)}=\int \frac{t d t}{\left(1-t^{2}\right)(1-t)}$
Putting $\frac{t}{(1-t)(1+t)(1-t)}=\frac{A}{1+t}+\frac{B}{1-t}+\frac{c}{(1-t)^{2}} \ldots \ldots$.
$\mathrm{A}(1+\mathrm{t})^{2}+\mathrm{B}(1-\mathrm{t})(1+\mathrm{t})+\mathrm{C}(1+\mathrm{t})=\mathrm{t}$
Now Putting 1-t=0
$t=1$
$A(0)+B(0)+C(1+1)=1$
$C=\frac{1}{2}$
Now Putting $1+\mathrm{t}=0$
$t=-1$
$A(2)^{2}+B(0)+C(0)=-1$
$A=-\frac{1}{4}$
By equating the coefficient of t^{2}, we get, $A-B=0$
$\frac{-1}{4}-B=0$
$B=-\frac{1}{4}$
From equation(1), we get,
$\frac{t}{(1-t)(1+t)(1-t)}=\frac{-1}{4} \times \frac{1}{1+t}-\frac{1}{4} \times \frac{1}{1-t}+\frac{1}{2} \times \frac{1}{(1-t)^{2}}$
$\int \frac{t}{(1-t)(1+t)(1-t)} d t=\frac{-1}{4} \int \frac{1}{1+t} d t-\frac{1}{4} \int \frac{1}{1-t} d t+\frac{1}{2} \int \frac{1}{(1-t)^{2}} d t$
$=\frac{-1}{4} \int \frac{1}{1+t} d t-\frac{1}{4} \int \frac{1}{1-t} d t+\frac{1}{2} \int \frac{1}{(1-t)^{2}} d t$
$=-\frac{1}{4} \log |1+t|-\frac{1}{4} \log |1-t|-\frac{1}{2} \times \frac{1}{1-t}+c$
$=-\frac{1}{4} \log |1+\sin x|-\frac{1}{4} \log |1-\sin x|-\frac{1}{2} \times \frac{1}{1-\sin x}+c$

35. Question

Evaluate:
$\int \frac{(5 x+8)}{x^{2}(3 x+8)} d x$

Answer

Let $I=\int \frac{5 x+8}{x^{2}(3 x+8)} d x$
Now putting, $\frac{5 x+8}{x^{2}(3 x+8)}=\frac{A}{(3 x+8)}+\frac{B x+C}{x^{2}}$.
$A x^{2}+(B x+C)(3 x+8)=5 x+8$
Putting $3 x+8=0$,
$x=-\frac{8}{3}$
$A\left(\frac{64}{9}\right)+B(0)=5\left(-\frac{8}{3}\right)+8$
$A\left(\frac{64}{9}\right)=\frac{-40+24}{3}$
$A\left(\frac{64}{9}\right)=\frac{-16}{3}$
$A=\frac{-3}{4}$
By equating the coefficient of x^{2} and constant term,
$A+3 B=0$
$\frac{-3}{4}+3 B=0$
$3 B=\frac{3}{4}$
$B=\frac{1}{4}$
$8 C=8$
$C=1$
From equation (1), we get,
$\int \frac{5 x+8}{x^{2}(3 x+8)} d x=\frac{-3}{4} \times \int \frac{1}{(3 x+8)} d x+\frac{1}{4} \times \int \frac{x+1}{x^{2}} d x$
$=\frac{-3}{4} \times \frac{\log (3 x+8)}{3}+\frac{1}{4} \int \frac{x}{x^{2}} d x+\int \frac{1}{x^{2}} d x$
$=-\frac{1}{4} \log |3 x+8|+\frac{1}{4} \log x-\frac{1}{x}+c$
Putting $x+2=0$,
$X=-2$
$A(-4)^{2}+B(0)+C(0)=-6+1=-5$
$A=\frac{-5}{16}$

54. Question

$\int \frac{d x}{(\sin x+\sin 2 x)}$

Answer

let $I=\int \frac{d x}{(\sin x+\sin 2 x)}=\int \frac{d x}{(\sin x+2 \sin x \cos x)}$
Put $t=\cos x$
$d t=-\sin x d x$
$\frac{-d t}{\sin x}=d x$
$I=\int \frac{-d t}{\sin ^{2} x(1+2 t)}=\int \frac{d t}{\left(1-\cos ^{2} x\right)(1+2 t)}=\int \frac{d t}{\left(1-t^{2}\right)(1+2 t)}$
Putting $\frac{t}{(1-t)(1+t)(1+2 t)}=\frac{A}{1-t}+\frac{B}{1+t}+\frac{c}{1+2 t}$.
$A(1+t)(1+2 t)+B(1-t)(1+2 t)+C\left(1-t^{2}\right)=1$
Putting $1+t=0$
$t=-1$
$A(0)+B(2)(1-2)+C(0)=1$
$B=-\frac{1}{2}$
Putting 1-t=0
$\mathrm{t}=1$
$A(2)(3)+B(0)+C(0)=1$
$A=\frac{1}{6}$

Putting $1+2 t=0$
$t=-\frac{1}{2}$
$A(0)+B(0)+C\left(1-\frac{1}{4}\right)=1$
$C=\frac{4}{3}$
From equation(1), we get,
$\frac{1}{(1-t)(1+t)(1+2 t)}=\frac{1}{6} \times \frac{1}{1-t}-\frac{1}{2} \times \frac{1}{1+t}+\frac{4}{3} \times \frac{1}{1+2 t}$
$\int \frac{1}{(1-t)(1+t)(1+2 t)} d t=\frac{1}{6} \int \frac{1}{1-t} d t-\frac{1}{2} \int \frac{1}{1+t} d t+\frac{4}{3} \int \frac{1}{1+2 t} d t$
$=\frac{1}{6} \log |1-t|-\frac{1}{2} \log |1+t|+\frac{2}{3} \log |1+2 t|+c$
$=\frac{1}{6} \log |1-\cos x|-\frac{1}{2} \log |1+\cos x|+\frac{2}{3} \log |1+2 \cos x|+c$

36. Question

Evaluate:
$\int \frac{\left(5 x^{2}-18 x+17\right)}{(x-1)^{2}(2 x-3)} d x$

Answer

Let $I=\int \frac{5 x^{2} 18 x+17}{(x-1)^{2}(2 x-3)} d x$
Now putting, $\frac{5 x^{2} 18 x+17}{(x-1)^{2}(2 x-3)}=\frac{A}{(2 x-3)}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}} \ldots$ (1)
$A(x-1)^{2}+B(2 x-3)(x-1)+C(2 x-3)=5 x^{2}-18 x+17$
Putting $x-1=0$,
$X=1$
$A(0)+B(0)+C(2-3)=5-18+17$
$C(-1)=4$
Putting $2 x-3=0$,
$x=\frac{3}{2}$
$A\left(\frac{3}{2}-1\right)^{2}+B(0)+C(0)=5\left(\frac{3}{2}\right)^{2}-18\left(\frac{3}{2}\right)+17$
$A\left(\frac{1}{4}\right)+0=5 \times \frac{9}{4}-27+17$
$A\left(\frac{1}{4}\right)=\frac{45}{4}-10=\frac{5}{4}$
$A=5$
By equating the coefficient of x^{2}, we get,
$A+2 B=5$
$5+2 B=5$
$2 B=0$
$B=0$
From equation (1), we get,
$\frac{5 x^{2} 18 x+17}{(x-1)^{2}(2 x-3)}=5 \times \frac{1}{(2 x-3)}+0-4 \times \frac{1}{(x-1)^{2}}$
$\int \frac{5 x^{2} 18 x+17}{(x-1)^{2}(2 x-3)} d x=\frac{5}{2} \log (2 x-3)+\frac{4}{x-1}+c$

37. Question

Evaluate:
$\int \frac{8}{(x+2)\left(x^{2}+4\right)} d x$

Answer

Let $I=\int \frac{8}{(x+2)\left(x^{2}+4\right)} d x$
Now putting, $\frac{8}{(x+2)\left(x^{2}+4\right)}=\frac{A}{x+2}+\frac{B x+C}{\left(x^{2}+4\right)} \ldots \ldots$
$A\left(x^{2}+4\right)+(B x+C)(x+2)=8$
Putting $x+2=0$,
$X=-2$
$\mathrm{A}(4+4)+0=8$
$A=1$
By equating the coefficient of x^{2} and constant term, $A+B=0$
$1+B=0$
$B=-1$
$4 A+2 C=8$
$4 \times 1+2 \mathrm{C}=8$
$2 \mathrm{C}=4$
$C=2$
From equation (1), we get,
$\frac{8}{(x+2)\left(x^{2}+4\right)}=\frac{1}{x+2}+\frac{-x+2}{\left(x^{2}+4\right)}$
$\int \frac{8}{(x+2)\left(x^{2}+4\right)} d x=\int \frac{1}{x+2} d x-\int \frac{x}{\left(x^{2}+4\right)} d x+2 \int \frac{1}{\left(x^{2}+4\right)} d x$
$=\log |x+2|-\frac{1}{2} \log \left(x^{2}+4\right)+2 \times \frac{1}{2} \times \tan ^{-1} \frac{x}{2}+c$
$=\log |x+2|-\frac{1}{2} \log \left|x^{2}+4\right|+\tan ^{-1} \frac{x}{2}+c$

55. Question

$\int \frac{x^{2}}{\left(x^{4}-x^{2}-12\right)} d x$

Answer

Let $I=\int \frac{x^{2}}{\left(x^{4}-x^{2}-12\right)} d x$
Putting $\frac{x^{2}}{\left(x^{4}-x^{2}-12\right)}=\frac{t}{t^{2}-t-12}=\frac{t}{(t-4)(t+3)}=\frac{A}{t-4}+\frac{B}{t+3}$.
Where $t=x^{2}$
$A(t+3)+B(t-4)=t$
Now put $\mathrm{t}+3=0$
$t=-3$
$A(0)+B(-7)=-3$
$B=\frac{3}{7}$
Now put $\mathrm{t}-4=0$
$\mathrm{t}=4$
$A(4+3)+B(0)=4$
$A=\frac{4}{7}$
From equation(1)
$\frac{t}{(t-4)(t+3)}=\frac{4}{7} \times \frac{1}{t-4}+\frac{3}{7} \times \frac{1}{t+3}$
$\frac{x^{2}}{\left(x^{2}-4\right)\left(x^{2}+3\right)}=\frac{4}{7} \times \frac{1}{x^{2}-2^{2}}+\frac{3}{7} \times \frac{1}{x^{2}+(\sqrt{3})^{2}}$
$\int \frac{x^{2}}{\left(x^{2}-4\right)\left(x^{2}+3\right)} d x=\frac{4}{7} \int \frac{1}{x^{2}-2^{2}} d x+\frac{3}{7} \int \frac{1}{x^{2}+(\sqrt{3})^{2}} d x$
$=\frac{4}{7} \times \frac{1}{2} \times \frac{1}{2} \log \left|\frac{x-2}{x+2}\right|+\frac{3}{7} \times \frac{1}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}+c$
$=\frac{1}{7} \log \left|\frac{x-2}{x+2}\right|+\frac{\sqrt{3}}{7} \tan ^{-1} \frac{x}{\sqrt{3}}+c$

56. Question

$\int \frac{x^{4}}{\left(x^{2}+1\right)\left(x^{2}+9\right)\left(x^{2}+16\right)} d x$

Answer

Let $I=\int \frac{x^{4}}{\left(x^{2}+1\right)\left(x^{2}+9\right)\left(x^{2}+16\right)} d x$
Putting $\frac{\left(x^{2}\right)^{2}}{\left(x^{2}+1\right)\left(x^{2}+9\right)\left(x^{2}+16\right)}=\frac{t^{2}}{(t+1)(t+9)(t+16)}=\frac{A}{t+1}+\frac{B}{t+9}+\frac{c}{t+16}$.
Where $t=x^{2}$
$\mathrm{t}^{2}=\mathrm{A}(\mathrm{t}+9)(\mathrm{t}+16)+\mathrm{B}(\mathrm{t}+1)(\mathrm{t}+16)+\mathrm{C}(\mathrm{t}+1)(\mathrm{t}+9)$
Now put $\mathrm{t}+1=0$
$t=-1$
$A(8)(15)+B(0)+C(0)=1$
$A=\frac{1}{120}$
Now put $\mathrm{t}+9=0$
$t=-9$
$\mathrm{A}(-9+9)(-9+16)+\mathrm{B}(-9+1)(-9+16)+\mathrm{C}(-9+1)(-9+9)=(-9)^{2}$
$A(0)+B(-56)+C(0)=81$
$B=-\frac{81}{56}$
Now put $\mathrm{t}+16=0$
$t=-16$
$A(0)+B(0)+C(-15)(-7)=(-16)^{2}$
$\mathrm{A}(0)+\mathrm{B}(0)+\mathrm{C}(105)=256$
$C=\frac{256}{105}$
From equation(1)
$\frac{t^{2}}{(t+1)(t+9)(t+16)}=\frac{A}{t+1}+\frac{B}{t+9}+\frac{C}{t+16}$
$\int \frac{t^{2}}{(t+1)(t+9)(t+16)} d t=\int\left[\frac{\frac{1}{120}}{t+1}-\frac{\frac{81}{56}}{t+9}+\frac{\frac{256}{105}}{t+16}\right] d t$
$=\frac{1}{120} \int \frac{1}{t+1} d t-\frac{81}{56} \int \frac{1}{t+9} d t+\frac{256}{105} \int \frac{1}{t+16} d t$
$=\frac{1}{120} \int \frac{1}{x^{2}+1} d x-\frac{81}{56} \int \frac{1}{x^{2}+9} d x+\frac{256}{105} \int \frac{1}{x^{2}+16} d x$
$=\frac{1}{120} \int \frac{1}{x^{2}+1} d x-\frac{81}{56} \int \frac{1}{x^{2}+(3)^{2}} d x+\frac{256}{105} \int \frac{1}{x^{2}+(4)^{2}} d x$
$=\frac{1}{120} \tan ^{-1} x-\frac{81}{56} \times \frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right)+\frac{256}{105} \times \frac{1}{4} \tan ^{-1}\left(\frac{x}{4}\right)+c$
$=\frac{1}{120} \tan ^{-1} x-\frac{27}{56} \tan ^{-1}\left(\frac{x}{3}\right)+\frac{64}{105} \tan ^{-1}\left(\frac{x}{4}\right)+c$

38. Question

Evaluate:
$\int \frac{(3 x+5)}{\left(x^{3}-x^{2}+x-1\right)} d x$

Answer

Let $I=\int \frac{3 x+5}{\left(x^{3}-x^{2}+x-1\right)} d x$
Now putting, $\frac{3 x+5}{\left(x^{3}-x^{2}+x-1\right)}=\frac{A}{x-1}+\frac{B x+C}{\left(x^{2}+1\right)}$.
$A\left(x^{2}+1\right)+(B x+C)(x-1)=3 x+5$

Putting $x-1=0$,
$X=1$
$A(2)+B(0)=3+5=8$
$A=4$
By equating the coefficient of x^{2} and constant term, $A+B=0$
$4+B=0$
$B=-4$
$\mathrm{A}-\mathrm{C}=5$
$4-C=5$
$C=-1$
From equation (1), we get,
$\frac{3 x+5}{(x-1)\left(x^{2}+1\right)}=\frac{4}{x-1}+\frac{-4 x-1}{\left(x^{2}+1\right)}$
$\int \frac{3 x+5}{(x-1)\left(x^{2}+1\right)} d x=4 \int \frac{1}{x-1} d x-4 \int \frac{1}{\left(x^{2}+1\right)} d x-\int \frac{1}{\left(x^{2}+1\right)} d x$
$=4 \log (x-1)-\frac{4}{2} \log \left(x^{2}+1\right)-\tan ^{-1} x+c$
$=4 \log (x-1)-2 \log \left(x^{2}+1\right)-\tan ^{-1} x+c$

57. Question

$\int \frac{\sin 2 x}{(1-\cos 2 x)(2-\cos 2 x)} d x$

Answer

let $I=\int \frac{\sin 2 x}{(1-\cos 2 x)(2-\cos 2 x)} d x$
Put $t=\cos 2 x$
$d t=-2 \sin 2 x d x$
$I=\int \frac{-d t / 2}{(1-t)(2-t)}=\frac{1}{2} \int \frac{d t}{(t-2)(1-t)}$
Putting $\frac{1}{(t-2)(1-t)}=\frac{A}{t-2}+\frac{B}{1-t}$.
$A(1-t)+B(t-2)=1$
Putting 1-t=0
$\mathrm{t}=1$
$A(0)+B(1-2)=1$
$B=-1$
Putting $\mathrm{t}-2=0$
$\mathrm{t}=2$
$A(1-2)+B(0)=1$
$A=-1$
From equation (1), we get,
$\frac{1}{(t-2)(1-t)}=\frac{-1}{t-2}+\frac{-1}{1-t}$
$\int \frac{1}{(t-2)(1-t)} d t=\int \frac{1}{2-t} d t+\int \frac{1}{t-1} d t$
$=-\log |2-t|+\log |t-1|+c$
$=\log |t-1|-\log |2-t|+c$
$=\log |\cos 2 x-1|-\log |2-\cos 2 x|+c$

39. Question

Evaluate:
$\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x$

Answer

Let $I=\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x$
Put $t=x^{2}$
$\mathrm{dt}=2 \mathrm{xdx}$
Now putting, $\frac{1}{(t+1)(t+3)}=\frac{A}{t+1}+\frac{B}{t+3}$.
$A(t+3)+B(t+1)=1$
Putting $\mathrm{t}+3=0$,
$X=-3$
$A(0)+B(-3+1)=1$
$B=-\frac{1}{2}$
Putting $\mathrm{t}+1=0$,
$X=-1$
$A(-1+3)+B(0)=1$
$A=\frac{1}{2}$
From equation(1),we get,
$\frac{1}{(t+1)(t+3)}=\frac{1}{2} \times \frac{1}{t+1}-\frac{1}{2} \times \frac{1}{t+3}$
$\int \frac{1}{(t+1)(t+3)} d t=\frac{1}{2} \int \frac{1}{t+1} d t-\frac{1}{2} \int \frac{1}{t+3} d t$
$=\frac{1}{2} \log |t+1|-\frac{1}{2} \log |t+3|+c$
$\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x=\frac{1}{2} \log \left|x^{2}+1\right|-\frac{1}{2} \log \left|x^{2}+3\right|+c$

58. Question

$\int \frac{2}{(1-x)\left(1+x^{2}\right)} d x$

Answer

Let $I=\int \frac{2}{(1-x)\left(1+x^{2}\right)} d x$
Put $\frac{2}{(1-x)\left(1+x^{2}\right)}=\frac{A}{1-x}+\frac{B x+C}{x^{2}+1}$
$A\left(1+x^{2}\right)+B x(1-x)+C(1-x)=2$
Put $x=1$
$2=2 A+0+0$
$A=1$
Put $x=0$
$2=A+C$
$C=2-A$
$C=2-1=1$
Putting $x=2$
We have $2=5 A-2 B-C$
$2=5 \times 1-2 B-1$
$2 B=2$
$B=1$
$\frac{2}{(1-x)\left(1+x^{2}\right)}=\frac{1}{1-x}+\frac{x}{1+x^{2}}+\frac{1}{1+x^{2}}$
$\int \frac{2}{(1-x)\left(1+x^{2}\right)} d x=\int \frac{1}{1-x} d x+\int \frac{x}{1+x^{2}} d x+\int \frac{1}{1+x^{2}} d x$
$-\log |1-x|+\frac{1}{2} \log \left|1+x^{2}\right|+\tan ^{-1} x+c$
40. Question

Evaluate:
$\int \frac{x^{2}}{\left(x^{4}-1\right)} d x$

Answer

Let $I=\int \frac{x^{2}}{\left(x^{4}-1\right)} d x$
Put $t=x^{2}$
$d t=2 x d x$
Now putting, $\frac{x^{2}}{\left(x^{4}-1\right)}=\frac{t}{(t-1)(t+1)}=\frac{A}{t-1}+\frac{B}{t+1} \ldots \ldots$. .
$\mathrm{A}(\mathrm{t}+1)+\mathrm{B}(\mathrm{t}-1)=\mathrm{t}$
Putting $\mathrm{t}+1=0$,
$t=-1$
$A(0)+B(-1-1)=-1$
$B=\frac{1}{2}$

Putting $\mathrm{t}-1=0$,
$t=1$
$A(1+1)+B(0)=1$
$A=\frac{1}{2}$
From equation(1), we get,
$\frac{t}{(t-1)(t+1)}=\frac{1}{2} \times \frac{1}{t-1}+\frac{1}{2} \times \frac{1}{t+1}$
$\int \frac{x^{2}}{\left(x^{4}-1\right)} d t=\frac{1}{2} \int \frac{1}{x^{2}-1} d t+\frac{1}{2} \int \frac{1}{x^{2}+1} d t$
$=\frac{1}{2} \times \frac{1}{2} \log \left|\frac{x-1}{x+1}\right|+\frac{1}{2} \tan ^{-1} x+c$
$=\frac{1}{4} \log \left|\frac{x-1}{x+1}\right|+\frac{1}{2} \tan ^{-1} x+c$

59. Question

$\int \frac{2 x^{2}+1}{x^{2}\left(x^{2}+4\right)} d x$

Answer

Let $I=\int \frac{2 x^{2}+1}{x^{2}\left(x^{2}+4\right)} d x$
Again let $x^{2}=t$
$\frac{2 t+1}{t(t+4)}=\frac{A}{t}+\frac{B}{(t+4)}$.
$2 t+1=A(t+4)+B(t)$
Putting $t=-4$
$2(-4)+1=A(-4+4)+B(-4)$
$-8+1=0-4 B$
$-7=-4 B$
$B=\frac{7}{4}$
Putting $\mathrm{t}=0$
$2(0)+1=A(0+4)+B(0)$
$1=4 \mathrm{~A}$
$A=\frac{1}{4}$
$\frac{2 t+1}{t(t+4)}=\frac{\frac{1}{4}}{t}+\frac{\frac{7}{4}}{(t+4)}$
$\int \frac{2 t+1}{t(t+4)} d t=\int \frac{2 x^{2}+1}{x^{2}\left(x^{2}+4\right)} d x=\frac{1}{4} \int \frac{1}{x^{2}} d x+\frac{7}{4} \int \frac{1}{\left(x^{2}+2^{2}\right)} d x$
$=\frac{1}{4} \times \frac{(-1)}{x}+\frac{7}{4} \times \frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)+c$
$I=\frac{-1}{4 x}+\frac{7}{8} \tan ^{-1}\left(\frac{x}{2}\right)+c$

Exercise 15B

1. Question

Evaluate:
$\int \mathrm{x}^{-6} \mathrm{dx}$

Answer

$\int x^{-6} d x=\frac{x^{-6+1}}{-6+1}+c$
$\because\left\{\int x^{n}=\frac{x^{n+1}}{n+1}+c\right\}$
$=\frac{x^{-5}}{-5}+c$
$\int x^{-6} d x=-\frac{1}{5 x^{5}}+c$

2. Question

Evaluate:
$\int\left(\sqrt{\mathrm{x}}+\frac{1}{\sqrt{\mathrm{x}}}\right) \mathrm{dx}$

Answer

$\int(\sqrt{x}+1 / \sqrt{x}) d x=\int\left(x^{\frac{1}{2}}+x^{-\frac{1}{2}}\right) d x$
$\left\{\int x^{n}=\frac{x^{n+1}}{n+1}+c\right\}$
$\int\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) d x=\int \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}+\frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} d x$
$\int\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) d x=\int \frac{2}{3} x^{\frac{3}{2}}+2 \sqrt{x}+c$

3. Question

Evaluate:
$\int \sin 3 \mathrm{x} d \mathrm{x}$

Answer

$\int \sin 3 x d x=\frac{-1}{3} \cos 3 x+c$
$\left\{\int \sin a x d x=\frac{-1}{a} \cos a x\right\}$

4. Question

Evaluate:
$\int \frac{x^{2}}{\left(1+x^{3}\right)} d x$

Answer

Let $x^{3}+1=t$
$3 x^{2} d x=d t$
$\frac{1}{3} \int \frac{d t}{t}=\frac{1}{3} \ln t+c$
$\int \frac{x^{2}}{1+x^{3}} d x=\frac{1}{3} \ln \left(x^{3}+1\right)+c$

5. Question

Evaluate:
$\int \frac{2 \cos \mathrm{x}}{3 \sin ^{2} \mathrm{x}} \mathrm{dx}$

Answer

Let $\sin x=t$
$\cos \mathrm{xdx}=\mathrm{dt}$
$\int \underline{2 \cos x} d x=\int \underline{2} d t=-\underline{2}+c$
$\int \frac{2 \cos \mathrm{x}}{-} \mathrm{dx}=\frac{-2}{-} \operatorname{cs} c x+c$

6. Question

Evaluate:
$\int \frac{(3 \sin \phi-2) \cos \phi}{\left(5-\cos ^{2} \phi-4 \sin \phi\right)} d \phi$

Answer

$\frac{(3 \sin \emptyset-6+4) \cos \emptyset}{\left(4+1-\cos ^{2} \emptyset-4 \sin \emptyset\right)}=\frac{3(\sin \emptyset-2) \cos \emptyset+4 \cos \emptyset}{(\sin \emptyset-2)^{2}}$
$=\frac{3 \cos \emptyset}{(\sin \emptyset-2)}+\frac{4 \cos \emptyset}{(\sin \emptyset-2)^{2}}$
$\int\left(\frac{3 \cos \emptyset}{(\sin \emptyset-2)}+\frac{4 \cos \emptyset}{(\sin \emptyset-2)^{2}}\right) d \varnothing$
Let $(\sin \varnothing-2)=\mathrm{t}$
$\cos \varnothing \mathrm{d} \varnothing=\mathrm{dt}$
$\int \frac{3 d t}{t}+\frac{4 d t}{t^{2}}=3 \ln t-\frac{4}{t}+c$
$\int \frac{(3 \sin \phi-2) \cos \phi}{\left(5-\cos ^{2} \phi-4 \sin \phi\right)} d \phi=3 \ln |\sin \phi-2|-\frac{4}{(\sin \phi-2)}+c$

7. Question

Evaluate:
$\int \sin ^{2} x d x$

Answer

$\int \sin ^{2} x d x=\int \frac{1}{2}-\frac{\cos 2 x}{2} d x$
$\left\{1-\cos 2 x=2 \sin ^{2} x\right\}$
$\int \sin ^{2} x d x=\frac{x}{2}-\frac{\sin 2 x}{4}+c$
$\left\{\int \cos a x d x=\frac{1}{a} \sin a x\right\}$

8. Question

Evaluate:
$\int \frac{(\log x)^{2}}{x} d x$

Answer

Let $\log x=t$
$\frac{1}{x} d x=d t$
$\int t^{2} d t=\frac{t^{3}}{3}+c$
$\int \frac{(\log x)^{2}}{x} d x=\frac{(\log x)^{3}}{3}+c$

9. Question

Evaluate:
$\int \frac{(x+1)(x+\log x)^{2}}{x} d x$

Answer

$\int \frac{(x+1)(x+\log x)]^{2}}{x}=\int\left(1+\frac{1}{x}\right)(x+\log x)^{2} d x$
Let $x+\log x=t$
$\left(1+\frac{1}{x}\right) d x=d t$
$\int t^{2} d t=\frac{t^{3}}{3}+c$
$\int \frac{(x+1)(x+\log x)^{2}}{x}=\frac{(x+\log x)^{3}}{3}+c$
10. Question

Evaluate:
$\int \frac{\sin x}{(1+\cos x)} d x$

Answer

Let $1+\cos x=t$
$-\sin x d x=d t$
$\int \frac{-d t}{t}=-\ln t+c$
$\int \frac{\sin x}{(1+\cos x)} d x=-\ln |1+\cos x|+c$

11. Question

Evaluate:
$\int \frac{(1+\tan x)}{(1-\tan x)} d x$

Answer

$\frac{1+\tan x}{1-\tan x}=\frac{\cos x+\sin x}{\cos x-\sin x}$
$\int \frac{\cos x+\sin x}{\cos x-\sin x} d x$
Let $\cos x-\sin x=t$
$-(\sin x+\cos x) d x=d t$
$\int \frac{-d t}{t}=-\ln t+c$
$\int \frac{1+\tan x}{1-\tan x} d x=-\ln |\cos x-\sin x|+c$

12. Question

Evaluate:
$\int \frac{(1-\cot x)}{(1+\cot x)} d x$

Answer

$\frac{1-\cot x}{1+\cot x}=\frac{\sin x-\cos x}{\sin x+\cos x}$
$\int \frac{\sin x-\cos x}{\sin x+\cos x} \mathrm{dx}$
Let $\sin \mathrm{x}+\cos \mathrm{x}=\mathrm{t}$
$(\cos x-\sin x) d x=d t$
$\int \frac{\sin x-\cos x}{\sin x+\cos x} d x=\int \frac{-d t}{t}=-\ln |\sin x+\cos x|+c$
$\int \frac{1-\cot x}{1+\cot x} d x=-\ln |\sin x+\cos x|+c$

13. Question

Evaluate:
$\int \frac{(1+\cot x)}{(x+\log \sin x)} d x$

Answer

Let $(x+\log (\sin x))=t$
$(1+\cot x) d x=d t$
$\int \frac{d t}{t}=\ln t+c$
$\int \frac{(1+\cot x)}{(x+\log \sin x)}=\ln |x+\log (\sin x)|+c$

14. Question

Evaluate:
$\int \frac{(1-\sin 2 x)}{\left(x+\cos ^{2} x\right)} d x$

Answer

Let $\left(x+\cos ^{2} x\right)=t$
$(1-\sin 2 x) d x=d t$
$\int \frac{d t}{t}=\ln t+c$
$\int \frac{1-\sin 2 x}{x+\cos ^{2} x}=\ln \left(\left|x+\cos ^{2} x\right|\right)+c$

15. Question

Evaluate:
$\int \frac{\sec ^{2}(\log x)}{x} d x$

Answer

Let $\log x=t$
$\frac{1}{x} d x=d t$
$\int \sec ^{2} t d t=\tan t+c$
$\int \frac{\sec ^{2}(\log x)}{x} d x=\tan (\log x)+c$

16. Question

Evaluate:
$\int \frac{\sin \left(2 \tan ^{-1} x\right)}{\left(1+x^{2}\right)} d x$
Answer

Let $\tan ^{-1} x=t$
$\frac{1}{1+x^{2}} d x=d t$
$\int \sin 2 t=-\frac{\cos 2 t}{2}+c$
$\int \frac{\sin \left(2 \tan ^{-1} x\right)}{\left(1+x^{2}\right)} d x=\frac{-1}{2} \cos \left(2 \tan ^{-1} x\right)+c$

17. Question

Evaluate:
$\int \frac{\tan x \sec ^{2} x}{\left(1-\tan ^{2} x\right)} d x$

Answer

Let $1-\tan ^{2} \mathrm{x}=\mathrm{t}$
$-2 \tan x \cdot \sec ^{2} x d x=d t$
$\frac{-1}{2} \int \frac{d t}{t}=\frac{-1}{2} \log t+c$
$\int \frac{\tan \mathrm{x} \mathrm{sec}}{}{ }^{2} \mathrm{x}\left(\mathrm{dx}=\frac{-1}{-}\right.$ loa $\left|1-\tan ^{2} x\right|+c$
18. Question

Evaluate:
$\int \frac{\left(x^{4}+1\right)}{\left(x^{2}+1\right)} d x$

Answer

$\frac{x^{4}+1}{x^{2}+1}=\frac{x^{4}-1+2}{x^{2}+1}$
$=x^{2}-1+\frac{2}{x^{2}+1}$
$\int\left(x^{2}-1+\frac{2}{x^{2}+1}\right) d x=\frac{x^{3}}{3}-x+2 \tan ^{-1} x+c$
19. Question

Evaluate:

$$
\int \tan ^{-1} \sqrt{\frac{1-\sin \mathrm{x}}{1+\sin \mathrm{x}}} d x
$$

Answer

$\sin x=\cos \left(\frac{\pi}{2}-x\right)$
$\tan ^{-1} \sqrt{\frac{1-\cos \left(\frac{\pi}{2}-x\right)}{1+\cos \left(\frac{\pi}{2}-x\right)}}=\tan ^{-1} \sqrt{\frac{2 \sin ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)}{2 \cos ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)}}$
$=\tan ^{-1}\left(\left(\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right)\right.$
$\int\left(\frac{\pi}{4}-\frac{x}{2}\right) d x=\frac{\pi}{4} x-\frac{x^{2}}{4}+c$
20. Question

Evaluate:
$\int \log \left(1+x^{2}\right) d x$

Answer

Using Integration by Parts
$\int u_{I I} v_{I} d x=u \int v d x-\int u^{r} \int v d x d x+c$
Here 1 is the first function and $\log \left(x^{2}+1\right)$ is second function
$\int \log \left(1+x^{2}\right) d x=\left(\log \left(1+x^{2}\right)\right) x-\int \frac{2 x}{1+x^{2}} x d x$
$=\left(\log \left(1+x^{2}\right)\right) x-2 \int \frac{x^{2}+1-1}{x^{2}+1} d x$
$=\left(\log \left(1+x^{\wedge} 2\right)\right) x-2 x+2 / \sqrt{\tan }{ }^{\wedge}(-1) x+c$

21. Question

Evaluate:
$\int \cos x \cos 3 x d x$

Answer

$\frac{1}{2} \int 2 \cos x \cos 3 x d x$
$\{2 \cos A \cos B=\cos (A+B)+\cos (A-B)\}$
$\frac{1}{2} \int(\cos 4 x+\cos 2 x) d x=\frac{\sin 4 x}{8}+\frac{\sin 2 x}{4}+c$

22. Question

Evaluate: Evaluate $\int \sin 3 x \sin x d x$

Answer

$\frac{1}{2} \int 2 \sin 3 x \sin x d x$
$\{2 \sin A \sin B=\cos (A-B)-\cos (A+B)\}$
$\frac{1}{2} \int(\cos 2 x-\cos 4 x) d x=\frac{\sin 2 x}{4}-\frac{\sin 4 x}{8}+c$

23. Question

Evaluate:
$\int \frac{\mathrm{xe}^{\mathrm{x}}}{(\mathrm{x}+1)^{2}} \mathrm{dx}$

Answer

$\frac{e^{x}(x+1-1)}{(x+1)^{2}}=e^{x}\left(\frac{1}{x+1}-\frac{1}{(x+1)^{2}}\right)$
$\left\{\int\left(e^{x}\left(f(x)+f^{\prime}(x)\right) d x=e^{x} f(x)+c\right\}\right.$
$\int \frac{x e^{x}}{(x+1)^{2}} d x=\frac{e^{x}}{x+1}+c$

24. Question

Evaluate:
$\int \mathrm{e}^{\mathrm{x}}\{\tan \mathrm{x}-\log \cos \mathrm{x}\} \mathrm{dx}$

Answer

$\int\left(e^{x}\left(f(x)+f^{\prime}(x)\right) d x=e^{x} f(x)+c\right.$
Here $f(x)=-\log \cos x$
$\int \mathrm{e}^{\mathrm{x}}(\tan \mathrm{x}-\log \cos \mathrm{x}) \mathrm{dx}=-\mathrm{e}^{\mathrm{x}}(\log \cos \mathrm{x})+\mathrm{c}$
25. Question

Evaluate:
$\int \frac{d x}{(1-\sin x)}$

Answer

Multiplying Num ${ }^{r}$ and Den r with $(1+\sin x)$
$\int \frac{1+\sin x}{\cos ^{2} x} d x=\int \sec ^{2} x+\sec x \tan x d x$
$=\tan \mathrm{x}+\sec \mathrm{x}+\mathrm{c}$
26. Question

Evaluate:
$\int c \cos x^{2} d x$

Answer

Let $\mathrm{x}^{2}=\mathrm{t}$
$2 x d x=d t$
$\frac{1}{2} \int \cos t d t=\frac{1}{2} \sin t+c$
$\int x \cos x^{2} d x=\frac{1}{2} \sin x^{2}+c$

27. Question

Evaluate:
$\int \frac{\cot x}{\sqrt{\sin x}} d x$

Answer

$\frac{\cot x}{\sqrt{\sin x}}=\frac{\cos x}{(\sin x)^{3 / 2}}$
Let $\sin x=t$
$\cos x d x=d t$
$\int \frac{d t}{t^{3 / 2}}=\frac{-2}{\sqrt{t}}+c$
$\int \frac{\cot x}{\sqrt{\sin x}} d x=\frac{-2}{\sqrt{\sin x}}+c$
28. Question

Evaluate:
$\int \frac{\sec ^{2} x}{\operatorname{cosec}^{2} x} d x$

Answer

$\frac{\sec ^{2} x}{\operatorname{cosec}^{2} x}=\tan ^{2} x$
$\int \tan ^{2} x d x=\int\left(\sec ^{2} x-1\right) d x$
$\int \frac{\sec ^{2} x}{\operatorname{cosec}^{2} x} d x=\tan x-x+c$

29. Question

Evaluate:
$\int \sin ^{-1}(\cos x) d x$

Answer

$\int \sin ^{-1}(\cos x) d x=\int\left(\frac{\pi}{2}-\cos ^{-1}(\cos x)\right) d x$
$\int\left(\frac{\pi}{2}-x\right) d x=\frac{\pi}{2} x-\frac{x^{2}}{2}+c$
30. Question

Evaluate:

$$
\int \frac{\mathrm{dx}}{(\sqrt{\mathrm{x}+2}+\sqrt{\mathrm{x}+1})}
$$

Answer

On rationalizing

$$
\int \frac{d x}{(\sqrt{x+2}+\sqrt{x+1})}=\int \frac{\sqrt{x+2}-\sqrt{x+1}}{(\sqrt{x+2}+\sqrt{x+1}) \sqrt{x+2}-\sqrt{x+1}} d x
$$

$=\int \frac{\sqrt{x+2}-\sqrt{x+1}}{(x+2-x-1)} d x$
$\int \frac{\sqrt{x+2}-\sqrt{x+1}}{1} d x=\frac{2}{3}(x+2)^{3 / 2}-\frac{2}{3}(x+1)^{\frac{3}{2}}+c$
31. Question

Evaluate:
$\int 2^{x} d x$

Answer

We know that,
$\int a^{x} d x=\frac{a^{x}}{\ln a}+c$
$\int 2^{x} d x=\frac{2^{x}}{\ln 2}+c$

32. Question

Evaluate:
$\int \frac{(1+\tan x)}{(x+\log \sec x)} d x$

Answer

Let $(x+\log (\sec x))=t$
$(1+\tan x) d x=d t$
$\int \frac{d t}{t}=\ln t+c$
$\int \frac{(1+\tan x)}{(x+\log \sec x)}=\ln |x+\log (\sec x)|+c$
33. Question

Evaluate:
$\int \frac{\sec ^{2}(\log x)}{x} d x$

Answer

Let $\log x=t$
$\frac{1}{x} d x=d t$
$\int \sec ^{2} t d t=\tan t+c$
$\int \frac{\sec ^{2}(\log x)}{x} d x=\tan (\log x)+c$
34. Question

Evaluate:
$\int(2 x+1)\left(\sqrt{x^{2}+x+1}\right) d x$

Answer

Let $x^{2}+x+1=t$
$(2 x+1) \mathrm{dx}=\mathrm{dt}$
$\int \sqrt{t} d t=\frac{2}{3} t^{3 / 2}+c=\frac{2}{3}\left(x^{2}+x+1\right)^{3 / 2}+c$

35. Question

Evaluate:
$\int \frac{\mathrm{dx}}{\sqrt{9 \mathrm{x}^{2}+16}}$

Answer

We know that,
$\int \frac{d x}{\sqrt{(a x)^{2}+b^{2}}}=\frac{1}{a} \log \left|a x+\sqrt{(a x)^{2}+b^{2}}\right|+c$
$\int \frac{d x}{\sqrt{(3 x)^{2}+4^{2}}}=\frac{1}{3} \log \left|3 x+\sqrt{9 x^{2}+16}\right|+c$

36. Question

Evaluate:
$\int \frac{d x}{\sqrt{4-9 x^{2}}}$

Answer

We know that,
$\int \frac{d x}{\sqrt{b^{2}-(a x)^{2}}}=\frac{1}{a} \sin ^{-1} \frac{a x}{b}+c$
$\int \frac{d x}{\sqrt{2^{2}-(3 x)^{2}}}=\frac{1}{3} \sin ^{-1} \frac{3 x}{2}+c$

37. Question

Evaluate:
$\int \frac{\mathrm{dx}}{\sqrt{4 \mathrm{x}^{2}-25}}$

Answer

We know that,
$\int \frac{d x}{\sqrt{(a x)^{2}-b^{2}}}=\frac{1}{a} \log \left|a x+\sqrt{(a x)^{2}-b^{2}}\right|+c$
$\int \frac{d x}{\sqrt{(2 x)^{2}-5^{2}}}=\frac{1}{2} \log \left|2 x+\sqrt{4 x^{2}-25}\right|+c$
38. Question

Evaluate:
$\int \sqrt{4-x^{2}} d x$

Answer

We know that,
$\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+c$
$\int \sqrt{2^{2}-x^{2}} d x=\frac{x}{2} \sqrt{4-x^{2}}+2 \sin ^{-1} \frac{x}{2}+c$

39. Question

Evaluate:
$\int \sqrt{9+x^{2}} d x$

Answer

We know that,
$\int \sqrt{a^{2}+x^{2}} d x=\frac{x}{2} \sqrt{a^{2}+x^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{a^{2}+x^{2}}\right|+c$
$\int \sqrt{3^{2}+x^{2}} d x=\frac{x}{2} \sqrt{9+x^{2}}+\frac{9}{2} \log \left|x+\sqrt{9+x^{2}}\right|+c$
40. Question

Evaluate:
$\int \sqrt{x^{2}-16} d x$

Answer

We know that,
$\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+c$
$\int \sqrt{x^{2}-4^{2}} d x=\frac{x}{2} \sqrt{x^{2}-16}-8 \log \left|x+\sqrt{x^{2}-16}\right|+c$

Objective Questions I

1. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\left(9+x^{2}\right)}=?$
A. $\tan ^{-1} \frac{x}{3}+C$
B. $\frac{1}{3} \tan ^{-1} \frac{x}{3}+C$
C. $3 \tan ^{-1} \frac{x}{3}+C$
D. none of these

Answer

$=\int \frac{d x}{x^{2}+3^{2}}$
We know, $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\frac{1}{3} \tan ^{-1} \frac{x}{3}+c$

2. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\left(4+16 x^{2}\right)}=$?
A. $\frac{1}{32} \tan ^{-1} 4 \mathrm{x}+\mathrm{C}$
B. $\frac{1}{16} \tan ^{-1} \frac{x}{2}+C$
C. $\frac{1}{8} \tan ^{-1} 2 x+C$
D. $\frac{1}{4} \tan ^{-1} \frac{x}{2}+C$

Answer

$=\int \frac{d x}{(4 x)^{2}+2^{2}}$
$4 x=t$
$4 d x=d t$
$d x=\frac{d t}{4}$
$=\frac{1}{4} \int \frac{d t}{t^{2}+2^{2}}$
We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\frac{1}{8} \tan ^{-1} \frac{t}{2}+c$
put $t=4 x$
$=\frac{1}{8} \tan ^{-1} \frac{4 x}{2}+c$
$=\frac{1}{8} \tan ^{-1} 2 x+c$

3. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\left(9+4 x^{2}\right)} d x=?$
A. $\frac{1}{2} \tan ^{-1} \frac{2 \mathrm{x}}{3}+\mathrm{C}$
B. $\frac{1}{6} \tan ^{-1} \frac{2 \mathrm{x}}{3}+\mathrm{C}$
C. $\frac{1}{6} \tan ^{-1} \frac{3 x}{2}+C$
D. none of these

Answer

$\int \frac{d x}{(2 x)^{2}+3^{2}}$
$2 \mathrm{x}=\mathrm{t}$
$2 d x=d t$
$d x=\frac{d t}{2}$
$=\frac{1}{2} \int \frac{d t}{t^{2}+3^{2}}$
We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\frac{1}{6} \tan ^{-1} \frac{t}{3}+c$
put $t=2 x$
$=\frac{1}{6} \tan ^{-1} \frac{2 x}{3}+c$

4. Question

Mark ($\sqrt{ }$) against the correct answer in each of the following:
$\int \frac{\sin x}{\left(1+\cos ^{2} x\right)} d x=$?
A. $-\tan ^{-1}(\cos x)+C$
B. $\cot ^{-1}(\cos \mathrm{x})+\mathrm{C}$
C. $-\cot ^{-1}(\cos \mathrm{x})+\mathrm{C}$
D. $\tan ^{-1}(\cos \mathrm{x})+\mathrm{C}$

Answer

$\int \frac{\sin x}{(\cos x)^{2}+1^{2}} d x$
$\cos x=t$
$-\sin x d x=d t$
$=-\int \frac{d t}{t^{2}+1^{2}}$
We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=-\tan ^{-1} \frac{t}{1}+c$
put $t=\cos x$
$=-\tan ^{-1}(\cos x)+c$

5. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{\cos x}{\left(1+\sin ^{2} x\right)} d x=?$
A. $-\tan ^{-1}(\sin x)+C$
B. $\tan ^{-1}(\cos x)+C$
C. $\tan ^{-1}(\sin x)+C$
D. $-\tan ^{-1}(\cos x)+C$

Answer

$\int \frac{\cos x}{(\sin x)^{2}+1^{2}} d x$
$\sin \mathrm{x}=\mathrm{t}$
$\cos x d x=d t$
$=\int \frac{d t}{t^{2}+1^{2}}$
We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\tan ^{-1} \frac{t}{1}+c$
put $t=\sin x$
$=\tan ^{-1}(\sin x)+c$

6. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{e^{x}}{\left(e^{2 x}+1\right)} d x=?$
A. $\cot ^{-1}\left(e^{x}\right)+C$
B. $\tan ^{-1}\left(\mathrm{e}^{\mathrm{x}}\right)+\mathrm{C}$
C. $2 \tan ^{-1}\left(e^{x}\right)+C$
D. none of these

Answer
$=\int \frac{e^{x}}{\left(e^{x}\right)^{2}+1^{2}} d x$
$\mathrm{e}^{\mathrm{x}}=\mathrm{t}$
$e^{x} d x=d t$
$=\int \frac{d t}{t^{2}+1^{2}}$
We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\tan ^{-1} \frac{t}{1}+c$
put $t=e^{x}$
$\tan ^{-1} e^{x}+c$

7. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{3 x^{5}}{\left(1+x^{12}\right)} d x=?$
A. $\tan ^{-1} x^{6}+C$
B. $\frac{1}{4} \tan ^{-1} \mathrm{x}^{6}+\mathrm{C}$
C. $\frac{1}{2} \tan ^{-1} \mathrm{x}^{6}+\mathrm{C}$
D. none of these

Answer

$=\int \frac{3 x^{5}}{\left(x^{6}\right)^{2}+1^{2}} d x$
Let $\mathrm{x}^{6}=\mathrm{t}$
$6 x^{5} d x=d t$
$3 x^{5} d x=\frac{d t}{2}$
$=\frac{1}{2} \int \frac{d t}{t^{2}+1^{2}}$
We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\frac{1}{2} \tan ^{-1} \frac{t}{1}+c$
put $t=x^{6}$
$=\frac{1}{2} \tan ^{-1} \frac{x^{6}}{1}+c$
$=\frac{1}{2} \tan ^{-1} x^{6}+c$

8. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{2 x^{3}}{\left(4+x^{8}\right)} d x=?$
A. $\frac{1}{2} \tan ^{-1} \frac{x^{4}}{2}+C$
B. $\frac{1}{4} \tan ^{-1} \frac{x^{4}}{2}+C$
C. $\frac{1}{2} \tan ^{-1} \mathrm{x}^{4}+\mathrm{C}$
D. none of these

Answer

$=\int \frac{2 x^{3}}{\left(x^{4}\right)^{2}+2^{2}} d x$
Let $x^{4}=t$
$4 x^{3} d x=d t$
$2 x^{3} d x=\frac{d t}{2}$
$=\frac{1}{2} \int \frac{d t}{t^{2}+2^{2}}$
We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\frac{1}{4} \tan ^{-1} \frac{t}{2}+c$
put $t=x^{4}$
$=\frac{1}{4} \tan ^{-1} \frac{x^{4}}{2}+c$

9. Question

Mark (\checkmark) against the correct answer in each of the following:
$\int \frac{d x}{\left(x^{2}+4 x+8\right)}=?$
A. $\frac{1}{2} \tan ^{-1}\left(\frac{\mathrm{x}+1}{2}\right)+\mathrm{C}$
B. $\frac{1}{2} \tan ^{-1}\left(\frac{\mathrm{x}+2}{2}\right)+\mathrm{C}$
C. $\frac{1}{2} \tan ^{-1}(x+2)+C$
D. $\tan ^{-1}\left(\frac{x+2}{2}\right)+C$

Answer

$=\int \frac{d x}{x^{2}+4 x+8}$
Completing the square
$x^{2}+4 x+8=x^{2}+4 x+8(+4-4)$
$=x^{2}+4 x+4+4$
$=(x+2)^{2}+2^{2}$
$=\int \frac{d x}{(x+2)^{2}+2^{2}}$
Let $x+2=t$
$d x=d t$
$=\int \frac{d t}{t^{2}+2^{2}}$
We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\frac{1}{2} \tan ^{-1} \frac{t}{2}+c$
put $t=x+2$
$=\frac{1}{2} \tan ^{-1} \frac{x+2}{2}+c$
10. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\left(2 x^{2}+x+3\right)}=?$
A. $\frac{1}{\sqrt{23}} \tan ^{-1}\left(\frac{4 x+1}{\sqrt{23}}\right)+C$
B. $\frac{1}{\sqrt{23}} \tan ^{-1}\left(\frac{\mathrm{x}+1}{\sqrt{23}}\right)+\mathrm{C}$
C. $\frac{2}{\sqrt{23}} \tan ^{-1}\left(\frac{4 \mathrm{x}+1}{\sqrt{23}}\right)+\mathrm{C}$
D. none of these

Answer
$=\int \frac{d x}{2 x^{2}+x+3}$
Completing the square
$\left.\Rightarrow 2 x^{2}+x+3=2 x^{2}+\frac{1}{2} x+\frac{3}{2}\right)$
$=2\left(x^{2}+\frac{1}{2} x+\frac{3}{2}+\frac{1}{16}-\frac{1}{16}\right)$
$=2\left(\left(x+\frac{1}{4}\right)^{2}+\frac{23}{16}\right)$
$=\frac{1}{2} \int \frac{d x}{\left(\left(x+\frac{1}{4}\right)^{2}+\frac{23}{16}\right)}$
Let $x+\frac{1}{4}=t$
dx=dt
$=\int \frac{d t}{t^{2}+{\frac{\sqrt{23}^{23}}{4}}^{2}}$
We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\frac{4}{2 \sqrt{23}} \tan ^{-1} \frac{t}{\frac{\sqrt{23}}{4}}+c$
put $t=x+\frac{1}{4}$
$=\frac{2}{\sqrt{23}} \tan ^{-1} \frac{x+\frac{1}{4}}{\frac{\sqrt{23}}{4}}+c$
$=\frac{2}{\sqrt{23}} \tan ^{-1} \frac{4 x+1}{\sqrt{23}}+c$

11. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\left(e^{x}+e^{-x}\right)}=?$
A. $\tan ^{-1}\left(e^{x}\right)+C$
B. $\tan ^{-1}\left(e^{-x}\right)+C$
C. $-\tan ^{-1}\left(e^{-x}\right)+C$
D. none of these

Answer

$=\int \frac{1}{e^{x}+e^{-x}} d x$
$=\int \frac{e^{x}}{\left(e^{x}\right)^{2}+1^{2}} d x$
$e^{x}=t e^{x}$
$e^{x} d x=d t$
$=\int \frac{d t}{t^{2}+1^{2}}$
We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\tan ^{-1} \frac{t}{1}+c$
put $t=e^{x}$
$=\tan ^{-1} e^{x}+c$

12. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{x^{2}}{\left(9+4 x^{2}\right)}=?$
A. $\frac{x}{4}-\frac{1}{8} \tan ^{-1} \frac{x}{3}+C$
B. $\frac{x}{4}-\frac{3}{8} \tan ^{-1} \frac{x}{3}+C$
C. $\frac{x}{4}-\frac{3}{8} \tan ^{-1} \frac{2 x}{3}+C$
D. none of these

Answer

$\int \frac{x^{2}}{4 x^{2}+9}=\frac{1}{4} \int \frac{4 x^{2}+9-9}{4 x^{2}+9} d x$
$=\frac{1}{4} \int 1+\frac{1}{4} \int \frac{-9}{4 x^{2}+9} d x$
$=\frac{x}{4}-\frac{9}{4} \int \frac{1}{(2 x)^{2}+3^{2}} d x$
Let $2 x=t$
$2 d x=d t$
$=\frac{x}{4}-\frac{9}{8} \int \frac{1}{(t)^{2}+3^{2}} d x$
We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\frac{x}{4}-\frac{9}{4.2 .3} \tan ^{-1} \frac{t}{3}+c$
put $t=2 x$
$=\frac{x}{4}-\frac{3}{8} \tan ^{-1} \frac{2 x}{3}+c$

13. Question

Mark ($\sqrt{ }$) against the correct answer in each of the following:
$\int \frac{\left(x^{2}-1\right)}{\left(x^{2}+4\right)} d x=$?
A. $x-5 \tan ^{-1} \frac{x}{2}+C$
B. $x-\frac{5}{2} \tan ^{-1} \frac{x}{2}+C$
C. $x-\frac{5}{2} \tan ^{-1} \frac{5 x}{2}+C$
D. none of these

Answer

$\int \frac{x^{2}-1}{x^{2}+4}=\int \frac{x^{2}}{x^{2}+4}-\int \frac{1}{x^{2}+4}$
$=\int \frac{x^{2}}{x^{2}+4}-\frac{1}{2} \tan ^{-1} \frac{x}{2}$
$=\int \frac{x^{2}+4-4}{x^{2}+4}-\frac{1}{2} \tan ^{-1} \frac{x}{2}$
$=\int\left(1-\frac{4}{x^{2}+4}\right)-\frac{1}{2} \tan ^{-1} \frac{x}{2}$
$=x-2 \tan ^{-1} \frac{x}{2}-\frac{1}{2} \tan ^{-1} \frac{x}{2}+c$
$=x-\frac{5}{2} \tan ^{-1} \frac{x}{2}+c$

14. Question

Mark ($\sqrt{ }$) against the correct answer in each of the following:
$\int \frac{d x}{\left(4+9 x^{2}\right)}=$?
A. $\frac{2}{3} \tan ^{-1} \frac{3 \mathrm{x}}{2}+\mathrm{C}$
B. $\frac{1}{6} \tan ^{-1} 3 \mathrm{x}+\mathrm{C}$
C. $\frac{1}{6} \tan ^{-1} \frac{3 x}{2}+C$
D. none of these

Answer

Consider $\int \frac{d x}{(3 x)^{2}+2^{2}}$,
$3 x=t$
$3 d x=d t$
$d x=\frac{d t}{3}$
$=\frac{1}{3} \int \frac{d t}{t^{2}+2^{2}}$
We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\frac{1}{6} \tan ^{-1} \frac{t}{2}+c$
put $t=3 x$
$=\frac{1}{6} \tan ^{-1} \frac{3 x}{2}+c$

15. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\left(4 x^{2}-4 x+3\right)}=?$
A. $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{2 \mathrm{x}-1}{\sqrt{2}}\right)+\mathrm{C}$
B. $\frac{1}{2 \sqrt{2}} \tan ^{-1}\left(\frac{2 \mathrm{x}-1}{\sqrt{2}}\right)+\mathrm{C}$
C. $-\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{2 x-1}{\sqrt{2}}\right)+C$
D. none of these

Answer

Consider $\int \frac{d x}{4 x^{2}-4 x+3}$,
Completing the square
$4 x^{2}-4 x+3=4\left(x^{2}-x+\frac{3}{4}\right)$
$=4\left(x^{2}-x+\frac{3}{4}+\frac{1}{4}-\frac{1}{4}\right)$
$=4\left(\left(x-\frac{1}{2}\right)^{2}+\frac{1}{2}\right)$
$=\frac{1}{4} \int \frac{d x}{\left(\left(x-\frac{1}{2}\right)^{2}+\frac{1}{2}\right)}$
Let $x-\frac{1}{2}=t$
$d x=d t$
$=\frac{1}{4} \int \frac{d t}{t^{2}+\frac{1}{\sqrt{2}}^{2}}$

We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\frac{\sqrt{2}}{4} \tan ^{-1} \frac{t}{\frac{1}{\sqrt{2}}}+c$
$=\frac{1}{2 \sqrt{2}} \tan ^{-1} \sqrt{2} t+c$
put $\mathrm{t}=\mathrm{x}$ -
$=\frac{1}{2 \sqrt{2}} \tan ^{-1} \frac{2 x-1}{\sqrt{2}}+c$

16. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\left(\sin ^{4} x+\cos ^{4} x\right)}=?$
A. $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\tan ^{2} x-1}{\sqrt{2} \tan x}\right)+C$
B. $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\tan ^{2} x-1}{\tan x}\right)+C$
C. $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{1}{\sqrt{2} \tan x}\right)+C$
D. None of these

Answer

$\int \frac{d x}{\sin ^{4} x+\cos ^{4} x}=\int \frac{1}{\cos ^{4} x\left(\tan ^{4} x+1\right)} d x$
$=\int \frac{\sec ^{4} x}{\tan ^{4} x+1} d x$
$=\int \frac{\sec ^{2} x \sec ^{2} x}{\tan ^{4} x+1} d x$
$=\int \frac{\sec ^{2} x\left(1+\tan ^{2} x\right)}{\tan ^{4} x+1} d x$
$\tan \mathrm{x}=\mathrm{t}$
$\sec ^{2} \mathrm{xdx}=\mathrm{dt}$
$=\int \frac{1+t^{2}}{t^{4}+1} d t$
$=\int \frac{t^{2}+1}{t^{4}+1} d t$
$=\int \frac{1+t^{-2}}{t^{2}+t^{-2}} d t$
$=\int \frac{1+t^{-2}}{t^{2}+t^{-2}+2-2} d t$
$=\int \frac{1+t^{-2}}{\left(t-t^{-1}\right)^{2}+2} d t$
Let $\mathrm{t}-\mathrm{t}^{-1}=\mathrm{u}$
$1+\mathrm{x}^{-2} \mathrm{dt}=\mathrm{du}$
$=\int \frac{d u}{(u)^{2}+\sqrt{2}^{2}}$
We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{u}{\sqrt{2}}+c$
put $u=t-t^{-1}$
$=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{t-t^{-1}}{\sqrt{2}}+c$
$=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{t^{2}-1}{\sqrt{2} t}+c$
put $t=\tan x$
$=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{\tan ^{2} x-1}{\sqrt{2} \tan x}+c$

17. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{\left(x^{2}+1\right)}{\left(x^{4}+x^{2}+1\right)} d x=?$
A. $\tan ^{-1} \frac{\left(x^{2}-1\right)}{\sqrt{3}}+C$
B. $\frac{1}{\sqrt{3}} \tan ^{-1} \frac{\left(\mathrm{x}^{2}-1\right)}{\sqrt{3}}+\mathrm{C}$
C. $\frac{1}{\sqrt{3}} \tan ^{-1} \frac{\left(x^{2}-1\right)}{\sqrt{3} x}+C$
D. none of these

Answer

$\int \frac{\left(x^{2}+1\right)}{\left(x^{4}+x^{2}+1\right)} d x=\int \frac{1+x^{-2}}{x^{2}+1+x^{-2}} d x$
$=\int \frac{1+x^{-2}}{x^{2}+1+x^{-2}+2-2} d x$
$=\int \frac{1+x^{-2}}{\left(x-x^{-1}\right)^{2}+3} d x$
Let $\mathrm{x}-\mathrm{x}^{-1}=\mathrm{t}$
$1+x^{-2} d x=d t$
$=\int \frac{d t}{(t)^{2}+\sqrt{3}^{2}}$
We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\frac{1}{\sqrt{3}} \tan ^{-1} \frac{t}{\sqrt{3}}+c$
put $t=x-x^{-1}$
$=\frac{1}{\sqrt{3}} \tan ^{-1} \frac{x-x^{-1}}{\sqrt{3}}+c$
$=\frac{1}{\sqrt{3}} \tan ^{-1} \frac{x^{2}-1}{\sqrt{3} x}+c$

18. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{\sin 2 x}{\left(\sin ^{4} x+\cos ^{4} x\right)} d x=?$
A. $\tan ^{-1}\left(\tan ^{2} x\right)+C$
B. $x^{2}+C$
C. $-\tan -1\left(\tan ^{2} x\right)+C$
D. none of these

Answer

$\int \frac{\sin 2 x}{\sin ^{4} x+\cos ^{4} x} d x=\int \frac{2 \sin x \cos x}{\cos ^{4} x\left(\tan ^{4} x+1\right)} d x$
$=\int \frac{2 \tan x \sec ^{2} x}{\left(\tan ^{2} x\right)^{2}+1} d x$
$=\int \frac{2 \tan x \sec ^{2} x}{\left(\sec ^{2} x-1\right)^{2}+1} d x$
Let $\sec ^{2} x-1=t$
$2 \sec x \sec x \tan x d x=d t$
$=\int \frac{d t}{(t)^{2}+1}$
We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\tan ^{-1} \mathrm{t}+\mathrm{c}$
put $t=\sec ^{2} x-1$
$=\tan ^{-1} \sec ^{2} \mathrm{x}-1+\mathrm{c}$
$=\tan ^{-1} \tan ^{2} \mathrm{x}+\mathrm{c}$

19. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\left(1-9 x^{2}\right)}=?$
A. $\frac{1}{3} \log \left|\frac{1+3 x}{1-3 x}\right|+C$
B. $\frac{1}{3} \log \left|\frac{1-3 x}{1+3 x}\right|+C$
C. $\frac{1}{6} \log \left|\frac{1+3 x}{1-3 x}\right|+C$
D. $\frac{1}{6} \log \left|\frac{1-3 x}{1+3 x}\right|+C$

Answer

Consider $\int \frac{d x}{(1)^{2}-(3 x)^{2}}$
$3 x=t$
$3 d x=d t$
$d x=\frac{d t}{3}$
$=\frac{1}{3} \int \frac{d t}{1^{2}-(t)^{2}}$
We know, $\int \frac{1}{a^{2}-x^{2}}=\frac{1}{2 a} \log \frac{a+x}{a-x}+c$
$=\frac{1}{6} \log \frac{1+t}{1-t}+c$
put $t=3 x$
$\frac{1}{6} \tan ^{-1} \frac{1+3 x}{1-3 x}+c$

20. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\left(16-4 x^{2}\right)}=?$
A. $\frac{1}{8} \log \left|\frac{2-\mathrm{x}}{2+\mathrm{x}}\right|+\mathrm{C}$
B. $\frac{1}{16} \log \left|\frac{2-\mathrm{x}}{2+\mathrm{x}}\right|+\mathrm{C}$
C. $\frac{1}{8} \log \left|\frac{2+x}{2-x}\right|+C$
D. $\frac{1}{16} \log \left|\frac{2+\mathrm{x}}{2-\mathrm{x}}\right|+\mathrm{C}$

Answer

Consider $\int \frac{d x}{(4)^{2}-(2 x)^{2}}$
$2 \mathrm{x}=\mathrm{t}$
$2 d x=d t$
$d x=\frac{d t}{2}$
$=\frac{1}{2} \int \frac{d t}{4^{2}-(t)^{2}}$
We know, $\int \frac{1}{a^{2}-x^{2}}=\frac{1}{2 a} \log \frac{a+x}{a-x}+c$
$=\frac{1}{16} \log \frac{4+t}{4-t}+c$
put $t=2 x$
$=\frac{1}{16} \tan ^{-1} \frac{4+2 x}{4-2 x}+c$
$=\frac{1}{16} \tan ^{-1} \frac{2+x}{2-x}+c$

21. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{x^{2}}{\left(1-x^{6}\right)} d x=?$
A. $\frac{1}{6} \log \left|\frac{1+\mathrm{x}^{3}}{1-\mathrm{x}^{3}}\right|+\mathrm{C}$
B. $\frac{1}{6} \log \left|\frac{1-\mathrm{x}^{3}}{1+\mathrm{x}^{3}}\right|+\mathrm{C}$
C. $\frac{1}{3} \log \left|\frac{1-\mathrm{x}^{3}}{1+\mathrm{x}^{3}}\right|+\mathrm{C}$
D. none of these

Answer

$=\int \frac{x^{2}}{(1)^{2}-\left(x^{3}\right)^{2}} d x$
Let $x^{3}=t$
$3 x^{2} d x=d t$
$x^{2} d x=\frac{d t}{3}$
$=\frac{1}{3} \int \frac{d t}{1^{2}-t^{2}}$
We know, $\int \frac{1}{a^{2}-x^{2}}=\frac{1}{2 a} \log \frac{a+x}{a-x}+c$
$=\frac{1}{6} \log \frac{1+t}{1-t}+c$
put $t=x^{3}$
$=\frac{1}{6} \log \frac{1+x^{3}}{1-x^{3}}+c$

22. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{x}{\left(1-x^{4}\right)} d x=?$
A. $\frac{1}{4} \log \left|\frac{1+\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right|+\mathrm{C}$
B. $\frac{1}{4} \log \left|\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right|+\mathrm{C}$
C. $\frac{1}{2} \log \left|\frac{1+\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right|+\mathrm{C}$
D. none of these

Answer

$=\int \frac{x}{(1)^{2}-\left(x^{2}\right)^{2}} d x$
Let $x^{2}=t$
$2 x d x=d t$
$x d x=\frac{d t}{2}$
$=\frac{1}{2} \int \frac{d t}{1^{2}-t^{2}}$
We know, $\int \frac{1}{a^{2}-x^{2}}=\frac{1}{2 a} \log \frac{a+x}{a-x}+c$
$=\frac{1}{4} \log \frac{1+t}{1-t}+c$
put $t=x^{2}$
$=\frac{1}{4} \log \frac{1+x^{2}}{1-x^{2}}+c$

23. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{x^{2}}{\left(a^{6}-x^{6}\right)} d x=?$
A. $\frac{1}{3 a^{3}} \log \left|\frac{a^{3}+x^{3}}{a^{3}-x^{3}}\right|+C$
B. $\frac{1}{6 a^{3}} \log \left|\frac{a^{3}+x^{3}}{a^{3}-x^{3}}\right|+C$
C. $\frac{1}{6 a^{3}} \log \left|\frac{a^{3}-x^{3}}{a^{3}+x^{3}}\right|+C$
D. none of these

Answer

$=\int \frac{x^{2}}{\left(a^{3}\right)^{2}-\left(x^{3}\right)^{2}} d x$
Let $x^{3}=t$
$3 x^{2} d x=d t$
$x^{2} d x=\frac{d t}{3}$
$=\frac{1}{3} \int \frac{d t}{\left(a^{3}\right)^{2}-t^{2}}$
We know, $\int \frac{1}{a^{2}-x^{2}}=\frac{1}{2 a} \log \frac{a+x}{a-x}+c$
$=\frac{1}{6 a^{3}} \log \frac{a^{3}+t}{a^{3}-t}+c$
put $t=x^{3}$
$=\frac{1}{6 a^{3}} \log \frac{a^{3}+x^{3}}{a^{3}-x^{3}}+c$

24. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:

$$
\int \frac{d x}{\left(3-2 x-x^{2}\right)}=?
$$

A. $\frac{1}{4} \log \left|\frac{3+x}{3-x}\right|+C$
B. $\frac{1}{4} \log \left|\frac{1+\mathrm{x}}{1-\mathrm{x}}\right|+\mathrm{C}$
C. $\frac{1}{4} \log \left|\frac{3+\mathrm{x}}{1-\mathrm{x}}\right|+\mathrm{C}$
D. none of these

Answer

$=-\int \frac{d x}{x^{2}+2 x-3}$

Completing the square
$x^{2}+2 x-3=x^{2}+2 x-3+1-1$
$(x+1)^{2}-4$
$=-\int \frac{d x}{(x+1)^{2}-4}$
Let $\mathrm{x}+1=\mathrm{t}$
$\mathrm{dx}=\mathrm{dt}$
$=-\int \frac{d t}{t^{2}-2^{2}}$
$=-\int \frac{d t}{2^{2}-t^{2}}$
We know, $\int \frac{1}{a^{2}-x^{2}}=\frac{1}{2 a} \log \frac{a+x}{a-x}+c$
$=\frac{1}{4} \log \frac{2+t}{2-t}+c$
put $\mathrm{t}=\mathrm{x}+1$
$=\frac{1}{4} \log \frac{2+x+1}{2-x-1}+c$
$=\frac{1}{4} \log \frac{x+3}{1-x}+c$

25. Question

Mark ($\sqrt{ }$) against the correct answer in each of the following:
$\int \frac{d x}{\left(\cos ^{2} x-3 \sin ^{2} x\right)}=$?
A. $\frac{1}{\sqrt{3}} \log \left|\frac{\sqrt{3}+\tan x}{\sqrt{3}-\tan x}\right|+C$
B. $\frac{1}{\sqrt{3}} \log \left|\frac{1-\sqrt{3} \tan x}{1+\sqrt{3} \tan x}\right|+C$
C. $\frac{1}{2 \sqrt{3}} \log \left|\frac{1+\sqrt{3} \tan x}{1-\sqrt{3} \tan x}\right|+C$
D. none of these

Answer

$\int \frac{1}{\cos ^{2} x-3 \sin ^{2} x} d x=\int \frac{1}{\cos ^{2} x\left(1-3 \tan ^{2} x\right)} d x$
$=\int \frac{\sec ^{2} x}{\left(1-(\sqrt{3} \tan x)^{2}\right)} d x$
Let $\sqrt{ } 3 \tan \mathrm{x}=\mathrm{t}$
$\sqrt{ } 3 \sec ^{2} x d x=d t$
$=\frac{1}{\sqrt{3}} \int \frac{d t}{1^{2}-t^{2}}$
We know, $\int \frac{1}{a^{2}-x^{2}}=\frac{1}{2 a} \log \frac{a+x}{a-x}+c$
$=\frac{1}{2 \sqrt{3}} \log \frac{1+t}{1-t}+c$
put $t=\sqrt{3} \tan x$
$=\frac{1}{2 \sqrt{3}} \log \frac{1+\sqrt{3} \tan x}{1-\sqrt{3} \tan x}+c$

26. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{\operatorname{cosec}^{2} x}{\left(1-\cot ^{2} x\right)} d x=?$
A. $\frac{1}{2} \log \left|\frac{1+\cot x}{1-\cot x}\right|+C$
B. $-\frac{1}{2} \log \left|\frac{1+\cot x}{1-\cot x}\right|+C$
C. $\frac{1}{2} \log \left|\frac{1-\cot x}{1+\cot x}\right|+C$
D. none of these

Answer

$\int \frac{\operatorname{cosec}^{2} x}{1-\cot ^{2} x} d x$
Let $\cot \mathrm{x}=\mathrm{t}$
$-\operatorname{cosec}^{2} x d x=d t$
$=-\int \frac{d t}{1^{2}-t^{2}}$
We know, $\int \frac{1}{a^{2}-x^{2}}=\frac{1}{2 a} \log \frac{a+x}{a-x}+c$
$=\frac{-1}{2} \log \frac{1+t}{1-t}+c$
put $t=\cot x$
$=\frac{-1}{2} \log \frac{1+\cot x}{1-\cot x}+c$
27. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\left(4 x^{2}-1\right)}=?$
A. $\frac{1}{2} \log \left|\frac{2 \mathrm{x}-1}{2 \mathrm{x}+1}\right|+\mathrm{C}$
B. $\frac{1}{2} \log \left|\frac{2 \mathrm{x}+1}{2 \mathrm{x}-1}\right|+\mathrm{C}$
C. $\frac{1}{4} \log \left|\frac{2 \mathrm{x}-1}{2 \mathrm{x}+1}\right|+\mathrm{C}$
D. none of these

Answer

Consider
$\int \frac{d x}{(2 x)^{2}-1^{2}}$
$2 \mathrm{x}=\mathrm{t}$
$2 \mathrm{dx}=\mathrm{dt}$
$d x=\frac{d t}{2}$
$=\frac{1}{2} \int \frac{d t}{t^{2}-1^{2}}$
We know, $\int \frac{1}{x^{2}-a^{2}}=\frac{1}{2 a} \log \frac{x-a}{x+a}+c$
$=\frac{1}{4} \log \frac{t-1}{t+1}+c$
put $t=2 x$
$=\frac{1}{4} \log \frac{2 x-1}{2 x+1}+c$

28. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{x}{\left(x^{4}-16\right)} d x=?$
A. $\frac{1}{4} \log \left|\frac{x^{2}+4}{x^{2}-4}\right|+C$
B. $\frac{1}{16} \log \left|\frac{x^{2}+4}{x^{2}-4}\right|+C$
C. $\frac{1}{16} \log \left|\frac{x^{2}-4}{x^{2}+4}\right|+C$
D. none of these

Answer

$=\int \frac{x}{\left(x^{2}\right)^{2}-(4)^{2}} d x$

Let $x^{2}=t$
$2 x d x=d t$
$x d x=\frac{d t}{2}$
$=\frac{1}{2} \int \frac{1}{(t)^{2}-(4)^{2}} d t$
We know, $\int \frac{1}{x^{2}-a^{2}}=\frac{1}{2 a} \log \frac{x-a}{x+a}+c$
$=\frac{1}{16} \log \frac{t-4}{t+4}+c$
put $t=x^{2}$
$=\frac{1}{16} \log \frac{x^{2}-4}{x^{2}+4}+c$
29. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\left(\sin ^{2} x-4 \cos ^{2} x\right)}=?$
A. $\frac{1}{4} \log \left|\frac{\tan x-2}{\tan x+2}\right|+C$
B. $\frac{1}{4} \log \left|\frac{\tan \mathrm{x}+2}{\tan \mathrm{x}-2}\right|+\mathrm{C}$
C. $\frac{1}{4} \log \left|\frac{1-\tan x}{1+\tan x}\right|+C$
D. none of these

Answer

$\int \frac{1}{\sin ^{2} x-4 \cos ^{2} x} d x=\int \frac{1}{\cos ^{2} x\left(\tan ^{2} x-4\right)} d x$
$=\int \frac{\sec ^{2} x}{\left((\tan x)^{2}-2^{2}\right)} d x$
Let $\tan x=t$
$\sec ^{2} x d x=d t$
$=\int \frac{d t}{t^{2}-2^{2}}$
We know, $\int \frac{1}{x^{2}-a^{2}}=\frac{1}{2 a} \log \frac{x-a}{x+a}+c$
$=\frac{1}{4} \log \frac{t-2}{t+2}+c$
put $t=\tan x$
$=\frac{1}{4} \log \frac{\tan x-2}{\tan x+2}+c$

30. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\left(4 \sin ^{2} x+5 \cos ^{2} x\right)}=$?
A. $\frac{1}{2} \tan ^{-1}\left(\frac{\tan \mathrm{x}}{\sqrt{5}}\right)+\mathrm{C}$
B. $\frac{1}{\sqrt{5}} \tan ^{-1}\left(\frac{\tan \mathrm{x}}{\sqrt{5}}\right)+\mathrm{C}$
C. $\frac{1}{2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \tan x}{\sqrt{5}}\right)+C$
D. none of these

Answer
$\int \frac{1}{4 \sin ^{2} x+5 \cos ^{2} x} d x=\int \frac{1}{\cos ^{2} x\left(4 \tan ^{2} x+5\right)} d x$
$\int \frac{\sec ^{2} x}{\left((2 \tan x)^{2}+\sqrt{5}^{2}\right)} d x$
Let $2 \tan x=t$
$2 \sec ^{2} x d x=d t$
$=\frac{1}{2} \int \frac{d t}{t^{2}+\sqrt{5}^{2}}$
We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\frac{1}{2 \sqrt{5}} \tan ^{-1} \frac{t}{\sqrt{5}}+c$
put $t=2 \tan x$
$=\frac{1}{2 \sqrt{5}} \tan ^{-1} \frac{2 \tan x}{\sqrt{5}}+c$

31. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{\sin x}{\sin 3 x} d x=$?
A. $\frac{1}{2 \sqrt{3}} \log \left|\frac{\sqrt{3}+\sin x}{\sqrt{3}-\sin x}\right|+C$
B. $\frac{1}{2 \sqrt{3}} \log \left|\frac{\sqrt{3}+\cos x}{\sqrt{3}-\cos x}\right|+C$
C. $\frac{1}{2 \sqrt{3}} \log \left|\frac{\sqrt{3}+\tan x}{\sqrt{3}-\tan x}\right|+C$
D. none of these

Answer

$\int \frac{\sin x}{\sin 3 x} d x=\int \frac{\sin x}{3 \sin x-4 \sin ^{3} x} d x$
$=\int \frac{1}{3-4 \sin ^{2} x} d x$
$=\int \frac{1}{\cos ^{2} x\left(3 \sec ^{2} x-4 \tan ^{2} x\right)} d x$
$=\int \frac{\sec ^{2} x}{3\left(1+\tan ^{2} x\right)-4 \tan ^{2} x} d x$
$=\int \frac{\sec ^{2} x}{3-\tan ^{2} x} d x$
Let $\tan \mathrm{x}=\mathrm{t}$
$\sec ^{2} x d x=d t$
$=\int \frac{d t}{\sqrt{3}^{2}-t^{2}}$
We know, $\int \frac{1}{a^{2}-x^{2}}=\frac{1}{2 a} \log \frac{a+x}{a-x}+c$
$=\frac{1}{2 \sqrt{3}} \log \frac{\sqrt{3}+t}{\sqrt{3}-t}+c$
put $\mathrm{t}=\tan \mathrm{x}$
$=\frac{1}{2 \sqrt{3}} \log \frac{\sqrt{3}+\tan x}{\sqrt{3}-\tan x}+c$

32. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{\left(x^{2}+1\right)}{\left(x^{4}+1\right)} d x=$?
A. $\frac{1}{2} \tan ^{-1}\left(\frac{x^{2}+1}{\sqrt{2} x}\right)+C$
B. $\frac{1}{2} \tan ^{-1}\left(\frac{x^{2}-1}{\sqrt{2} x}\right)+C$
C. $\frac{1}{\sqrt{2}} \log \left(\frac{x^{2}+1}{x^{2}-1}\right)+C$
D. none of these

Answer
$\int \frac{\left(x^{2}+1\right)}{\left(x^{4}+1\right)} d x=\int \frac{1+x^{-2}}{x^{2}+x^{-2}} d x$
$=\int \frac{1+x^{-2}}{x^{2}+x^{-2}+2-2} d x$
$=\int \frac{1+x^{-2}}{\left(x-x^{-1}\right)^{2}+2} d x$
Let $\mathrm{x}-\mathrm{x}^{-1}=\mathrm{t}$
$1+\mathrm{x}^{-2} \mathrm{dx}=\mathrm{dt}$
$=\int \frac{d t}{(t)^{2}+\sqrt{2}^{2}}$
We know, $\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
$=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{t}{\sqrt{2}}+c$
put $t=x-x^{-1}$
$=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{x-x^{-1}}{\sqrt{2}}+c$
$=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{x^{2}-1}{\sqrt{2} x}+c$

Objective Questions II

1. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\sqrt{4-9 x^{2}}}=$?
A. $\frac{1}{3} \sin ^{-1} \frac{x}{3}+C$
B. $\frac{2}{3} \sin ^{-1}\left(\frac{2 \mathrm{x}}{3}\right)+\mathrm{C}$
C. $\frac{1}{3} \sin ^{-1}\left(\frac{3 x}{2}\right)+C$
D. none of these

Answer

$\int \frac{d x}{\sqrt{4-9 x^{2}}}=\int \frac{1}{3} \frac{d x}{\sqrt{\frac{4}{9}-x^{2}}}$
$=\int \frac{1}{3} \frac{d x}{\sqrt{\left(\frac{2}{3}\right)^{2}-x^{2}}}$
$=\frac{1}{3} \sin ^{-1} \frac{x}{\frac{2}{3}}+c$
$=\frac{1}{3} \sin ^{-1} \frac{3 x}{2}+c$.

2. Question

Mark (\checkmark) against the correct answer in each of the following:
$\int \frac{\mathrm{dx}}{\sqrt{16-4 \mathrm{x}^{2}}}=$?
A. $\frac{1}{2} \sin ^{-1} \frac{x}{2}+C$
B. $\frac{1}{4} \sin ^{-1} \frac{x}{2}+C$
C. $\frac{1}{2} \sin ^{-1} \frac{x}{4}+C$
D. none of these

Answer

$\int \frac{d x}{\sqrt{16-4 x^{2}}}=\int \frac{1}{2} \frac{d x}{\sqrt{\frac{16}{4}-x^{2}}}$
$=\int \frac{1}{2} \frac{d x}{\sqrt{(2)^{2}-x^{2}}}$
$=\frac{1}{2} \sin ^{-1} \frac{x}{2}+c$

3. Question

Mark ($\sqrt{ }$) against the correct answer in each of the following:
$\int \frac{\cos x}{\sqrt{4-\sin ^{2} x}}=?$
A. $\sin ^{-1} \frac{x}{2}+C$
B. $\sin ^{-1}\left(\frac{1}{2} \cos x\right)+C$
C. $\sin ^{-1}(2 \sin x)+C$
D. $\sin ^{-1}\left(\frac{1}{2} \sin x\right)+C$

Answer

Put $\sin x=t$
$\Rightarrow \cos \mathrm{xdx}=\mathrm{dt}$
\therefore The given equation becomes
$\int \frac{d t}{\sqrt{4-t^{2}}}$
$=\sin ^{-1} \frac{t}{2}+c$
But $t=\sin x$
$=\sin ^{-1}\left(\frac{\sin x}{2}\right)+c$

4. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{2^{\mathrm{x}}}{\sqrt{1-4^{\mathrm{x}}}} d x=?$
A. $\sin ^{-1}\left(2^{x}\right) \log 2+C$
B. $\frac{\sin ^{-1}\left(2^{x}\right)}{\log 2}+C$
C. $\sin ^{-1}\left(2^{x}\right)+C$
D. none of these

Answer

\Rightarrow Let $\mathrm{t}=2^{\mathrm{x}}$
$\mathrm{dt}=\log 2.2^{\mathrm{x}} . \mathrm{dx}$
$\Rightarrow \frac{d t}{\log 2}=2^{x} \cdot d x$
$=\int \frac{d t}{\log 2 \sqrt{1-t^{2}}}$
$=\frac{1}{\log 2} \int \frac{d t}{\sqrt{1-t^{2}}}$
$=\frac{1}{\log 2} \sin ^{-1} t$
But $t=2^{x}$
$=\frac{1}{\log 2} \sin ^{-1}\left(2^{x}\right)$

5. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\sqrt{2 x-x^{2}}}=?$
A. $\sin ^{-1}(x+1)+C$
B. $\sin ^{-1}(x-2)+C$
C. $\sin ^{-1}(x-1)+C$
D. none of these

Answer
$\int \frac{d x}{\sqrt{2 x-x^{2}}}=\int \frac{d x}{\sqrt{2 x-x^{2}+1-1}}$
$=\int \frac{d x}{\sqrt{-x^{2}+2 x-1+1}}$
$=\int \frac{d x}{\sqrt{1-(x-1)^{2}}}$
$=\sin ^{-1}(x-1)+c$

6. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{x(1-2 x)}=$?
A. $\frac{1}{\sqrt{2}} \sin ^{-1}(2 x-1)+C$
B. $\frac{1}{\sqrt{2}} \sin ^{-1}(2 x+1)+C$
C. $\frac{1}{\sqrt{2}} \sin ^{-1}(4 x+1)+C$
D. $\frac{1}{\sqrt{2}} \sin ^{-1}(4 x-1)+C$

Answer

$\int \frac{d x}{\sqrt{x-2 x^{2}}}=\int \frac{d x}{\sqrt{2} \sqrt{-x^{2}+\frac{1}{2} x}}$
$=\int \frac{d x}{\sqrt{2} \sqrt{-\left(x^{2}-\frac{1}{2} x\right)}}$
$=\int \frac{d x}{\sqrt{2} \sqrt{-\left(x^{2}-\frac{1}{2} x\right)}+\frac{1}{16}-\frac{1}{16}}$
$=\int \frac{d x}{\sqrt{2} \sqrt{-\left(x^{2}-\frac{1}{2} x+\frac{1}{16}\right)}+\frac{1}{16}}$
$=\int \frac{d x}{\sqrt{2} \sqrt{\frac{1}{16}-\left(x-\frac{1}{4}\right)^{2}}}$
$=\int \frac{d x}{\sqrt{2} \sqrt{\left(\frac{1}{4}\right)^{2}-\left(\frac{4 x-1}{4}\right)^{2}}}$
$=\frac{1}{\sqrt{2}}\left(\sin ^{-1}\left(\frac{\frac{4 x-1}{4}}{\frac{1}{4}}\right)\right.$
$=\frac{1}{\sqrt{2}} \sin ^{-1}(4 x-1)$

7. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{3 x^{2}}{\sqrt{9-16 x^{6}}} d x=$?
A. $\frac{1}{4} \sin ^{-1}\left(\frac{x^{3}}{3}\right)+C$
B. $\frac{1}{4} \sin ^{-1}\left(\frac{4 \mathrm{x}^{3}}{3}\right)+\mathrm{C}$
C. $4 \sin ^{-1}\left(\frac{x^{3}}{4}\right)+C$
D. none of these

Answer

$\Rightarrow \int \frac{3 x^{2} d x}{\sqrt{9-16 x^{6}}}$
Let $x^{3}=t$
$\therefore 3 \mathrm{x}^{2} \mathrm{dx}=\mathrm{dt}$
$\therefore \mathrm{x}^{6}=\mathrm{t}^{2}$
$\Rightarrow \int \frac{1}{4} \frac{d t}{\sqrt{\frac{9}{16}-t^{2}}}$
$\Rightarrow \frac{1}{4} \sin ^{-1}\left(\frac{4 t}{3}\right)+c$
But $t=x^{3}$
$\Rightarrow \frac{1}{4} \sin ^{-1}\left(\frac{4 x^{3}}{3}\right)+c$

8. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\sqrt{2+2 x-x^{2}}}=$?
A. $\sin ^{-1}\left(\frac{x-1}{\sqrt{3}}\right)+C$
B. $\sin ^{-1}\left(\frac{x-1}{\sqrt{2}}\right)+C$
C. $\sin ^{-1} \sqrt{3}(x-1)+C$
D. none of these

Answer

$\Rightarrow \int \frac{d x}{\sqrt{2+2 x-x^{2}}}=\int \frac{d x}{\sqrt{2 x-x^{2}+2+3-3}}$
$\Rightarrow \int \frac{d x}{\sqrt{-\left(\left(x^{2}-2 x+1\right)-3\right)}}$
$\Rightarrow \int \frac{d x}{\sqrt{3-(x-1)^{2}}}$
$\Rightarrow \sin ^{-1}\left(\frac{x-1}{\sqrt{3}}\right)+c$.

9. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\sqrt{16-6 x-x^{2}}}=?$
A. $\sin ^{-1}\left(\frac{x-3}{5}\right)+C$
B. $\sin ^{-1}\left(\frac{x+3}{5}\right)+C$
C. $\frac{1}{5} \sin ^{-1}(x+3)+C$
D. none of these

Answer

$\int \frac{d x}{\sqrt{16-6 x-x^{2}}}=\int \frac{d x}{\sqrt{-x^{2}-6 x-9+16+9}}$
$=\int \frac{d x}{\sqrt{25-(x+3)^{2}}}$
$=\sin ^{-1}\left(\frac{x+3}{5}\right)+c$.

10. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}-\mathrm{x}^{2}}}=$?
A. $\sin ^{-1}(x-1)+C$
B. $\sin ^{-1}(x+1)+C$
C. $\sin ^{-1}(2 x-1)+C$
D. none of these

Answer

$\int \frac{d x}{\sqrt{x-x^{2}}}=\int \frac{d x}{\sqrt{-x^{2}+x-}}$
$=\int \frac{d x}{\sqrt{-\left(x^{2}-x\right)+\frac{1}{4}-\frac{1}{4}}}$
$=\int \frac{d x}{\sqrt{-\left(x^{2}-x+\frac{1}{4}\right)+\frac{1}{4}}}$
$=\int \frac{d x}{\sqrt{\left(\frac{1}{2}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}}}$
$=\sin ^{-1}\left(\frac{\frac{2 x-1}{2}}{\frac{1}{2}}\right)+c$
$=\sin ^{-1}(2 x-1)+c$

11. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\sqrt{1+2 x-3 x^{2}}}=?$
A. $\frac{1}{\sqrt{3}} \sin ^{-1}\left(\frac{3 \mathrm{x}-1}{2}\right)+\mathrm{C}$
B. $\frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{2 \mathrm{x}-1}{3}\right)+\mathrm{C}$
C. $\frac{1}{\sqrt{3}} \sin ^{-1}\left(\frac{2 \mathrm{x}-1}{3}\right)+\mathrm{C}$
D. none of these

Answer

$\int \frac{d x}{\sqrt{1+2 x-3 x^{2}}}=\int \frac{d x}{\sqrt{3} \sqrt{-x^{2}+\frac{2}{3} x+\frac{1}{3}}}$
$=\int \frac{d x}{\sqrt{3} \sqrt{-\left(x^{2}-\frac{2}{3} x-\frac{1}{3}\right)}}$
$=\int \frac{d x}{\sqrt{3} \sqrt{-\left(x^{2}-\frac{2}{3} x-\frac{1}{3}\right)}+\frac{1}{9}-\frac{1}{9}}$
$=\int \frac{d x}{\sqrt{3} \sqrt{-\left(x^{2}-\frac{2}{3} x+\frac{1}{9}\right)}+\frac{1}{3}+\frac{1}{9}}$
$=\int \frac{d x}{\sqrt{3} \sqrt{\frac{4}{9}-\left(x-\frac{1}{3}\right)^{2}}}$
$=\int \frac{d x}{\sqrt{3} \sqrt{\left(\frac{2}{3}\right)^{2}-\left(\frac{3 x-1}{3}\right)^{2}}}$
$=\frac{1}{\sqrt{3}}\left(\sin ^{-1}\left(\frac{\frac{3 x-1}{3}}{\frac{2}{3}}\right)\right.$
$=\frac{1}{\sqrt{3}} \sin ^{-1}\left(\frac{3 x-1}{2}\right)$

12. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{2}-16}}=?$
A. $\sin ^{-1}\left(\frac{x}{4}\right)+C$
B. $\log \left|x+\sqrt{x^{2}-16}\right|+C$
C. $\log \left|x-\sqrt{x^{2}-16}\right|+C$
D. none of these

Answer

We know
$\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left|x+\sqrt{x^{2}-a^{2}}\right|$
$\int \frac{d x}{\sqrt{x^{2}-4^{2}}}=\log \left|x+\sqrt{x^{2}-16}\right|$

13. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{\mathrm{dx}}{\sqrt{4 x^{2}-9}}=?$
A. $\frac{1}{2} \log \left|2 \mathrm{x}+\sqrt{4 \mathrm{x}^{2}-9}\right|+\mathrm{C}$
B. $\frac{1}{4} \log \left|x+\sqrt{4 x^{2}-9}\right|+C$
C. $\log \left|2 x+\sqrt{4 x^{2}-9}\right|+C$
D. none of these

Answer

$\int \frac{d x}{\sqrt{(2 x)^{2}-(3)^{2}}}$

Put $t=2 x$
$d t=2 d x$
$\Rightarrow d x=\frac{d t}{2}$
$=\frac{1}{2} \int \frac{d t}{\sqrt{t^{2}-9}}$
$\Rightarrow \int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left|x+\sqrt{x^{2}-a^{2}}\right|$
$\left.=\frac{1}{2} \log \right\rvert\, t+\sqrt{t^{2}-9}$
But $t=2 x$
$=\frac{1}{2} \log \left|2 x+\sqrt{4 x^{2}-9}\right|$

14. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{x^{2}}{x^{6}-1} d x=?$
A. $\frac{1}{2} \log \left|x^{3}+\sqrt{x^{6}-1}\right|+C$
B. $\frac{1}{3} \log \left|x^{3}+\sqrt{x^{6}-1}\right|+C$
C. $\frac{1}{3} \log \left|\mathrm{x}^{3}-\sqrt{\mathrm{x}^{6}-1}\right|+C$
D. none of these

Answer

$\Rightarrow \int \frac{x^{2} d x}{\sqrt{\left(x^{3}\right)^{2}-(1)^{2}}}$
Put $t=x^{3}$
$d t=3 x^{2} d x$
$\Rightarrow d x=\frac{d t}{3 x^{2}}$
$\Rightarrow \frac{1}{3} \int \frac{1}{x^{2}} \frac{x^{2} d t}{\sqrt{t^{2}-1}}$
$\Rightarrow \int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left|x+\sqrt{x^{2}-a^{2}}\right|$
$\left.=\frac{1}{3} \log \right\rvert\, t+\sqrt{t^{2}-1}$
But $t=x^{3}$
$=\frac{1}{3} \log \left|x^{3}+\sqrt{x^{6}-1}\right|$
15. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{\sin x}{\sqrt{4 \cos ^{2} x-1}}=?$
A. $-\frac{1}{2} \log \left|2 \cos x+\sqrt{4 \cos ^{2} x-1}\right|+C$
B. $-\frac{1}{3} \log \left|2 \cos x+\sqrt{4 \cos ^{2} x-1}\right|+C$
C. $-\frac{1}{6} \log \left|2 \cos x+\sqrt{2 \cos ^{2} x-1}\right|+C$
D. none of these

Answer

$\Rightarrow \int \frac{\sin x d x}{\sqrt{(2 \cos x)^{2}-(1)^{2}}}$
Put $t=2 \cos x$
$d t=-2 \sin x d x$
$\Rightarrow d x=-\frac{d t}{2 \sin x}$
$=-\frac{1}{2} \int \frac{d t}{\sqrt{t^{2}-1}}$
$\Rightarrow \int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left|x+\sqrt{x^{2}-a^{2}}\right|$
$\left.=-\frac{1}{2} \log \right\rvert\, t+\sqrt{t^{2}-1}$
But $t=2 \cos x$
$\Rightarrow-\frac{1}{2} \log \left|2 \cos x+\sqrt{4 \cos ^{2} x-1}\right|$

16. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{\sec ^{2} x}{\sqrt{\tan ^{2} x-4}} d x=?$
A. $\log \left|\tan x-\sqrt{\tan ^{2} x-4}\right|+C$
B. $\log \left|\tan x+\sqrt{\tan ^{2} x-4}\right|+C$
C. $\frac{1}{2} \log \left|\tan x+\sqrt{\tan ^{2} x-4}\right|+C$
D. none of these

Answer
$\int \frac{\sec ^{2} x d x}{\sqrt{(\tan x)^{2}-(1)^{2}}}$
Put $t=\tan x$
$\mathrm{dt}=\sec ^{2} \mathrm{x}$
$\Rightarrow d x=-\frac{d t}{\sec ^{2} x}$
$=\int \frac{1}{\sec ^{2} x} \frac{\sec ^{2} x d t}{\sqrt{t^{2}-1}}$
$\Rightarrow \int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left|x+\sqrt{x^{2}-a^{2}}\right|$
$=\log \left|t+\sqrt{t^{2}-1}\right|$
But $t=\tan x$
$=\log \left|\tan x+\sqrt{4 \tan ^{2} x-1}\right|$

17. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\left(1-e^{2 x}\right)}=?$
A. $\log \left|e^{x}+\sqrt{e^{2 x}-1}\right|+C$
B. $\log \left|\mathrm{e}^{-\mathrm{x}}+\sqrt{\mathrm{e}^{-2 \mathrm{x}}-1}\right|+C$
C. $-\log \left|\mathrm{e}^{-\mathrm{x}}+\sqrt{\mathrm{e}^{-2 x}-1}\right|+C$
D. none of these

Answer

Differentiating both side with respect to t
$-2 e^{2 x} \frac{d x}{d t}=1 \Rightarrow d x=-\frac{1}{2} \frac{d t}{1-t}$
$y=-\frac{1}{2} \int \frac{1}{(1-t) t} d t$
$y=-\frac{1}{2} \int \frac{t+(1-t)}{(1-t) t} d t$
$y=-\frac{1}{2} \int \frac{1}{(1-t)}+\frac{1}{t} d t$
$y=-\frac{1}{2}(-\log (1-t)+\log t)+c$
Again put, $\mathrm{t}=1-\mathrm{e}^{2 \mathrm{x}}$
$y=-\frac{1}{2}\left(-\log e^{2 x}+\log \left(1-e^{2 x}\right)\right)+c$
$y=-\log \sqrt{\frac{1-e^{2 x}}{e^{2 x}}}+c$
$y=-\log \sqrt{e^{-2 x}-1}+c$

18. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{2}-3 \mathrm{x}+2}}=$?
A. $\log \left|\left(x-\frac{3}{2}\right)+\sqrt{x^{2}-3 x+2}\right|+C$
B. $\log \left|x+\sqrt{x^{2}-3 x+2}\right|+C$
C. $\log \left|x-\sqrt{x^{2}-3 x+2}\right|+C$
D. none of these

Answer

$\int \frac{d x}{\sqrt{x^{2}-3 x+2}}=\int \frac{d x}{\sqrt{x^{2}-3 x+2+\frac{9}{4}-\frac{9}{4}}}$
$=\int \frac{d x}{\sqrt{x^{2}-3 x+\frac{9}{4}-\frac{1}{4}}}$
$=\int \frac{d x}{\sqrt{\left(x-\frac{3}{2}\right)^{2}-\frac{1}{4}}}$
$\Rightarrow \int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left|x+\sqrt{x^{2}-a^{2}}\right|$
$=\log \left\lvert\,\left(x-\frac{3}{2}\right)+\sqrt{x^{2}-3 x+2}\right.$.

19. Question

Mark ($\sqrt{ }$) against the correct answer in each of the following:
$\int \frac{\cos x}{\sqrt{\sin ^{2} x-2 \sin x-3}} d x=?$
A. $\log \left|\sin x+\sqrt{\sin ^{2} x-2 \sin x-3}\right|+C$
B. $\log \left|(\sin x-1)+\sqrt{\sin ^{2} x-2 \sin x-3}\right|+C$
C. $\log \left|(\sin x-1)-\sqrt{\sin ^{2} x-2 \sin x-3}\right|+C$
D. none of these

Answer

$\Rightarrow \int \frac{\cos x}{\sqrt{\sin ^{2} x-2 \sin x-3}} d x$
Let $\mathrm{t}=\sin \mathrm{x}$
$\mathrm{dt}=\cos \mathrm{xdx}$
$\Rightarrow d x=\frac{d t}{\cos x}$
$=\frac{\cos x d t}{\cos x \sqrt{t^{2}-2 t-3+2-2}}$
$=\frac{d t}{\sqrt{\left(t^{2}-2 t+2\right)-5}}$
$=\frac{d t}{\sqrt{(t-1)^{2}-5}}$
$\Rightarrow \int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left|x+\sqrt{x^{2}-a^{2}}\right|$
$\Rightarrow \int \frac{d t}{\sqrt{(t-1)^{2}-5}}=\log \left|t-1+\sqrt{t^{2}-2 t-3}\right|$
But $t=\sin x$
$\therefore \log \left|\sin x-1+\sqrt{\sin ^{2} x-2 \sin x-3}\right|$
20. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\sqrt{2-4 x+x^{2}}}=?$
A. $\log \left|(x-2)+\sqrt{x^{2}-4 x+2}\right|+C$
B. $\log \left|x+\sqrt{x^{2}-4 x+2}\right|+C$
C. $\log \left|x-\sqrt{x^{2}-4 x+2}\right|+C$
D. none of these

Answer

$\int \frac{d x}{\sqrt{x^{2}-4 x+2}}=\int \frac{d x}{\sqrt{x^{2}-4 x+2+4-4}}$
$=\int \frac{d x}{\sqrt{(x-2)^{2}-2}}$
$\Rightarrow \int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left|x+\sqrt{x^{2}-a^{2}}\right|$
$\Rightarrow \int \frac{d x}{\sqrt{(x-2)^{2}-2}}=\log \left|x-2+\sqrt{x^{2}-4 x+2}\right|$

21. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\sqrt{x^{2}+6 x+5}}=$?
A. $\log \left|x+\sqrt{x^{2}+6 x+5}\right|+C$
B. $\log \left|x-\sqrt{x^{2}+6 x+5}\right|+C$
C. $\log \left|(x+3)+\sqrt{x^{2}+6 x+5}\right|+C$
D. none of these

Answer

$\int \frac{d x}{\sqrt{x^{2}+6 x+5}}=\int \frac{d x}{\sqrt{x^{2}+6 x+5+9-9}}$
$=\int \frac{d x}{\sqrt{(x+3)^{2}-4}}$
$\Rightarrow \int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left|x+\sqrt{x^{2}-a^{2}}\right|$
$\Rightarrow \int \frac{d x}{\sqrt{(x+3)^{2}-4}}=\log \left|x+3+\sqrt{x^{2}+6 x+5}\right|$

22. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{\mathrm{dx}}{\sqrt{(\mathrm{x}-3)^{2}-1}}=?$
A. $\log \left|(x-3)+\sqrt{x^{2}-6 x+8}\right|+C$
B. $\log \left|x+\sqrt{x^{2}-6 x+8}\right|+C$
C. $\log \left|(x-3)-\sqrt{x^{2}-6 x+8}\right|+C$
D. none of these

Answer

$\Rightarrow \int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left|x+\sqrt{x^{2}-a^{2}}\right|$
$\Rightarrow \int \frac{d x}{\sqrt{(x-3)^{2}-1}}=\log \left|x-3+\sqrt{x^{2}-6 x+9-1}\right|$
$\Rightarrow \int \frac{d x}{\sqrt{(x-3)^{2}-1}}=\log \left|x-3+\sqrt{x^{2}-6 x+8}\right|$
23. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{\mathrm{dx}}{\sqrt{x^{2}-6 x+10}}=?$
A. $\log \left|x+\sqrt{x^{2}-6 x+10}\right|+C$
B. $\log \left|(x-3)+\sqrt{x^{2}-6 x+10}\right|+C$
C. $\log \left|x-\sqrt{x^{2}-6 x+10}\right|+C$
D. none of these

Answer

$\int \frac{d x}{\sqrt{x^{2}-6 x+10}}=\int \frac{d x}{\sqrt{x^{2}-6 x+10+9-9}}$
$=\int \frac{d x}{\sqrt{(x-3)^{2}+1}}$
$\Rightarrow \int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|$
$\Rightarrow \int \frac{d x}{\sqrt{(x-3)^{2}+1}}=\log \left|x+3+\sqrt{x^{2}-6 x+10}\right|$

24. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{x^{2} d x}{\sqrt{x^{6}+a^{6}}} d x=?$
A. $\frac{1}{3} \log \left|x^{6}+a^{6}\right|+C$
B. $\frac{1}{3} \tan ^{-1}\left(\frac{x^{3}}{a^{3}}\right)+C$
C. $\frac{1}{3} \log \left|x^{3}+\sqrt{x^{6}+a^{6}}\right|+C$
D. none of these

Answer

$\int \frac{x^{2} d x}{\sqrt{\left(x^{3}\right)^{2}+(a)^{6}}}$
Put $t=x^{3}$
$d t=3 x^{2} d x$
$\Rightarrow d x=\frac{d t}{3 x^{2}}$
$=\frac{1}{3} \int \frac{1}{x^{2}} \frac{x^{2} d t}{\sqrt{t^{2}+a^{6}}}$
$\Rightarrow \int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|$
$\left.=\frac{1}{3} \log \right\rvert\, t+\sqrt{t^{2}+a^{6}}$
But $t=x^{3}$
$=\frac{1}{3} \log \left|x^{3}+\sqrt{x^{6}+a^{6}}\right|+c$.

25. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{\sec ^{2} x}{\sqrt{16+\tan ^{2} x}} d x=?$
A. $\log \left|\tan x+\sqrt{\tan ^{2} x+16}\right|+C$
B. $\log \left|x+\sqrt{\tan ^{2} x+16}\right|+C$
C. $\log \left|\tan x-\sqrt{\tan ^{2} x+16}\right|+C$
D. none of these

Answer

$\int \frac{\sec ^{2} x d x}{\sqrt{(\tan x)^{2}+(4)^{2}}}$
Put $t=\tan x$
$d t=\sec ^{2} x$
$\Rightarrow d x=\frac{d t}{\sec ^{2} x}$
$=\int \frac{1}{\sec ^{2} x} \frac{\sec ^{2} x d t}{\sqrt{t^{2}+16}}$
$\Rightarrow \int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|$
$=\log \mid t+\sqrt{t^{2}+16}$
But $t=\tan x$
$=\log \left|\tan x+\sqrt{\tan ^{2} x+16}\right|$

26. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{d x}{\sqrt{3 x^{2}+6 x+12}}=?$
A. $\log \left|(x+1)+\sqrt{x^{2}+2 x+4}\right|+C$
B. $\frac{1}{3} \log \left|(\mathrm{x}+1)+\sqrt{\mathrm{x}^{2}+2 \mathrm{x}+4}\right|+\mathrm{C}$
C. $\frac{1}{\sqrt{3}} \log \left|(x+1)+\sqrt{x^{2}+2 x+4}\right|+C$
D. none of these

Answer

$\int \frac{d x}{\sqrt{3 x^{2}+6 x+12}}=\int \frac{1}{\sqrt{3}} \frac{d x}{\sqrt{x^{2}+2 x+4}}$
$=\int \frac{1}{\sqrt{3}} \frac{d x}{\sqrt{x^{2}+2 x+3+1}}$
$=\int \frac{1}{\sqrt{3}} \frac{d x}{\sqrt{(x+1)^{2}+3}}$
$\Rightarrow \int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|$
$\Rightarrow \frac{1}{\sqrt{3}} \int \frac{d x}{\sqrt{(x+1)^{2}+3}}=\log \left|x+1+\sqrt{x^{2}+2 x+4}\right|$

27. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{\mathrm{dx}}{\sqrt{2 \mathrm{x}^{2}+4 \mathrm{x}+6}}=$?
A. $\frac{1}{2} \log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|+C$
B. $\frac{1}{\sqrt{2}} \log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|+C$
C. $\frac{1}{\sqrt{2}} \log \left|x+\sqrt{x^{2}+2 x+3}\right|+C$
D. none of these

Answer

$\int \frac{d x}{\sqrt{2 x^{2}+4 x+6}}=\int \frac{1}{\sqrt{2}} \frac{d x}{\sqrt{x^{2}+2 x+3}}$
$=\int \frac{1}{\sqrt{2}} \frac{d x}{\sqrt{x^{2}+2 x+1+2}}$
$=\int \frac{1}{\sqrt{2}} \frac{d x}{\sqrt{(x+1)^{2}+2}}$
$\Rightarrow \int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|$
$\Rightarrow \frac{1}{\sqrt{2}} \int \frac{d x}{\sqrt{(x+1)^{2}+2}}=\log \left|x+1+\sqrt{x^{2}+2 x+3}\right|$

28. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \frac{x^{2}}{\sqrt{x^{6}+2 x^{3}+3}} d x=?$
A. $\frac{1}{3} \log \left|\left(x^{3}+1\right)+\sqrt{x^{6}+2 x^{3}+3}\right|+C$
B. $\log \left|x^{3}+\sqrt{x^{6}+2 x^{3}+3}\right|+C$
C. $\frac{1}{3} \log \left|\left(x^{3}+1\right)-\sqrt{x^{6}+2 x^{3}+3}\right|+C$
D. none of these

Answer

$\int \frac{x^{2} d x}{\sqrt{x^{6}+2 x^{3}+3}}$
Let $\mathrm{x}^{3}=\mathrm{t}$
$\Rightarrow 3 \mathrm{x}^{2} \mathrm{dx}=\mathrm{dt}$
$\Rightarrow \frac{d t}{3 x^{2}}=d x$
$\int \frac{x^{2} d t}{3 x^{2} \sqrt{t^{2}+2 t+3}}=\frac{1}{3} \int \frac{d t}{\sqrt{t^{2}+2 t+3}}$
$=\int \frac{1}{3} \frac{d x}{\sqrt{t^{2}+2 t+1+2}}$
$=\int \frac{1}{3} \frac{d x}{\sqrt{(t+1)^{2}+2}}$
$\Rightarrow \int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|$
$\Rightarrow \frac{1}{3} \int \frac{d x}{\sqrt{(t+1)^{2}+2}}=\log \left|t+1+\sqrt{t^{2}+2 t+3}\right|$
But $t=x^{3}$
$=\log \left|x^{3}+1+\sqrt{x^{6}+2 x^{3}+3}\right|$

29. Question

Mark ($\sqrt{ }$) against the correct answer in each of the following:
$\int \sqrt{4-x^{2}} d x=?$
A. $\frac{x}{2} \sqrt{4-x^{2}}+2 \sin ^{-1} \frac{x}{2}+C$
B. $\mathrm{x} \sqrt{4-\mathrm{x}^{2}}+\sin ^{-1} \frac{\mathrm{x}}{2}+C$
C. $\frac{1}{2} \mathrm{x} \sqrt{4-\mathrm{x}^{2}}-2 \sin ^{-1} \frac{\mathrm{x}}{2}+C$
D. none of these

Answer

We know
$\Rightarrow \int \sqrt{a^{2}-x^{2}}=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C$
$\Rightarrow \int \sqrt{2^{2}-x^{2}}=\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{x}{2}\right)+C$
$\Rightarrow \int \sqrt{4-x^{2}}=\frac{x}{2} \sqrt{4-x^{2}}+2 \sin ^{-1}\left(\frac{x}{2}\right)+C$

30. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \sqrt{1-9 x^{2}} d x=$?
A. $\frac{x}{2} \sqrt{1-9 x^{2}}+\frac{1}{18} \sin ^{-1} 3 x+C$
B. $\frac{3 x}{2} \sqrt{1-9 x^{2}}+\frac{1}{6} \sin ^{-1} 3 x+C$
C. $\frac{x}{2} \sqrt{1-9 \mathrm{x}^{2}}+\frac{1}{6} \sin ^{-1} 3 \mathrm{x}+\mathrm{C}$
D. none of these

Answer

We know
$\Rightarrow \int \sqrt{a^{2}-x^{2}}=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C$
$\Rightarrow \sqrt{1^{2}-(3 x)^{2}}=3 \sqrt{\frac{1}{9}-x^{2}}$
$\Rightarrow 3 \sqrt{\frac{1}{9}-x^{2}}=\frac{3 x}{2} \sqrt{\frac{1}{9}-x^{2}}+\frac{\frac{1}{9}}{2} \sin ^{-1}\left(\frac{x}{\frac{1}{3}}\right)+C$
$\Rightarrow \sqrt{1^{2}-(3 x)^{2}}=\frac{x}{2} \sqrt{1-9 x^{2}}+\frac{3}{18} \sin ^{-1}(3 x)+C$
$\Rightarrow \sqrt{1^{2}-(3 x)^{2}}=\frac{x}{2} \sqrt{1-9 x^{2}}+\frac{1}{6} \sin ^{-1}(3 x)+C$

31. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \sqrt{9-4 x^{2}} d x=?$
A. $\frac{x}{2} \sqrt{9-4 x^{2}}+\frac{9}{4} \sin ^{-1} \frac{2 x}{3}+C$
B. $\mathrm{x} \sqrt{9-4 \mathrm{x}^{2}}+\frac{9}{2} \sin ^{-1} \frac{2 \mathrm{x}}{3}+C$
C. $\frac{x}{2} \sqrt{9-4 x^{2}}-\frac{9}{4} \sin ^{-1} \frac{2 x}{3}+C$
D. none of these

Answer

We know
$\Rightarrow \int \sqrt{a^{2}-x^{2}}=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C$
$\Rightarrow \sqrt{3^{2}-(2 x)^{2}}=2 \sqrt{\frac{9}{4}-x^{2}}$
$\Rightarrow 2 \sqrt{\frac{9}{4}-x^{2}} .=\frac{x}{2} \sqrt{\frac{9}{4}-x^{2}}+\frac{\frac{9}{4}}{2} \sin ^{-1}\left(\frac{x}{\frac{3}{2}}\right)+C$
$\Rightarrow \sqrt{9-4 x^{2}}=\frac{x}{2} \sqrt{9-4 x^{2}}+\frac{2.9}{8} \sin ^{-1}(2 x)+C$
$\Rightarrow \sqrt{9-4 x^{2}}=\frac{x}{2} \sqrt{9-4 x^{2}}+\frac{9}{4} \sin ^{-1}(2 x)+C$

32. Question

Mark (\checkmark) against the correct answer in each of the following:
$\int \cos x \sqrt{9-\sin ^{2} x} d x=?$
A. $\frac{1}{2} \sin \mathrm{x} \sqrt{9-\sin ^{2} \mathrm{x}}+\frac{9}{2} \sin ^{-1}\left(\frac{\sin \mathrm{x}}{3}\right)+\mathrm{C}$
B. $\frac{\sin x}{2} \sqrt{9-\sin ^{2} x}+\frac{9}{2} \sin ^{-1}\left(\frac{\sin x}{3}\right)+C$
C. $\frac{1}{2} \cos x \sqrt{9-\sin ^{2} x}+\frac{9}{2} \sin ^{-1}\left(\frac{\sin x}{3}\right)+C$
D. none of these

Answer

Given: $\int \cos x \sqrt{9-\sin ^{2} x} d x$
Let $\sin x=t$
$\cos x d x=d t$
$\Rightarrow \frac{d t}{\cos x}=d x$
$=\frac{d t}{\cos x} \sqrt{9-\sin ^{2} x} \cos x$
$=\sqrt{9-t^{2}} d t$
$\Rightarrow \int \sqrt{a^{2}-x^{2}}=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+C$
$\Rightarrow \int \sqrt{3^{2}-t^{2}}=\frac{t}{2} \sqrt{9-t^{2}}+\frac{9}{2} \sin ^{-1}\left(\frac{x}{3}\right)+C$
But $t=\sin x$
$\Rightarrow \int \cos x \sqrt{9-\sin ^{2} x}=\frac{\sin x}{2} \sqrt{9-\sin ^{2} x}+\frac{9}{2} \sin ^{-1}\left(\frac{\sin x}{3}\right)+C$

33. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:

$$
\int \sqrt{x^{2}-16} d x=?
$$

A. $x \sqrt{x^{2}-16}-4 \log \left|x+\sqrt{x^{2}-16}\right|+C$
B. $\frac{x}{2} \sqrt{x^{2}-16}-8 \log \left|x+\sqrt{x^{2}-16}\right|+C$
C. $\frac{x}{2} \sqrt{x^{2}-16}+8 \log \left|x+\sqrt{x^{2}-16}\right|+C$
D. none of these

Answer

We know
$\Rightarrow \int \sqrt{x^{2}-a^{2}}=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$
$\Rightarrow \int \sqrt{x^{2}-4^{2}}=\frac{x}{2} \sqrt{x^{2}-4^{2}}-\frac{4^{2}}{2} \log \left|x+\sqrt{x^{2}-4^{2}}\right|+C$
$\Rightarrow \int \sqrt{x^{2}-16}=\frac{x}{2} \sqrt{x^{2}-16}-8 \log \left|x+\sqrt{x^{2}-16}\right|+C$

34. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:

$$
\int \sqrt{x^{2}-4 x+2} d x=?
$$

A. $\frac{1}{2}(x-2) \sqrt{x^{2}-4 x+2}+\log \left|(x-2)+\sqrt{x^{2}-4 x+2}\right|+C$
B. $(x-2) \sqrt{x^{2}-4 x+2}+\frac{1}{2} \log \left|(x-2)+\sqrt{x^{2}-4 x+2}\right|+C$
C. $\frac{1}{2}(x-2) \sqrt{x^{2}-4 x+2}-\log \left|(x-2)+\sqrt{x^{2}-4 x+2}\right|+C$
D. none of these

Answer

$\sqrt{x^{2}-4 x+2} d x$
It can be written as
$\Rightarrow \sqrt{x^{2}-4 x+2+2-2}=\sqrt{x^{2}-4 x+4-2}$
$=\sqrt{(x-2)^{2}-2}$
We know
$\Rightarrow \int \sqrt{x^{2}-a^{2}}=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$
$\Rightarrow \int \sqrt{(x-2)^{2}-2}=\frac{(x-2)}{2} \sqrt{(x-2)^{2}-2}-\frac{(\sqrt{2})^{2}}{2} \log \left|\sqrt{(x-2)^{2}-2}\right|+C$
$\Rightarrow \int \sqrt{x^{2}-4 x+2}=\frac{x-2}{2} \sqrt{x^{2}-4 x+2}-\log \left|x^{2}-4 x+2\right|+C$

35. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int \sqrt{9 x^{2}+16} d x=?$
A. $\frac{x}{2} \sqrt{9 x^{2}+16}+\frac{8}{3} \log \left|3 x+\sqrt{9 x^{2}+16}\right|+C$
B. $\frac{x}{2} \sqrt{9 x^{2}+16}-\frac{8}{3} \log \left|3 x+\sqrt{9 x^{2}+16}\right|+C$
C. $x \sqrt{9 x^{2}+16}+24 \log \left|3 x+\sqrt{9 x^{2}+16}\right|+C$
D. none of these

Answer

$\Rightarrow \int \sqrt{x^{2}+a^{2}}=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
$\Rightarrow 3 \int \sqrt{x^{2}+\left(\frac{4}{3}\right)^{2}}=3\left(\frac{x}{2} \sqrt{x^{2}+\left(\frac{4}{3}\right)^{2}}+\frac{\frac{16}{9}}{2} \log \left|x+\sqrt{x^{2}+\left(\frac{4}{3}\right)^{2}}\right|\right)$
$\Rightarrow \int \sqrt{9 x^{2}+16} d x=\frac{x}{2} \sqrt{9 x^{2}+16}+\frac{8}{3} \log \left|3 x+\sqrt{9 x^{2}+16}\right|$
36. Question

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\int e^{x} \sqrt{e^{2 x}+4} d x=?$
A. $\frac{1}{2} \mathrm{e}^{\mathrm{x}} \sqrt{\mathrm{e}^{2 \mathrm{x}}+4}-2 \log \left|\mathrm{e}^{\mathrm{x}}+\sqrt{\mathrm{e}^{2 \mathrm{x}}+4}\right|+C$
B. $\frac{1}{2} e^{x} \sqrt{e^{2 x}+4}+2 \log \left|e^{x}+\sqrt{e^{2 x}+4}\right|+C$
C. $e^{x} \sqrt{e^{2 x}+4}+\frac{1}{2} \log \left|e^{x}+\sqrt{e^{2 x}+4}\right|+C$
D. none of these

Answer

$\int e^{x} \sqrt{e^{2 x}+4} d x$
Let $\mathrm{e}^{\mathrm{x}}=\mathrm{t}$
$e^{x} d x=d t$
$=\int \sqrt{t^{2}+2^{2}} d t$
$\Rightarrow \int \sqrt{x^{2}+a^{2}}=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
$\Rightarrow \int \sqrt{t^{2}+2^{2}}=\frac{t}{2} \sqrt{t^{2}+2^{2}}+\frac{2^{2}}{2} \log \left|t+\sqrt{t^{2}+2^{2}}\right|+C$
But $t=e^{x}$
$\Rightarrow \int e^{x} \sqrt{e^{2 x}+4} d x=\frac{e^{x}}{2} \sqrt{e^{2 x}+4}+2 \log \left|e^{x}+\sqrt{e^{2 x}+4}\right|+C$

37. Question

Mark (\checkmark) against the correct answer in each of the following:
$\int \frac{\sqrt{16+(\log \mathrm{x})^{2}}}{\mathrm{x}} \mathrm{dx}=$?
A. $\frac{1}{2} \log x \cdot \sqrt{16+(\log x)^{2}}+8 \log \left|\log x+\sqrt{16+(\log x)^{2}}\right|+C$
B. $\frac{1}{2} \log \mathrm{x} \cdot \sqrt{16+(\log \mathrm{x})^{2}}+4 \log \left|\log \mathrm{x}+\sqrt{16+(\log \mathrm{x})^{2}}\right|+\mathrm{C}$
C. $\log \mathrm{x} \cdot \sqrt{16+(\log \mathrm{x})^{2}}+16 \log \left|\log \mathrm{x}+\sqrt{16+(\log \mathrm{x})^{2}}\right|+\mathrm{C}$
D. none of these

Answer

$\int \frac{\sqrt{16+(\log x)^{2}}}{x} d x$
Let $\log x=t$
$\Rightarrow \frac{1}{x} d x=d t$
$=\int \sqrt{t^{2}+4^{2}} d t$
$\Rightarrow \int \sqrt{x^{2}+a^{2}}=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
$\Rightarrow \int \sqrt{t^{2}+4^{2} d t}=\frac{t}{2} \sqrt{t^{2}+4^{2}}+\frac{4^{2}}{2} \log \left|t+\sqrt{t^{2}+4^{2}}\right|+C$
But $t=\log x$
$\Rightarrow \int \frac{\sqrt{16+(\log x)^{2}}}{x} d x$

$$
=\frac{\log x}{2} \sqrt{\log ^{2} x+16}+8 \log \left|\log x+\sqrt{\log ^{2} x+16}\right|+C
$$

