Exercise 16A

1. Question

Evaluate:
$\int_{1}^{3} x^{4} d x$

Answer

$\frac{242}{5}$
Evaluation:
$\int_{1}^{3} x^{4} d x=\left[\frac{x^{5}}{5}\right]$
$=\frac{3^{5}}{5}-\frac{1}{5}$
$=\frac{243-1}{5}$
$=\frac{242}{5}$
2. Question

Evaluate:
$\int_{1}^{4} \sqrt{x} d x$

Answer

$\frac{14}{3}$
Evaluation:
$\int_{1}^{4} \sqrt{\mathrm{x}} \mathrm{dx}=\left[\frac{2}{3} x^{\frac{3}{2}}\right]$
$=\frac{2}{3}\left[4^{\frac{3}{2}}-1\right]$
$=\frac{14}{3}$
3. Question

Evaluate:
$\int_{1}^{2} \mathrm{x}^{-5} \mathrm{dx}$

Answer

$\frac{15}{64}$
Evaluation:
$\int_{1}^{2} \mathrm{x}^{-5} \mathrm{dx}=\left[\frac{\mathrm{x}^{-4}}{-4}\right]$
$=\frac{2^{-4}}{-4}-\frac{1}{-4}$
$=\frac{16-1}{64}$
$=\frac{15}{64}$

4. Question

Evaluate:
$\int_{0}^{16} x^{\frac{3}{4}} d x$

Answer

$\frac{512}{7}$
Evaluation:
$\int_{0}^{16} \mathrm{x}^{\frac{3}{4}} \mathrm{dx}=\left[\frac{4}{7} x^{\frac{7}{4}}\right]$
$=\frac{4}{7}\left[16^{\frac{7}{4}}-1\right]$
$=\frac{512}{7}$
5. Question

Evaluate:
$\int_{-4}^{-1} \frac{d x}{x}$

Answer

$-\log 4$
Evaluation:
$\int_{-4}^{-1} \frac{\mathrm{dx}}{\mathrm{x}}=-[\log x]$
$=[\log (-1)-\log (-4)]$
$=-[\log (-4)-\log (-1)]$
$=-\left[\log \left(\frac{-4}{-1}\right)\right]$
$=-\log 4$

6. Question

Evaluate:
$\int_{1}^{4} \frac{d x}{\sqrt{x}}$

Answer

2

Evaluation:
$\int_{1}^{4} \frac{\mathrm{dx}}{\sqrt{\mathrm{x}}}=[2 \sqrt{\mathrm{x}}]$
$=[2 \sqrt{ } 4-2]$
$=[4-2]$
$=2$
7. Question

Evaluate:
$\int_{0}^{1} \frac{d x}{\sqrt[3]{x}}$

Answer

$\frac{3}{2}$
Evaluation:
$\int_{0}^{1} \frac{d x}{\sqrt[3]{x}}=\left[\frac{3}{2} x^{\frac{2}{3}}\right]$
$=\left[\frac{3}{2} 1^{\frac{4}{3}}-0\right]$
$=\frac{3}{2}$
8. Question

Evaluate:
$\int_{1}^{8} \frac{d x}{x^{\frac{2}{3}}}$

Answer

3
Evaluation:
$\int_{1}^{8} \frac{d x}{x^{\frac{2}{3}}}=\left[\frac{3}{1} x^{\frac{1}{3}}\right]$
$=\left[3(8)^{\frac{1}{3}}-3(1)^{\frac{1}{3}}\right]$
$=[6-3]$
$=3$

9. Question

Evaluate:
$\int_{2}^{4} 3 d x$

Answer

6

Evaluation:
$\int_{2}^{4} 3 d x=3[x]$
$=3[4-2]$
$=6$
10. Question

Evaluate:
$\int_{0}^{1} \frac{d x}{\left(1+x^{2}\right)}$

Answer

$\frac{\pi}{4}$
Evaluation:
$\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}=\left[\tan ^{-1} \mathrm{x}\right]$
$=\left[\tan ^{-1} 1-\tan ^{-1} 0\right]$
$=\pi / 4$
11. Question

Evaluate:
$\int_{0}^{\infty} \frac{\mathrm{dx}}{\left(1+\mathrm{x}^{2}\right)}$

Answer

$\frac{\pi}{2}$
Evaluation:
$\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\left[\tan ^{-1} x\right]$
$=\left[\tan ^{-1} \infty-\tan ^{-1} 0\right]$
$=\pi / 2$

12. Question

Evaluate:
$\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{1-\mathrm{x}^{2}}}$

Answer

$$
\frac{\pi}{2}
$$

Evaluation:

$$
\begin{aligned}
& \int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}=\left[\sin ^{-1} x\right] \\
& =\left[\sin ^{-1} 1-\sin ^{-1} 0\right]
\end{aligned}
$$

$=\frac{\pi}{2}$
13. Question

Evaluate:
$\int_{0}^{\pi / 6} \sec ^{2} x d x$

Answer

$\frac{1}{\sqrt{3}}$

Evaluation:
$\int_{0}^{\frac{\pi}{6}} \sec ^{2} x d x=[\tan x]$
$=\left[\tan \left(\frac{\pi}{6}\right)-\tan 0\right]$
$=\frac{1}{\sqrt{3}}$

14. Question

Evaluate:
$\int_{-\pi / 4}^{\pi / 4} \operatorname{cosec}^{2} x d x$

Answer

-2

Evaluation:
$\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \operatorname{cosec}^{2} x d x=[-\cot x]$
$=\left[-\cot \left(\frac{\pi}{4}\right)+\cot \left(-\frac{\pi}{4}\right)\right]$
$=\left[-\cot \left(\frac{\pi}{4}\right)-\cot \left(\frac{\pi}{4}\right)\right]$
$=-2$

15. Question

Evaluate:
$\int_{\pi / 4}^{\pi / 2} \cot ^{2} x d x$

Answer

$\left(1-\frac{\pi}{4}\right)$

Evaluation:
$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot ^{2} x d x=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\left(\operatorname{cosec}^{2} x-1\right) d x$
$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\left(\operatorname{cosec}^{2} x-1\right) d x=[-\cot x-x]$
$=\left[-\cot \left(\frac{\pi}{2}\right)-\frac{\pi}{2}+\cot \left(\frac{\pi}{4}\right)+\frac{\pi}{4}\right]$
$=\left[0-\frac{\pi}{4}+1\right]$
$=\left[1-\frac{\pi}{4}\right]$

16. Question

Evaluate:
$\int_{0}^{\pi / 4} \tan ^{2} x d x$

Answer

$\left(1-\frac{\pi}{4}\right)$
Evaluation:
$\int_{0}^{\frac{\pi}{4}} \tan ^{2} x d x=\int_{0}^{\frac{\pi}{4}}\left(\sec ^{2} x-1\right) d x$
$\int_{0}^{\frac{\pi}{4}}\left(\sec ^{2} x-1\right) d x=[\tan x-x]$
$=\left[\tan \left(\frac{\pi}{4}\right)-\frac{\pi}{4}-\tan (0)-0\right]$
$=\left[1-\frac{\pi}{4}\right]$
17. Question

Evaluate:
$\int_{0}^{\pi / 2} \sin ^{2} x d x$
Answer
$\frac{\pi}{4}$
Evaluation:
$\int_{0}^{\frac{\pi}{2}} \sin ^{2} x d x=\int_{0}^{\frac{\pi}{2}} \frac{1}{2}(1-\cos 2 x) d x$
$=\frac{1}{2}\left[x-\frac{\sin 2 x}{2}\right]$
$=\frac{1}{2}\left[\frac{\pi}{2}-\frac{\sin \pi}{2}-0+\frac{\sin 0}{2}\right]$
$=\frac{\pi}{4}$

18. Question

Evaluate:
$\int_{0}^{\pi / 4} \cos ^{2} x d x$
Answer
$\left(\frac{\pi}{8}+\frac{1}{4}\right)$
Evaluation:
$\int_{0}^{\frac{\pi}{4}} \cos ^{2} x d x=\int_{0}^{\frac{\pi}{2}} \frac{1}{2}(1+\cos 2 x) d x$
$=\frac{1}{2}\left[x+\frac{\sin 2 x}{2}\right]$
$=\frac{1}{2}\left[\frac{\pi}{4}+\frac{\sin \left(\frac{\pi}{2}\right)}{2}-0-\frac{\sin 0}{2}\right]$
$=\frac{\pi}{8}+\frac{1}{4}$

19. Question

Evaluate:
$\int_{0}^{\pi / 3} \tan x d x$

Answer

$\log 2$
Evaluation:
$\int_{0}^{\frac{\pi}{3}} \tan x d x=\log |\sec x|$
$=\log \left|\sec \left(\frac{\pi}{3}\right)\right|-\ln |\cos 0|$
$=\log |2|-\log |1|$
$=\log 2$
20. Question

Evaluate:
$\int_{\pi / 6}^{\pi / 4} \operatorname{cosec} x d x$

Answer

$\log (\sqrt{2}-1)+\log (2+\sqrt{3})$
Evaluation:
$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x=-\log |\operatorname{cosec} x+\cot x|$
$=-\log \left|\operatorname{cosec}\left(\frac{\pi}{4}\right)+\cot \left(\frac{\pi}{4}\right)\right|+\log \left|\operatorname{cosec}\left(\frac{\pi}{6}\right)+\cot \left(\frac{\pi}{6}\right)\right|$
$=-\log |\sqrt{ } 2+1|+\log |2+\sqrt{ } 3|$

21. Question

Evaluate:
$\int_{0}^{\pi / 3} \cos ^{3} x d x$

Answer

$\frac{3 \sqrt{3}}{8}$
Evaluation:
$\int_{0}^{\frac{\pi}{3}} \cos ^{3} x d x=\frac{1}{4} \int_{0}^{\frac{\pi}{3}}(3 \cos x+\cos 3 x) d x$
$\frac{1}{4} \int_{0}^{\frac{\pi}{3}}(3 \cos x-\cos 3 x) d x=\frac{1}{4}\left[3 \sin x+\frac{\sin 3 x}{3}\right]$
$=\frac{1}{4}\left[3 \sin \left(\frac{\pi}{3}\right)+\frac{\sin \pi}{3}\right]-\frac{1}{4}\left[3 \sin 0+\frac{\sin 0}{3}\right]$
$=\frac{1}{4}\left[\frac{3 \sqrt{3}}{2}\right]$
$=\frac{3 \sqrt{3}}{8}$

22. Question

Evaluate:

$$
\int_{0}^{\pi / 2} \sin ^{3} x d x
$$

Answer

$\frac{2}{3}$

Evaluation:
$\int_{0}^{\frac{\pi}{2}} \sin ^{3} x d x=\frac{1}{4} \int_{0}^{\frac{\pi}{2}}(3 \sin x-\sin 3 x) d x$
$\frac{1}{4} \int_{0}^{\frac{\pi}{2}}(3 \sin x-\sin 3 x) d x=\frac{1}{4}\left[-3 \cos x+\frac{\cos 3 x}{3}\right]$
$=\frac{1}{4}\left[-3 \cos \left(\frac{\pi}{2}\right)+\frac{\cos \left(\frac{3 \pi}{2}\right)}{3}\right]-\frac{1}{4}\left[-3 \cos 0+\frac{\cos 0}{3}\right]$
$=\frac{1}{4}\left[\frac{9-1}{3}\right]$
$=\frac{2}{3}$

23. Question

Evaluate:
$\int_{\pi / 4}^{\pi / 2} \frac{(1-3 \cos x)}{\sin ^{2} x} d x$
Answer
$(4-3 \sqrt{2})$

Evaluation:
$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{(1-3 \cos x)}{\sin ^{2} x} d x=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\left(\operatorname{cosec}^{2}(x)-3 \operatorname{cosec}(x) \cot (x)\right) d x$
$=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\left(\operatorname{cosec}^{2}(x)-3 \operatorname{cosec}(x) \cot (x)\right) d x$

24. Question

Evaluate:
$\int_{0}^{\pi / 4} \sqrt{1+\cos 2 x} d x$

Answer

1
Evaluation:
$\int_{0}^{\frac{\pi}{4}} \sqrt{1+\cos 2 x} d x=\int_{0}^{\frac{\pi}{4}} \sqrt{2 \cos ^{2} x} d x$
$=\sqrt{2}[\sin x]$
$=\sqrt{2}\left[\sin \left(\frac{\pi}{4}\right)-\sin 0\right]$
$=\sqrt{2}\left[\frac{1}{\sqrt{2}}\right]$
$=1$

25. Question

Evaluate:
$\int_{0}^{\pi / 4} \sqrt{1-\sin 2 x} d x$
[CBSE 2004]

Answer

$(\sqrt{2}-1)$

Evaluation:
$\int_{0}^{\frac{\pi}{4}} \sqrt{1-\sin 2 x} d x=\int_{0}^{\frac{\pi}{4}} \sqrt{\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x} d x$
$=\int_{0}^{\frac{\pi}{4}}(\cos x-\sin x) d x$
$=[\sin x+\cos x]$
$=\left[\cos \left(\frac{\pi}{4}\right)+\sin \left(\frac{\pi}{4}\right)-\cos 0-\sin 0\right]$
$=\left[+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-1\right]$
$=[\sqrt{ } 2-1]$

26. Question

Evaluate:
$\int_{-\pi / 4}^{\pi / 4} \frac{d x}{(1+\sin x)}$

Answer

2
Evaluation:
$\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{d x}{1+\sin x}=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sec ^{2}\left(\frac{x}{2}\right)}{\left(\tan ^{2}\left(\frac{x}{2}\right)+1\right)^{2}} d x$
Let $u=\left(\tan \left(\frac{x}{2}\right)+1\right)$
$d x=\frac{2}{\sec ^{2}\left(\frac{x}{2}\right)} d u$
$\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{d x}{1+\sin x}=2 \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{u^{2}} d u$
$=-\frac{2}{u}$
$=-\frac{2}{\tan \left(\frac{x}{2}\right)+1}$
$=2$
27. Question

Evaluate:
$\int_{0}^{\pi / 4} \frac{d x}{(1+\cos 2 x)}$

Answer

$\frac{1}{2}$

Evaluation:
$\int_{0}^{\frac{\pi}{4}} \frac{d x}{1+\cos 2 x}=\int_{0}^{\frac{\pi}{4}} \frac{d x}{2 \cos ^{2} x}$
$\int_{0}^{\frac{\pi}{4}} \frac{d x}{2 \cos ^{2} x}=\int_{0}^{\frac{\pi}{4}} \frac{1}{2} \sec ^{2} x d x$
$\int_{0}^{\frac{\pi}{4}} \frac{1}{2} \sec ^{2} x d x=\frac{1}{2}[\tan x]$
$=\frac{1}{2}\left[\tan \left(\frac{\pi}{4}\right)-\tan 0\right]$
$=\frac{1}{2}[1]$
$=\frac{1}{2}$
28. Question

Evaluate:
$\int_{\pi / 4}^{\pi / 2} \frac{d x}{1-\cos 2 x}$

Answer

$\frac{1}{2}$
Evaluation:
$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{d x}{1-\cos 2 x}=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{d x}{2 \sin ^{2} x}$
$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{d x}{2 \sin ^{2} x}=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{2} \operatorname{cosec}^{2} x d x$
$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{2} \operatorname{cosec}^{2} x d x=\frac{1}{2}[\cot x]$
$=\frac{1}{2}\left[\cot \left(\frac{\pi}{4}\right)-\cot 0\right]$
$=\frac{1}{2}[1]$
$=\frac{1}{2}$

29. Question

Evaluate:
$\int_{0}^{\pi / 4} \sin 2 x \sin 3 x d x$

Answer

$\frac{3}{5 \sqrt{2}}$
Evaluation:
$\int_{0}^{\frac{\pi}{4}} \sin 2 x \sin 3 x d x=\frac{1}{2} \int_{0}^{\frac{\pi}{4}}(\cos x-\cos 5 x) d x$
$=\frac{1}{2} \int_{0}^{\frac{\pi}{4}}(\cos x-\cos 5 x) d x$
$=\frac{1}{2}\left[\sin x-\frac{\sin 5 x}{5}\right]$
$=\frac{1}{2}\left[\sin \left(\frac{\pi}{4}\right)-\frac{\sin \left(\frac{5 \pi}{4}\right)}{5}\right]-\frac{1}{2}\left[\sin (0)-\frac{\sin (0)}{5}\right]$
$=\frac{1}{2}\left[\frac{1}{\sqrt{2}}+\frac{1}{5 \sqrt{2}}\right]$
$=\frac{3}{5 \sqrt{2}}$
30. Question

Evaluate:
$\int_{0}^{\pi / 6} \cos x \cos 2 x d x$
Answer
$\frac{5}{12}$
Evaluation:
$\int_{0}^{\frac{\pi}{6}} \cos x \cos 2 x d x=\frac{1}{2} \int_{0}^{\frac{\pi}{6}}(\cos 3 x+\cos x) d x$
$=\frac{1}{2}\left[\frac{\sin 3 x}{3}+\sin x\right]$
$=\frac{1}{2}\left[\frac{\sin \left(\frac{\pi}{2}\right)}{3}+\sin \left(\frac{\pi}{6}\right)\right]-0$
$=\frac{1}{2}\left[\frac{1}{3}+\frac{1}{2}\right]$
$=\frac{5}{12}$

31. Question

Evaluate:
$\int_{0}^{\pi} \sin 2 x \cos 3 x d x$

Answer

$\frac{-4}{5}$

Evaluation:
$\int_{0}^{\pi} \sin 2 x \cos 3 x d x=\frac{1}{2} \int_{0}^{\pi}(\sin 5 x-\sin x) d x$
$=\frac{1}{2}\left[\frac{-\cos 5 x}{5}+\cos x\right]$
$=\frac{1}{2}\left[-\frac{\cos (5 \pi)}{5}+\cos (\pi)\right]-\frac{1}{2}\left[-\frac{\cos (0)}{5}+\cos (0)\right]$
$=\frac{1}{2}\left[\frac{-(-1)}{5}-1\right]-\frac{1}{2}\left[-\frac{1}{5}+1\right]$
$=\frac{1}{2}\left[\frac{-4}{5}-\frac{4}{5}\right]$
$=\frac{1}{2} 2\left(-\frac{4}{5}\right)$
$=-\frac{4}{5}$

32. Question

Evaluate:
$\int_{0}^{\pi / 2} \sqrt{1+\sin x} d x$

Answer

2
Explanation:
$\int_{0}^{\frac{\pi}{2}} \sqrt{1+\sin (x)} d x=\int_{0}^{\frac{\pi}{2}} \sqrt{2} \cos \left(\frac{2 x-\pi}{4}\right) d x$
$=2^{\frac{3}{2}} \sin \left(\frac{2 x-\pi}{4}\right)$
$=2^{\frac{3}{2}}\left(0-\sin \left(-\frac{\pi}{4}\right)\right.$
$=\frac{2 \sqrt{2}}{\sqrt{2}}$
$=2$

33. Question

Evaluate:
$\int_{0}^{\pi / 2} \sqrt{1+\cos \mathrm{x}} d \mathrm{x}$

Answer

2
Explanation:
$\int_{0}^{\frac{\pi}{2}} \sqrt{1+\cos (x)} d x=\int_{0}^{\frac{\pi}{2}} \sqrt{2} \cos \left(\frac{x}{2}\right) d x$
$=2^{\frac{3}{2}} \sin \left(\frac{x}{2}\right)$
$=2^{\frac{3}{2}}\left(\sin \left(\frac{\pi}{4}\right)-0\right)$
$=\frac{2 \sqrt{2}}{\sqrt{2}}$
$=2$

34. Question

Evaluate:
$\int_{0}^{2} \frac{\left(x^{4}+1\right)}{\left(x^{2}+1\right)} d x$

Answer

$$
\left(\frac{2}{3}+2 \tan ^{-1} 2\right)
$$

Explanation:
$\int_{0}^{2}\left\{\frac{\left(x^{4}+1\right)}{x^{2}+1}\right\} d x=\int_{0}^{2} \frac{x^{4}+2-1}{x^{2}+1} d x$
$=\int_{0}^{2} \frac{x^{4}-1}{x^{2}+1} d x+\int_{0}^{2} \frac{2}{x^{2}+1} d x$
$=\int_{0}^{2} \frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x^{2}+1} d x+\int_{0}^{2} \frac{2}{x^{2}+1} d x$
$=\int_{0}^{2}\left(x^{2}-1\right) d x+2 \tan ^{-1} x$
$=\left[\frac{x^{3}}{3}-x+2 \tan ^{-1} x\right]_{0}^{2}$
$=\frac{2}{3}+2 \tan ^{-1} 2$
35. Question

Evaluate:
$\int_{1}^{2} \frac{\mathrm{dx}}{(\mathrm{x}+1)(\mathrm{x}+2)}$

Answer

$(2 \log 3-3 \log 2)$
Explanation:
$\int_{1}^{2} \frac{d x}{(x+1)(x+2)}=\int_{1}^{2} \frac{(x+2)-(x+1))}{(x+1)(x+2)} d x$
$=\int_{1}^{2} \frac{1}{(x+1)} d x-\int_{1}^{2} \frac{1}{(x+2)} d x$
$=[\log (x+1)-\log (x+2)]_{1}^{2}$
$=2 \log 3-3 \log 2$

36. Question

Evaluate:
$\int_{1}^{2} \frac{(x+3)}{x(x+2)} d x$

Answer

$\frac{1}{2}(\log 2+\log 3)$
Explanation:
$\int_{1}^{2} \frac{x+3}{x(x+2)} d x=\int_{1}^{2} \frac{3}{2 x} d x-\int_{1}^{2} \frac{1}{x+2} d x$
$=\frac{3}{2} \log x-\log (x+2)$
$=\frac{1}{2}(\log 2+\log 3)$
37. Question

Evaluate:
$\int_{3}^{4} \frac{d x}{\left(x^{2}-4\right)}$
Answer
$\frac{1}{4}(\log 5-\log 3)$

Evaluation:
$\int_{3}^{4} \frac{d x}{x^{2}-4}=\int_{3}^{4} \frac{1}{(x-2)(x+2)} d x$
$=\int_{3}^{4} \frac{1}{4(x-2)} d x-\int_{3}^{4} \frac{1}{4(x+2)} d x$
$=\frac{1}{4} \log (x-2)-\frac{1}{4} \log (x+2)$
$=\frac{1}{4} \log 3-\frac{1}{4} \log 1-\frac{1}{4} \log 6+\frac{1}{4} \log 5$
$=\frac{1}{4}\left(\log 5-\log \left(\frac{6}{2}\right)\right)$
$=\frac{1}{4}(\log 5-\log 3)$

38. Question

Evaluate:
$\int_{0}^{4} \frac{d x}{\sqrt{x^{2}+2 x+3}}$

Answer

$\log \left(\frac{5+3 \sqrt{3}}{1+\sqrt{3}}\right)$
Evaluation:
$\int \frac{d x}{\sqrt{x^{2}+2 x+3}}=\int \frac{d x}{\sqrt{(x+1)^{2}+2}}$
Substitute:
$\frac{x+1}{\sqrt{2}}=u$
$\therefore d x=\sqrt{2} d u$
$=\int \frac{\sqrt{2} d u}{\sqrt{2 u^{2}+2}}$
$=\log \left(\sqrt{u^{2}+1}+u\right)$
Undo substitution: $u=\frac{x+1}{\sqrt{2}}$
$\therefore \int_{0}^{4} \frac{d x}{\sqrt{x^{2}+4 x+3}}=\log \left(\sqrt{(x+1)^{2}+2}+x+1\right)$
$=\log \left(\sqrt{(4+1)^{2}+2}+4+1\right)-\log \left(\sqrt{(0+1)^{2}+2}+0+1\right)$
$=\log (5+3 \sqrt{3})-\log (1+\sqrt{3})$
$=\log \left(\frac{5+3 \sqrt{3}}{1+\sqrt{3}}\right)$
39. Question

Evaluate:
$\int_{1}^{2} \frac{d x}{\sqrt{x^{2}+4 x+3}}$
Answer
$\log (4+\sqrt{15})-\log (3+\sqrt{8})$

Evaluation:
$\int \frac{d x}{\sqrt{x^{2}+4 x+3}}=\int \frac{d x}{\sqrt{(x+2)^{2}-1}}$
Substitute:
$\mathrm{x}+2=\mathrm{u}$
$\therefore \mathrm{dx}=\mathrm{du}$
$=\int \frac{d u}{\sqrt{u^{2}-1}}$
$=\log \left(\sqrt{u^{2}-1}+u\right)$
Undo substitution: $u=x+2$
$\therefore \int_{1}^{2} \frac{d x}{\sqrt{x^{2}+4 x+3}}=\log \left(\sqrt{(x+2)^{2}-1}+x+2\right)$
$=\log \left(\sqrt{(2+2)^{2}-1}+2+2\right)-\log \left(\sqrt{(1+2)^{2}-1}+1+2\right)$
$=\log (4+\sqrt{ } 15)-\log (3+\sqrt{ } 8)$

40. Question

Evaluate:
$\int_{0}^{1} \frac{d x}{\left(1+x+2 x^{2}\right)}$

Answer

$$
\frac{2}{\sqrt{7}}\left\{\operatorname{ran}^{-1} \frac{5}{\sqrt{7}}-\tan ^{-1} \frac{1}{\sqrt{7}}\right\}
$$

Evaluation:

$$
\int_{0}^{1} \frac{1}{2 x^{2}+x+1} d x=\int_{0}^{1} \frac{1}{\left(\left(\sqrt{2 x}+\frac{1}{2^{\frac{3}{2}}}\right) 2+\frac{7}{8}\right) d x}
$$

$\therefore d x=\frac{\sqrt{7}}{4} d u$
Now solving:
$\int\left(\frac{1}{u^{2}}+1\right) d u=\tan ^{-1} u$
$\frac{2}{\sqrt{7}} \int \frac{1}{u^{2}+1} d u=\frac{2}{\sqrt{7}} \tan ^{-1} u$
$\therefore \int_{0}^{1} \frac{1}{2 x^{2}+x+1} d x=\frac{2}{\sqrt{7}} \tan ^{-1}\left(\frac{4 x+1}{\sqrt{7}}\right)$
$=\frac{2}{\sqrt{7}} \tan ^{-1}\left(\frac{4+1}{\sqrt{7}}\right)-\frac{2}{\sqrt{7}} \tan ^{-1}\left(\frac{1}{\sqrt{7}}\right)$
$=\frac{2}{\sqrt{7}}\left\{\tan ^{-1}\left(\frac{5}{\sqrt{7}}\right)-\tan ^{-1}\left(\frac{1}{\sqrt{7}}\right)\right\}$
41. Question

Evaluate:
$\int_{0}^{\pi / 2}\left(a \cos ^{2} x+b \sin ^{2} x\right) d x$

Answer

$\frac{\pi}{4}(a+b)$
Evaluation:
$\int_{0}^{\frac{\pi}{2}}\left(a \cos ^{2} x+b \sin ^{2} x\right) d x=\int_{0}^{\frac{\pi}{2}}\left[\frac{a}{2}(\cos 2 x+1)+\frac{b}{2}(1-\cos 2 x)\right] d x$
$=\left[\frac{a}{2}\left(\frac{\sin 2 x}{2}+x\right)+\frac{b}{2}\left(x-\frac{\sin 2 x}{2}\right)\right]$
$=\left[\frac{a}{2}\left(\frac{\sin \pi}{2}+\frac{\pi}{2}\right)+\frac{b}{2}\left(\frac{\pi}{2}-\frac{\sin \pi}{2}\right)-\frac{a}{2}\left(\frac{\sin 0}{2}+0\right)-\frac{b}{2}\left(0-\frac{\sin 0}{2}\right)\right]$
$=\left[\frac{a}{2}\left(0+\frac{\pi}{2}\right)+\frac{b}{2}\left(\frac{\pi}{2}-0\right)-\frac{a}{2}(0+0)-\frac{b}{2}(0-0)\right]$
$=\frac{\pi}{4}(a+b)$
42. Question

Evaluate:
$\int_{\pi / 3}^{\pi / 4}(\tan x+\cot x)^{2} d x$
Answer
$\frac{-2}{\sqrt{3}}$
Evaluation:
$\int_{\frac{\pi}{3}}^{\frac{\pi}{4}}(\tan x+\cot x)^{2} d x=\int_{\frac{\pi}{3}}^{\frac{\pi}{4}}\left(\frac{\tan ^{2} x+1}{\tan x}\right)^{2} d x$
$\int_{\frac{\pi}{3}}^{\frac{\pi}{4}}\left(\frac{\tan ^{2} x+1}{\tan x}\right)^{2} d x=\int_{\frac{\pi}{3}}^{\frac{\pi}{4}} \frac{\sec ^{2} x\left(\tan ^{2} x+1\right)}{\tan ^{2} x} d x$
Substitute:
$\tan (\mathrm{x})=\mathrm{u}$
$\therefore d x=\frac{1}{\sec ^{2}(x)} d u$
$\therefore=\int \frac{\left(u^{2}+1\right)}{u^{2}} d u$
$\therefore=u-\frac{1}{u}$
$\int_{\frac{\pi}{3}}^{\frac{\pi}{4}}\left(\frac{\tan ^{2} x+1}{\tan x}\right)^{2} d x=[\tan (x)-\cot (x)]$
$=\left[\tan \left(\frac{\pi}{4}\right)-\cot \left(\frac{\pi}{4}\right)-\tan \left(\frac{\pi}{3}\right)+\cot \left(\frac{\pi}{3}\right)\right]$
$=\left[1-1-\sqrt{3}+\frac{1}{\sqrt{3}}\right]$
$=-\frac{2}{\sqrt{3}}$
43. Question

Evaluate:
$\int_{0}^{\pi / 2} \cos ^{4} x d x$

Answer

$\frac{3 \pi}{16}$

Evaluation:

By reduction formula:
$\int_{0}^{\frac{\pi}{2}} \cos ^{4} x d x=\frac{\cos ^{3}(x) \sin (x)}{4}+\frac{3}{4} \int \cos ^{2} x d x$
We know that,
$\int \cos ^{2} x d x=\frac{1}{2}\left[\frac{\sin 2 x}{2}+x\right]$
$\int_{0}^{\frac{\pi}{2}} \cos ^{4} x d x=\frac{\cos ^{3}(x) \sin (x)}{4}+\frac{3}{8}\left[\frac{\sin 2 x}{2}+x\right]$
$=\frac{\cos ^{3}\left(\frac{\pi}{2}\right) \sin \left(\frac{\pi}{2}\right)}{4}+\frac{3}{8}\left[\frac{\sin \pi}{2}+\frac{\pi}{2}\right]-\frac{\cos ^{3}(0) \sin (0)}{4}-\frac{3}{8}\left[\frac{\sin 0}{2}+0\right]$
$=0+\frac{3}{8}\left[0+\frac{\pi}{2}\right]-0-\frac{3}{8}[0+0]$
$=\frac{3 \pi}{16}$

44. Question

Evaluate:
$\int_{0}^{a} \frac{d x}{\left(a x+a^{2}-x^{2}\right)}$

Answer

$\frac{1}{\sqrt{5} \mathrm{a}} \log \left\{\frac{7+3 \sqrt{5}}{2}\right\}$
Evaluation:
Assume that $a \neq 0$.
$\int_{0}^{2} \frac{1}{-x^{2}+a x+a^{2}} d x=-\int_{0}^{2} \frac{1}{x^{2}-a x-a^{2}} d x$
$=\int_{0}^{2} \frac{4}{(2 x+(-\sqrt{5}-1) a)(2 x+(\sqrt{5}-1) a)} d x$
$=\int_{0}^{2}\left(\frac{2}{\sqrt{5} a(2 x+(-\sqrt{5}-1) a)}-\frac{2}{\sqrt{5} a(2 x+(\sqrt{5}-1) a)}\right) d x$
Now,
$\int \frac{1}{2 x+(-\sqrt{5}-1) a} d x$
Substitute:
$u=2 x+(-\sqrt{ } 5-1) a$
$\therefore d x=\frac{1}{2} d u$
$=\frac{1}{2} \int \frac{1}{u} d u$
$=\frac{1}{2} \log u$
Undo substitution:
$u=2 x+(-\sqrt{5}-1) a$
$\therefore \int \frac{1}{2 x+(-\sqrt{5}-1) a} d x=\frac{1}{2} \log (2 x+(-\sqrt{5}-1) a)$
Now,
$\int \frac{1}{2 x+(\sqrt{5}-1) a} d x$
Substitute:
$u=2 x+(\sqrt{5}-1) a$
$\therefore d x=\frac{1}{2} d u$
$=\frac{1}{2} \int \frac{1}{u} d u$
$=\frac{1}{2} \log u$
Undo substitution:
$u=2 x+(\sqrt{5}-1) a$
$\therefore \int \frac{1}{2 x+(\sqrt{5}-1) a} d x=\frac{1}{2} \log (2 x+(\sqrt{5}-1) a)$
$\frac{2}{\sqrt{5} a} \int_{0}^{2} \frac{1}{(2 x+(-\sqrt{5}-1) a)} d x-\frac{2}{\sqrt{5} a} \int_{0}^{2} \frac{1}{2 x+(\sqrt{5}-1) a} d x$
$=\frac{\log (2 x+(-\sqrt{5}-1) a)}{\sqrt{5} a}-\frac{\log (2 x+(\sqrt{5}-1) a)}{\sqrt{5} a}$
$-\int_{0}^{2} \frac{1}{x^{2}-a x-a^{2}} d x=\frac{\log (2 x+(\sqrt{5}-1) a)}{\sqrt{5} a}-\frac{\log (2 x+(-\sqrt{5}-1) a)}{\sqrt{5} a}$
$=\frac{\log (4+(\sqrt{5}-1) a)}{\sqrt{5} a}-\frac{\log (4+(-\sqrt{5}-1) a)}{\sqrt{5} a}-\frac{\log (0+(\sqrt{5}-1) a)}{\sqrt{5} a}$

$$
+\frac{\log (0+(-\sqrt{5}-1) a)}{\sqrt{5} a}
$$

$=\frac{1}{\sqrt{5} a} \log \left(\frac{7+3 \sqrt{5}}{2}\right)$

45. Question

Evaluate:
$\int_{1 / 4}^{1 / 2} \frac{\mathrm{dx}}{\sqrt{\mathrm{x}-\mathrm{x}^{2}}}$

Answer

$\frac{\pi}{6}$
Evaluation:
$\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{d x}{\sqrt{x-x^{2}}}=\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{1}{\sqrt{\frac{1}{4}-\left(x-\frac{1}{2}\right)^{2}}}$
Substitute:
$2 x-1=u$
$\therefore d x=\frac{1}{2} d u$
$\int \frac{1}{\sqrt{1-u^{2}}} d u=\sin ^{-1}(u)$

Undo Substitution:
$u=2 x-1$
$\therefore=\sin ^{-1}(2 x-1)$
$\int_{\frac{1}{4}}^{\frac{1}{2}} \frac{d x}{\sqrt{x-x^{2}}}=\sin ^{-1}(2 x-1)$
$=\sin ^{-1}(1-1)-\sin ^{-1}\left(\frac{1}{2}-1\right)$
$=\frac{\pi}{6}$

46. Question

Evaluate:
$\int_{0}^{1} \sqrt{x(1-x)} d x$

Answer

$\frac{\pi}{8}$
Evaluation:
$\int_{0}^{1} \sqrt{x-x^{2}} d x=\int_{0}^{1} \sqrt{\frac{1}{4}-\left(x-\frac{1}{2}\right)^{2}} d x$
$=\frac{1}{2} \int_{0}^{1} \sqrt{1-(2 x-1)^{2}} d x$
Substitute:
$2 x-1=u$
$\therefore d x=\frac{1}{2} d u$
$\therefore \frac{1}{2} \int \sqrt{1-u^{2}} d u$
Substitute:
$u=\sin (v)$
$\therefore \sin ^{-1}(\mathrm{u})=\mathrm{v}$
$\therefore \mathrm{du}=\cos (\mathrm{v}) \mathrm{dv}$
$=\int \cos (v) \sqrt{a-\sin ^{2}(v)} d v$
$=\int \cos ^{2}(v) d v$
We know that,
$\int \cos ^{2}(v) d v=\frac{1}{2}\left[\frac{\sin (2 v)}{2}+v\right]$
Undo Substitution:
$\mathrm{v}=\sin ^{-1}(\mathrm{u}) \sin \left(\sin ^{-1}(\mathrm{u})\right)=\mathrm{u}_{\cos }\left(\sin ^{-1}(u)\right)=\sqrt{1-u^{2}}$
$=\frac{\sin ^{-1}(u)}{2}+\frac{u \sqrt{1-u^{2}}}{2}$
Undo Substitution:
$u=2 x-1$
$\therefore=\frac{\sin ^{-1}(2 x-1)}{4}+\frac{(2 x-1) \sqrt{1-(2 x-1)^{2}}}{4}$
$\frac{1}{2} \int_{0}^{1} \sqrt{1-(2 x-1)^{2}} d x=\frac{\sin ^{-1}(2 x-1)}{8}+\frac{(2 x-1) \sqrt{1-(2 x-1)^{2}}}{8}$
$=\frac{\sin ^{-1}(2-1)}{8}+\frac{(2-1) \sqrt{1-(2-1)^{2}}}{8}-\frac{\sin ^{-1}(0-1)}{8}-\frac{(0-1) \sqrt{1-(0-1)^{2}}}{8}$
$=\frac{\pi}{16}+0-\frac{\pi}{8}-0$
$=\frac{\pi}{8}$

47. Question

Evaluate:
$\int_{1}^{3} \frac{d x}{x^{2}(x+1)}$

Answer

$\log 2-\log 3+\frac{2}{3}$

Evaluation:
$\int_{1}^{3} \frac{1}{x^{2}(x+1)} d x$
Perform partial fraction decomposition:
$\int_{1}^{3} \frac{1}{x^{2}(x+1)} d x=\int_{1}^{3}\left(\frac{1}{x+1}-\frac{1}{x}+\frac{1}{x^{2}}\right) d x$
$=\left[\log (x+1)-\log (x)-\frac{1}{x}\right]$
$=\left[\log (4)-\log (3)-\frac{1}{3}-\log (2)+\log (1)+\frac{1}{1}\right]$
$=\log (2)-\log (3)+\frac{2}{3}$
48. Question

Evaluate:
$\int_{1}^{2} \frac{d x}{x(1+2 x)^{2}}$
$\log 6-\log 5-\frac{2}{15}$

Evaluation:
$\int_{1}^{2} \frac{1}{x(2 x+1)^{2}} d x=\int_{1}^{2}\left(-\frac{2}{2 x+1}-\frac{2}{(2 x+1)^{2}}+\frac{1}{x}\right) d x$
$=-2 \int_{1}^{2} \frac{1}{2 x+1} d x-2 \int_{1}^{2} \frac{1}{(2 x+1)^{2}} d x+\int_{1}^{2} \frac{1}{x} d x$
$=-2\left[\frac{1}{2} \log (2 x+1)\right]-2\left[\frac{-1}{2(2 x+1)}\right]+[\log (x)]$
$=-[\log (5)]+\left[\frac{1}{(5)}\right]+[\log (2)]+[\log (3)]-\left[\frac{1}{(3)}\right]+[\log (1)]$
$=\log (6)-\log (5)-\frac{2}{15}$
49. Question

Evaluate:
$\int_{0}^{1} x e^{x} d x$

Answer

1
Evaluation:
$\int_{0}^{1} x e^{x} d x=\int_{0}^{1}(x-1+1) e^{x} d x$
$=\left[(x-1) e^{x}\right]$
$=\left[(1-1) e^{1}-(0-1) e^{0}\right]$
$=1$
50. Question

Evaluate:
$\int_{0}^{\pi / 2} x^{2} \cos x d x$

Answer

$\left(\frac{\pi^{2}}{4}-2\right)$
Evaluation:
$\int_{0}^{\frac{\pi}{2}} x^{2} \cos (x) d x=x^{2} \sin (x)-\int 2 x \sin (x) d x$
$\int_{0}^{\frac{\pi}{2}} x^{2} \cos (x) d x=\left[x^{2} \sin (x)-2 \sin (x)-2 x \cos (x)\right]$
$=\left[\left(\frac{\pi}{2}\right)^{2} \sin \left(\frac{\pi}{2}\right)-2 \sin \left(\frac{\pi}{2}\right)-\pi \cos \left(\frac{\pi}{2}\right)-(0)^{2} \sin (0)+2 \sin (0)+0\right]$
$=\left[\frac{\pi^{2}}{4}-2-0-0+0+0\right]$
$=\left(\frac{\pi^{2}}{4}-2\right)$

51. Question

Evaluate:
$\int_{0}^{\pi / 4} x^{2} \sin x d x$

Answer

$\left(\sqrt{2}+\frac{\pi}{2 \sqrt{2}}-\frac{\pi^{2}}{16 \sqrt{2}}-2\right)$
Evaluation:
From integrate by parts:
$\int_{0}^{\frac{\pi}{4}} x^{2} \sin (x) d x=-x^{2} \cos (x)-\int-2 x \cos (x) d x$
From integrate by parts:
$\int_{0}^{\frac{\pi}{4}} x^{2} \cos (x) d x=\left[-x^{2} \cos (x)+2 x \sin (x)+2 \cos (x)\right]$
$=\left[2 x \sin (x)+\left(2-x^{2}\right) \cos (x)\right]$
$=\left[\frac{\pi}{2} \sin \left(\frac{\pi}{4}\right)+\left(2-\frac{\pi^{2}}{16}\right) \cos \left(\frac{\pi}{4}\right)-2(0) \sin (0)-(2-0) \cos (0)\right]$
$=\left[\frac{\pi}{2 \sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{\pi^{2}}{16 \sqrt{2}}+0-0-2\right]$
$=\sqrt{2}+\frac{\pi}{2 \sqrt{2}}-\frac{\pi^{2}}{16 \sqrt{2}}-2$

52. Question

Evaluate:
$\int_{0}^{\pi / 2} x^{2} \cos 2 x d x$

Answer

$\frac{-\pi}{4}$

Evaluation:
$\int_{0}^{\frac{\pi}{2}} x^{2} \cos (2 x) d x=\frac{x^{2} \sin (2 x)}{2}-\int x \sin (x) d x$
$\int_{0}^{\frac{\pi}{2}} x^{2} \cos (x) d x=\left[\frac{x^{2} \sin (2 x)}{2}-\frac{\sin (2 x)}{4}+\frac{x \cos (2 x)}{2}\right]$
$=\left[\frac{\left(\frac{\pi}{2}\right)^{2} \sin (\pi)}{2}-\frac{\sin (\pi)}{4}+\frac{\left(\frac{\pi}{2}\right) \cos (\pi)}{2}-\frac{(0)^{2} \sin (0)}{2}+\frac{\sin (0)}{4}-\frac{(0) \cos (0)}{2}\right]$
$=\left[0-0-\frac{\pi}{4}-0+0-0\right]$
$=-\frac{\pi}{4}$

53. Question

Evaluate:
$\int_{0}^{\pi / 2} x^{3} \sin 3 x d x$

Answer

$\left(\frac{2}{27}-\frac{\pi^{2}}{12}\right)$

Evaluation:
$\int_{0}^{\frac{\pi}{2}} x^{3} \sin (3 x) d x=-\frac{x^{3} \cos (3 x)}{3}-\int-x^{2} \cos (3 x) d x$
$=-\frac{x^{3} \cos (3 x)}{3}+\frac{x^{2} \sin (3 x)}{3}-\int \frac{2 x \sin (3 x)}{3} d x$
$=-\frac{x^{3} \cos (3 x)}{3}+\frac{x^{2} \sin (3 x)}{3}+\frac{2 x \cos (3 x)}{9}+\frac{2}{3} \int-\frac{\cos (3 x)}{3} d x$
$=-\frac{x^{3} \cos (3 x)}{3}+\frac{x^{2} \sin (3 x)}{3}+\frac{2 x \cos (3 x)}{9}-\frac{2 \sin (3 x)}{27}$
$=-0+\frac{\left(\frac{\pi}{2}\right)^{2} \sin \left(\frac{3 \pi}{2}\right)}{3}+0-\frac{2 \sin \left(\frac{3 \pi}{2}\right)}{27}+0-0-0+0$
$=\left(\frac{2}{27}-\frac{\pi^{2}}{12}\right)$

54. Question

Evaluate:

$$
\int_{0}^{\pi / 2} x^{2} \cos ^{2} x d x
$$

Answer
$\left(\frac{\pi^{3}}{48}-\frac{\pi}{8}\right)$

Evaluation:
$\int_{0}^{\frac{\pi}{2}} x^{2} \cos ^{2} x d x=\int_{0}^{\frac{\pi}{2}} \frac{x^{2}}{2}(\cos (2 x)+1) d x$
$=\int_{0}^{\frac{\pi}{2}}\left(\frac{x^{2}}{2} \cos (2 x)+\frac{x^{2}}{2}\right) d x$
$\int_{0}^{\frac{\pi}{2}}\left(\frac{x^{2}}{2} \cos (2 x)+\frac{x^{2}}{2}\right) d x=\frac{x^{2} \sin (2 x)}{2}-\int x \sin (2 x) d x+\frac{x^{3}}{6}$
$=\frac{x^{2} \sin (2 x)}{2}+\frac{x \cos (2 x)}{4}+\int-\frac{\cos (2 x)}{2} d x+\frac{x^{3}}{6}$
$=\frac{x^{2} \sin (2 x)}{2}+\frac{x \cos (2 x)}{4}-\frac{\sin (2 x)}{4}+\frac{x^{3}}{6}$
$=\frac{x^{2} \sin (2 x)}{2}+\frac{x \cos (2 x)}{4}-\frac{\sin (2 x)}{4}+\frac{x^{3}}{6}$
$=0+\frac{\frac{\pi}{2} \cos (\pi)}{4}-0+\frac{\left(\frac{\pi}{2}\right)^{3}}{6}-0-0+0-0$
$=\left(\frac{\pi^{3}}{48}-\frac{\pi}{8}\right)$

55. Question

Evaluate:
$\int_{1}^{2} \log x d x$

Answer

(2 $\log 2-1$)
Evaluation:
$\int_{1}^{2} \log (x) d x=x \log (x)-(x)$
$=2 \log (2)-(2)-1 \log (1)+(1)$
$=2 \log (2)-1$

56. Question

Evaluate:
$\int_{1}^{3} \frac{\log x}{(1+x)^{2}} d x$

Answer

$\frac{3}{4} \log 3-\log 2$
Evaluation:
$\int_{1}^{3} \frac{\log (x)}{(1+x)^{2}} d x=-\frac{\log (x)}{1+x}-\int\left(-\frac{1}{x(1+x)}\right) d x$

Now,
$\int\left(-\frac{1}{x(1+x)}\right) d x=-\int\left(\frac{1}{x^{2}\left(\frac{1}{x}+1\right)}\right) d x$
Let,
$\frac{1}{x}+1=u$
$\therefore \mathrm{dx}=-\mathrm{x}^{2} \mathrm{du}$
$\therefore-\int\left(\frac{1}{x^{2}\left(\frac{1}{x}+1\right)}\right) d x=\int \frac{1}{u} d u$
$=\log (u)$
Undo substitution:
$u=\frac{1}{x}+1$
$\int_{1}^{3} \frac{\log (x)}{(1+x)^{2}} d x=-\frac{\log (x)}{1+x}+\log \left(\frac{1}{x}+1\right)$
$=-\frac{\log (3)}{4}+\log \left(\frac{4}{3}\right)+\frac{\log (1)}{2}-\log (2)$
$=-\frac{\log (3)}{4}+\log (4)+\log (3)-\log 2$
$=\frac{3}{4} \log 3-\log 2$

57. Question

Evaluate:
$\int_{0}^{e^{2}}\left\{\frac{1}{(\log x)}-\frac{1}{(\log x)^{2}}\right\} d x$

Answer

$\left(\frac{\mathrm{e}^{2}}{2}-\mathrm{e}\right)$
Correct answer is $\frac{e^{2}}{2}$
Evaluation:
Let,
$\log (x)=u$
$\rightarrow x=e^{u}$
$\rightarrow \mathrm{dx}=\mathrm{e}^{\mathrm{u}} \mathrm{du}$
$\int\left\{\frac{1}{u}-\frac{1}{u^{2}}\right) e^{u} d u=\frac{e^{u}}{u}$
Undo substitution:
$u=\log (x)$
$\int_{0}^{e^{2}}\left\{\frac{1}{\log (x)}-\frac{1}{\log (x)^{2}}\right\} d x=\frac{x}{\log (x)}$
$=\frac{e^{2}}{\log \left(e^{2}\right)}-0$
$=\frac{e^{2}}{2}$
58. Question

Evaluate:
$\int_{1}^{e} e^{x}\left(\frac{1+x \log x}{x}\right) d x$

Answer

e^{e}
Evaluation:
$\int_{1}^{e} e^{x}\left(\frac{(1+x \log (x))}{x}\right) d x=\int_{1}^{e} e^{x}\left(\frac{1}{x}+\log (x)\right) d x$
$=\log (x) e^{x}$
$=\log (e) e^{e}-\log (1) e^{1}$
$=e^{e}$
59. Question

Evaluate:
$\int_{0}^{1} \frac{x e^{x}}{(1+x)^{2}} d x$
Answer
$\left(\frac{\mathrm{e}}{2}-1\right)$

Evaluation:
$\int_{0}^{1} \frac{x e^{x}}{(1+x)^{2}} d x$
From Integrates by parts:
$=-\frac{x e^{x}}{x+1}-\int \frac{-x e^{x}-e^{x}}{x+1} d x$
$\therefore \int \frac{-x e^{x}-e^{x}}{x+1} d x=\int-e^{x} d x$
$=-e^{x}$
$\int_{0}^{1} \frac{x e^{x}}{(1+x)^{2}} d x=\left[-\frac{x e^{x}}{x+1}-e^{x}\right]$
$=\left[-\frac{1 e^{1}}{1+1}-e^{1}-\frac{0}{1+0}+e^{0}\right]$
$=\left[-\frac{e}{2}+e+0-1\right]$
$=\left[\frac{e}{2}-1\right]$

60. Question

Evaluate:
$\int_{0}^{\pi / 2} 2 \tan ^{3} x d x$
[CBSE 2004]

Answer

$(1-\log 2)$
Evaluation:
$\int_{0}^{\frac{\pi}{2}} 2 \tan ^{3} x d x=2 \int_{0}^{\frac{\pi}{2}} \tan ^{2} x \tan x d x$
$=2 \int_{0}^{\frac{\pi}{2}} \tan ^{2} x \tan x d x$
$=2 \int_{0}^{\frac{\pi}{2}}\left(\sec ^{2} x-1\right) \tan x d x$
Substitute:
$\sec (x)=u$
$\therefore d x=\frac{1}{\sec (x) \tan (x)} d u$
$=2 \int_{0}^{\frac{\pi}{2}} \frac{\left(u^{2}-1\right)}{u} d u$
$=2 \int_{0}^{\frac{\pi}{2}}\left(u-\frac{1}{u}\right) d u$
$=2 \int_{0}^{\frac{\pi}{2}}\left(u-\frac{1}{u}\right) d u$
$=2\left[\frac{\mathrm{u}^{2}}{2}-\log \mathrm{u}\right]$
Undo substitution:
$u=\sec (x)$
$\therefore \int_{0}^{\frac{\pi}{2}} 2 \tan ^{3} x d x=2\left[\frac{\sec ^{2} \mathrm{x}}{2}-\log (\sec \mathrm{x})\right]$
$=2\left[\frac{\sec ^{2}\left(\frac{\pi}{2}\right)}{2}-\log \left(\sec \left(\frac{\pi}{2}\right)\right)-\frac{\sec ^{2}(0)}{2}+\log (\sec (0))\right]$
$=2\left[\frac{1}{2}-\log (1)\right]$
$=1-\log 2$

61. Question

Evaluate:
$\int_{1}^{2} \frac{5 x^{2}}{\left(x^{2}+4 x+3\right)} d x$

Answer

$5-\frac{5}{2}\left(9 \log \frac{5}{4}-\log \frac{3}{2}\right)$

Explanation:
$\int_{1}^{2} \frac{5 x^{2}}{\left(x^{2}+4 x+3\right)} d x=5\left[\int_{1}^{2} \frac{x^{2}}{(x+3)(x+1)} d x\right]$
$=5\left[\int_{1}^{2}\left(1-\frac{9}{2(x+3)}+\frac{1}{2(x+1)}\right) d x\right]$
$=5\left[x-\frac{9}{2} \log (x+3)+\frac{1}{2} \log (x+1)\right]_{1}^{2}$
$=5\left[2-\frac{9}{2} \log 5+\frac{1}{2} \log 3-1+\frac{9}{2} \log 4-\frac{1}{2} \log 2\right]$
$=5\left[1-\frac{9}{2} \log \left(\frac{5}{4}\right)+\frac{1}{2} \log \left(\frac{3}{2}\right)\right.$
$=5-\frac{5}{2}\left(9 \log \left(\frac{5}{4}\right)-\log \left(\frac{3}{2}\right)\right)$

Exercise 16B

1. Question

Evaluate the following integrals
$\int_{0}^{1} \frac{d x}{(2 x-3)}$

Answer

Let $I=\int_{0}^{1} \frac{1}{2 x-3} d x$
Let $2 \mathrm{x}-3=\mathrm{t}$
$\Rightarrow 2 d x=d t$.
Hence,
$I=\frac{1}{2} \int_{0}^{1} \frac{1}{t} d t=\frac{1}{2} \log _{e}|t|$
$=\left.\frac{1}{2} \log _{e}|2 x-3|\right|_{0} ^{1}$
$\Rightarrow I=\frac{1}{2} \log _{e} 1-\frac{1}{2} \log _{e} 3=\frac{1}{2} \log _{e} \frac{1}{3}$
$=-\frac{1}{2} \log _{e} 3$
(Since $\log _{a} \frac{1}{b}=-\log _{a} b$)

2. Question

Evaluate the following integrals
$\int_{0}^{1} \frac{2 x}{\left(1+x^{2}\right)} d x$

Answer

Let $I=\int_{0}^{1} \frac{2 x}{1+x^{2}} d x$
Let $1+x^{2}=t$
$\Rightarrow 2 \mathrm{xdx}=\mathrm{dt}$.
Also,
when $\mathrm{x}=0, \mathrm{t}=1$
and
when $x=1, t=2$
Hence, $I=\int_{1}^{2} \frac{1}{t} d t=\left.\log _{e}|t|\right|_{1} ^{2}$
$=\log _{e} 2-\log _{e} 1$
$=\log _{e} 2$

3. Question

Evaluate the following integrals
$\int_{1}^{2} \frac{3 x}{\left(9 x^{2}-1\right)} d x$

Answer

Let $I=\int_{1}^{2} \frac{3 x}{9 x^{2}-1} d x$
Let $9 x^{2}-1=t$
$\Rightarrow 18 x d x=\mathrm{dt}$.
Also,
when $x=1, t=8$
and
when $x=2, t=35$.
Hence,
$I=\frac{1}{6} \int_{8}^{351} \frac{1}{t} d t=\left.\frac{1}{6} \log _{e} t\right|_{8} ^{35}=\frac{1}{6}\left(\log _{e} 35-\log _{e} 8\right)$

4. Question

Evaluate the following integrals
$\int_{0}^{1} \frac{\tan ^{-1} x}{\left(1+x^{2}\right)} d x$

Answer

Let $I=\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x$
Let $\tan ^{-1} \mathrm{x}=\mathrm{t}$
$\Rightarrow \frac{1}{1+x^{2}} d x=d t$.
Also, when $x=0, t=0$
and when $\mathrm{x}=1, t=\frac{\pi}{4}$
Hence,
$I=\int_{0}^{\frac{\pi}{4}} t d t=\left.\frac{1}{2} t^{2}\right|_{0} ^{\frac{\pi}{4}}=\frac{\pi^{2}}{32}$

5. Question

Evaluate the following integrals
$\int_{0}^{1} \frac{e^{x}}{1+e^{2 x}} d x$

Answer

Let $I=\int_{0}^{1} \frac{e^{x}}{1+e^{2 x}} d x$
Let $\mathrm{e}^{\mathrm{x}}=\mathrm{t}$
$\Rightarrow e^{x} d x=d t$.
Also,
when $x=0, t=1$
and
when $x=1, t=e$.
Hence,
$I=\int_{1}^{e} \frac{1}{1+t^{2}} d t=\left.\tan ^{-1} t\right|_{1} ^{e}$
$=\tan ^{-1} e-\frac{\pi}{4}$

6. Question

Evaluate the following integrals
$\int_{0}^{1} \frac{2 x}{\left(1+x^{4}\right)} d x$

Answer

Let $I=\int_{0}^{1} \frac{2 x}{1+x^{4}} d x$
Let $x^{2}=t$
$\Rightarrow 2 \mathrm{xdx}=\mathrm{dt}$.

Also,
when $x=0, t=0$
and
when $x=1, t=1$.
Hence,
$I=\int_{0}^{1} \frac{1}{1+t^{2}} d t$
$=\left.\tan ^{-1} t\right|_{0} ^{1}$
$=\frac{\pi}{4}$
7. Question

Evaluate the following integrals
$\int_{0}^{1} x e^{x^{2}} d x$

Answer

Let $I=\int_{0}^{1} x e^{x^{2}} d x$
Let $x^{2}=t$
$\Rightarrow 2 x d x=d t$.
Also,
when $x=0, t=0$
and
when $x=1, t=1$.
Hence,
$I=\frac{1}{2} \int_{0}^{1} e^{t} d t$
$=\left.\frac{1}{2} e^{t}\right|_{0} ^{1}$
$=\frac{1}{2}(e-1)$
8. Question

Evaluate the following integrals
$\int_{1}^{2} \frac{e^{1 / x}}{x^{2}} d x$

Answer

Let $I=\int_{1}^{2} \frac{e^{\frac{1}{x}}}{x^{2}} d x$
Let $\frac{1}{x}=t$
$\Rightarrow \frac{-1}{x^{2}} d x=d t$.
Also,
when $\mathrm{x}=1, \mathrm{t}=1$
and
when $\mathrm{x}=2, t=\frac{1}{2}$.
Hence,
$I=-\int_{1}^{\frac{1}{2}} e^{t} d t$
$=-e^{t} \left\lvert\, \begin{aligned} & \frac{1}{2} \\ & 1\end{aligned}\right.$
$=e-\sqrt{e}$

9. Question

Evaluate the following integrals
$\int_{0}^{\pi / 6} \frac{\cos x}{(3+4 \sin x)} d x$

Answer

Let $I=\int_{0}^{\frac{\pi}{6}} \frac{\cos x}{3+4 \sin x} d x$
Let $3+4 \sin x=t$
$\Rightarrow 4 \cos x d x=d t$.
Also,
when $\mathrm{x}=0, \mathrm{t}=3$
and
when $x=\frac{\pi}{6}, \mathrm{t}=5$.
Hence,
$I=\frac{1}{4} \int_{3}^{5} \frac{1}{t} d t$
$=\left.\frac{1}{4} \log _{e} t\right|_{3} ^{5}$
$=\frac{1}{4}\left(\log _{e} 5-\log _{e} 3\right)$

10. Question

Evaluate the following integrals
$\int_{0}^{\pi / 2} \frac{\sin x}{\left(1+\cos ^{2} x\right)} d x$

Answer

Let $I=\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^{2} x} d x$
Let $\cos x=t$
$\Rightarrow-\sin x d x=d t$.
Also,
when $x=0, t=1$
and
when $x=\frac{\pi}{2}, \mathrm{t}=0$.
Hence,
$I=-\int_{1}^{0} \frac{1}{1+t^{2}} d t$
$=-\left.\tan ^{-1} t\right|_{1} ^{0}$
$=\frac{\pi}{4}$
11. Question

Evaluate the following integrals
$\int_{0}^{1} \frac{d x}{\left(e^{x}+e^{-x}\right)}$

Answer

Let $I=\int_{0}^{1} \frac{1}{e^{x}+e^{-x}} d x=\int_{0}^{1} \frac{e^{x}}{1+e^{2 x}} d x$
Let $\mathrm{e}^{\mathrm{x}}=\mathrm{t}$
$\Rightarrow \mathrm{e}^{\mathrm{x}} \mathrm{dx}=\mathrm{dt}$.
Also,
when $x=0, t=1$
and
when $x=1, t=e$.
Hence,
$I=\int_{1}^{e} \frac{1}{1+t^{2}} d t$
$=\left.\tan ^{-1} t\right|_{1} ^{e}$
$=\tan ^{-1} e-\frac{\pi}{4}$

12. Question

Evaluate the following integrals
$\int_{1 / e}^{e} \frac{d x}{x(\log x)^{1 / 3}}$

Answer

Let $I=\int_{\frac{1}{e}}^{e} \frac{1}{x\left(\log _{e} x\right)^{\frac{1}{3}}} d x$
Let $\log _{e} x=t$
$\Rightarrow \frac{1}{x} d x=d t$.
Also,
when $x=\frac{1}{e}, \mathrm{t}=-1$
and
when $x=e, t=1$.
Hence,
$I=\int_{-1}^{1} \frac{1}{t^{\frac{1}{3}}} d t$
$=\left.\frac{3}{2} t^{\frac{2}{3}}\right|_{-1} ^{1}$
$=\frac{3}{2}(1-1)$
$=0$
13. Question

Evaluate the following integrals
$\int_{0}^{1} \frac{\sqrt{\tan ^{-1} x}}{\left(1+x^{2}\right)} d x$

Answer

Let $I=\int_{0}^{1} \frac{\sqrt{\tan ^{-1} x}}{1+x^{2}} d x$
Let $\tan ^{-1} \mathrm{x}=\mathrm{t}$
$\Rightarrow \frac{1}{1+x^{2}} d x=d t$.
Also,
when $\mathrm{x}=0, \mathrm{t}=0$
and
when $\mathrm{x}=1, t=\frac{\pi}{4}$
Hence,
$I=\int_{0}^{\frac{\pi}{4}} \sqrt{t} d t$
$=\left.\frac{2}{3} t^{\frac{3}{2}}\right|_{0} ^{\frac{\pi}{4}}$
$=\frac{\pi^{\frac{3}{2}}}{12}$

14. Question

Evaluate the following integrals
$\int_{0}^{\pi / 2} \frac{\sin x}{\sqrt{1+\cos x}} d x$

Answer

Let $I=\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sqrt{1+\cos x}} d x$
Let $1+\cos x=t$
$\Rightarrow-\sin x d x=d t$.
Also, when $x=0, t=2$
and
when $x=\frac{\pi}{2}, \mathrm{t}=1$
Hence,
$I=-\int_{2}^{1} \frac{1}{\sqrt{t}} d t$
$=-\left.2 \sqrt{t}\right|_{2} ^{1}$
$=2(\sqrt{ } 2-1)$

15. Question

Evaluate the following integrals
$\int_{0}^{\pi / 2} \sqrt{\sin x} \cdot \cos ^{5} x d x$

Answer

Let $I=\int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} \cos ^{5} x d x$
Let $\sin x=t$
$\Rightarrow \cos x d x=d t$.
Also,
when $x=0, t=0$
and
when $x=\frac{\pi}{2}, \mathrm{t}=1$.
Consider $\cos ^{5} x=\cos ^{4} x \times \cos x=\left(1-\sin ^{2} x\right)^{2} x \cos x$ (Using $\sin ^{2} x+\cos ^{2} x=1$)
Hence,
$I=\int_{0}^{1} \sqrt{x}\left(1-x^{2}\right)^{2} d x$
$=\int_{0}^{1} \sqrt{x} d x+\int_{0}^{1} x^{\frac{9}{2}} d x-2 \int_{0}^{1} x^{\frac{5}{2}} d x$
$\Rightarrow I=\left.\frac{2}{3} t^{\frac{3}{2}}\right|_{0} ^{1}+\left.\frac{2}{11} t^{\frac{11}{2}}\right|_{0} ^{1}-\left.\frac{4}{7} t^{\frac{7}{2}}\right|_{0} ^{1}$
$=\frac{2}{3}+\frac{2}{11}-\frac{4}{7}$
$=\frac{64}{231}$

16. Question

Evaluate the following integrals
$\int_{0}^{\pi / 2} \frac{\sin x \cos x}{\left(1+\sin ^{4} x\right)} d x$

Answer

Let $I=\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{1+\sin ^{4} x} d x$
Let $\sin ^{2} x=t$
$\Rightarrow 2 \sin x \cos x=d t$.
Also,
when $\mathrm{x}=0, \mathrm{t}=0$
and
when $x=\frac{\pi}{2}$, $\mathrm{t}=1$.
Hence,
$I=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{1}{1+t^{2}} d t$
$=\left.\frac{1}{2} \tan ^{-1} t\right|_{0} ^{1}$
$=\frac{\pi}{8}$

17. Question

Evaluate the following integrals
$\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x$

Answer

Let $I=\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x$
Let $x=a \sin t$
$\Rightarrow a \cos t d t=d x$.
Also,
when $\mathrm{x}=0, \mathrm{t}=0$
and
when $\mathrm{x}=\mathrm{a}, t=\frac{\pi}{2}$.
Hence,
$I=\int_{0}^{\frac{\pi}{2}} \sqrt{a^{2}-a^{2} \sin ^{2} t} a \cos t d t=a^{2} \int_{0}^{\frac{\pi}{2}} \cos ^{2} t d t$
Using $\cos ^{2} t=\frac{1+\cos 2 t}{2}$, we get
$I=\frac{a^{2}}{2} \int_{0}^{\frac{\pi}{2}}(1+\cos 2 t) d t$
$=\left.\frac{a^{2}}{2}\left(t+\frac{\sin 2 t}{2}\right)\right|_{0} ^{\frac{\pi}{2}}$
$=\frac{\pi a^{2}}{4}$

18. Question

Evaluate the following integrals
$\int_{0}^{\sqrt{2}} \sqrt{2-\mathrm{x}^{2}} \mathrm{dx}$

Answer

Let $I=\int_{0}^{\sqrt{2}} \sqrt{2-x^{2}} d x$
Consider, $I=\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x$
Let $\mathrm{x}=\mathrm{a} \sin \mathrm{t}$
$\Rightarrow a \cos t d t=d x$.
Also, when $\mathrm{x}=0, \mathrm{t}=0$
and when $\mathrm{x}=\mathrm{a}, t=\frac{\pi}{2}$.
Hence,
$I=\int_{0}^{\frac{\pi}{2}} \sqrt{a^{2}-a^{2} \sin ^{2} t} a \cos t d t=a^{2} \int_{0}^{\frac{\pi}{2}} \cos ^{2} t d t$
Using $\cos ^{2} t=\frac{1+\cos 2 t}{2}$, we get
$I=\frac{a^{2}}{2} \int_{0}^{\frac{\pi}{2}}(1+\cos 2 t) d t$
$=\left.\frac{a^{2}}{2}\left(t+\frac{\sin 2 t}{2}\right)\right|_{0} ^{\frac{\pi}{2}}$
$=\frac{\pi a^{2}}{4}$
Here $a=\sqrt{2}$, hence $I=\frac{\pi}{2}$
19. Question

Evaluate the following integrals
$\int_{0}^{a} \frac{x^{4}}{\sqrt{a^{2}-x^{2}}} d x$

Answer

Let $I=\int_{0}^{a} \frac{x^{4}}{\sqrt{a^{2}-x^{2}}} d x$
Let $x=a \sin t$
$\Rightarrow a \cos t d t=d x$.
Also, when $x=0, t=0$
and when $\mathrm{x}=\mathrm{a}, t=\frac{\pi}{2}$.
Hence,
$I=\int_{0}^{\frac{\pi}{2}} \frac{a^{4} \sin ^{4} t}{\sqrt{a^{2}-a^{2} \sin ^{2} t}} a \cos t d t$
$=a^{4} \int_{0}^{\frac{\pi}{2}} \sin ^{4} t d t$
Using $\sin ^{2} t=\frac{1-\cos 2 t}{2}$, we get
$I=a^{4} \int_{0}^{\frac{\pi}{2}}\left(\frac{1-\cos 2 t}{2}\right)^{2} d t$
$=\frac{a^{4}}{4} \int_{0}^{\frac{\pi}{2}}\left(1+\cos ^{2} 2 t-2 \cos 2 t\right) d t$
$\Rightarrow I=\frac{a^{4}}{4}\left(\left.t\right|_{0} ^{\frac{\pi}{2}}-\left.\sin 2 t\right|_{0} ^{\frac{\pi}{2}}+\int_{0}^{\frac{\pi}{2}}\left(\frac{1+\cos 4 t}{2}\right) d t\right)$
$\left(U \operatorname{sing} \cos ^{2} t=\frac{1+\cos 2 t}{2}\right)$
Hence,
$I=\frac{\pi a^{4}}{8}+\frac{a^{4}}{4} \times\left.\frac{t}{2}\right|_{0} ^{\frac{\pi}{2}}+\left.\frac{a^{4}}{32} \sin 4 t\right|_{0} ^{\frac{\pi}{2}}$
$=\frac{3 \pi a^{4}}{16}$

20. Question

Evaluate the following integrals
$\int_{0}^{a} \frac{x}{\sqrt{a^{2}+x^{2}}} d x$

Answer

Let $I=\int_{0}^{a} \frac{x}{\sqrt{a^{2}+x^{2}}} d x$
Let $a^{2}+x^{2}=t^{2}$
$\Rightarrow \mathrm{xdx}=\mathrm{tdt}$.

Also, when $\mathrm{x}=0, \mathrm{t}=\mathrm{a}$
and when $x=a, t=\sqrt{2} a$.
Hence,
$I=\int_{a}^{\sqrt{2} a} \frac{t}{\sqrt{t^{2}}} d t$
$=t \left\lvert\, \begin{gathered}\sqrt{2} a \\ a\end{gathered}\right.$
$=a(\sqrt{ } 2-1)$

21. Question

Evaluate the following integrals
$\int_{0}^{2} \mathrm{x} \sqrt{2-\mathrm{x}} \mathrm{dx}$

Answer

Let $I=\int_{0}^{2} x \sqrt{2-x} d x$
Using the property that $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$, we get
$I=\int_{0}^{2}(2-x) \sqrt{x} d x$
$=\int_{0}^{2} 2 \sqrt{x} d x-\int_{0}^{2} x^{\frac{3}{2}} d x$
$=2 \times\left.\frac{2}{3} x^{\frac{3}{2}}\right|_{0} ^{2}-\left.\frac{2}{5} x^{\frac{5}{2}}\right|_{0} ^{2}$
Hence,
$I=2 \sqrt{2}\left(\frac{4}{3}-\frac{4}{5}\right)$
$=\frac{16}{15} \sqrt{2}$

22. Question

Evaluate the following integrals
$\int_{0}^{1} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x$

Answer

Let $I=\int_{0}^{1} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x$
Let $f(x)=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
Let $\mathrm{x}=\tan \theta$
$\Rightarrow \theta=\tan ^{-1} \mathrm{x}$
$\Rightarrow f(x)=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)$
$=\sin ^{-1}\left(\frac{2 \tan \theta}{\sec ^{2} \theta}\right)$
$=\sin ^{-1}(2 \sin \theta \cos \theta)$
$=\sin ^{-1}(\sin 2 \theta)$
Hence $f(x)=2 \theta$
$=2 \tan ^{-1} x$
Hence $I=2 \int_{0}^{1} 1 \times \tan ^{-1} x d x$
Using integration by parts, we get
$I=\left.2 x \tan ^{-1} x\right|_{0} ^{1}-\int_{0}^{1} \frac{2 x}{1+x^{2}} d x$
$=\frac{\pi}{2}-\int_{0}^{1} \frac{2 x}{1+x^{2}} d x-(1)$
Let $I^{I}=\int_{0}^{1} \frac{2 x}{1+x^{2}} d x$
Let $1+x^{2}=t$
$\Rightarrow 2 \mathrm{xdx}=\mathrm{dt}$.
Also, when $\mathrm{x}=0, \mathrm{t}=1$
and when $\mathrm{x}=1, \mathrm{t}=2$
Hence,
$I^{r}=\int_{1}^{2} \frac{1}{t} d t=\left.\log _{e}|t|\right|_{1} ^{2}$
$=\log _{e} 2-\log _{e} 1$
$=\log _{e} 2-(2)$
Substituting value of (2) in (1), we get
$I=\frac{\pi}{2}-\log _{e} 2$

23. Question

Evaluate the following integrals
$\int_{0}^{\pi / 2} \sqrt{1+\cos x} d x$

Answer

Let $I=\int_{0}^{\frac{\pi}{2}} \sqrt{1+\cos x} d x$
Using $1+\cos x=2 \cos ^{2} \frac{x}{2}$, we get
$I=\sqrt{2} \int_{0}^{\frac{\pi}{2}} \cos \left(\frac{x}{2}\right) d x$
$=\left.2 \sqrt{2} \sin \left(\frac{x}{2}\right)\right|_{0} ^{\frac{\pi}{2}}$
$=2$

24. Question

Evaluate the following integrals
$\int_{0}^{\pi / 2} \sqrt{1+\sin x} d x$

Answer

Let $I=\int_{0}^{\frac{\pi}{2}} \sqrt{1+\sin x} d x$
Using $\sin ^{2} \frac{x}{2}+\cos \frac{x}{2}=1$ and $\sin x=2 \sin \frac{x}{2} \cos \frac{x}{2}$
$I=\int_{0}^{\frac{\pi}{2}} \sqrt{\left(\sin \left(\frac{x}{2}\right)+\cos \left(\frac{x}{2}\right)\right)^{2}} d x$
$=\int_{0}^{\frac{\pi}{2}}\left(\sin \left(\frac{x}{2}\right)+\cos \left(\frac{x}{2}\right)\right) d x$
$=-\left.2 \cos \left(\frac{x}{2}\right)\right|_{0} ^{\frac{\pi}{2}}+\left.2 \sin \left(\frac{x}{2}\right)\right|_{0} ^{\frac{\pi}{2}}$
$=-(\sqrt{ } 2-2)+(\sqrt{ } 2)$
$=2$

25. Question

Evaluate the following integrals
25. $\int_{0}^{\pi / 2} \frac{d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)}$

Answer

Let $I=\int_{0}^{\frac{\pi}{2}} \frac{1}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x$
Dividing by $\cos ^{2} x$ in numerator and denominator, we get
$I=\int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} x}{a^{2}+b^{2} \tan ^{2} x} d x$
Let $\tan \mathrm{x}=\mathrm{t}$
$\Rightarrow \sec ^{2} x d x=d t$
$I=\int_{0}^{\frac{\pi}{2}} \frac{1}{a^{2}+b^{2} t^{2}} d t=\frac{1}{b^{2}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\frac{a^{2}}{b^{2}}+t^{2}} d t$
Let $t=\frac{a}{b} \tan \theta=\tan x$
$I=\frac{1}{b^{2}} \int_{0}^{\frac{\pi}{2}} \frac{\frac{a}{b} \sec ^{2} \theta}{\frac{a^{2}}{b^{2}}+\frac{a^{2}}{b^{2}} \tan ^{2} \theta} d \theta$
$=\frac{1}{a b} \theta$
$=\left.\frac{1}{a b} \tan ^{-1}\left(\frac{b}{a} \tan x\right)\right|_{0} ^{\frac{\pi}{2}}$
$=\frac{\pi}{2 a b}$
26. Question

Evaluate the following integrals
$\int_{0}^{\pi / 2} \frac{d x}{\left(1+\cos ^{2} x\right)}$

Answer

Let $I=\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\cos ^{2} x} d x$
Dividing by $\cos ^{2} x$ in numerator and denominator, we get
$I=\int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} x}{\sec ^{2} x+\tan ^{2} x} d x=\int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} x}{1+2 \tan ^{2} x} d x$
Consider $I=\int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} x}{a^{2}+b^{2} \tan ^{2} x} d x$
Let $\tan x=t$
$\Rightarrow \sec ^{2} x d x=d t$
$I=\int_{0}^{\frac{\pi}{2}} \frac{1}{a^{2}+b^{2} t^{2}} d t$
$=\frac{1}{b^{2}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\frac{a^{2}}{b^{2}}+t^{2}} d t$
Let $t=\frac{a}{b} \tan \theta$
$=\tan x$
$I=\frac{1}{b^{2}} \int_{0}^{\frac{\pi}{2}} \frac{\frac{a}{b} \sec ^{2} \theta}{\frac{a^{2}}{b^{2}}+\frac{a^{2}}{b^{2}} \tan ^{2} \theta} d \theta$
$=\frac{1}{a b} \theta=\left.\frac{1}{a b} \tan ^{-1}\left(\frac{b}{a} \tan x\right)\right|_{0} ^{\frac{\pi}{2}}$
$=\frac{\pi}{2 a b}$
Here, $a=1$ and $b=\sqrt{ } 2$
Hence,
$I=\frac{\pi}{2 \sqrt{2}}$

27. Question

Evaluate the following integrals
$\int_{0}^{\pi / 2} \frac{d x}{\left(4+9 \cos ^{2} x\right)}$

Answer

Let $I=\int_{0}^{\frac{\pi}{2}} \frac{1}{4+9 \cos ^{2} x} d x$
Dividing by $\cos ^{2} \mathrm{x}$ in numerator and denominator, we get
$I=\int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} x}{4 \sec ^{2} x+9 \tan ^{2} x} d x$
$=\int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} x}{4+13 \tan ^{2} x} d x$
Consider $I=\int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} x}{a^{2}+b^{2} \tan ^{2} x} d x$
Let $\tan \mathrm{x}=\mathrm{t}$
$\Rightarrow \sec ^{2} x d x=d t$
$I=\int_{0}^{\frac{\pi}{2}} \frac{1}{a^{2}+b^{2} t^{2}} d t$
$=\frac{1}{b^{2}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\frac{a^{2}}{b^{2}}+t^{2}} d t$
Let $t=\frac{a}{b} \tan \theta$
$=\tan \mathrm{x}$
$I=\frac{1}{b^{2}} \int_{0}^{\frac{\pi}{2}} \frac{\frac{a}{b} \sec ^{2} \theta}{\frac{a^{2}}{b^{2}}+\frac{a^{2}}{b^{2}} \tan ^{2} \theta} d \theta$
$=\frac{1}{a b} \theta$
$=\left.\frac{1}{a b} \tan ^{-1}\left(\frac{b}{a} \tan x\right)\right|_{0} ^{\frac{\pi}{2}}$
$=\frac{\pi}{2 a b}$
Here, $a=2$ and $b=\sqrt{ } 13$
Hence,
$I=\frac{\pi}{4 \sqrt{13}}$

28. Question

Evaluate the following integrals
$\int_{0}^{\pi / 2} \frac{d x}{(5+4 \sin x)}$

Answer

Let $I=\int_{0}^{\frac{\pi}{2}} \frac{1}{5+4 \sin x} d x$
Using $\sin x=\frac{2 \tan \left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}$, we get
$I=\int_{0}^{\frac{\pi}{2}} \frac{1}{5+4 \frac{2 \tan \left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}} d x$
$=\int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2}\left(\frac{x}{2}\right)}{5+5 \tan ^{2}\left(\frac{x}{2}\right)+8 \tan \left(\frac{x}{2}\right)} d x$
Let $\tan \left(\frac{x}{2}\right)=t$
$\Rightarrow \frac{1}{2} \sec ^{2}\left(\frac{x}{2}\right) d x=d t$,
when $\mathrm{x}=0, \mathrm{t}=0$ and when $x=\frac{\pi}{2}, \mathrm{t}=1$.
Hence, $I=\int_{0}^{1} \frac{2}{5+5 t^{2}+8 t} d t$
$=\frac{2}{5} \int_{0}^{1} \frac{1}{t^{2}+\frac{8}{5} t+\frac{16}{25}+\frac{9}{25}} d t$
$=\frac{2}{5} \int_{0}^{1} \frac{1}{\left(t+\frac{4}{5}\right)^{2}+\frac{9}{25}} d t$
Let $t+\frac{4}{5}=u$
$\Rightarrow d t=d u$.
When $\mathrm{t}=0, u=\frac{4}{5}$ and when $\mathrm{t}=1, u=\frac{9}{5}$.
$I=\frac{2}{5} \int_{\frac{4}{5}}^{\frac{9}{5}} \frac{1}{(u)^{2}+\frac{9}{25}} d u$
$\left.=\frac{2}{5} \times \frac{5}{3} \tan ^{-1}\left(\frac{5 x}{3}\right) \right\rvert\, \begin{aligned} & \frac{9}{5} \\ & \frac{4}{5}\end{aligned}$
$=\frac{2}{3}\left(\tan ^{-1} 3-\tan ^{-1}\left(\frac{4}{3}\right)\right)$
$=\frac{2}{3} \times \tan ^{-1}\left(\frac{3-\frac{4}{3}}{5}\right)$
$=\frac{2}{3} \tan ^{-1}\left(\frac{1}{3}\right)$
$\left(U \operatorname{sing} \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)\right)$

29. Question

Evaluate the following integrals
$\int_{0}^{\pi} \frac{d x}{(6-\cos x)}$

Answer

Let $I=\int_{0}^{\pi} \frac{1}{6-\cos x} d x$
Using $\cos x=\frac{1-\tan ^{2}\left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}$, we get
$I=\int_{0}^{\pi} \frac{1}{6-\frac{1-\tan ^{2}\left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}} d x$
$=\int_{0}^{\pi} \frac{\sec ^{2}\left(\frac{x}{2}\right)}{5+7 \tan ^{2}\left(\frac{x}{2}\right)} d x$
Let $\tan \left(\frac{x}{2}\right)=t$
$\Rightarrow \frac{1}{2} \sec ^{2}\left(\frac{x}{2}\right) d x=d t$,
when $x=0, t=0$ and when $x=\pi, t=\infty$.
Hence, $I=\int_{0}^{\infty} \frac{2}{5+7 t^{2}} d t$
$=\frac{2}{7} \int_{0}^{\infty} \frac{1}{t^{2}+\frac{5}{7}} d t$
$=\frac{2}{7} \times\left.\sqrt{\frac{7}{5}} \tan ^{-1}\left(\sqrt{\frac{7}{5}} x\right)\right|_{0} ^{\infty}$
$\Rightarrow I=\frac{2}{\sqrt{35}}\left(\frac{\pi}{2}-0\right)$
$=\frac{\pi}{\sqrt{35}}$

30. Question

Evaluate the following integrals
$\int_{0}^{\pi} \frac{d x}{(5+4 \cos x)}$

Answer

Let $I=\int_{0}^{\pi} \frac{1}{5+4 \cos x} d x$
Using $\cos x=\frac{1-\tan ^{2}\left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}$, we get
$I=\int_{0}^{\pi} \frac{1}{5+4 \times \frac{1-\tan ^{2}\left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}} d x$
$=\int_{0}^{\pi} \frac{\sec ^{2}\left(\frac{x}{2}\right)}{9+\tan ^{2}\left(\frac{x}{2}\right)} d x$
Let $\tan \left(\frac{x}{2}\right)=t$
$\Rightarrow \frac{1}{2} \sec ^{2}\left(\frac{x}{2}\right) d x=d t$,
when $\mathrm{x}=0, \mathrm{t}=0$ and when $\mathrm{x}=\pi, \mathrm{t}=\infty$.
Hence, $I=\int_{0}^{\infty} \frac{2}{9+t^{2}} d t$
$=2 \int_{0}^{\infty} \frac{1}{9+t^{2}} d t$
$=2 \times\left.\frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right)\right|_{0} ^{\infty}$
$\Rightarrow I=\frac{2}{3}\left(\frac{\pi}{2}-0\right)$
$=\frac{\pi}{3}$

31. Question

Evaluate the following integrals
$\int_{0}^{\pi / 2} \frac{d x}{(\cos x+2 \sin x)}$

Answer

Let $I=\int_{0}^{\frac{\pi}{2}} \frac{1}{\cos x+2 \sin x} d x$
Using $\sin x=\frac{2 \tan \left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}$
And
$\cos x=\frac{1-\tan ^{2}\left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{2}{2}\right)}$,
we get
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{1}{\frac{1-\tan ^{2}\left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}+2 \frac{2 \tan \left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}} d x$
$=\int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2}\left(\frac{x}{2}\right)}{1-\tan ^{2}\left(\frac{x}{2}\right)+4 \tan \left(\frac{x}{2}\right)} d x$
Let $\tan \left(\frac{x}{2}\right)=t$
$\Rightarrow \frac{1}{2} \sec ^{2}\left(\frac{x}{2}\right) d x=d t$,
when $x=0, t=0$
and when $x=\frac{\pi}{2}, t=1$.
Hence,
$I=\int_{0}^{1} \frac{2}{1-t^{2}+4 t} d t$
$=-2 \int_{0}^{1} \frac{1}{t^{2}-4 t+4-5} d t$
$=-2 \int_{0}^{1} \frac{1}{(t-2)^{2}-5} d t$
Let $\mathrm{t}-2=\mathrm{u}$
$\Rightarrow \mathrm{dt}=\mathrm{du}$.
Also, when $\mathrm{t}=0, \mathrm{u}=-2$
and when $\mathrm{t}=1, \mathrm{u}=-1$.
$\Rightarrow I=-2 \int_{-2}^{-1} \frac{1}{u^{2}-5} d t$
$=-2 \times\left.\frac{1}{2 \sqrt{5}} \log _{e}\left|\frac{x-\sqrt{5}}{x+\sqrt{5}}\right|\right|_{-2} ^{-1}$
$\left(U \operatorname{sing} \int \frac{1}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log _{e}\left|\frac{x-a}{x+a}\right|\right)$
Hence,
$I=-\frac{1}{\sqrt{5}}\left(\log _{e}\left|\frac{-1-\sqrt{5}}{-1+\sqrt{5}}\right|-\log _{e}\left|\frac{-2-\sqrt{5}}{-2+\sqrt{5}}\right|\right)$
$=\frac{-1}{\sqrt{5}}\left(\log _{e}\left|\frac{\sqrt{5}+1}{\sqrt{5}-1}\right| \times\left|\frac{\sqrt{5}-2}{2+\sqrt{5}}\right|\right)$
$\left(U \operatorname{sing} \log _{e} a-\log _{e} b=\log _{e} \frac{a}{b}\right)$
$\Rightarrow I=\frac{-1}{\sqrt{5}}\left(\log _{e}\left|\frac{3-\sqrt{5}}{3+\sqrt{5}}\right|\right)$
$=\frac{-2}{\sqrt{5}}\left(\log _{e}\left(\frac{3-\sqrt{5}}{2}\right)\right)$
(Using $\left.\log _{e} a^{b}=b \log _{e} a\right)$

32. Question

Evaluate the following integrals
$\int_{0}^{\pi} \frac{d x}{(3+2 \sin x+\cos x)}$
Answer
Let $I=\int_{0}^{\pi} \frac{1}{3+\cos x+2 \sin x} d x$

Using $\sin x=\frac{2 \tan \left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}$
And
$\cos x=\frac{1-\tan ^{2}\left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}$,
we get
$\Rightarrow I=\int_{0}^{\pi} \frac{1}{3+\frac{1-\tan ^{2}\left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}+2 \frac{2 \tan \left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}} d x$
$=\int_{0}^{\pi} \frac{\sec ^{2}\left(\frac{x}{2}\right)}{4+2 \tan ^{2}\left(\frac{x}{2}\right)+4 \tan \left(\frac{x}{2}\right)} d x$
Let $\tan \left(\frac{x}{2}\right)=t$
$\Rightarrow \frac{1}{2} \sec ^{2}\left(\frac{x}{2}\right) d x=d t$,
when $x=0, t=0$
and when $x=\pi, \mathrm{t}=\infty$.
Hence,
$I=\int_{0}^{\infty} \frac{1}{(t+1)^{2}+1} d t$
Let $\mathrm{t}+1=\mathrm{u}$
$\Rightarrow d t=d u$.
Also, when $t=0, u=1$
and when $\mathrm{t}=\infty, \mathrm{u}=\infty$.
$I=\int_{1}^{\infty} \frac{1}{u^{2}+1} d t$
$=\left.\tan ^{-1} u\right|_{1} ^{\infty}$
$=\frac{\pi}{2}-\frac{\pi}{4}$
$=\frac{\pi}{4}$
33. Question

Evaluate the following integrals
$\int_{0}^{\pi / 4} \frac{\tan ^{3} x}{(1+\cos 2 x)} d x$

Answer

Let $I=\int_{0}^{\frac{\pi}{4}} \frac{\tan ^{3} x}{1+\cos 2 x} d x$
Using $1+\cos 2 x=2 \cos ^{2} x$, we get
$I=\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \tan ^{3} x \sec ^{2} x d x$
Let $\tan \mathrm{x}=\mathrm{t}$
$\Rightarrow \sec ^{2} x d x=d t$.
when $x=0, t=0$
and when $x=\frac{\pi}{4}, \mathrm{t}=1$.
$=\frac{1}{2} \int_{0}^{1} t^{3} d t=\left.\frac{t^{4}}{8}\right|_{0} ^{1}$
$=\frac{1}{8}$
34. Question

Evaluate the following integrals
$\int_{0}^{\pi / 2} \frac{\sin x \cos x}{\left(\cos ^{2} x+3 \cos x+2\right)} d x$

Answer

Let $I=\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\cos ^{2} x+3 \cos x+2} d x$
Let $\cos x=t$
$\Rightarrow-\sin x d x=d t$.
Also, when $x=0, t=1$
and when $x=\frac{\pi}{2}, \mathrm{t}=0$.
Hence,
$I=-\int_{1}^{0} \frac{t}{t^{2}+3 t+2} d t$
$=-\int_{1}^{0} \frac{2(t+1)-(t+2)}{(t+1)(t+2)} d t$
$=-\int_{1}^{0} \frac{2}{(t+2)} d t+\int_{1}^{0} \frac{1}{(t+1)} d t$
$\Rightarrow I=-\left.2 \log _{e}(t+2)\right|_{1} ^{0}+\left.\log _{e}(t+1)\right|_{1} ^{0}$
$=-2 \log _{e} 2+2 \log _{e} 3-\log _{e} 2$
Hence $I=\log _{e} 9-\log _{e} 8$
(Using blog${ }_{e} a=\log _{e} a^{b}$ and $\left.\log _{e} a+\log _{e} b=\log _{e} a b\right)$

35. Question

Evaluate the following integrals
$\int_{0}^{\pi / 2} \frac{\sin 2 x}{\left(\sin ^{4} x+\cos ^{4} x\right)} d x$

Answer

Let $I=\int_{0}^{\frac{\pi}{2}} \frac{\sin 2 x}{\sin ^{4} x+\cos ^{4} x} d x$
Using $\sin 2 x=2 \sin x \cos x$, we get
$I=\int_{0}^{\frac{\pi}{2}} \frac{2 \sin x \cos x}{\cos ^{4} x\left(\tan ^{4} x+1\right)} d x$

Let $\tan x=t$
$\Rightarrow \sec ^{2} x d x=d t$.
Also, when $x=0, t=0$
and when $x=\frac{\pi}{2}, \mathrm{t}=\infty$.
Hence, $2 \int_{0}^{\infty} \frac{t}{\left(t^{4}+1\right)} d t$
Let $x^{2}=t$
$\Rightarrow 2 \mathrm{xdx}=\mathrm{dt}$.
Also, when $\mathrm{x}=0, \mathrm{t}=0$
and when $\mathrm{x}=\infty, \mathrm{t}=\infty$.
Hence, $I=\int_{0}^{\infty} \frac{1}{1+t^{2}} d t$
$=\left.\tan ^{-1} t\right|_{0} ^{\infty}$
$=\frac{\pi}{2}$

36. Question

Evaluate the following integrals
$\int_{\pi / 3}^{\pi / 2} \frac{\sqrt{1+\cos x}}{(1-\cos x)^{5 / 2}} d x$

Answer

Let $I=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{5}{2}}} d x$
Using $1+\cos x=2 \cos ^{2}\left(\frac{x}{2}\right)$
And
$1-\cos x=2 \sin ^{2}\left(\frac{x}{2}\right)$,
we get
$I=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{2} \cos \left(\frac{x}{2}\right)}{4 \sqrt{2}\left(\sin \left(\frac{x}{2}\right)\right)^{5}} d x$
$=\frac{1}{4} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cot \left(\frac{x}{2}\right) \operatorname{cosec}^{4}\left(\frac{x}{2}\right) d x$
Let $\cot \left(\frac{x}{2}\right)=t$
$\Rightarrow-\frac{1}{2} \operatorname{cosec}^{2}\left(\frac{x}{2}\right) d x=d t$.
Also, when $x=\frac{\pi}{3}, t=\sqrt{3}$
and when $x=\frac{\pi}{2}, \mathrm{t}=1$
Hence,
$I=-\frac{1}{2} \int_{\sqrt{3}}^{1} t\left(1+t^{2}\right) d t$
$=-\left.\frac{1}{2} \frac{t^{2}}{2}\right|_{\sqrt{3}} ^{1}-\left.\frac{1}{2} \frac{t^{4}}{4}\right|_{\sqrt{3}} ^{1}$
$=\frac{1}{2}+1$
$=\frac{3}{2}$

37. Question

Evaluate the following integrals
$\int_{0}^{1}\left(\cos ^{-1} x\right)^{2} d x$

Answer

Let $I=\int_{0}^{1}\left(\cos ^{-1} x\right)^{2} d x$
Let $x=\cos t \Rightarrow d x=-\sin t d t$.
Also, when $\mathrm{x}=0, t=\frac{\pi}{2}$
and when $x=1, t=0$.
Hence, $I=-\int_{\frac{\pi}{2}}^{0} t^{2} \sin t d t$
Using integration by parts, we get
$I=-\left(t^{2} \times-\left.\cos t\right|_{\frac{\pi}{2}} ^{0}+2 \int_{\frac{\pi}{2}}^{0} t \cos t d t\right)$
$=-\left(0-0+2 t \times \sin t \left\lvert\, \begin{array}{l}0 \\ \frac{\pi}{2}\end{array}-2 \int_{\frac{\pi}{2}}^{0} \sin t d t\right.\right)$
$=-\left(-\pi+2 \operatorname{cost} \left\lvert\, \begin{array}{l}0 \\ \frac{\pi}{2}\end{array}\right.\right)$
Hence, $I=\pi-2$

38. Question

Evaluate the following integrals
$\int_{0}^{1} x\left(\tan ^{-1} x\right)^{2} d x$

Answer

Let $I=\int_{0}^{1} x\left(\tan ^{-1} x\right)^{2} d x$
Using integration by parts, we get
$I=\left.\frac{\left(\tan ^{-1} x\right)^{2} x^{2}}{2}\right|_{0} ^{1}-\int_{0}^{1} \frac{2 \tan ^{-1} x}{1+x^{2}} \times \frac{x^{2}}{2} d x$
$=\frac{\pi^{2}}{32}-0-\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} \times\left(1+x^{2}-1\right) d x$
$=\frac{\pi^{2}}{32}-\int_{0}^{1} \tan ^{-1} x d x+\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x$
Let $\tan ^{-1} \mathrm{x}=\mathrm{t}$
$\Rightarrow \frac{1}{1+x^{2}} d x=d t$.
When $\mathrm{x}=0, \mathrm{t}=0$ and when $\mathrm{x}=1, t=\frac{\pi}{4}$.
Hence
$I=\frac{\pi^{2}}{32}-\tan ^{-1} x \times\left. x\right|_{0} ^{1}+\int_{0}^{1} \frac{x}{1+x^{2}} d x+\int_{0}^{\frac{\pi}{4}} t d t$
$=\frac{\pi^{2}}{32}-\frac{\pi}{4}+\left.\frac{t^{2}}{2}\right|_{0} ^{\frac{\pi}{4}}+\int_{0}^{1} \frac{x}{1+x^{2}} d x$
Let $1+x^{2}=y$
$\Rightarrow 2 x d x=d y$.
Also, when $x=0, y=1$
and when $x=1, y=2$.
$I=\frac{\pi^{2}}{16}-\frac{\pi}{4}+\frac{1}{2} \int_{1}^{2} \frac{1}{y} d y$
$=\frac{\pi}{4}\left(\frac{\pi}{4}-1\right)+\left.\frac{1}{2} \log _{e} y\right|_{1} ^{2}$
$=\frac{\pi}{4}\left(\frac{\pi}{4}-1\right)+\frac{1}{2} \log _{e} 2$.

39. Question

Evaluate the following integrals
$\int_{0}^{1} \sin ^{-1} \sqrt{x} d x$

Answer

Let $I=\int_{0}^{1} \sin ^{-1} \sqrt{x} d x$
Let $\sqrt{ } \mathrm{x}=\mathrm{t}$
$\Rightarrow \frac{1}{2 \sqrt{x}} d x=d t$
or
$d x=2 t d t$.
When, $x=0, t=0$
and when $x=1, t=1$.
Hence,
$I=2 \int_{0}^{1} t \sin ^{-1} t d t$
Using integration by parts, we get
$I=2\left(\sin ^{-1} t \times\left.\frac{t^{2}}{2}\right|_{0} ^{1}-\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} \times \frac{t^{2}}{2} d t\right)$
$=\frac{\pi}{2}-\int_{0}^{1} \frac{t^{2}}{\sqrt{1-t^{2}}} d t$
Let $\mathrm{t}=\sin \mathrm{y}$
$\Rightarrow d t=\cos y d y$.
When $\mathrm{t}=0, \mathrm{y}=0$, when $\mathrm{t}=1, \mathrm{y}=\frac{\pi}{2}$.
$I=\frac{\pi}{2}-\int_{0}^{\frac{\pi}{2}} \sin ^{2} y d y$
Using, $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$, we get
$I=\frac{\pi}{2}-\int_{0}^{\frac{\pi}{2}} \cos ^{2} y d y$
Adding (1) and (2), we get
$2 I=\pi-\int_{0}^{\frac{\pi}{2}} d y$
$=\pi-\frac{\pi}{2}$
Hence,
$I=\frac{\pi}{4}$
40. Question

Evaluate the following integrals
$\int_{0}^{a} \sin ^{-1} \sqrt{\frac{x}{a+x}} d x$

Answer

Let $I=\int_{0}^{a} \sin ^{-1} \sqrt{\frac{x}{a+x}} d x$
Let $x=a \tan ^{2} y$
$\Rightarrow d x=2 a \tan y \sec ^{2} y d y$.
Also, when $x=0, y=0$
and when $\mathrm{x}=\mathrm{a}, y=\frac{\pi}{4}$
Hence $I=\int_{0}^{\frac{\pi}{4}} \sin ^{-1}\left(\sqrt{\frac{a^{2+a n} 2}{a+a \tan ^{2} y}}\right) 2 a \tan y \sec ^{2} y d y=2 a \int_{0}^{\frac{\pi}{4}} y \tan y \sec ^{2} y d y$
Using integration by parts, we get
$I=2 a\left(y \int_{0}^{\frac{\pi}{4}}\right.$ tanysec $\left.^{2} y d y-\int_{0}^{\frac{\pi}{4}}\left(\int \tan ^{2} \sec ^{2} y d y\right) d y\right)$
Let $\tan \mathrm{y}=\mathrm{t}$
$\Rightarrow \sec ^{2} y d y=d t$.
Also, when $\mathrm{y}=0, \mathrm{t}=0$
and when $y=\frac{\pi}{4}, \mathrm{t}=1$.
Also, $\mathrm{y}=\tan ^{-1} \mathrm{t}$
$\Rightarrow d y=\frac{d t}{1+t^{2}}$
$I=2 a\left(\left.\tan ^{-1} t \int t d t\right|_{0} ^{1}-\int_{0}^{1}\left(\int t d t\right) \frac{d t}{1+t^{2}}\right)$
$=2 a\left(\left.\frac{\tan ^{-1} t x t^{2}}{2}\right|_{0} ^{1}\right)-2 a \int_{0}^{1} \frac{t^{2}}{2} \frac{d t}{1+t^{2}}$
$=\frac{a \pi}{4}-a \int_{0}^{1} \frac{t^{2}}{1+t^{2}} d t$
Let $I^{\prime}=\int_{0}^{1} \frac{t^{2}}{1+t^{2}} d t$
$=\int_{0}^{1} \frac{1+t^{2}-1}{1+t^{2}} d t$
$=\int_{0}^{1} d t-\int_{0}^{1} \frac{1}{1+t^{2}} d t$
$=\left.t\right|_{0} ^{1}-\left.\tan ^{-1} t\right|_{0} ^{1}$
Hence $I^{I}=1-\frac{\pi}{4}$
Substituting value of I' in I, we get
$I=\frac{a \pi}{4}-a\left(1-\frac{\pi}{4}\right)$
$=a\left(\frac{\pi}{2}-1\right)$

41. Question

Evaluate the following integrals
$\int_{0}^{9} \frac{d x}{(1+\sqrt{x})}$
Answer

Let $I=\int_{0}^{9} \frac{1}{1+\sqrt{x}} d x$
Let $\sqrt{ } \mathrm{x}=\mathrm{u}$
$\Rightarrow \frac{1}{2 \sqrt{x}} d x=d u$
$=\frac{1}{2 u} d x$ or $\mathrm{dx}=2 \mathrm{udu}$.
Also, when $\mathrm{x}=0, \mathrm{u}=0$ and $\mathrm{x}=9, \mathrm{u}=3$.
Hence,
$I=\int_{0}^{3} \frac{2 u}{1+u} d u$
$=2\left(\int_{0}^{3} \frac{u+1-1}{1+u} d u\right)$
$=2\left(\int_{0}^{3} d u-\int_{0}^{3} \frac{1}{1+u} d u\right)$
$I=\left.2 u\right|_{0} ^{3}-\left.\log _{e}(1+u)\right|_{0} ^{3}$
$=6-2 \log _{e} 4$
$=6-4 \log _{e} 2$
(Using $\log _{e} a^{b}=b \log _{e} a$)

42. Question

Evaluate the following integrals
$\int_{0}^{1} \mathrm{x}^{3} \sqrt{1+3 \mathrm{x}^{4}} d \mathrm{x}$

Answer

Let $I=\int_{0}^{1} x^{3} \sqrt{1+3 x^{4}} d x$
Let $1+3 x^{4}=t$
$\Rightarrow 12 x^{3} \mathrm{dx}=\mathrm{dt}$.
Also, when $\mathrm{x}=0, \mathrm{t}=1$ and when $\mathrm{x}=1, \mathrm{t}=4$.
$I=\frac{1}{12} \int_{1}^{4} \sqrt{t} d t$
$=\frac{1}{12} \times\left.\frac{2}{3} t^{\frac{3}{2}}\right|_{1} ^{4}$
$=\frac{7}{18}$

43. Question

Evaluate the following integrals
$\int_{0}^{1} \frac{\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}} d x$

Answer

$$
\text { Let } I=\int_{0}^{1} \frac{1-x^{2}}{\left(1+x^{2}\right)^{2}} d x
$$

Let $I^{I}=\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{2}} d x$
Let $\mathrm{x}=\tan \mathrm{t}$
$\Rightarrow d x=\sec ^{2} t d t$.
Also when $\mathrm{x}=0, \mathrm{t}=0$ and when $\mathrm{x}=1, t=\frac{\pi}{4}$.
Hence, $I^{\prime}=\int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} t}{\left(1+\tan ^{2} t\right)^{2}} d t$
$=\int_{0}^{\frac{\pi}{4}} \cos ^{2} t d t$
Using $\cos ^{2} t=\frac{1+\cos 2 t}{2}$, we get
$I^{I}=\int_{0}^{\frac{\pi}{4}}\left(\frac{1+\cos 2 t}{2}\right) d t$
$=\left.\frac{t}{2}\right|_{0} ^{\frac{\pi}{4}}+\left.\frac{\sin 2 t}{4}\right|_{0} ^{\frac{\pi}{4}}$
$=\frac{\pi+2}{8}$
Let $I^{I f}=\int_{0}^{1} \frac{x^{2}}{\left(1+x^{2}\right)^{2}} d x$
$=\int_{0}^{1} x \times \frac{x}{\left(1+x^{2}\right)^{2}} d x$
$=x \int_{0}^{1} \frac{x}{\left(1+x^{2}\right)^{2}} d x-\int_{0}^{1}\left(\int \frac{x}{\left(1+x^{2}\right)^{2}} d x\right) d x$
Let $1+x^{2}=t \Rightarrow 2 x d x=d t$.
When $x=0, t=1$ and when $x=1, t=2$.
$I^{\prime \prime}=\sqrt{t-1} \times \frac{1}{2} \int_{1}^{2} \frac{1}{t^{2}} d t-\int_{1}^{2} \frac{\left(\frac{1}{2} \int \frac{1}{t^{2}} d t\right) d t}{2 \sqrt{t-1}}$
$=-\frac{\sqrt{t-1}}{2} \times\left.\frac{1}{t}\right|_{1} ^{2}+\int_{1}^{2} \frac{d t}{4 t \sqrt{t-1}}$
$=-\frac{1}{4}+\int_{1}^{2} \frac{d t}{4 t \sqrt{t-1}}$
Substituting $t=1+x^{2}$
$\Rightarrow 2 x d x=\mathrm{dt}$.
When $t=1, x=0$ and when $t=2, x=1$.
$I^{\prime \prime}=-\frac{1}{4}+\int_{0}^{1} \frac{2 x d x}{4 x\left(1+x^{2}\right)}$
$=-\frac{1}{4}+\left.\frac{1}{2} \tan ^{-1} x\right|_{0} ^{1}$
$=\frac{\pi-2}{8}$
Hence,
$I=\frac{\pi+2}{8}-\frac{\pi-2}{8}$
$=\frac{1}{2}$

44. Question

Evaluate the following integrals
$\int_{1}^{2} \frac{d x}{(x+1) \sqrt{x^{2}-1}}$

Answer

Let $I=\int_{1}^{2} \frac{1}{(x+1) \sqrt{x^{2}-1}} d x$
Let $\mathrm{x}=\mathrm{sect}$
$\Rightarrow d x=\sec t \tan t d t$.
Also,
when $\mathrm{x}=1, \mathrm{t}=0$ and when $\mathrm{x}=2, t=\frac{\pi}{3}$
Hence,
$I=\int_{0}^{\frac{\pi}{3}} \frac{\operatorname{secttant}}{(\sec t+1) \sqrt{\sec ^{2} t-1}} d t$
$=\int_{0}^{\frac{\pi}{3}} \frac{\operatorname{sect}}{(\operatorname{sect}+1)} d t$
$=\int_{0}^{\frac{\pi}{3}} \frac{1}{(1+\cos t)} d t$
Using $1+\operatorname{cost}=2 \cos ^{2}\left(\frac{t}{2}\right)$, we get
$I=\frac{1}{2} \int_{0}^{\frac{\pi}{3}} \sec ^{2}\left(\frac{t}{2}\right) d t$
$=\left.\tan \left(\frac{t}{2}\right)\right|_{0} ^{\frac{\pi}{3}}$
$=\frac{1}{\sqrt{3}}$
45. Question

Evaluate the following integrals
$\int_{0}^{\pi / 2}(\sqrt{\tan x}+\sqrt{\cot x}) d x$

Answer

Let $I=\int_{0}^{\frac{\pi}{2}}(\sqrt{\tan x}+\sqrt{\cot x}) d x=\int_{0}^{\frac{\pi}{2} \sin x+\cos x} \sqrt[{\sqrt{\sin x \cos x}}]{ } d x$
Let $\sin x-\cos x=t$
$\Rightarrow(\cos x+\sin x) d x=d t$.
When $\mathrm{x}=0, \mathrm{t}=-1$ and $x=\frac{\pi}{2}, \mathrm{t}=1$.
Also, $\mathrm{t}^{2}=(\sin \mathrm{x}-\cos \mathrm{x})^{2}$
$=\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x$
$=1-2 \sin x \cos x$
or
$\sin \cos x=\frac{1-t^{2}}{2}$
Hence $I=\sqrt{2} \int_{-1}^{1} \frac{1}{\sqrt{1-t^{2}}} d t$
Let $t=\sin y$
$\Rightarrow d t=\cos y d y$.
Also, when $\mathrm{t}=-1, y=-\frac{\pi}{2}$
and when $\mathrm{t}=1, y=\frac{\pi}{2}$.
$I=\sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos y}{\sqrt{1-\sin ^{2} y}} d y$
$=\sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d y=\pi \sqrt{2}$

46. Question

Evaluate the following integrals
$\int_{2}^{3} \frac{(2-x)}{\sqrt{5 x-6-x^{2}}} d x$

Answer

Let $I=\int_{2}^{3} \frac{2-x}{\sqrt{5 x-6-x^{2}}} d x$
Let,
$2-x=a \frac{d}{d x}\left(5 x-6-x^{2}\right)+b$
$=-2 a x+5 a+b$
Hence $-2 a=-1$ and $5 a+b=2$.
Solving these equations,
we get $a=\frac{1}{2}$ and $b=-\frac{1}{2}$.
We get,
$I=\frac{1}{2} \int_{2}^{3} \frac{-2 x+5}{\sqrt{5 x-6-x^{2}}} d x-\frac{1}{2} \int_{2}^{3} \frac{1}{\sqrt{5 x-6-x^{2}}} d x$
Let $I^{\prime}=\int_{2}^{3} \frac{-2 x+5}{\sqrt{5 x-6-x^{2}}} d x$
Let $5 x-6-x^{2}=t$
$\Rightarrow(5-2 \mathrm{x}) \mathrm{dx}=\mathrm{dt}$.
When $\mathrm{x}=2, \mathrm{t}=0$ and when $\mathrm{x}=3, \mathrm{y}=0$.
Hence $I^{r}=\int_{0}^{0} \frac{1}{\sqrt{t}} d t=0$
$\left(\right.$ Since $\left.\int_{a}^{a} f(x) d x=0\right)$
Let,
$I^{\prime \prime}=\int_{2}^{3} \frac{1}{\sqrt{5 x-6-x^{2}}} d x$
$=\int_{2}^{3} \frac{1}{\sqrt{\frac{1}{4}-\left(x-\frac{5}{2}\right)^{2}}}$
$=\sin ^{-1}\left(\frac{x-\frac{5}{2}}{\frac{1}{2}}\right)$
$=\left.\sin ^{-1}(2 x-5)\right|_{2} ^{3}$
$=\pi$
Hence,
$I=\frac{1}{2} \times 0-\frac{1}{2} \times \pi$
$=-\frac{\pi}{2}$

47. Question

Evaluate the following integrals
$\int_{\pi / 4}^{\pi / 2} \frac{\cos \theta}{\left(\cos \frac{\theta}{2}+\sin \frac{\theta}{2}\right)^{3}} d \theta$

Answer

Let $I=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos x}{\left(\cos \left(\frac{x}{2}\right)+\sin \left(\frac{x}{2}\right)\right)^{3}} d x$
Using $\cos x=\cos ^{2}\left(\frac{x}{2}\right)-\sin ^{2}\left(\frac{x}{2}\right)$, we get
$I=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos \left(\frac{x}{2}\right)-\sin \left(\frac{x}{2}\right)}{\left(\cos \left(\frac{x}{2}\right)+\sin \left(\frac{x}{2}\right)\right)^{2}} d x$
Let $\cos \left(\frac{x}{2}\right)+\sin \left(\frac{x}{2}\right)=t$
$\Rightarrow \frac{1}{2}\left(\cos \left(\frac{x}{2}\right)-\sin \left(\frac{x}{2}\right)\right) d x=d t$.
Also, when $x=\frac{\pi}{4}, t=\cos \left(\frac{\pi}{8}\right)+\sin \left(\frac{\pi}{8}\right)=\alpha($ Let $)$
and when $x=\frac{\pi}{2}, t=\sqrt{2}$
$I=\int_{a}^{\sqrt{2}} \frac{2}{t^{2}} d t$
$=-2 \times\left.\frac{1}{t}\right|_{\alpha} ^{\sqrt{2}}$
$=\frac{2}{\cos \left(\frac{\pi}{8}\right)+\sin \left(\frac{\pi}{8}\right)}-\sqrt{2}$
48. Question

Evaluate the following integrals
$\int_{0}^{(\pi / 2)^{1 / 3}} x^{2} \sin x^{3} d x$

Answer

Let $I=\int_{0}^{\left(\frac{\pi}{2}\right)^{\frac{1}{3}}} x^{2} \sin \left(x^{3}\right) d x$
Let $x^{3}=t$
$\Rightarrow 3 x^{2}=d t$.
Also, when $\mathrm{x}=0, \mathrm{t}=0$ and when $x=\left(\frac{\pi}{2}\right)^{\frac{1}{3}}, t=\frac{\pi}{2}$.
Hence, $I=\frac{1}{3} \int_{0}^{\frac{\pi}{2}} \sin (t) d t$
$=\left.\frac{-1}{3} \operatorname{cost}\right|_{0} ^{\frac{\pi}{2}}$
$=-\frac{1}{3}(0-1)$
$=\frac{1}{3}$
49. Question

Evaluate the following integrals
$\int_{1}^{2} \frac{d x}{x(1+\log x)^{2}}$

Answer

Let $I=\int_{1}^{2} \frac{1}{x\left(1+\log _{e} x\right)^{2}} d x$
Let $1+\log _{e} x=t$
$\Rightarrow \frac{1}{x} d x=d t$.
Also, when $\mathrm{x}=1, \mathrm{t}=1$ and when $\mathrm{x}=2, t=1+\log _{e} 2$
Hence $I=\int_{1}^{1+\log _{e} 2} \frac{1}{t^{2}} d t$
$=-\left.\frac{1}{t}\right|_{1} ^{1+\log _{e} 2}$
$=1-\frac{1}{1+\log _{e} 2}$
$=\frac{\log _{e} 2}{1+\log _{e} 2}$
50. Question

Evaluate the following integrals
$\int_{\pi / 6}^{\pi / 2} \frac{\operatorname{cosec} x \cot x}{1+\operatorname{cosec}^{2} x} d x$

Answer

Let $I=\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\operatorname{cosec} x \cot x}{1+\operatorname{cosec}^{2} x} d x=\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos x}{1+\sin ^{2} x} d x$
Let $\sin x=t$
$\Rightarrow \cos x d x=d t$.
Also, when $x=\frac{\pi}{6}, t=\frac{1}{2}$ and when $x=\frac{\pi}{2}, \mathrm{t}=1$.
$I=\int_{\frac{1}{2}}^{1} \frac{1}{1+t^{2}} d t$
$=\tan ^{-1} t \left\lvert\, \begin{aligned} & \frac{1}{1} \\ & \frac{1}{2}\end{aligned}\right.$
$=\tan ^{-1} 1-\tan ^{-1}\left(\frac{1}{2}\right)$
$=\tan ^{-1}\left(\frac{1-\frac{1}{2}}{1+\frac{1}{2}}\right)$
$=\tan ^{-1}\left(\frac{1}{3}\right)$
(Using $\tan ^{-1} a-\tan ^{-1} b=\tan ^{-1}\left(\frac{a-b}{1+a b}\right)$)

Exercise 16C

1. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\cos x}{(\sin x+\cos x)} d x=\frac{\pi}{4}$

Answer

$y=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{2 \cos x}{\sin x+\cos x} d x$
$=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\cos x+\cos x-\sin x+\sin x}{\sin x+\cos x} d x$
$=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1+\frac{\cos x-\sin x}{\sin x+\cos x} d x$
$=\frac{1}{2}\left((x)_{0}^{\frac{\pi}{2}}+\int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{\sin x+\cos x} d x\right)$
Let, $\sin x+\cos x=t$
$\Rightarrow(\cos x-\sin x) d x=d t$
At $x=0, t=1$
At $x=\pi / 2, t=1$
$y=\frac{1}{2}\left(\frac{\pi}{2}+\int_{1}^{1} \frac{1}{t} d t\right)$
$y=\frac{1}{2}\left(\frac{\pi}{2}+(\ln t)_{1}^{1}\right.$
$y=\frac{\pi}{4}$

2. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{(\sqrt{\sin x}+\sqrt{\cos x})} d x=\frac{\pi}{4}$

Answer

$y=\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{(\sqrt{\sin x}+\sqrt{\cos x})} d x \ldots$ (1)
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}}{\left(\sqrt{\sin \left(\frac{\pi}{2}-x\right)}+\sqrt{\cos \left(\frac{\pi}{2}-x\right)}\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{(\sqrt{\cos x}+\sqrt{\sin x})} d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{(\sqrt{\sin x}+\sqrt{\cos x})} d x+\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{(\sqrt{\cos x}+\sqrt{\sin x})} d x$
$=\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}+\sqrt{\cos x}}{(\sqrt{\sin x}+\sqrt{\cos x})} d x$
$=\int_{0}^{\pi / 2} 1 d x$
$=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$

3 A. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\sin ^{3} x}{\left(\sin ^{3} x+\cos ^{3} x\right)} d x=\frac{\pi}{4}$

Answer

$y=\int_{0}^{\pi / 2} \frac{\sin ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x \ldots(1)$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\sin ^{3}\left(\frac{\pi}{2}-x\right)}{\sin ^{3}\left(\frac{\pi}{2}-x\right)+\cos ^{3}\left(\frac{\pi}{2}-x\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\cos ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x$.
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\sin ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x+\int_{0}^{\pi / 2} \frac{\cos ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x$
$=\int_{0}^{\pi / 2} \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x$
$=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$

3 B. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\cos ^{3} x d x}{\left(\sin ^{3} x+\cos ^{3} x\right)}=\frac{\pi}{4}$

Answer

$y=\int_{0}^{\pi / 2} \frac{\cos ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x$.
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\cos ^{3}\left(\frac{\pi}{2}-x\right)}{\sin ^{3}\left(\frac{\pi}{2}-x\right)+\cos ^{3}\left(\frac{\pi}{2}-x\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\sin ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\cos ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x+\int_{0}^{\pi / 2} \frac{\sin ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x$
$2 y=\int_{0}^{\pi / 2} \frac{\cos ^{3} x+\sin ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x$
$2 y=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$

4 A. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\sin ^{7} x}{\left(\sin ^{7} x+\cos ^{7} x\right)} d x=\frac{\pi}{4}$

Answer

$y=\int_{0}^{\pi / 2} \frac{\sin ^{7} x}{\sin ^{7} x+\cos ^{7} x} d x$.
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\sin ^{7}\left(\frac{\pi}{2}-x\right)}{\sin ^{7}\left(\frac{\pi}{2}-x\right)+\cos ^{7}\left(\frac{\pi}{2}-x\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\cos ^{7} x}{\sin ^{7} x+\cos ^{7} x} d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\sin ^{7} x}{\sin ^{7} x+\cos ^{7} x} d x+\int_{0}^{\pi / 2} \frac{\cos ^{7} x}{\sin ^{7} x+\cos ^{7} x} d x$
$2 y=\int_{0}^{\pi / 2} \frac{\sin ^{7} x+\cos ^{7} x}{\sin ^{7} x+\cos ^{7} x} d x$
$2 y=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$

4 B. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\cos ^{4} x}{\left(\sin ^{4} x+\cos ^{4} x\right)} d x=\frac{\pi}{4}$

Answer

$y=\int_{0}^{\pi / 2} \frac{\cos ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x \ldots$ (1)
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\cos ^{4}\left(\frac{\pi}{2}-x\right)}{\sin ^{4}\left(\frac{\pi}{2}-x\right)+\cos ^{4}\left(\frac{\pi}{2}-x\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\sin ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\cos ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x+\int_{0}^{\pi / 2} \frac{\sin ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x$
$2 y=\int_{0}^{\pi / 2} \frac{\cos ^{4} x+\sin ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x$
$2 y=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$

5. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\cos ^{4} x}{\left(\sin ^{4} x+\cos ^{4} x\right)} d x=\frac{\pi}{4}$
Answer
$y=\int_{0}^{\pi / 2} \frac{\cos ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x$.
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\cos ^{4}\left(\frac{\pi}{2}-x\right)}{\sin ^{4}\left(\frac{\pi}{2}-x\right)+\cos ^{4}\left(\frac{\pi}{2}-x\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\sin ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\cos ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x+\int_{0}^{\pi / 2} \frac{\sin ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x$
$2 y=\int_{0}^{\pi / 2} \frac{\cos ^{4} x+\sin ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x$
$2 y=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$

6. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\cos ^{1 / 4} x}{\left(\sin ^{1 / 4} x+\cos ^{1 / 4} x\right)} d x=\frac{\pi}{4}$

Answer

$y=\int_{0}^{\pi / 2} \frac{\cos ^{\frac{1}{4} x}}{\sin ^{\frac{1}{4} x+\cos ^{4} x}} d x$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\cos ^{\frac{1}{4}}\left(\frac{\pi}{2}-x\right)}{\sin ^{\frac{1}{4}}\left(\frac{\pi}{2}-x\right)+\cos ^{\frac{1}{4}}\left(\frac{\pi}{2}-x\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\sin ^{\frac{1}{4}} x}{\sin ^{\frac{1}{4} x+\cos ^{\frac{1}{4}} x}} d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\cos ^{\frac{1}{4}} x}{\sin ^{\frac{1}{4}} x+\cos ^{\frac{1}{4}} x} d x+\int_{0}^{\pi / 2} \frac{\sin ^{\frac{1}{4}} x}{\sin ^{\frac{1}{4}} x+\cos ^{\frac{1}{4}} x} d x$
$2 y=\int_{0}^{\pi / 2} \frac{\cos ^{\frac{1}{4}} x+\sin ^{\frac{1}{4}} x}{\sin ^{\frac{1}{4}} x+\cos ^{\frac{1}{4}} x} d x$
$2 y=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$

7. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\sin ^{3 / 2} x}{\left(\sin ^{3 / 2} x+\cos ^{3 / 2} x\right)} d x=\frac{\pi}{4}$

Answer

$y=\int_{0}^{\pi / 2} \frac{\sin ^{\frac{3}{2} x}}{\sin ^{\frac{3}{2} x} x+\cos \frac{3}{2} x} d x \ldots$ (1)
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\sin ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)}{\sin ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)+\cos ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\cos ^{\frac{3}{2} x}}{\sin ^{\frac{3}{2} x} x+\cos ^{\frac{3}{2} x}} d x$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\sin ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x+\int_{0}^{\pi / 2} \frac{\cos ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x$
$2 y=\int_{0}^{\pi / 2} \frac{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x$
$2 y=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$

8. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\sin ^{n} x}{\left(\sin ^{n} x+\cos ^{n} x\right)} d x=\frac{\pi}{4}$

Answer

$y=\int_{0}^{\pi / 2} \frac{\sin ^{n} x}{\sin ^{n} x+\cos ^{n} x} d x$.
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\sin ^{n}\left(\frac{\pi}{2}-x\right)}{\sin ^{n}\left(\frac{\pi}{2}-x\right)+\cos ^{n}\left(\frac{\pi}{2}-x\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\cos ^{n} x}{\sin ^{n} x+\cos ^{n} x} d x$
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\sin ^{n} x}{\sin ^{n} x+\cos ^{n} \chi} d x+\int_{0}^{\pi / 2} \frac{\cos ^{n} x}{\sin ^{n} x+\cos ^{n} x} d x$
$2 y=\int_{0}^{\pi / 2} \frac{\sin ^{n} x+\cos ^{n} x}{\sin ^{n} x+\cos ^{n} x} d x$
$2 y=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$

9. Question

Prove that

$$
\int_{0}^{\pi / 2} \frac{\sqrt{\tan x}}{(\sqrt{\tan x}+\sqrt{\cot x})} d x=\frac{\pi}{4}
$$

Answer

$y=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\frac{\sin x}{\cos x}}}{\sqrt{\frac{\sin x}{\cos x}}+\sqrt{\frac{\cos x}{\sin x}}} d x$
$y=\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x+\cos x} d x$.
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\sin \left(\frac{\pi}{2}-x\right)}{\sin \left(\frac{\pi}{2}-x\right)+\cos \left(\frac{\pi}{2}-x\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\cos x}{\sin x+\cos x} d x$
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\sin x}{\sin x+\cos x} d x+\int_{0}^{\pi / 2} \frac{\cos x}{\sin x+\cos x} d x$
$2 y=\int_{0}^{\pi / 2} \frac{\sin x+\cos x}{\sin x+\cos x} d x$
$2 y=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$
10. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\sqrt{\cot x}}{(\sqrt{\tan x}+\sqrt{\cot x})} d x=\frac{\pi}{4}$

Answer

$y=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\frac{\cos x}{\sin x}}}{\sqrt{\frac{\sin x}{\cos x}+\sqrt{\frac{\cos x}{\sin x}}}} d x$
$y=\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sin x+\cos x} d x \ldots$ (1)
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\cos \left(\frac{\pi}{2}-x\right)}{\sin \left(\frac{\pi}{2}-x\right)+\cos \left(\frac{\pi}{2}-x\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\sin x}{\sin x+\cos x} d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\cos x}{\sin x+\cos x} d x+\int_{0}^{\pi / 2} \frac{\sin x}{\sin x+\cos x} d x$
$2 y=\int_{0}^{\pi / 2} \frac{\sin x+\cos x}{\sin x+\cos x} d x$
$2 y=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$
11. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\mathrm{dx}}{(1+\tan \mathrm{x})}=\frac{\pi}{4}$

Answer

$y=\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\frac{\sin x}{\cos x}} d x$
$y=\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sin x+\cos x} d x$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\cos \left(\frac{\pi}{2}-x\right)}{\sin \left(\frac{\pi}{2}-x\right)+\cos \left(\frac{\pi}{2}-x\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\sin x}{\sin x+\cos x} d x$
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\cos x}{\sin x+\cos x} d x+\int_{0}^{\pi / 2} \frac{\sin x}{\sin x+\cos x} d x$
$2 y=\int_{0}^{\pi / 2} \frac{\sin x+\cos x}{\sin x+\cos x} d x$
$2 y=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$
12. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\mathrm{dx}}{(1+\cot \mathrm{x})}=\frac{\pi}{4}$

Answer

$y=\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\frac{\cos x}{\sin x}} d x$
$y=\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x+\cos x} d x$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\sin \left(\frac{\pi}{2}-x\right)}{\sin \left(\frac{\pi}{2}-x\right)+\cos \left(\frac{\pi}{2}-x\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\cos x}{\sin x+\cos x} d x \ldots(2)$
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\sin x}{\sin x+\cos x} d x+\int_{0}^{\pi / 2} \frac{\cos x}{\sin x+\cos x} d x$
$2 y=\int_{0}^{\pi / 2} \frac{\sin x+\cos x}{\sin x+\cos x} d x$
$2 y=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$

13. Question

Prove that
$\int_{0}^{\pi / 2} \frac{d x}{\left(1+\tan ^{3} x\right)}=\frac{\pi}{4}$

Answer

$y=\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\frac{\sin ^{3} x}{\cos ^{3} x}} d x$
$y=\int_{0}^{\pi / 2} \frac{\cos ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x \ldots$ (1)
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\cos ^{3}\left(\frac{\pi}{2}-x\right)}{\sin ^{3}\left(\frac{\pi}{2}-x\right)+\cos ^{3}\left(\frac{\pi}{2}-x\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\sin ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x \ldots(2)$
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\cos ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x+\int_{0}^{\pi / 2} \frac{\sin ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x$
$2 y=\int_{0}^{\pi / 2} \frac{\cos ^{3} x+\sin ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x$
$2 y=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$
14. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\mathrm{dx}}{\left(1+\cot ^{3} \mathrm{x}\right)}=\frac{\pi}{4}$

Answer

$y=\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\frac{\cos ^{3} x}{\sin ^{3} x}} d x$
$y=\int_{0}^{\pi / 2} \frac{\sin ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x \ldots(1)$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\sin ^{3}\left(\frac{\pi}{2}-x\right)}{\sin ^{3}\left(\frac{\pi}{2}-x\right)+\cos ^{3}\left(\frac{\pi}{2}-x\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\cos ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\sin ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x+\int_{0}^{\pi / 2} \frac{\cos ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x$
$2 y=\int_{0}^{\pi / 2} \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x$
$2 y=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$
15. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\mathrm{dx}}{(1+\sqrt{\tan \mathrm{x}})}=\frac{\pi}{4}$

Answer

$y=\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\sqrt{\frac{\sin x}{\cos x}}} d x$
$y=\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{(\sqrt{\sin x}+\sqrt{\cos x})} d x$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\sqrt{\cos \left(\frac{\pi}{2}-x\right)}}{\left(\sqrt{\sin \left(\frac{\pi}{2}-x\right)}+\sqrt{\cos \left(\frac{\pi}{2}-x\right)}\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{(\sqrt{\cos x}+\sqrt{\sin x})} d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{(\sqrt{\sin x}+\sqrt{\cos x})} d x+\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{(\sqrt{\cos x}+\sqrt{\sin x})} d x$
$2 y=\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}+\sqrt{\cos x}}{(\sqrt{\sin x}+\sqrt{\cos x})} d x$
$2 y=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$

16. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\sqrt{\cot x}}{(1+\sqrt{\cot x})} d x=\frac{\pi}{4}$

Answer

$y=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\frac{\cos x}{\sin x}}}{1+\sqrt{\frac{\cos x}{\sin x}}} d x$
$y=\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{(\sqrt{\sin x}+\sqrt{\cos x})} d x$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\sqrt{\cos \left(\frac{\pi}{2}-x\right)}}{\left(\sqrt{\sin \left(\frac{\pi}{2}-x\right)}+\sqrt{\cos \left(\frac{\pi}{2}-x\right)}\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{(\sqrt{\cos x}+\sqrt{\sin x})} d x$.
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{(\sqrt{\sin x}+\sqrt{\cos x})} d x+\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{(\sqrt{\cos x}+\sqrt{\sin x})} d x$
$2 y=\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}+\sqrt{\cos x}}{(\sqrt{\sin x}+\sqrt{\cos x})} d x$
$2 y=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$

17. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\sqrt{\tan x}}{(1+\sqrt{\tan x})} d x=\frac{\pi}{4}$

Answer

$y=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\frac{\sin x}{\cos x}}}{1+\sqrt{\frac{\sqrt{\sin x}}{\cos x}}} d x$
$y=\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{(\sqrt{\sin x}+\sqrt{\cos x})} d x \ldots$ (1)
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}}{\left(\sqrt{\sin \left(\frac{\pi}{2}-x\right)}+\sqrt{\cos \left(\frac{\pi}{2}-x\right)}\right)} d x$
$y=\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{(\sqrt{\cos x}+\sqrt{\sin x})} d x$.
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{(\sqrt{\sin x}+\sqrt{\cos x})} d x+\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{(\sqrt{\cos x}+\sqrt{\sin x})} d x$
$2 y=\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}+\sqrt{\cos x}}{(\sqrt{\sin x}+\sqrt{\cos x})} d x$
$2 y=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$
18. Question

Prove that
$\int_{0}^{\pi / 2} \frac{(\sin x-\cos x)}{(1+\sin x \cos x)} d x=0$
$y=\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x \ldots(1)$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\frac{\pi}{2}} \frac{\sin \left(\frac{\pi}{2}-x\right)-\cos \left(\frac{\pi}{2}-x\right)}{1+\sin \left(\frac{\pi}{2}-x\right) \cos \left(\frac{\pi}{2}-x\right)} d x$
$y=\int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{1+\cos x \sin x} d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x+\int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{1+\cos x \sin x} d x$
$2 y=\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x+\cos x-\sin x}{1+\cos x \sin x} d x$
$2 y=\int_{0}^{\frac{\pi}{2}} 0 d x$
$y=0$

19. Question

Prove that
$\int_{0}^{1} x(1-x)^{5} d x=\frac{1}{42}$

Answer

$y=\int_{0}^{1} x(1-x)^{5} d x$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{1}(1-x) x^{5} d x$
$y=\int_{0}^{1} x^{5}-x^{6} d x$
$y=\left(\frac{x^{6}}{6}-\frac{x^{7}}{7}\right)_{0}^{1}$
$y=\frac{1}{6}-\frac{1}{7}$
$=\frac{1}{42}$
20. Question

Prove that
$\int_{0}^{2} \mathrm{x} \sqrt{2-\mathrm{x}} \mathrm{dx}=\frac{16 \sqrt{2}}{15}$

Answer

$y=\int_{0}^{2} x \sqrt{2-x} d x$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{2}(2-x) \sqrt{x} d x$
$y=\int_{0}^{2} 2 x^{\frac{1}{2}}-x^{\frac{3}{2}} d x$
$y=\left(2 \frac{x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\right)_{0}^{2}$
$y=\frac{8 \sqrt{2}}{3}-\frac{8 \sqrt{2}}{5}=\frac{16 \sqrt{2}}{15}$

21. Question

Prove that
$\int_{0}^{\pi} x \cos ^{2} x d x=\frac{\pi^{2}}{4}$

Answer

$y=\int_{0}^{\pi} x \cos ^{2} x d x$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi}(\pi-x) \cos ^{2}(\pi-x) d x$
$y=\int_{0}^{\pi} \pi \cos ^{2} x-x \cos ^{2} x d x$
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi} x \cos ^{2} x d x+\int_{0}^{\pi} \pi \cos ^{2} x-x \cos ^{2} x d x$
$2 y=\int_{0}^{\pi} \pi \cos ^{2} x d x$
$y=\frac{\pi}{2} \int_{0}^{\pi} \frac{1+\cos 2 x}{2} d x$
$y=\frac{\pi}{2}\left(\frac{x}{2}+\frac{\sin 2 x}{4}\right)_{0}^{\pi}$
$y=\frac{\pi}{2}\left(\frac{\pi}{2}+\frac{\sin 2 \pi}{4}\right)=\frac{\pi^{2}}{4}$

22. Question

Prove that
$\int_{0}^{\pi} \frac{x \tan x}{(\sec x \operatorname{cosec} x)} d x=\frac{\pi^{2}}{4}$

Answer

$y=\int_{0}^{\pi} \frac{x \tan x}{\sec x \operatorname{cosec} x} d x$.
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi} \frac{(\pi-x) \tan (\pi-x)}{\sec (\pi-x) \operatorname{cosec}(\pi-x)} d x$
$y=\int_{0}^{\pi} \frac{-(\pi-x) \tan x}{-\sec x \operatorname{cosec} x} d x$
$y=\int_{0}^{\pi} \frac{\pi \tan x-x \tan x}{\sec x \operatorname{cosec} x} d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi} \frac{x \tan x}{\sec x \operatorname{cosec} x} d x+\int_{0}^{\pi} \frac{\pi \tan x-x \tan x}{\sec x \operatorname{cosec} x} d x$
$2 y=\int_{0}^{\pi} \frac{\pi \tan x}{\sec x \operatorname{cosec} x} d x$
$y=\frac{\pi}{2} \int_{0}^{\pi} \frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x} \times \frac{1}{\sin x}} d x$
$y=\frac{\pi}{2} \int_{0}^{\pi} \frac{1-\cos 2 x}{2} d x$
$y=\frac{\pi}{2}\left(\frac{x}{2}-\frac{\sin 2 x}{4}\right)_{0}^{\pi}$
$y=\frac{\pi}{2}\left(\frac{\pi}{2}-\frac{\sin 2 \pi}{4}\right)=\frac{\pi^{2}}{4}$

23. Question

Prove that
$\int_{0}^{\pi / 2} \frac{\cos ^{2} x}{(\sin x+\cos x)} d x=\frac{1}{\sqrt{2}} \log (\sqrt{2}+1)$

Answer

$y=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\sin x+\cos x} d x$.
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2}\left(\frac{\pi}{2}-x\right)}{\sin \left(\frac{\pi}{2}-x\right)+\cos \left(\frac{\pi}{2}-x\right)} d x$
$y=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{\sin x+\cos x} d x$
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\sin x+\cos x} d x+\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{\sin x+\cos x} d x$
$2 y=\int_{0}^{\frac{\pi}{2}} \frac{1}{\sin x+\cos x} d x$
$2 y=\frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\frac{1}{\sqrt{2}} \sin x+\frac{1}{\sqrt{2}} \cos x} d x$
$2 y=\frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin \left(x+\frac{\pi}{4}\right)} d x$
$y=\frac{1}{2 \sqrt{2}} \int_{0}^{\frac{\pi}{2}} \operatorname{cosec}\left(x+\frac{\pi}{4}\right) d x$
$y=\frac{1}{2 \sqrt{2}}\left(\ln \left(\operatorname{cosec}\left(x+\frac{\pi}{4}\right)-\cot \left(x+\frac{\pi}{4}\right)\right)\right)_{0}^{\frac{\pi}{2}}$
$y=\frac{1}{2 \sqrt{2}}\left(\ln \left(\operatorname{cosec} \frac{3 \pi}{4}-\cot \frac{3 \pi}{4}\right)-\ln \left(\operatorname{cosec} \frac{\pi}{4}-\cot \frac{\pi}{4}\right)\right)$
$y=\frac{1}{2 \sqrt{2}} \ln \frac{\sqrt{2}+1}{\sqrt{2}-1}$
$y=\frac{1}{2 \sqrt{2}} \ln (\sqrt{2}+1)^{2}=\frac{1}{\sqrt{2}} \ln (\sqrt{2}+1)$

24. Question

Prove that
$\int_{0}^{\pi} \frac{x \tan x}{(\sec x+\cos x)} d x=\frac{\pi^{2}}{4}$

Answer

$y=\int_{0}^{\pi} \frac{x \frac{\sin x}{\cos x}}{\frac{1}{\cos x}+\cos x} d x$
$y=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x \ldots(1)$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi} \frac{(\pi-x) \sin (\pi-x)}{1+\cos ^{2}(\pi-x)} d x$
$y=\int_{0}^{\pi \pi \sin x-x \sin x} \frac{1+\cos ^{2} x}{d} d x$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x+\int_{0}^{\pi} \frac{\pi \sin x-x \sin x}{1+\cos ^{2} x} d x$
$2 y=\int_{0}^{\pi} \frac{\pi \sin x}{1+\cos ^{2} x} d x$
Let, $\cos x=t$
$\Rightarrow-\sin x d x=d t$
At $x=0, t=1$
At $x=\pi, t=-1$
$y=-\frac{\pi}{2} \int_{1}^{-1} \frac{1}{1+t^{2}} d t$
$y=-\frac{\pi}{2}\left(\tan ^{-1} t\right)_{1}^{-1}$
$y=-\frac{\pi}{2}\left(\tan ^{-1}(-1)-\tan ^{-1} 1\right)$
$y=\frac{\pi^{2}}{4}$
25. Question

Prove that
$\int_{0}^{\pi} \frac{x \sin x}{(1+\sin x)} d x=\pi\left(\frac{\pi}{2}-1\right)$

Answer

$y=\int_{0}^{\pi} \frac{x \sin x}{1+\sin x} d x \ldots(1)$

Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi} \frac{(\pi-x) \sin (\pi-x)}{1+\sin (\pi-x)} d x$
$y=\int_{0}^{\pi} \frac{\pi \sin x}{1+\sin x}-\frac{x \sin x}{1+\sin x} d x$
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi} \frac{x \sin x}{1+\sin x} d x+\int_{0}^{\pi} \frac{\pi \sin x}{1+\sin x}-\frac{x \sin x}{1+\sin x} d x$
$2 y=\int_{0}^{\pi} \frac{\pi(\sin x+1-1)}{1+\sin x} d x$
$y=\frac{\pi}{2} \int_{0}^{\pi} 1-\frac{1}{1+\sin x} d x$
$y=\frac{\pi}{2} \int_{0}^{\pi} 1-\frac{1-\sin x}{\cos ^{2} x} d x$
$y=\frac{\pi}{2} \int_{0}^{\pi} 1-\sec ^{2} x+\frac{\sin x}{\cos ^{2} x} d x$
Let, $\cos x=t$
$\Rightarrow-\sin x d x=d t$
At $\mathrm{x}=0, \mathrm{t}=1$
At $x=\pi, t=-1$
$y=\frac{\pi}{2}\left((x-\tan x)_{0}^{\pi}-\int_{1}^{-1} \frac{1}{t^{2}} d t\right)$
$y=\frac{\pi}{2}\left(\pi-\tan \pi-\left(\frac{-1}{t}\right)_{1}^{-1}\right)$
$y=\frac{\pi}{2}(\pi-2)=\pi\left(\frac{\pi}{2}-1\right)$
26. Question

Prove that
$\int_{0}^{\pi} \frac{x}{\left(1+\sin ^{2} x\right)} d x=\frac{\pi^{2}}{2 \sqrt{2}}$

Answer

$$
\begin{equation*}
y=\int_{0}^{\pi} \frac{x}{1+\sin ^{2} x} d x \tag{1}
\end{equation*}
$$

Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi} \frac{(\pi-x)}{1+\sin ^{2}(\pi-x)} d x$
$y=\int_{0}^{\pi} \frac{\pi}{1+\sin ^{2} x}-\frac{x}{1+\sin ^{2} x} d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi} \frac{x}{1+\sin ^{2} x} d x+\int_{0}^{\pi} \frac{\pi}{1+\sin ^{2} x}-\frac{x}{1+\sin ^{2} x} d x$
$y=\frac{\pi}{2} \int_{0}^{\pi} \frac{1}{1+\sin ^{2} x} d x$
$y=\frac{\pi}{2} \int_{0}^{\pi} \frac{\frac{1}{\cos ^{2} x}}{\frac{1+\sin ^{2} x}{\cos ^{2} x}} d x$
$y=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sec ^{2} x}{\sec ^{2} x+\tan ^{2} x} d x$
We break it in two parts
$y=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sec ^{2} x}{\sec ^{2} x+\tan ^{2} x} d x$
Let, $\tan \mathrm{x}=\mathrm{t}$
$\Rightarrow \sec ^{2} x d x=d t$
At $x=0, t=0$
At $x=\pi, t=0$
$y=\frac{\pi}{2} \int_{0}^{0} \frac{1}{1+2 t^{2}} d t$
We know that when upper and lower limit is same in definite integral then value of integration is 0 .

So, $y=0$

27. Question

Prove that
$\int_{0}^{\pi / 2}(2 \log \cos x-\log \sin 2 x) d x=-\frac{\pi}{4}(\log 2)$

Answer

$y=\int_{0}^{\frac{\pi}{2}} \log \frac{\cos ^{2} x}{\sin 2 x} d x$
$y=\int_{0}^{\frac{\pi}{2}} \log \frac{\cos ^{2} x}{2 \sin x \cos x} d x$
$y=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{1}{2} \cot x\right) d x \ldots$ (1)
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{1}{2} \cot \left(\frac{\pi}{2}-x\right)\right) d x$
$y=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{1}{2} \tan x\right) d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{1}{2} \cot x\right) d x+\int_{0}^{\frac{\pi}{2}} \log \left(\frac{1}{2} \tan x\right) d x$
$y=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \log \left(\frac{1}{4} \cot x \tan x\right) d x$ [Use cot $\mathrm{x} \tan \mathrm{x}=1$]
$y=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \log \left(\frac{1}{4}\right) d x$
$y=\frac{1}{2} \log \left(\frac{1}{4}\right)(x)_{0}^{\frac{\pi}{2}}$
$y=-\frac{\pi}{4} \log 4$
28. Question

Prove that
$\int_{0}^{\infty} \frac{x}{(1+x)\left(1+x^{2}\right)} d x=\frac{\pi}{4}$

Answer

$y=\int_{0}^{\infty} \frac{x}{(1+x)\left(1+x^{2}\right)} d x$
Let, $x=\tan t$
$\Rightarrow d x=\sec ^{2} t d t$
At $x=0, t=0$
At $x=\infty, t=\pi / 2$
$y=\int_{0}^{\frac{\pi}{2}} \frac{\tan t}{(1+\tan t)\left(1+\tan ^{2} t\right)} \sec ^{2} t d t$
$y=\int_{0}^{\frac{\pi}{2}} \frac{\tan t}{(1+\tan t)} d t$
$y=\int_{0}^{\frac{\pi}{2}} \frac{\sin t}{(\cos t+\sin t)} d t \ldots(1)$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi / 2} \frac{\sin \left(\frac{\pi}{2}-t\right)}{\sin \left(\frac{\pi}{2}-t\right)+\cos \left(\frac{\pi}{2}-t\right)} d t$
$y=\int_{0}^{\pi / 2} \frac{\cos t}{\sin t+\cos t} d t \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi / 2} \frac{\sin t}{\sin t+\cos t} d x+\int_{0}^{\pi / 2} \frac{\cos t}{\sin t+\cos t} d x$
$2 y=\int_{0}^{\pi / 2} \frac{\sin t+\cos t}{\sin t+\cos t} d x$
$2 y=\int_{0}^{\pi / 2} 1 d x$
$2 y=(x)_{0}^{\frac{\pi}{2}}$
$y=\frac{\pi}{4}$
29. Question

Prove that
$\int_{0}^{a} \frac{d x}{x+\sqrt{a^{2}-x^{2}}}=\frac{\pi}{4}$

Answer

Let, $x=a \sin t$
$\Rightarrow d x=a \cos t d t$
At $x=0, t=0$
At $\mathrm{x}=\mathrm{a}, \mathrm{t}=\pi / 2$
$y=\int_{0}^{\frac{\pi}{2}} \frac{a \cos t}{a \sin t+\sqrt{a^{2}-a^{2} \sin ^{2} t}} d t$
$y=\int_{0}^{\frac{\pi}{2}} \frac{\cos t}{\sin t+\cos t} d t$
$y=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\cos t+\cos t-\sin t+\sin t}{\sin t+\cos t} d t$
$y=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1+\frac{\cos t-\sin t}{\sin t+\cos t} d t$
$y=\frac{1}{2}\left((t)_{0}^{\frac{\pi}{2}}+\int_{0}^{\frac{\pi}{2}} \frac{\cos t-\sin t}{\sin t+\cos t} d t\right)$
Again, $\sin t+\cos t=z$
$\Rightarrow(\cos \mathrm{t}-\sin \mathrm{t}) \mathrm{dt}=\mathrm{dz}$
At $t=0, z=1$
At $t=\pi / 2, z=1$
$y=\frac{1}{2}\left(\frac{\pi}{2}+\int_{1}^{1} \frac{1}{z} d z\right)$
$y=\frac{1}{2}\left(\frac{\pi}{2}+(\ln z)_{1}^{1}\right.$
$y=\frac{\pi}{4}$
30. Question
$\int_{0}^{a} \frac{\sqrt{x}}{(\sqrt{x}+\sqrt{a-x})} d x=\frac{\pi}{4}$

Answer

$y=\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x \ldots$ (1)
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x \cdots$
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x+\int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x$
$2 y=\int_{0}^{a} \frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x$
$y=\frac{1}{2} \int_{0}^{a} d x$
$y=\frac{1}{2}(x)_{0}^{a}$
$y=\frac{a}{2}$

31. Question

Prove that
$\int_{0}^{\pi} \sin ^{2} x \cos ^{3} x d x=0$

Answer

$y=\int_{0}^{\pi} \sin ^{2} x \cos ^{3} x d x \ldots$ (1)
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi} \sin ^{2}(\pi-x) \cos ^{3}(\pi-x) d x$
$y=-\int_{0}^{\pi} \sin ^{2} x \cos ^{3} x d x$
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi} \sin ^{2} x \cos ^{3} x d x+\left(-\int_{0}^{\pi} \sin ^{2} x \cos ^{3} x d x\right)$
$y=0$

32. Question

Prove that
$\int_{0}^{\pi} \sin ^{2 m} x \cos ^{2 m+1} x d x=0$, where m is a positive integer

Answer

$y=\int_{0}^{\pi} \sin ^{2 m} x \cos ^{2 m+1} x d x$.
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi} \sin ^{2 m}(\pi-x) \cos ^{2 m+1}(\pi-x) d x$
$y=-\int_{0}^{\pi} \sin ^{2 m} x \cos ^{2 m+1} x d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi} \sin ^{2 m} x \cos ^{2 m+1} x d x+\left(-\int_{0}^{\pi} \sin ^{2 m} x \cos ^{2 m+1} x d x\right)$
$y=0$
33. Question

Prove that
$\int_{0}^{\pi / 2}(\sin x-\cos x) \log (\sin x+\cos x) d x=0$

Answer

Let, $\sin x+\cos x=t$
$\Rightarrow \cos \mathrm{x}-\sin \mathrm{xdx}=\mathrm{dt}$
At $x=0, t=1$
At $\mathrm{x}=\pi / 2, \mathrm{t}=1$
$y=\int_{1}^{1}-\log t d t$
We know that when upper and lower limit in definite integral is equal then value of integration is zero.

So, $y=0$

34. Question

Prove that
$\int_{0}^{\pi / 2} \log (\sin 2 x) d x=-\frac{\pi}{2}(\log 2)$
Answer
$y=\int_{0}^{\frac{\pi}{2}} \log (2 \sin x \cos x) d x$
$y=\int_{0}^{\frac{\pi}{2}} \log 2+\log \sin x+\log \cos x d x$
Let, $I=\int_{0}^{\frac{\pi}{2}} \log \sin x d x \ldots$ (1)
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$I=\int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2}-x\right) d x$
$I=\int_{0}^{\frac{\pi}{2}} \log \cos x d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 I=\int_{0}^{\frac{\pi}{2}} \log \sin x d x+\int_{0}^{\frac{\pi}{2}} \log \cos x d x$
$2 I=\int_{0}^{\frac{\pi}{2}} \log \frac{2 \sin x \cos x}{2} d x$
$2 I=\int_{0}^{\frac{\pi}{2}} \log \sin 2 x-\log 2 d x$
Let, $2 \mathrm{x}=\mathrm{t}$
$\Rightarrow 2 \mathrm{dx}=\mathrm{dt}$
At $\mathrm{x}=0, \mathrm{t}=0$
At $x=\pi / 2, t=\pi$
$2 I=\frac{1}{2} \int_{0}^{\pi} \log \sin t d t-\frac{\pi}{2} \log 2$
$2 I=\frac{2}{2} \int_{0}^{\frac{\pi}{2}} \log \sin x d x-\frac{\pi}{2} \log 2$
$2 I=I-\frac{\pi}{2} \log 2$
$I=\int_{0}^{\frac{\pi}{2}} \log \sin x d x=-\frac{\pi}{2} \log 2$
Similarly, $\int_{0}^{\frac{\pi}{2}} \log \cos x d x=-\frac{\pi}{2} \log 2$
$y=\int_{0}^{\frac{\pi}{2}} \log 2 d x+\int_{0}^{\frac{\pi}{2}} \log \sin x d x+\int_{0}^{\frac{\pi}{2}} \log \cos x d x$
$y=\frac{\pi}{2} \log 2-\frac{\pi}{2} \log 2-\frac{\pi}{2} \log 2$
$y=-\frac{\pi}{2} \log 2$
35. Question

Prove that
$\int_{0}^{\pi} x \log (\sin x) d x=-\frac{\pi^{2}}{2}(\log 2)$

Answer

$y=\int_{0}^{\pi} x \log \sin x d x$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi}(\pi-x) \log \sin (\pi-x) d x$
$y=\int_{0}^{\pi} \pi \log \sin x-x \log \sin x d x$
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi} x \log \sin x d x+\int_{0}^{\pi} \pi \log \sin x-x \log \sin x d x$
$y=\frac{\pi}{2} \int_{0}^{\pi} \log \sin x d x$
$y=\frac{2 \pi}{2} \int_{0}^{\frac{\pi}{2}} \log \sin x d x \ldots$ (3)
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\pi \int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2}-x\right) d x$
$y=\pi \int_{0}^{\frac{\pi}{2}} \log \cos x d x \ldots$ (4)
Adding eq.(3) and eq.(4)
$2 y=\pi\left(\int_{0}^{\frac{\pi}{2}} \log \sin x d x+\int_{0}^{\frac{\pi}{2}} \log \cos x d x\right)$
$2 y=\pi\left(\int_{0}^{\frac{\pi}{2}} \log \frac{2 \sin x \cos x}{2} d x\right)$
$2 y=\pi\left(\int_{0}^{\frac{\pi}{2}} \log \sin 2 x-\log 2 d x\right)$
Let, $2 \mathrm{x}=\mathrm{t}$
$\Rightarrow 2 d x=d t$
At $\mathrm{x}=0, \mathrm{t}=0$
At $x=\pi / 2, t=\pi$
$2 y=\frac{\pi}{2} \int_{0}^{\pi} \log \sin t d t-\frac{\pi^{2}}{2} \log 2$
$2 y=\frac{2 \pi}{2} \int_{0}^{\frac{\pi}{2}} \log \sin x d x-\frac{\pi^{2}}{2} \log 2$
$2 y=y-\frac{\pi^{2}}{2} \log 2$
$y=-\frac{\pi^{2}}{2} \log 2$

36. Question

Prove that
$\int_{0}^{\pi} \log (1+\cos x) d x=-\pi(\log 2)$

Answer

$y=\int_{0}^{\pi} \log (1+\cos x) d x \ldots(1)$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{0}^{\pi} \log (1+\cos (\pi-x)) d x$
$y=\int_{0}^{\pi} \log (1-\cos x) d x \ldots(2)$
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\pi} \log (1+\cos x) d x+\int_{0}^{\pi} \log (1-\cos x) d x$
$2 y=\int_{0}^{\pi} \log \sin ^{2} x d x$
$y=2 \int_{0}^{\frac{\pi}{2}} \log \sin x d x \ldots$ (3)
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=2 \int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2}-x\right) d x$
$y=2 \int_{0}^{\frac{\pi}{2}} \log \cos x d x \ldots$ (4)
Adding eq.(3) and eq.(4)
$2 y=2\left(\int_{0}^{\frac{\pi}{2}} \log \sin x d x+\int_{0}^{\frac{\pi}{2}} \log \cos x d x\right)$
$2 y=2\left(\int_{0}^{\frac{\pi}{2}} \log \frac{2 \sin x \cos x}{2} d x\right)$
$2 y=2\left(\int_{0}^{\frac{\pi}{2}} \log \sin 2 x-\log 2 d x\right)$

Let, $2 \mathrm{x}=\mathrm{t}$
$\Rightarrow 2 \mathrm{dx}=\mathrm{dt}$
At $\mathrm{x}=0, \mathrm{t}=0$
At $x=\pi / 2, t=\pi$
$2 y=\frac{2}{2} \int_{0}^{\pi} \log \sin t d t-\frac{2 \pi}{2} \log 2$
$2 y=\frac{4}{2} \int_{0}^{\frac{\pi}{2}} \log \sin x d x-\frac{2 \pi}{2} \log 2$
$2 y=y-\pi \log 2$
$y=-\pi \log 2$

37. Question

Prove that
$\int_{0}^{\pi / 2} \log (\tan x+\cot x) d x=\pi(\log 2)$

Answer

$y=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\right) d x$
$y=\int_{0}^{\frac{\pi}{2}} \log \frac{1}{\sin x \cos x} d x$
$y=-\left(\int_{0}^{\frac{\pi}{2}} \log \sin x d x+\int_{0}^{\frac{\pi}{2}} \log \cos x d x\right)$
Let, $I=\int_{0}^{\frac{\pi}{2}} \log \sin x d x \ldots(1)$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$I=\int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2}-x\right) d x$
$I=\int_{0}^{\frac{\pi}{2}} \log \cos x d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 I=\int_{0}^{\frac{\pi}{2}} \log \sin x d x+\int_{0}^{\frac{\pi}{2}} \log \cos x d x$
$2 I=\int_{0}^{\frac{\pi}{2}} \log \frac{2 \sin x \cos x}{2} d x$
$2 I=\int_{0}^{\frac{\pi}{2}} \log \sin 2 x-\log 2 d x$
Let, $2 \mathrm{x}=\mathrm{t}$
$\Rightarrow 2 \mathrm{dx}=\mathrm{dt}$
At $\mathrm{x}=0, \mathrm{t}=0$
At $x=\pi / 2, t=\pi$
$2 I=\frac{1}{2} \int_{0}^{\pi} \log \sin t d t-\frac{\pi}{2} \log 2$
$2 I=\frac{2}{2} \int_{0}^{\frac{\pi}{2}} \log \sin x d x-\frac{\pi}{2} \log 2$
$2 I=I-\frac{\pi}{2} \log 2$
$I=\int_{0}^{\frac{\pi}{2}} \log \sin x d x=-\frac{\pi}{2} \log 2$
Similarly, $\int_{0}^{\frac{\pi}{2}} \log \cos x d x=-\frac{\pi}{2} \log 2$
$y=-\left(\int_{0}^{\frac{\pi}{2}} \log \sin x d x+\int_{0}^{\frac{\pi}{2}} \log \cos x d x\right)$
$y=\frac{\pi}{2} \log 2+\frac{\pi}{2} \log 2$
$y=\pi \log 2$

38. Question

Prove that

$$
\int_{\pi / 8}^{3 \pi / 8} \frac{\cos x}{(\cos x+\sin x)} d x=\frac{\pi}{8}
$$

Answer

$y=\int_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} \frac{\cos x}{\cos x+\sin x} d x \ldots$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} \frac{\cos \left(\frac{3 \pi}{8}+\frac{\pi}{8}-x\right)}{\sin \left(\frac{3 \pi}{8}+\frac{\pi}{8}-x\right)+\cos \left(\frac{3 \pi}{8}+\frac{\pi}{8}-x\right)} d x$
$y=\int_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} \frac{\sin x}{\sin x+\cos x} d x$
Adding eq.(1) and eq.(2)
$2 y=\int_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} \frac{\cos x}{\sin x+\cos x} d x+\int_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} \frac{\sin x}{\sin x+\cos x} d x$
$2 y=\int_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} \frac{\sin x+\cos x}{\sin x+\cos x} d x$
$2 y=\int_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} 1 d x$
$2 y=(x)_{\frac{\pi}{8}}^{\frac{3 \pi}{8}}$
$2 y=\frac{3 \pi}{8}-\frac{\pi}{8}$
$y=\frac{\pi}{8}$
39. Question

Prove that
$\int_{\pi / 6}^{\pi / 3} \frac{1}{(1+\sqrt{\tan x})} d x=\frac{\pi}{12}$

Answer

$y=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos \left(\frac{\pi}{3}+\frac{\pi}{6}-x\right)}}{\left(\sqrt{\sin \left(\frac{\pi}{3}+\frac{\pi}{6}-x\right)}+\sqrt{\cos \left(\frac{\pi}{3}+\frac{\pi}{6}-x\right)}\right)} d x$
$y=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}}{(\sqrt{\cos x}+\sqrt{\sin x})} d x$
Adding eq.(1) and eq.(2)
$2 y=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\cos x}}{(\sqrt{\sin x}+\sqrt{\cos x})} d x+\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}}{(\sqrt{\cos x}+\sqrt{\sin x})} d x$
$2 y=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}+\sqrt{\cos x}}{(\sqrt{\sin x}+\sqrt{\cos x})} d x$
$2 y=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 1 d x$
$2 y=(x)_{\frac{\pi}{6}}^{\frac{\pi}{3}}$
$y=\frac{\pi}{12}$
40. Question

Prove that
$\int_{\pi / 4}^{3 \pi / 4} \frac{d x}{(1+\cos x)}=2$

Answer

$y=\int_{\frac{\pi^{4}}{4}}^{\frac{3 \pi}{2 \cos ^{2} \frac{x}{2}}} d x$
$y=\frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \sec ^{2} \frac{x}{2} d x$
$y=\frac{1}{2}\left(\frac{\tan \frac{x}{2}}{\frac{1}{2}}\right)_{\frac{\pi}{4}}^{\frac{3 \pi}{4}}$
$y=\tan \frac{3 \pi}{8}-\tan \frac{\pi}{8}$
$y=(\sqrt{2}+1)-(\sqrt{2}-1)=2$
41. Question

Prove that
$\int_{\pi / 4}^{3 \pi / 4} \frac{x}{(1+\sin x)} d x=\pi(\sqrt{2}-1)$

Answer

$y=\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{x}{1+\sin x} d x \ldots$ (
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{\left(\frac{3 \pi}{4}+\frac{\pi}{4}-x\right)}{1+\sin \left(\frac{3 \pi}{4}+\frac{\pi}{4}-x\right)} d x$
$y=\int_{\frac{\pi^{4}}{4}}^{\frac{3 \pi}{4}} \frac{\pi-x}{1+\sin x} d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{x}{1+\sin x} d x+\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{\pi-x}{1+\sin x} d x$
$y=\frac{\pi}{2} \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{1}{1+\sin x} d x$
$y=\frac{\pi}{2} \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{1}{1+\sin x} \times \frac{1-\sin x}{1-\sin x} d x$
$y=\frac{\pi}{2} \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{1-\sin x}{\cos ^{2} x} d x$
$y=\frac{\pi}{2} \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \sec ^{2} x-\frac{\sin x}{\cos ^{2} x} d x$
Let, $\cos x=t$
$\Rightarrow-\sin x d x=d t$
At $x=\pi / 4, t=\frac{1}{\sqrt{2}}$
At $x=3 \pi / 4, t=\frac{-1}{\sqrt{2}}$
$y=\frac{\pi}{2}\left((\tan x)_{\frac{\pi}{4}}^{\frac{3 \pi}{4}}+\int_{\frac{1}{\sqrt{2}}}^{\frac{-1}{\sqrt{2}}} \frac{1}{t^{2}} d t\right)$
$y=\frac{\pi}{2}\left(\tan \frac{3 \pi}{4}-\tan \frac{\pi}{4}+\left(\frac{-1}{t}\right)_{\frac{1}{\sqrt{2}}}^{\frac{-1}{\sqrt{2}}}\right.$
$y=\frac{\pi}{2}(-1-1+\sqrt{2}+\sqrt{2})=\pi(\sqrt{2}-1)$
42. Question

Prove that
$\int_{\alpha / 4}^{3 \alpha / 4} \frac{\sqrt{x}}{(\sqrt{a-x}+\sqrt{x})} d x=\frac{a}{4}$

Answer

$y=\int_{\frac{a}{4}}^{\frac{3 a}{4}} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x \ldots(1)$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{\frac{a}{4}}^{\frac{3 a}{4}} \frac{\sqrt{\frac{3 a}{4}+\frac{a}{4}-x}}{\sqrt{\frac{3 a}{4}+\frac{a}{4}-x}+\sqrt{x}} d x$
$y=\int_{\frac{a}{4}}^{\frac{3 a}{4}} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x$
Adding eq.(1) and eq.(2)
$2 y=\int_{\frac{a}{4}}^{\frac{3 a}{4}} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x+\int_{\frac{a}{4}}^{\frac{3 a}{4}} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x$
$2 y=\int_{\frac{a}{4}}^{\frac{3 a}{4}} \frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x$
$y=\frac{1}{2} \int_{\frac{a}{4}}^{\frac{3 a}{4}} 1 d x$
$y=\frac{1}{2}(x)_{\frac{a}{4}}^{\frac{3 a}{4}}$
$y=\frac{a}{4}$
43. Question

Prove that
$\int_{1}^{4} \frac{\sqrt{x}}{(\sqrt{5-x}+\sqrt{x})} d x=\frac{3}{2}$

Answer

$y=\int_{1}^{4} \frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} d x$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$y=\int_{1}^{4} \frac{\sqrt{4+1-x}}{\sqrt{4+1-x}+\sqrt{x}} d x$
$y=\int_{1}^{4} \frac{\sqrt{5-x}}{\sqrt{5-x}+\sqrt{x}} d x$
Adding eq.(1) and eq.(2)
$2 y=\int_{1}^{4} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{5-x}} d x+\int_{1}^{4} \frac{\sqrt{5-x}}{\sqrt{5-x}+\sqrt{x}} d x$
$2 y=\int_{1}^{4} \frac{\sqrt{x}+\sqrt{5-x}}{\sqrt{5-x}+\sqrt{x}} d x$
$y=\frac{1}{2} \int_{1}^{4} 1 d x$
$y=\frac{1}{2}(x)_{1}^{4}$
$y=\frac{3}{2}$
44. Question

Prove that
$\int_{0}^{\pi / 2} \mathrm{x} \cot \mathrm{xdx}=\frac{\pi}{4}(\log 2)$

Answer

Use integration by parts
$\int I \times I I d x=I \int I I d x-\int \frac{d}{d x} I\left(\int I I d x\right) d x$
$y=x \int \cot x d x-\int \frac{d}{d x} x\left(\int \cot x d x\right) d x$
$y=(x \log \sin x)_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \log \sin x d x$
Let, $I=\int_{0}^{\frac{\pi}{2}} \log \sin x d x \cdots(1)$
Use King theorem of definite integral
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$I=\int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2}-x\right) d x$
$I=\int_{0}^{\frac{\pi}{2}} \log \cos x d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 I=\int_{0}^{\frac{\pi}{2}} \log \sin x d x+\int_{0}^{\frac{\pi}{2}} \log \cos x d x$
$2 I=\int_{0}^{\frac{\pi}{2}} \log \frac{2 \sin x \cos x}{2} d x$
$2 I=\int_{0}^{\frac{\pi}{2}} \log \sin 2 x-\log 2 d x$
Let, $2 \mathrm{x}=\mathrm{t}$
$\Rightarrow 2 \mathrm{dx}=\mathrm{dt}$
At $\mathrm{x}=0, \mathrm{t}=0$
At $x=\pi / 2, t=\pi$
$2 I=\frac{1}{2} \int_{0}^{\pi} \log \sin t d t-\frac{\pi}{2} \log 2$
$2 I=\frac{2}{2} \int_{0}^{\frac{\pi}{2}} \log \sin x d x-\frac{\pi}{2} \log 2$
$2 I=I-\frac{\pi}{2} \log 2$
$I=\int_{0}^{\frac{\pi}{2}} \log \sin x d x=-\frac{\pi}{2} \log 2$
$y=(x \log \sin x)_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \log \sin x d x$
$y=\frac{\pi}{2} \log \sin \frac{\pi}{2}-\left(-\frac{\pi}{2} \log 2\right)$
$y=\frac{\pi}{2} \log 2$
45. Question

Prove that
$\int_{0}^{1}\left(\frac{\sin ^{-1} \mathrm{x}}{\mathrm{x}}\right) \mathrm{dx}=\frac{\pi}{2}(\log 2)$

Answer

Let, $\mathrm{x}=\sin \mathrm{t}$
$\Rightarrow \mathrm{dx}=\cos \mathrm{tdt}$
At $x=0, t=0$
At $x=1, t=\pi / 2$
$y=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{-1} \sin t}{\sin t} \cos t d t$
$y=\int_{0}^{\frac{\pi}{2}} \frac{t \cos t}{\sin t} d t$
$y=\int_{0}^{\frac{\pi}{2}} t \cot t d t$
Use integration by parts
$\int I \times I I d t=I \int I I d t-\int \frac{d}{d t} I\left(\int I I d t\right) d t$
$y=t \int \cot t d t-\int \frac{d}{d t} t\left(\int \cot t d t\right) d t$
$y=(t \log \sin t)_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \log \sin t d t$
Let, $I=\int_{0}^{\frac{\pi}{2}} \log \sin t d t \ldots(1)$
Use King theorem of definite integral
$\int_{a}^{b} f(t) d t=\int_{a}^{b} f(a+b-t) d t$
$I=\int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2}-t\right) d t$
$I=\int_{0}^{\frac{\pi}{2}} \log \cos t d t \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 I=\int_{0}^{\frac{\pi}{2}} \log \sin t d t+\int_{0}^{\frac{\pi}{2}} \log \cos t d t$
$2 I=\int_{0}^{\frac{\pi}{2}} \log \frac{2 \sin t \cos t}{2} d t$
$2 I=\int_{0}^{\frac{\pi}{2}} \log \sin 2 t-\log 2 d t$
Let, $2 \mathrm{t}=\mathrm{z}$
$\Rightarrow 2 \mathrm{dt}=\mathrm{dz}$
At $\mathrm{t}=0, \mathrm{z}=0$
At $t=\pi / 2, z=\pi$
$2 I=\frac{1}{2} \int_{0}^{\pi} \log \sin z d z-\frac{\pi}{2} \log 2$
$2 I=\frac{2}{2} \int_{0}^{\frac{\pi}{2}} \log \sin z d z-\frac{\pi}{2} \log 2$
$2 I=I-\frac{\pi}{2} \log 2$
$I=\int_{0}^{\frac{\pi}{2}} \log \sin z d z=-\frac{\pi}{2} \log 2$
$y=(t \log \sin t)_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \log t d t$
$y=\frac{\pi}{2} \log \sin \frac{\pi}{2}-\left(-\frac{\pi}{2} \log 2\right)$
$y=\frac{\pi}{2} \log 2$

46. Question

Prove that
$\int_{0}^{1} \frac{\log \mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}} \mathrm{dx}=-\frac{\pi}{2}(\log 2)$

Answer

Use integration by parts
$\int I \times I I d x=I \int I I d x-\int \frac{d}{d x} I\left(\int I I d x\right) d x$
$y=\log x \int \frac{1}{\sqrt{1-x^{2}}} d x-\int \frac{d}{d x} \log x\left(\int \frac{1}{\sqrt{1-x^{2}}} d x\right) d x$
$y=\left(\log x \sin ^{-1} x\right)_{0}^{1}-\int_{0}^{1} \frac{\sin ^{-1} x}{x} d x$
$y=-\int_{0}^{1} \frac{\sin ^{-1} x}{x} d x$
Let, $x=\sin t$
$\Rightarrow \mathrm{dx}=\cos \mathrm{tdt}$
At $x=0, t=0$
At $x=1, t=\pi / 2$
$y=-\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{-1} \sin t}{\sin t} \cos t d t$
$y=-\int_{0}^{\frac{\pi}{2}} \frac{t \cos t}{\sin t} d t$
$y=-\int_{0}^{\frac{\pi}{2}} t \cot t d t$
Use integration by parts
$\int I \times I I d t=I \int I I d t-\int \frac{d}{d t} I\left(\int I I d t\right) d t$
$y=-\left(t \int \cot t d t-\int \frac{d}{d t} t\left(\int \cot t d t\right) d t\right)$
$y=-\left((t \log \sin t)_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \log \sin t d t\right)$
Let, $I=\int_{0}^{\frac{\pi}{2}} \log \sin t d t \ldots(1)$
Use King theorem of definite integral
$\int_{a}^{b} f(t) d t=\int_{a}^{b} f(a+b-t) d t$
$I=\int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2}-t\right) d t$
$I=\int_{0}^{\frac{\pi}{2}} \log \cos t d t \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 I=\int_{0}^{\frac{\pi}{2}} \log \sin t d t+\int_{0}^{\frac{\pi}{2}} \log \cos t d t$
$2 I=\int_{0}^{\frac{\pi}{2}} \log \frac{2 \sin t \cos t}{2} d t$
$2 I=\int_{0}^{\frac{\pi}{2}} \log \sin 2 t-\log 2 d t$
Let, $2 \mathrm{t}=\mathrm{z}$
$\Rightarrow 2 \mathrm{dt}=\mathrm{dz}$
At $\mathrm{t}=0, \mathrm{z}=0$
At $t=\pi / 2, z=\pi$
$2 I=\frac{1}{2} \int_{0}^{\pi} \log \sin z d z-\frac{\pi}{2} \log 2$
$2 I=\frac{2}{2} \int_{0}^{\frac{\pi}{2}} \log \sin z d z-\frac{\pi}{2} \log 2$
$2 I=I-\frac{\pi}{2} \log 2$
$I=\int_{0}^{\frac{\pi}{2}} \log \sin z d z=-\frac{\pi}{2} \log 2$
$y=-\left((t \log \sin t)_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \log t d t\right)$
$y=\frac{-\pi}{2} \log \sin \frac{\pi}{2}+\left(-\frac{\pi}{2} \log 2\right)$
$y=\frac{-\pi}{2} \log 2$
47. Question

Prove that
$\int_{0}^{1} \frac{\log (1+x)}{\left(1+x^{2}\right)} d x=\frac{\pi}{8}(\log 2)$

Answer

Let $\mathrm{x}=\tan \mathrm{t}$
$\Rightarrow d x=\sec ^{2} \mathrm{tdt}$
At $\mathrm{x}=0, \mathrm{t}=0$
At $\mathrm{x}=1, \mathrm{t}=\pi / 4$
$y=\int_{0}^{\frac{\pi}{4}} \frac{\log (1+\tan t)}{1+\tan ^{2} t} \sec ^{2} t d t$
$y=\int_{0}^{\frac{\pi}{4}} \log (1+\tan t) d t \cdots$ (1)
Use King theorem of definite integral
$\int_{a}^{b} f(t) d t=\int_{a}^{b} f(a+b-t) d t$
$y=\int_{0}^{\frac{\pi}{4}} \log \left(1+\tan \left(\frac{\pi}{4}-t\right)\right) d t$
$y=\int_{0}^{\frac{\pi}{4}} \log \left(1+\frac{1-\tan t}{1+\tan t}\right) d t$
$y=\int_{0}^{\frac{\pi}{4}} \log \left(\frac{2}{1+\tan t}\right) d t \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{0}^{\frac{\pi}{4}} \log (1+\tan t) d t+\int_{0}^{\frac{\pi}{4}} \log \left(\frac{2}{1+\tan t}\right) d t$
$2 y=\int_{0}^{\frac{\pi}{4}} \log (1+\tan t)\left(\frac{2}{1+\tan t}\right) d t$
$2 y=\int_{0}^{\frac{\pi}{4}} \log 2 d t$
$y=\frac{\pi}{8} \log 2$

48. Question

Prove that
$\int_{-a}^{a} x^{3} \sqrt{a^{2}-x^{2}} d x=0$

Answer

$y=\int_{-a}^{a} x^{3} \sqrt{a^{2}-x^{2}} d x$
Use King theorem of definite integral
$\int_{a}^{b} f(t) d t=\int_{a}^{b} f(a+b-t) d t$
$y=\int_{-a}^{a}(a-a-x)^{3} \sqrt{a^{2}-(a-a-x)^{2}} d x$
$y=\int_{-a}^{a}-x^{3} \sqrt{a^{2}-x^{2}} d x$
Adding eq.(1) and eq.(2)
$2 y=\int_{-a}^{a} x^{3} \sqrt{a^{2}-x^{2}} d x+\left(-\int_{-a}^{a} x^{3} \sqrt{a^{2}-x^{2}} d x\right)$
$y=0$
49. Question

Prove that
$\int_{-\pi}^{\pi}\left(\sin ^{75} x+x^{125}\right) d x=0$

Answer

$y=\int_{-\pi}^{\pi} \sin ^{75} x+x^{125} d x$.
Use King theorem of definite integral
$\int_{a}^{b} f(t) d t=\int_{a}^{b} f(a+b-t) d t$
$y=\int_{-\pi}^{\pi} \sin ^{75}(\pi-\pi-x)+(\pi-\pi-x)^{125} d x$
$y=\int_{-\pi}^{\pi}-\sin ^{75} x-x^{125} d x \ldots$ (2)
Adding eq.(1) and eq.(2)
$2 y=\int_{-\pi}^{\pi} \sin ^{75} x+x^{125} d x+\left(-\int_{-\pi}^{\pi} \sin ^{75} x+x^{125} d x\right)$
$y=0$
50. Question

Prove that
$\int_{-\pi}^{\pi} x^{12} \sin ^{9} x d x=0$

Answer

$y=\int_{-\pi}^{\pi} x^{12} \sin ^{9} x d x \ldots$ (1)
Use King theorem of definite integral
$\int_{a}^{b} f(t) d t=\int_{a}^{b} f(a+b-t) d t$
$y=\int_{-\pi}^{\pi}(\pi-\pi-x)^{12} \sin ^{9}(\pi-\pi-x) d x$
$y=\int_{-\pi}^{\pi}-x^{12} \sin ^{9} x d x$
Adding eq.(1) and eq.(2)
$2 y=\int_{-\pi}^{\pi} x^{12} \sin ^{9} x d x+\left(-\int_{-\pi}^{\pi} x^{12} \sin ^{9} x d x\right)$
$y=0$

51. Question

Prove that
$\int_{-1}^{1} e^{|x|} d x=2(e-1)$
Answer
We know that
$|x|=-x$ in $[-1,0)$
$|x|=x$ in $[0,1]$
$y=\int_{-1}^{0} e^{|x|} d x+\int_{0}^{1} e^{|x|} d x$
$y=\int_{-1}^{0} e^{-x} d x+\int_{0}^{1} e^{x} d x$
$y=\left(-e^{-x}\right)_{-1}^{0}+\left(e^{x}\right)_{0}^{1}$
$y=-(1-e)+(e-1)$
$y=2(e-1)$
52. Question
$\int_{-2}^{2}|x+1| d x=6$

Answer

We know that
$|x+1|=-(x+1)$ in $[-2,-1)$
$|x+1|=(x+1)$ in $[-1,2]$
$y=\int_{-2}^{-1}|x+1| d x+\int_{-1}^{2}|x+1| d x$
$=-\int_{-2}^{-1}(x+1) d x+\int_{-1}^{2}(x+1) d x$
$=-\left(\frac{x^{2}}{2}+x\right)_{-2}^{-1}+\left(\frac{x^{2}}{2}+x\right)_{-1}^{2}$
$=-\left(\frac{1}{2}-1-2+2\right)+\left(2+2-\frac{1}{2}+1\right)$
$=5$

53. Question

Prove that
$\int_{0}^{8}|x-5| d x=17$

Answer

We know that
$|x-5|=-(x-5)$ in $[0,5)$
$|x-5|=(x-5)$ in $[5,8]$
$y=\int_{0}^{5}|x-5| d x+\int_{5}^{8}|x-5| d x$
$y=-\int_{0}^{5}(x-5) d x+\int_{5}^{8}(x-5) d x$
$y=-\left(\frac{x^{2}}{2}-5 x\right)_{0}^{5}+\left(\frac{x^{2}}{2}-5 x\right)_{5}^{8}$
$y=-\left(\frac{25}{2}-25\right)+\left(32-40-\frac{25}{2}+25\right)$
$=17$

54. Question

Prove that
$\int_{0}^{2 \pi}|\cos x| d x=4$

Answer

We know that
$|\cos x|=\cos x$ in $[0, \pi / 2)$
$|\cos x|=-\cos x$ in $[\pi / 2,3 \pi / 2)$
$|\cos x|=\cos x$ in $[3 \pi / 2,2 \pi]$
$y=\int_{0}^{\frac{\pi}{2}}|\cos x| d x+\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}|\cos x| d x+\int_{\frac{3 \pi}{2}}^{2 \pi}|\cos x| d x$
$y=\int_{0}^{\frac{\pi}{2}} \cos x d x-\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} \cos x d x+\int_{\frac{3 \pi}{2}}^{2 \pi} \cos x d x$
$y=(\sin x)_{0}^{\frac{\pi}{2}}-(\sin x)_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}+(\sin x)_{\frac{3 \pi}{2}}^{2 \pi}$
$y=(1-0)-1-1+(0+1)$
$=4$

55. Question

Prove that
$\int_{-\pi / 4}^{\pi / 4}|\sin x| d x=(2-\sqrt{2})$

Answer

We know that
$|\sin x|=-\sin x$ in $[-\pi / 4,0)$
$|\sin x|=\sin x$ in $[0, \pi / 4]$
$y=\int_{\frac{-\pi}{4}}^{0}|\sin x| d x+\int_{0}^{\frac{\pi}{4}}|\sin x| d x$
$y=-\int_{\frac{-\pi}{4}}^{0} \sin x d x+\int_{0}^{\frac{\pi}{4}} \sin x d x$
$y=-(-\cos x)_{\frac{-\pi}{4}}^{0}+(-\cos x)_{0}^{\frac{\pi}{4}}$
$y=\left(1-\frac{1}{\sqrt{2}}\right)-\left(\frac{1}{\sqrt{2}}-1\right)$
$=2-\frac{1}{\sqrt{2}}$
56. Question

Prove that
Let $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}2 \mathrm{x}+1, \text { when } 1 \leq \mathrm{x} \leq 2 \\ \mathrm{x}^{2}+1, \text { when } 2 \leq \mathrm{x} \leq 3\end{array}\right.$
Show that $\int_{1}^{3} f(x) d x=\frac{34}{3}$.

Answer

$y=\int_{1}^{3} f(x) d x$
$y=\int_{1}^{2} f(x) d x+\int_{2}^{3} f(x) d x$
$y=\int_{1}^{2} 2 x+1 d x+\int_{2}^{3} x^{2}+1 d x$
$y=\left(x^{2}+x\right)_{1}^{2}+\left(\frac{x^{3}}{3}+x\right)_{2}^{3}$
$y=(4+2-1-1)+\left(9+3-\frac{8}{3}-2\right)$
$=\frac{34}{3}$

57. Question

Prove that
Let $\mathrm{f}(\mathrm{x})= \begin{cases}3 \mathrm{x}^{2}+4, \text { when } 0 \leq \mathrm{x} \leq 2 \\ 9 \mathrm{x}-2, & \text { when } 2 \leq \mathrm{x} \leq 4\end{cases}$
Show that $\int_{0}^{4} f(x) d x=66$

Answer

$y=\int_{0}^{4} f(x) d x$
$y=\int_{0}^{2} f(x) d x+\int_{2}^{4} f(x) d x$
$y=\int_{0}^{2} 3 x^{2}+4 d x+\int_{2}^{4} 9 x-2 d x$
$y=\left(x^{3}+4 x\right)_{0}^{2}+\left(\frac{9 x^{2}}{2}-2 x\right)_{2}^{4}$
$y=(8+8)+(72-8-18+4)$
$=66$
58. Question

Prove that
$\int_{0}^{4}\{|x|+|x-2|+|x-4| d x\}=20$

Answer

$y=\int_{0}^{4}|x|+|x-2|+|x-4| d x$
$y=\int_{0}^{2}|x|+|x-2|+|x-4| d x+\int_{2}^{4}|x|+|x-2|+|x-4| d x$
$y=\int_{0}^{2} x-(x-2)-(x-4) d x+\int_{2}^{4} x+(x-2)-(x-4) d x$
$y=\left(-\frac{x^{2}}{2}+6 x\right)_{0}^{2}+\left(\frac{x^{2}}{2}+2 x\right)_{2}^{4}$
$y=(-2+12)+(8+8-2-4)$
$=20$

Exercise 16D

1. Question

Evaluate each of the following integrals as the limit of sums:
$\int_{0}^{2}(x+4) d x$

Answer

$f(x)$ is continuous in $[0,2]$
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=(b-a) / n$
here $h=2 / n$
$\int_{0}^{2}(x+4) d x=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1} f(2 r / n)$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1}\left(\frac{2 r}{n}\right)+4$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right)\left(\frac{(n-1)(n)}{n}+4(n-1)\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n} \frac{n^{2}-n+4 n^{2}-4 n}{n}$
$=\lim _{n \rightarrow \infty} \frac{2}{n} \frac{5 n^{2}-5 n}{n}$
$=\lim _{n \rightarrow \infty} \frac{10 n^{2}-10 n}{n^{2}}$
$=\lim _{n \rightarrow \infty} 10-(10 / n)$
$=10$

2. Question

Evaluate each of the following integrals as the limit of sums:
$\int_{1}^{2}(3 x-2) d x$

Answer

$f(x)$ is continuous in $[1,2]$
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=(b-a) / n$
here $h=1 / n$
$\int_{1}^{2}(3 x-2) d x=\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right) \sum_{r=0}^{n-1} f\left(1+\left(\frac{r}{n}\right)\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right) \sum_{r=0}^{n-1}\left(3+3 \frac{r}{n}-2\right)$
$\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)\left(n+\frac{3(n-1)(n)}{2 n}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)\left(\frac{2 n^{2}+3 n^{2}-3 n}{2 n}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{5 n^{2}-3 n}{2 n^{2}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{5}{2}\right)-\left(\frac{3}{2 n}\right)$
$=5 / 2$

3. Question

Evaluate each of the following integrals as the limit of sums:
$\int_{1}^{3} x^{2} d x$
Answer
$f(x)$ is continuous in $[1,3]$
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=(b-a) / n$
here $h=2 / n$
$\int_{1}^{3}\left(x^{2}\right) d x=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1} f\left(1+\left(\frac{2 r}{n}\right)\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1}\left(1+\left(\frac{2 r}{n}\right)\right)^{2}$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1}\left(\frac{4 r^{2}}{n^{2}}+1+\frac{4 r}{n}\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{4(n-1)(n)(2 n-1)}{6 n^{2}}+n+\frac{4(n-1)(n)}{2 n}\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{4\left(2 n^{3}-2 n^{2}-n^{2}+n\right)}{6 n^{2}}+n+\frac{2\left(n^{2}-n\right)}{n}\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{\left(8 n^{3}-12 n^{2}+4 n\right)+\left(6 n^{3}\right)+\left(12 n^{3}-12 n^{2}\right)}{6 n^{2}}\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{26 n^{3}-24 n^{2}+4 n}{6 n^{2}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{52 n^{3}-48 n^{2}+8 n}{6 n^{3}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{52}{6}\right)-\left(\frac{26}{6 n}\right)+\left(\frac{8}{6 n^{2}}\right)$
$=26 / 3$

4. Question

Evaluate each of the following integrals as the limit of sums:
$\int_{0}^{3}\left(x^{2}+1\right) d x$

Answer

$f(x)$ is continuous in $[0,3]$
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=(b-a) / n$
$\int_{0}^{3}\left(x^{2}+1\right) d x=\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1} f\left(\left(\frac{3 r}{n}\right)\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1}\left(\left(\frac{3 r}{n}\right)^{2}+1\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1}\left(\frac{9 r^{2}}{n^{2}}+1\right)$
$=\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{9(n-1)(n)(2 n-1)}{6 n^{2}}+n\right)$
$=\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{9\left(n^{2}-n\right)(2 n-1)}{6 n^{2}}+n\right)$
$=\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{9\left(2 n^{3}-2 n^{2}-n^{2}+n\right)}{6 n^{2}}+n\right)$
$=\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{\left(18 n^{3}-27 n^{2}+9 n\right)+\left(6 n^{3}\right)}{6 n^{2}}\right)$
$=\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{24 n^{3}-27 n^{2}+9 n}{6 n^{2}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{72 n^{3}-81 n^{2}+27 n}{6 n^{3}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{72}{6}\right)-\left(\frac{81}{6 n}\right)+\left(\frac{27}{6 n^{2}}\right)$
$=12$

5. Question

Evaluate each of the following integrals as the limit of sums:
$\int_{2}^{5}\left(3 x^{2}-5\right) d x$

Answer

$f(x)$ is continuous in [2,5]
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=(b-a) / n$
here $h=3 / n$

$$
\begin{aligned}
& \int_{2}^{5}\left(3 x^{2}-5\right) d x=\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1} f\left(\left(2+\frac{3 r}{n}\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1}\left(3\left(2+\frac{3 r}{n}\right)^{2}-5\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1} 3\left(\frac{9 r^{2}}{n^{2}}+4+\frac{12 r}{n}\right)-5 \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{27(n-1)(n)(2 n-1)}{6 n^{2}}+12 n+\frac{18 n(n-1)}{n}-5 n\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{27\left(n^{2}-n\right)(2 n-1)}{6 n^{2}}+12 n+\frac{18 n(n-1)}{n}-5 n\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{27\left(2 n^{3}-2 n^{2}-n^{2}+n\right)}{6 n^{2}}+12 n+\frac{18 n(n-1)}{n}-5 n\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{\left(54 n^{3}-81 n^{2}+27 n\right)+\left(42 n^{3}\right)+\left(108 n^{3}-108 n^{2}\right)}{6 n^{2}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{204 n^{3}-189 n^{2}+27 n}{6 n^{2}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{612 n^{3}-567 n^{2}+27 n}{6 n^{3}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{612}{6}\right)-\left(\frac{567}{6 n}\right)+\left(\frac{27}{6 n^{2}}\right) \\
& =102
\end{aligned}
$$

6. Question

Evaluate each of the following integrals as the limit of sums:
$\int_{0}^{3}\left(x^{2}+2 x\right) d x$

Answer

$f(x)$ is continuous in $[2,5]$
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=(b-a) / n$
here $h=3 / n$

$$
\begin{aligned}
& \int_{0}^{3}\left(x^{2}+2 x\right) d x=\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1} f\left(\left(\frac{3 r}{n}\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1}\left(\left(\frac{3 r}{n}\right)^{2}+\frac{6 r}{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1}\left(\frac{9 r^{2}}{n^{2}}+\frac{6 r}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{9(n-1)(n)(2 n-1)}{6 n^{2}}+\frac{3 n(n-1)}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{9\left(n^{2}-n\right)(2 n-1)}{6 n^{2}}+\frac{3 n(n-1)}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{9\left(2 n^{3}-2 n^{2}-n^{2}+n\right)}{6 n^{2}}+\frac{3 n(n-1)}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{\left(18 n^{3}-27 n^{2}+9 n\right)+\left(18 n^{3}-18 n^{2}\right)}{6 n^{2}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{36 n^{3}-45 n^{2}+9 n}{6 n^{2}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{108 n^{3}-135 n^{2}+27 n}{6 n^{3}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{108}{6}\right)-\left(\frac{135}{6 n}\right)+\left(\frac{27}{6 n^{2}}\right) \\
& =18
\end{aligned}
$$

7. Question

Evaluate each of the following integrals as the limit of sums:
$\int_{1}^{4}\left(3 x^{2}+2 x\right) d x$

Answer

$f(x)$ is continuous in $[1,4]$
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=(b-a) / n$
here $h=3 / n$

$$
\begin{aligned}
& \int_{1}^{4}\left(3 x^{2}+2 x\right) d x=\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1} f\left(\left(1+\frac{3 r}{n}\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1}\left(3\left(1+\frac{3 r}{n}\right)^{2}+2\left(1+\frac{3 r}{n}\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1} 3\left(\frac{9 r^{2}}{n^{2}}+1+\frac{6 r}{n}\right)+2\left(1+\frac{3 r}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{27(n-1)(n)(2 n-1)}{6 n^{2}}+3 n+\frac{9 n(n-1)}{n}+2 n+\frac{3 n(n-1)}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{27\left(n^{2}-n\right)(2 n-1)}{6 n^{2}}+5 n+\frac{12 n(n-1)}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{27\left(2 n^{3}-2 n^{2}-n^{2}+n\right)}{6 n^{2}}+5 n+\frac{12 n(n-1)}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{\left(54 n^{3}-81 n^{2}+27 n\right)+\left(30 n^{3}\right)+\left(72 n^{3}-72 n^{2}\right)}{6 n^{2}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{156 n^{3}-153 n^{2}+27 n}{6 n^{2}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{468 n^{3}-459 n^{2}+81 n}{6 n^{3}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{468}{6}\right)-\left(\frac{459}{6 n}\right)+\left(\frac{81}{6 n^{2}}\right) \\
& =78 \\
& \text { 8. Question }
\end{aligned}
$$

Evaluate each of the following integrals as the limit of sums:
$\int_{1}^{3}\left(x^{2}+5 x\right) d x$

Answer

$f(x)$ is continuous in $[1,3]$
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=(b-a) / n$

$$
\begin{aligned}
& \int_{1}^{3}\left(x^{2}+5 x\right) d x=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1} f\left(\left(1+\frac{2 r}{n}\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1}\left(\left(1+\frac{2 r}{n}\right)^{2}+5\left(1+\frac{2 r}{n}\right)\right. \\
& =\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1}\left(1+\frac{4 r^{2}}{n^{2}}+\frac{4 r}{n}+5+\frac{10 r}{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1}\left(1+\frac{4 r^{2}}{n^{2}}+\frac{4 r}{n}+5+\frac{10 r}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{4(n-1)(n)(2 n-1)}{6 n^{2}}+6 n+\frac{7 n(n-1)}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{4\left(n^{2}-n\right)(2 n-1)}{6 n^{2}}+6 n+\frac{7 n(n-1)}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{4\left(2 n^{3}-2 n^{2}-n^{2}+n\right)}{6 n^{2}}+6 n+\frac{7 n(n-1)}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{\left(8 n^{3}-12 n^{2}+4 n\right)+\left(42 n^{3}-42 n^{2}\right)+\left(36 n^{3}\right)}{6 n^{2}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{86 n^{3}-54 n^{2}+4 n}{6 n^{2}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{172 n^{3}-108 n^{2}+8 n}{6 n^{3}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{172}{6}\right)-\left(\frac{108}{6 n}\right)+\left(\frac{8}{6 n^{2}}\right) \\
& =86 / 3
\end{aligned}
$$

Evaluate each of the following integrals as the limit of sums:
$\int_{1}^{3}\left(2 x^{2}+5 x\right) d x$

Answer

$f(x)$ is continuous in $[1,3]$
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=(b-a) / n$

$$
\begin{aligned}
& \int_{1}^{3}\left(2 x^{2}+5 x\right) d x=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1} f\left(\left(1+\frac{2 r}{n}\right)\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1}\left(2\left(1+\frac{2 r}{n}\right)^{2}+5\left(1+\frac{2 r}{n}\right)\right. \\
& =\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1}\left(2+\frac{8 r^{2}}{n^{2}}+\frac{8 r}{n}+5+\frac{10 r}{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1}\left(7+\frac{8 r^{2}}{n^{2}}+\frac{18 r}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{8(n-1)(n)(2 n-1)}{6 n^{2}}+7 n+\frac{9 n(n-1)}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{8\left(n^{2}-n\right)(2 n-1)}{6 n^{2}}+7 n+\frac{9 n(n-1)}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{8\left(2 n^{3}-2 n^{2}-n^{2}+n\right)}{6 n^{2}}+7 n+\frac{9 n(n-1)}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{\left(16 n^{3}-24 n^{2}+8 n\right)+\left(54 n^{3}-54 n^{2}\right)+\left(42 n^{3}\right)}{6 n^{2}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{112 n^{3}-78 n^{2}+8 n}{6 n^{2}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{224 n^{3}-156 n^{2}+8 n}{6 n^{3}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{224}{6}\right)-\left(\frac{156}{6 n}\right)+\left(\frac{8}{6 n^{2}}\right) \\
& =112 / 3 \\
& \hline
\end{aligned}
$$

10. Question

Evaluate each of the following integrals as the limit of sums:
$\int_{0}^{2} \mathrm{x}^{3} \mathrm{dx}$

Answer

$f(x)$ is continuous in $[0,2]$
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=(b-a) / n$
$\int_{0}^{2}\left(x^{3}\right) d x=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1} f\left(\frac{2 r}{n}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1}\left(\frac{2 r}{n}\right)^{3}$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1}\left(\frac{8 r^{3}}{n^{3}}\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{8(n-1)^{2}(n)^{2}}{4 n^{3}}\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{8\left(n^{2}-2 n+1\right)\left(n^{2}\right)}{4 n^{3}}\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{8\left(n^{4}-2 n^{3}+n^{2}\right)}{4 n^{3}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{16 n^{4}-32 n^{3}+16 n^{2}}{4 n^{4}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{16}{4}\right)-\left(\frac{32}{4 n}\right)+\left(\frac{16}{4 n^{2}}\right)$
$=4$

11. Question

Evaluate each of the following integrals as the limit of sums:
$\int_{2}^{4}\left(x^{2}-3 x+2\right) d x$

Answer

$f(x)$ is continuous in [2,4]
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=(b-a) / n$
here $h=3 / n$
$\int_{2}^{4}\left(x^{2}-3 x+2\right) d x=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1} f\left(\left(2+\frac{2 r}{n}\right)\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1}\left(\left(2+\frac{2 r}{n}\right)^{2}-3\left(2+\frac{2 r}{n}\right)+2\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1}\left(\frac{4 r^{2}}{n^{2}}+\frac{8 r}{n}+4-6-\frac{6 r}{n}+2\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{4(n-1)(n)(2 n-1)}{6 n^{2}}+\frac{n(n-1)}{n}\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{4\left(n^{2}-n\right)(2 n-1)}{6 n^{2}}+\frac{n(n-1)}{n}\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{4\left(2 n^{3}-2 n^{2}-n^{2}+n\right)}{6 n^{2}}+\frac{n(n-1)}{n}\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{\left(8 n^{3}-12 n^{2}+4 n\right)+\left(6 n^{3}-6 n^{2}\right)}{6 n^{2}}\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{14 n^{3}-18 n^{2}+4 n}{6 n^{2}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{28 n^{3}-36 n^{2}+8 n}{6 n^{3}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{28}{6}\right)-\left(\frac{36}{6 n}\right)+\left(\frac{8}{6 n^{2}}\right)$
$=14 / 3$

12. Question

Evaluate each of the following integrals as the limit of sums:
$\int_{0}^{2}\left(x^{2}+x\right) d x$

Answer

$f(x)$ is continuous in $[0,2]$
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=(b-a) / n$
here $h=2 / n$
$\int_{0}^{2}\left(x^{2}+x\right) d x=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1} f\left(\frac{2 r}{n}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1}\left(\left(\frac{2 r}{n}\right)^{2}+\left(\frac{2 r}{n}\right)\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1}\left(\frac{4 r^{2}}{n^{2}}+\frac{2 r}{n}\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{4(n-1)(n)(2 n-1)}{6 n^{2}}+\frac{n(n-1)}{n}\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{4\left(n^{2}-n\right)(2 n-1)}{6 n^{2}}+\frac{n(n-1)}{n}\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{4\left(2 n^{3}-2 n^{2}-n^{2}+n\right)}{6 n^{2}}+\frac{n(n-1)}{n}\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{\left(8 n^{3}-12 n^{2}+4 n\right)+\left(6 n^{3}-6 n^{2}\right)}{6 n^{2}}\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{14 n^{3}-18 n^{2}+4 n}{6 n^{2}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{28 n^{3}-36 n^{2}+8 n}{6 n^{3}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{28}{6}\right)-\left(\frac{36}{6 n}\right)+\left(\frac{8}{6 n^{2}}\right)$
$=14 / 3$

13. Question

Evaluate each of the following integrals as the limit of sums:
$\int_{0}^{3}\left(2 x^{2}+3 x+5\right) d x$

Answer

$f(x)$ is continuous in [0,3]
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=(b-a) / n$
here $h=3 / n$
$\int_{0}^{3}\left(2 x^{2}+3 x+5\right) d x=\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1} f\left(\frac{3 r}{n}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1}\left(2\left(\frac{3 r}{n}\right)^{2}+3\left(\frac{3 r}{n}\right)+5\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1}\left(\frac{18 r^{2}}{n^{2}}+\frac{9 r}{n}+5\right)$
$=\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{18(n-1)(n)(2 n-1)}{6 n^{2}}+\frac{9 n(n-1)}{2 n}+5 n\right)$
$=\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{18\left(n^{2}-n\right)(2 n-1)}{6 n^{2}}+\frac{9 n(n-1)}{2 n}+5 n\right)$
$=\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{18\left(2 n^{3}-2 n^{2}-n^{2}+n\right)}{6 n^{2}}+\frac{9 n(n-1)}{2 n}+5 n\right)$
$=\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{\left(36 n^{3}-54 n^{2}+18 n\right)+\left(27 n^{3}-27 n^{2}\right)+30 n^{3}}{6 n^{2}}\right)$
$=\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{93 n^{3}-81 n^{2}+18 n}{6 n^{2}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{279 n^{3}-243 n^{2}+54 n}{6 n^{3}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{279}{6}\right)-\left(\frac{243}{6 n}\right)+\left(\frac{54}{6 n^{2}}\right)$
$=93 / 2$

14. Question

Evaluate each of the following integrals as the limit of sums:

$$
\int_{0}^{1}|3 \mathrm{x}-1| \mathrm{dx}
$$

Answer

Since it is modulus function so we need to break the function and then solve it
$f(x)=\int_{0}^{\frac{1}{3}}(1-3 x) d x+\int_{\frac{1}{3}}^{1}(3 x-1) d x$
it is continuous in $[0,1]$
let $g(x)=\int_{0}^{\frac{1}{3}}(1-3 x) d x$ and $h(x)=\int_{\frac{1}{3}}^{1}(3 x-1) d x$
$g(x)=\int_{0}^{\frac{1}{3}}(1-3 x) d x$
here $h=1 / 3 n$
$\int_{0}^{\frac{1}{3}}(1-3 x) d x=\lim _{n \rightarrow \infty}\left(\frac{1}{3 n}\right) \sum_{r=0}^{n-1} f(r / 3 n)$
$=\lim _{n \rightarrow \infty}\left(\frac{1}{3 n}\right) \sum_{r=0}^{n-1}\left(1-3\left(\frac{r}{3 n}\right)\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{1}{3 n}\right)\left(n-\frac{3(n-1)(n)}{6 n}\right)$
$=\lim _{n \rightarrow \infty} \frac{1}{3 n} \frac{6 n^{2}-3 n^{2}+3 n}{3 n}$
$=\lim _{n \rightarrow \infty} \frac{1}{3 n} \frac{3 n^{2}+3 n}{3 n}$
$=\lim _{n \rightarrow \infty} \frac{3 n^{2}+3 n}{9 n^{2}}$
$=\lim _{n \rightarrow \infty} \frac{1}{3}+\left(\frac{3}{9 n}\right)$
$=1 / 3$
$h(x)=\int_{\frac{1}{3}}^{1}(3 x-1) d x$
here $h=2 / 3 n$
$\int_{\frac{1}{3}}^{1}(3 x-1) d x=\lim _{n \rightarrow \infty}\left(\frac{2}{3 n}\right) \sum_{r=0}^{n-1} f\left(\left(\frac{1}{3}\right)+\left(\frac{2 r}{3 n}\right)\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{3 n}\right) \sum_{r=0}^{n-1}\left(3\left(\frac{1}{3}+\frac{2 r}{3 n}\right)-1\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{3 n}\right)\left(\frac{(n-1)(n)}{n}\right)$
$=\lim _{n \rightarrow \infty} \frac{2}{3 n} \cdot \frac{n^{2}-n}{n}$
$=\lim _{n \rightarrow \infty} \frac{2}{3 n} \cdot \frac{n^{2}-n}{n}$
$=\lim _{n \rightarrow \infty} \frac{2 n^{2}-2 n}{3 n^{2}}$
$=\lim _{n \rightarrow \infty} \frac{2}{3}-\left(\frac{2}{3 n}\right)$
$=2 / 3$
$\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})+\mathrm{h}(\mathrm{x})$
$=(1 / 3)+(2 / 3)$
$=3 / 3$
$=1$
15. Question

Evaluate each of the following integrals as the limit of sums:
$\int_{0}^{2} e^{x} d x$

Answer

$f(x)$ is continuous in $[0,2]$
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=(b-a) / n$
here $h=2 / n$
$\int_{0}^{2}\left(e^{x}\right) d x=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1} f\left(\frac{2 r}{n}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1} e^{\frac{2 r}{n}}$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right)\left(e^{0}+e^{h}+e^{2 h}+\cdots \ldots \ldots \ldots .+e^{n h}\right.$
sum of $e^{0}+e^{h}+e^{2 h}+\ldots \ldots \ldots \ldots \ldots .+e^{n h}$
Which is g.p with common ratio $e^{1 / n}$
Whose sum is $=\frac{e^{h}\left(1-e^{n h}\right)}{1-e^{h}}$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right)\left(\frac{e^{h}\left(1-e^{n h}\right)}{1-e^{h}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right)\left(\frac{e^{h}\left(1-e^{n h}\right)}{\frac{1-e^{h} \cdot h}{h}}\right)$
$\lim _{h \rightarrow 0} \frac{1-e^{h}}{h}=-1$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \cdot \frac{e^{h}\left(1-e^{n h}\right)}{-h}$
As $h=2 / n$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \cdot \frac{e^{\left(\frac{2}{n}\right)}\left(1-e^{n *(2 / n}\right)}{-2 / n}$
$=e^{2}-1$

16. Question

Evaluate each of the following integrals as the limit of sums:
$\int_{1}^{3} e^{-x} d x$

Answer

$f(x)$ is continuous in $[1,3]$
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=(b-a) / n$
here $h=2 / n$
$\int_{1}^{3}\left(e^{-x}\right) d x=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1} f\left(1+\left(\frac{2 r}{n}\right)\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1} e^{-\left(1+\frac{2 r}{n}\right)}$
$=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1} e^{-1} \cdot e^{-\frac{2 r}{n}}$
Common ratio is $h=-2 / n$
$\operatorname{sum}=e^{-1}\left(e^{0}+e^{h}+e^{2 h}+\cdots \ldots \ldots \ldots .+e^{n h}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{2 e^{-1}}{n}\right)\left(e^{0}+e^{h}+e^{2 h}+\cdots \ldots \ldots \ldots .+e^{n h}\right.$
sum of $=e^{0}+e^{h}+e^{2 h}+\cdots \ldots \ldots \ldots .+e^{n h}$
Which is g.p. with common ratio $e^{1 / n}$
Whose sum is $=\frac{e^{h}\left(1-e^{n h}\right)}{1-e^{h}}$
$=\lim _{n \rightarrow \infty}\left(\frac{2 e^{-1}}{n}\right)\left(\frac{e^{h}\left(1-e^{n h}\right)}{1-e^{h}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{2 e^{-1}}{n}\right)\left(\frac{e^{h}\left(1-e^{n h}\right)}{\frac{1-e^{h} \cdot h}{h}}\right.$
$\lim _{h \rightarrow 0} \frac{1-e^{h}}{h}=-1$
$=\lim _{n \rightarrow \infty}\left(\frac{2 e^{-1}}{n}\right)\left(\frac{e^{h}\left(1-e^{n h}\right)}{-h}\right.$
As $h=-2 / n$
$=\lim _{n \rightarrow \infty}\left(\frac{2 e^{-1}}{n}\right)\left(\frac{e^{\left(-\frac{2}{n}\right)}\left(1-e^{n *(-2 / n}\right)}{2 / n}\right.$
$=\frac{\left(1-e^{-2)}\right.}{e}$
$=\frac{\left(e^{2}-1\right)}{e^{3}}$

17. Question

Evaluate each of the following integrals as the limit of sums:
$\int_{a}^{b} \cos x d x$

Answer

$f(x)$ is continuous in $[a, b]$
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=(b-a) / n$
here $h=(b-a) / n$
$\int_{a}^{b}(\cos x) d x=\lim _{n \rightarrow \infty}\left(\frac{b-a}{n}\right) \sum_{r=0}^{n-1} f(a+r h)$
$=\lim _{n \rightarrow \infty}\left(\frac{b-a}{n}\right) \sum_{r=0}^{n-1} \cos (a+r h)$
$S=\cos (a)+\cos (a+h)+\cos (a+2 h)+\cos (a+3 h)+\ldots \ldots \ldots \ldots \ldots \ldots \ldots+\cos (a+(n-1) h)=\frac{\sin \left(\frac{n h}{2}\right) \cos \left(a+\frac{(n-1) h}{2}\right)}{\sin \left(\frac{h}{2}\right)}$
Putting $h=(b-a) / n$
$=\lim _{n \rightarrow \infty}\left(\frac{b-a}{n}\right) \frac{\sin \left(\frac{n(b-a)}{2 n}\right) \cos \left(a+\frac{(n-1)(b-a)}{2 n}\right)}{\frac{\sin \left(\frac{b-a}{2 n}\right)}{\frac{b-a}{2 n}} \cdot \frac{b-a}{2 n}}$
As we know
$\lim _{h \rightarrow 0}\left(\frac{\sinh }{h}\right)=1$
$=\lim _{n \rightarrow \infty} 2 \sin \left(\frac{(b-a)}{2}\right) \cos \left(a+\left(\frac{1}{2}-\frac{1}{2 n}\right)(b-a)\right.$
$=2 \sin \left(\frac{b-a}{2}\right) \cos \left(\frac{b+a}{2}\right)$
Which is trigonometry formula of $\sin (b)-\sin (a)$
Final answer is $\sin (b)-\sin (a)$

Objective Questions

1. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{1}^{4} x \sqrt{x} d x=$?
A. 12.8
B. 12.4
C. 7
D. none of these

Answer

$y=\int_{1}^{4} x \sqrt{x} d x$
$=\int_{1}^{4} x^{\frac{3}{2}} d x$
$=\left(\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}\right)_{1}^{4}$
$=\frac{2}{5}\left(4^{\frac{5}{2}}-1^{\frac{5}{2}}\right)$
$=\frac{2}{5}(32-1)$
$=\frac{62}{5}$
$=12.4$

2. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{2} \sqrt{6 x+4} d x=$?
A. $\frac{64}{9}$
B. 7
C. $\frac{56}{9}$
D. $\frac{60}{9}$

Answer

$y=\int_{0}^{2} \sqrt{6 x+4} d x$
$=\left(\frac{(6 x+4)^{\frac{1}{2}+1}}{6\left(\frac{1}{2}+1\right)}\right)_{0}^{2}$
$=\frac{2}{6 \times 3}\left(16^{\frac{3}{2}}-4^{\frac{3}{2}}\right)$
$=\frac{2}{6 \times 3}(64-8)$
$=\frac{56}{9}$

3. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{5 \mathrm{x}+3}}=?$
A. $\frac{2}{5}(\sqrt{8}-\sqrt{3})$
B. $\frac{2}{5}(\sqrt{8}+\sqrt{3})$
C. $\frac{2}{5} \sqrt{8}$
D. none of these

Answer

$y=\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{5 \mathrm{x}+3}}$
$=\left(\frac{(5 x+3)^{\frac{-1}{2}+1}}{5\left(\frac{-1}{2}+1\right)}\right)_{0}^{1}$
$=\frac{2}{5}\left(8^{\frac{1}{2}}-3^{\frac{1}{2}}\right)$
$=\frac{2}{5}(\sqrt{8}-\sqrt{3})$

4. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)} d x=$?
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. none of these

Answer

$\mathrm{y}=\int_{0}^{1} \frac{1}{1+\mathrm{x}^{2}} \mathrm{dx}$
$=\left(\tan ^{-1} \mathrm{x}\right)_{0}^{1}$
$=\tan ^{-1} 1-\tan ^{-1} 0$
$=\frac{\pi}{4}-0$
$=\frac{\pi}{4}$
5. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{2} \frac{\mathrm{dx}}{\sqrt{4-\mathrm{x}^{2}}}=$?
A. 1
B. $\sin ^{-1} \frac{1}{2}$
C. $\frac{\pi}{4}$
D. none of these

Answer

$\mathrm{y}=\int_{0}^{2} \frac{\mathrm{dx}}{\sqrt{4-\mathrm{x}^{2}}}$
Use formula $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}$
$y=\left(\sin ^{-1} \frac{x}{2}\right)_{0}^{2}$
$=\sin ^{-1} 1-\sin ^{-1} 0$
$=\frac{\pi}{2}$

6. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{\sqrt{3}}^{\sqrt{8}} \mathrm{x} \sqrt{1+\mathrm{x}^{2}} \mathrm{dx}=$?
A. $\frac{19}{3}$
B. $\frac{19}{6}$
C. $\frac{38}{3}$
D. $\frac{9}{4}$

Answer

$y=\int_{\sqrt{3}}^{\sqrt{8}} x \sqrt{1+x^{2}} d x$
Let, $\mathrm{x}^{2}=\mathrm{t}$
Differentiating both side with respect to t
$2 x \frac{d x}{d t}=1$
$\Rightarrow \mathrm{xdx}=\frac{1}{2} \mathrm{dt}$

At $\mathrm{x}=\sqrt{3}, \mathrm{t}=3$
At $\mathrm{x}=\sqrt{8}, \mathrm{t}=8$
$\mathrm{y}=\frac{1}{2} \int_{3}^{8} \sqrt{1+\mathrm{t}} \mathrm{dt}$
$=\frac{1}{2}\left(\frac{(1+t)^{\frac{1}{2}+1}}{\left(\frac{1}{2}+1\right)}\right)_{3}^{8}$
$=\frac{1}{3}\left(9^{\frac{3}{2}}-4^{\frac{3}{2}}\right)$
$=\frac{1}{3}(27-8)$
$=\frac{19}{3}$
7. Question

Mark (\checkmark) against the correct answer in the following:
$\int_{0}^{1} \frac{x^{3}}{\left(1+x^{8}\right)} d x=$?
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{8}$
D. $\frac{\pi}{16}$

Answer
Let, $\mathrm{x}^{4}=\mathrm{t}$
Differentiating both side with respect to t
$4 x^{3} \frac{\mathrm{dx}}{\mathrm{dt}}=1$
$\Rightarrow \mathrm{x}^{3} \mathrm{dx}=\frac{1}{4} \mathrm{dt}$
At $\mathrm{x}=0, \mathrm{t}=0$
At $\mathrm{x}=1, \mathrm{t}=1$
$\mathrm{y}=\frac{1}{4} \int_{0}^{1} \frac{1}{1+\mathrm{t}^{2}} \mathrm{dt}$
$=\frac{1}{4}\left(\tan ^{-1} \mathrm{t}\right)_{0}^{1}$
$=\frac{1}{4}\left(\tan ^{-1} 1-\tan ^{-1} 0\right)$
$=\frac{\pi}{16}$
8. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{1}^{e} \frac{(\log x)^{2}}{x} d x=?$
A. $\frac{1}{3}$
B. $\frac{1}{3} \mathrm{e}^{3}$
C. $\frac{1}{3}\left(\mathrm{e}^{3}-1\right)$
D. none of these

Answer

Let, $\log x=t$
Differentiating both side with respect to t
$\frac{1}{x} \frac{d x}{d t}=1$
$\Rightarrow \frac{1}{\mathrm{x}} \mathrm{dx}=\mathrm{dt}$
At $\mathrm{x}=1, \mathrm{t}=0$
At $\mathrm{x}=\mathrm{e}, \mathrm{t}=1$
$y=\int_{0}^{1} t^{2} d t$
$=\left(\frac{\mathrm{t}^{3}}{3}\right)_{0}^{1}$
$=\frac{1}{3}$
9. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{\pi / 4}^{\pi / 2} \cot x d x=$?
A. $\log 2$
B. $2 \log 2$
C. $\frac{1}{2} \log 2$
D. none of these

Answer

$y=(\ln (\sin x))_{\frac{\pi}{4}}^{\frac{\pi}{2}}$
$=\ln \left(\sin \frac{\pi}{2}\right)-\ln \left(\sin \frac{\pi}{4}\right)$
$=\ln 1-\ln \frac{1}{\sqrt{2}}$
$=\frac{1}{2} \ln 2$

10. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 4} \tan ^{2} x d x=?$
A. $\left(1-\frac{\pi}{4}\right)$
B. $\left(1+\frac{\pi}{4}\right)$
C. $\left(1-\frac{\pi}{2}\right)$
D. $\left(1+\frac{\pi}{2}\right)$

Answer

$y=\int_{0}^{\frac{\pi}{4}}\left(\sec ^{2} x-1\right) d x$
$=(\tan x-x)_{0}^{\frac{\pi}{4}}$
$=\left(\tan \frac{\pi}{4}-\frac{\pi}{4}\right)-(\tan 0-0)$
$=1-\frac{\pi}{4}$

11. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{\pi / 2} \cos ^{2} x d x=?$
A. $\frac{\pi}{2}$
B. π
C. $\frac{\pi}{4}$
D. 1

Answer

$\mathrm{y}=\int_{0}^{\frac{\pi}{2}} \frac{1+\cos 2 \mathrm{x}}{2} \mathrm{dx}$
$=\left(\frac{x}{2}+\frac{\sin 2 x}{4}\right)_{0}^{\frac{\pi}{2}}$
$=\left(\frac{\frac{\pi}{2}}{2}+\frac{\sin \pi}{4}\right)-\left(\frac{0}{2}+\frac{\sin 0}{4}\right)$
$=\frac{\pi}{4}$

12. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{\pi / 3}^{\pi / 2} \operatorname{cosec} x d x=?$
A. $\frac{1}{2} \log 2$
B. $\frac{1}{2} \log 3$
C. $-\log 2$
D. none of these

Answer

$y=(\ln (\operatorname{cosec} x-\cot x))_{\frac{\pi}{2}}^{\frac{\pi}{2}}$
$=\ln \left(\operatorname{cosec} \frac{\pi}{2}-\cot \frac{\pi}{2}\right)-\ln \left(\operatorname{cosec} \frac{\pi}{3}-\cot \frac{\pi}{3}\right)$
$=\ln (1-0)-\ln \left(\frac{2}{\sqrt{3}}-\frac{1}{\sqrt{3}}\right)$
$=\frac{1}{2} \log 3$

13. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 2} \cos ^{3} x d x=?$
A. 1
B. $\frac{3}{4}$
C. $\frac{2}{3}$
D. none of these

Answer

$y=\int_{0}^{\frac{\pi}{2}} \cos x\left(1-\sin ^{2} x\right) d x$
Let, $\sin \mathrm{x}=\mathrm{t}$
Differentiating both side with respect to t
$\operatorname{Cos} \mathrm{x} \frac{\mathrm{dx}}{\mathrm{dt}}=1$
$\Rightarrow \cos x d x=d t$
At $\mathrm{x}=0, \mathrm{t}=0$
At $x=\frac{\pi}{2}, t=1$
$y=\int_{0}^{1} 1-t^{2} d t$
$=\left(t-\frac{t^{3}}{3}\right)_{0}^{1}$
$=1-\frac{1}{3}$
$=\frac{2}{3}$

14. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{\pi / 4} \frac{e^{\tan x}}{\cos ^{2} x} d x=$?
A. $(e-1)$
B. $(\mathrm{e}+1)$
C. $\left(\frac{1}{\mathrm{e}}+1\right)$
D. $\left(\frac{1}{\mathrm{e}}-1\right)$

Answer

$y=\int_{0}^{\frac{\pi}{4}} e^{\tan x} \sec ^{2} x d x$
Let, $\tan \mathrm{x}=\mathrm{t}$
Differentiating both side with respect to t
$\sec ^{2} x \frac{d x}{d t}=1$
$\Rightarrow \sec ^{2} x d x=d t$
At $x=0, t=0$
At $\mathrm{x}=\frac{\pi}{4}, \mathrm{t}=1$
$y=\int_{0}^{1} e^{t} d t$
$=e^{t_{0}^{1}}$
$=e^{1}-e^{0}$
$=\mathrm{e}-1$

15. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 2} \frac{\cos x}{\left(1+\sin ^{2} x\right)} d x=$?
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. π
D. none of these

Answer

Let, $\sin \mathrm{x}=\mathrm{t}$
Differentiating both side with respect to t
$\operatorname{Cos} x \frac{d x}{d t}=1$
$\Rightarrow \cos x d x=d t$
At $\mathrm{x}=0, \mathrm{t}=0$
At $\mathrm{x}=\frac{\pi}{2}, \mathrm{t}=1$
$y=\int_{0}^{1} \frac{1}{1+t^{2}} d t$
$=\left(\tan ^{-1} t\right)_{0}^{1}$
$=\tan ^{-1} 1-\tan ^{-1} 0$
$=\pi / 4$

16. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{1 / \pi}^{2 / \pi} \frac{\sin (1 / x)}{x^{2}} d x=?$
A. 1
B. $\frac{1}{2}$
C. $\frac{3}{2}$
D. none of these

Answer

Let, $1 / \mathrm{x}=\mathrm{t}$
Differentiating both side with respect to t
$\frac{-1}{x^{2}} \frac{d x}{d t}=1$
$\Rightarrow \frac{1}{x^{2}} d x=-d t$
At $\mathrm{x}=1 / \pi, \mathrm{t}=\pi$
At $x=2 / \pi, t=\pi / 2$
$y=\int_{\pi}^{\frac{\pi}{2}} \sin t d t$
$=(-\cos t)_{\pi}^{\frac{\pi}{2}}$
= 1

17. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{\pi} \frac{d x}{(1+\sin x)}=$?
A. $\frac{1}{2}$
B. 1
C. 2
D. 0

Answer

$y=\int_{0}^{\pi} \frac{1}{1+\sin x} \times \frac{1-\sin x}{1-\sin x} d x$
$=\int_{0}^{\pi} \frac{1-\sin x}{\cos ^{2} x} d x$
$=\int_{0}^{\pi} \frac{1}{\cos ^{2} x}-\frac{\sin x}{\cos ^{2} x} d x$
$=\int_{0}^{\pi} \sec ^{2} x d x-\int_{0}^{\pi} \frac{\sin x}{\cos ^{2} x} d x$
Let, $\cos x=t$
Differentiating both side with respect to t
$-\sin x \frac{d x}{d t}=1$
$\Rightarrow \sin x d x=-d t$
At $x=0, t=1$
At $x=\pi, t=-1$
$y=(\tan x)_{0}^{\pi}+\int_{1}^{-1} \frac{1}{t^{2}} d t$
$=(\tan \pi-\tan 0)+\left(\frac{t^{-1}}{-1}\right)_{1}^{-1}$
$=2$

18. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 2}(\sqrt{\sin x} \cos x)^{3} d x=?$
A. $\frac{2}{9}$
B. $\frac{2}{15}$
C. $\frac{8}{45}$
D. $\frac{5}{2}$

Answer

$y=\int_{0}^{\frac{\pi}{2}} \sin ^{\frac{3}{2}} x \cos ^{3} x d x$
$y=\int_{0}^{\frac{\pi}{2}} \sin ^{\frac{3}{2}} x \cos x\left(1-\sin ^{2} x\right) d x$
Let, $\sin \mathrm{x}=\mathrm{t}$
Differentiating both side with respect to t
$\operatorname{Cos} x \frac{d x}{d t}=1$
$\Rightarrow \cos x d x=d t$
At $\mathrm{x}=0, \mathrm{t}=0$
At $x=\pi / 2, t=1$
$y=\int_{0}^{1} t^{\frac{3}{2}}-t^{\frac{7}{2}} d t$
$=\left(\frac{t^{\frac{5}{2}}}{\frac{5}{2}}-\frac{t^{\frac{9}{2}}}{\frac{9}{2}}\right)_{0}^{1}$
$=\frac{2}{5}-\frac{2}{9}$
$=\frac{8}{45}$
19. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{1} \frac{x e^{x}}{(1+x)^{2}} d x=?$
A. $\left(\frac{\mathrm{e}}{2}-1\right)$
B. $(\mathrm{e}-1)$
C. $e(e-1)$
D. none of these

Answer

$y=\int_{0}^{1} \frac{e^{x}(x+1-1)}{(1+x)^{2}} d x$
$=\int_{0}^{1} e^{x}\left(\frac{1}{1+x}-\frac{1}{(1+x)^{2}}\right) d x$
Use formula $\int e^{x}\left(f(x)+f^{\prime}(x)\right) d x=e^{x} f(x)$
If $\mathrm{f}(\mathrm{x})=\frac{1}{1+\mathrm{x}}$
then $\mathrm{f}^{\prime}(\mathrm{x})=-\frac{1}{(1+\mathrm{x})^{2}}$
$y=\left(\frac{e^{x}}{1+x}\right)_{0}^{1}$
$y=\frac{e}{2}-1$
20. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 2} e^{x}\left(\frac{1+\sin x}{1+\cos x}\right) d x=?$
A. 0
B. $\frac{\pi}{4}$
C. $\mathrm{e}^{\pi / 2}$
D. $\left(\mathrm{e}^{\pi / 2}-1\right)$

Answer

$y=\int_{0}^{\frac{\pi}{2}} e^{x}\left(\frac{1+\sin x}{2 \cos ^{2} \frac{x}{2}}\right) d x$
$=\int_{0}^{\frac{\pi}{2}} e^{x}\left(\frac{1}{2 \cos ^{2} \frac{x}{2}}+\frac{\sin x}{2 \cos ^{2} \frac{x}{2}}\right) d x$
$=\int_{0}^{\frac{\pi}{2}} e^{x}\left(\frac{1}{2 \cos ^{2} \frac{x}{2}}+\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\right) d x$
$=\int_{0}^{\frac{\pi}{2}} e^{x}\left(\frac{1}{2} \sec ^{2} \frac{x}{2}+\tan \frac{x}{2}\right) d x$
Use formula $\int e^{x}\left(f(x)+f^{\prime}(x)\right) d x=e^{x} f(x)$
If $\mathrm{f}(\mathrm{x})=\tan \frac{\mathrm{x}}{2}$ then $\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2} \sec ^{2} \frac{\mathrm{x}}{2}$
$y=\left(e^{x} \tan \frac{x}{2}\right)_{0}^{\frac{\pi}{2}}$
$=e^{\frac{\pi}{2} \tan \frac{\frac{\pi}{2}}{2}-e^{0} \tan \frac{0}{2}}$
$=\mathrm{e}^{\frac{\pi}{2}}$

21. Question

Mark (\checkmark) against the correct answer in the following:
$\int_{0}^{\pi / 4} \sqrt{1+\sin 2 \mathrm{x}} \mathrm{dx}=$?
A. 0
B. 1
C. 2
D. $\sqrt{2}$

Answer

$y=\int_{0}^{\frac{\pi}{4}} \sqrt{\sin ^{2} x+\cos ^{2} x+2 \sin \mathrm{x} \cos \mathrm{X}} d x$
$=\int_{0}^{\frac{\pi}{4}} \sin x+\cos x d x$
$=(-\cos x+\sin x)_{0}^{\frac{\pi}{4}}$
$=\left(-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)-(-1+0)$
$y=1$

22. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 2} \sqrt{1+\cos 2 \mathrm{x}} d \mathrm{x}=$?
A. $\sqrt{2}$
B. $\frac{3}{2}$
C. $\sqrt{3}$
D. 2

Answer
$y=\int_{0}^{\frac{\pi}{2}} \sqrt{2 \cos ^{2} x} d x$
$=\int_{0}^{\frac{\pi}{2}} \sqrt{2} \cos x d x$
$=\sqrt{2}(\sin \mathrm{x})_{0}^{\frac{\pi}{2}}$
$=\sqrt{ } 2$

23. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{1} \frac{(1-x)}{(1+x)} d x=$?
A. $\frac{1}{2} \log 2$
B. $(2 \log 2+1)$
C. $(2 \log 2-1)$
D. $\left(\frac{1}{2} \log 2-1\right)$

Answer

$\mathrm{y}=\int_{0}^{1} \frac{1-\mathrm{x}-1+1}{1+\mathrm{x}} \mathrm{dx}$
$=\int_{0}^{1} \frac{2}{1+x}-1 d x$
$=(2 \ln (1+x)-x)_{0}^{1}$
$=2 \ln 2-1$

24. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{\pi / 2} \sin ^{2} x d x=?$
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\frac{2 \pi}{3}$

Answer

$\mathrm{y}=\int_{0}^{\frac{\pi}{2}} \frac{1-\cos 2 \mathrm{x}}{2} \mathrm{dx}$
$=\left(\frac{x}{2}-\frac{\sin 2 \mathrm{x}}{4}\right)_{0}^{\frac{\pi}{2}}$
$=\frac{\pi}{4}-\frac{\sin \pi}{4}$
$=\frac{\pi}{4}$

25. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{\pi / 6} \cos x \cos 2 x d x=?$
A. $\frac{1}{4}$
B. $\frac{5}{12}$
C. $\frac{1}{3}$
D. $\frac{7}{12}$

Answer

$y=\int_{0}^{\frac{\pi}{6}} \cos x\left(1-2 \sin ^{2} x\right) d x$
$=\int_{0}^{\frac{\pi}{6}} \cos x-2 \cos x \sin ^{2} x d x$
$=(\sin x)_{0}^{\frac{\pi}{6}}-2 \int_{0}^{\frac{\pi}{6}} \cos x \sin ^{2} x d x$
Let, $\sin x=t$
Differentiating both side with respect to t
$\operatorname{Cos} x \frac{d x}{d t}=1$
$\Rightarrow \cos x d x=d t$
At $x=0, t=0$
At $x=\pi / 6, t=1 / 2$
$y=\sin \frac{\pi}{6}-\sin 0-2 \int_{0}^{\frac{1}{2}} t^{2} d t$
$=\frac{1}{2}-2\left(\frac{\mathrm{t}^{3}}{3}\right)_{0}^{\frac{1}{2}}$
$=\frac{1}{2}-\frac{1}{12}$
$=\frac{5}{12}$

26. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 2} \sin x \sin 2 x d x=?$
A. $\frac{2}{3}$
B. $\frac{3}{4}$
C. $\frac{5}{6}$
D. $\frac{3}{5}$

Answer

$y=\int_{0}^{\frac{\pi}{2}} \sin x(2 \sin x \cos x) d x$
$=2 \int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos x d x$
Let, $\sin x=t$
Differentiating both side with respect to t
$\operatorname{Cos} x \frac{d x}{d t}=1$
$\Rightarrow \cos x d x=d t$
At $x=0, t=0$
At $x=\pi / 2, t=1$
$y=2 \int_{0}^{1} t^{2} d t$
$=2\left(\frac{\mathrm{t}^{3}}{3}\right)_{0}^{1}$
$=\frac{2}{3}$

27. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi}(\sin 2 x \cos 3 x) d x=?$
A. $\frac{4}{5}$
B. $-\frac{4}{5}$
C. $\frac{5}{12}$
D. $-\frac{12}{5}$

Answer

$y=\int_{0}^{\pi}(2 \sin x \cos x)\left(4 \cos ^{3} x-3 \cos x\right) d x$
Let, $\cos x=t$
Differentiating both side with respect to t
$-\sin x \frac{d x}{d t}=1$
$\Rightarrow \sin x d x=-d t$
At $x=0, t=1$
At $x=\pi, t=-1$
$y=-\int_{1}^{-1} 8 t^{4}-6 t^{2} d t$
$=-\left(8 \frac{\mathrm{t}^{5}}{5}-6 \frac{\mathrm{t}^{3}}{3}\right)_{1}^{-1}$
$=-\left[\left(\frac{-8}{5}+2\right)-\left(\frac{8}{5}-2\right)\right]$
$=-\frac{4}{5}$

28. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{1} \frac{d x}{\left(e^{x}+e^{-x}\right)}=$?
A. $\left(1-\frac{\pi}{4}\right)$
B. $\tan ^{-1} \mathrm{e}$
C. $\tan ^{-1} \mathrm{e}+\frac{\pi}{4}$
D. $\tan ^{-1} \mathrm{e}-\frac{\pi}{4}$

Answer

$y=\int_{0}^{1} \frac{e^{x}}{1+e^{2 x}} d x$
Let $\mathrm{e}^{\mathrm{x}}=\mathrm{t}$
Differentiating both side with respect to t
$e^{x} \frac{d x}{d t}=1$
$\Rightarrow \mathrm{e}^{\mathrm{x}} \mathrm{dx}=\mathrm{dt}$
At $\mathrm{x}=0, \mathrm{t}=1$
At $\mathrm{x}=1, \mathrm{t}=\mathrm{e}$
$\mathrm{y}=\int_{1}^{\mathrm{e}} \frac{1}{1+\mathrm{t}^{2}} \mathrm{dt}$
$=\left(\tan ^{-1} \mathrm{t}\right)_{1}^{\mathrm{e}}$
$=\tan ^{-1} \mathrm{e}-\tan ^{-1} 1$
$=\tan ^{-1} e-\pi / 4$

29. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{9} \frac{\mathrm{dx}}{(1+\sqrt{\mathrm{x}})}=$?
A. $(3-2 \log 2)$
B. $(3+2 \log 2)$
C. (6-2 $\log 4)$
D. $(6+2 \log 4)$

Answer

Let, $x=t^{2}$
Differentiating both side with respect to t
$\frac{\mathrm{dx}}{\mathrm{dt}}=2 \mathrm{t}$
$\Rightarrow \mathrm{dx}=2 \mathrm{tdt}$
At $x=0, t=0$
At $x=9, t=3$
$y=\int_{0}^{3} \frac{2 t}{1+t} d t$
$=2 \int_{0}^{3} \frac{\mathrm{t}+1-1}{1+\mathrm{t}} \mathrm{dt}$
$=2 \int_{0}^{3} 1-\frac{1}{1+\mathrm{t}} \mathrm{dt}$
$=2(\mathrm{t}-\ln (1+\mathrm{t}))_{0}^{3}$
$y=2[(3-\ln 4)-(0-\ln 1)]$
$=6-2 \log 4$

30. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 2} x \cos x d x=$?
A. $\frac{\pi}{2}$
B. $\left(\frac{\pi}{2}-1\right)$
C. $\left(\frac{\pi}{2}+1\right)$
D. none of these

Answer

Use integration by parts
$\int I \times$ II $d x=I \times \int$ II $d x-\int \frac{d}{d x} I\left(\int I I d x\right) d x$
$y=x \int_{0}^{\frac{\pi}{2}} \cos x d x-\int_{0}^{\frac{\pi}{2}} \frac{d}{d x} x\left(\int \cos x d x\right) d x$
$=(x \sin x)_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \sin x d x$
$=\frac{\pi}{2}-(-\cos x)_{0}^{\frac{\pi}{2}}$
$=\frac{\pi}{2}+(0-1)$
$=\frac{\pi}{2}-1$

31. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{1} \frac{d x}{\left(1+x+x^{2}\right)}=?$
A. $\frac{\pi}{\sqrt{3}}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{3 \sqrt{3}}$
D. none of these

Answer

We have to convert denominator into perfect square
$1+x+x 2=x^{2}+2(x)\left(\frac{1}{2}\right)+\frac{1}{4}-\frac{1}{4}+1$
$=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}$
$=\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}$
$y=\int_{0}^{1} \frac{1}{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d x$
Use formula $\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}$
$y=\left(\frac{1}{\frac{\sqrt{3}}{2}} \tan ^{-1} \frac{x+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right)_{0}^{1}$
$=\frac{2}{\sqrt{3}}\left(\tan ^{-1} \frac{2}{\sqrt{3}}\left(\frac{3}{2}\right)-\tan ^{-1} \frac{2}{\sqrt{3}}\left(\frac{1}{2}\right)\right)$
$=\frac{2}{\sqrt{3}}\left(\frac{\pi}{3}-\frac{\pi}{6}\right)$
$=\frac{\pi}{3 \sqrt{3}}$
32. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{1} \sqrt{\frac{1-\mathrm{x}}{1+\mathrm{x}}} d x=$?
A. $\frac{\pi}{2}$
B. $\left(\frac{\pi}{2}-1\right)$
C. $\left(\frac{\pi}{2}+1\right)$
D. none of these

Answer

Let, $\mathrm{x}=\sin \mathrm{t}$
Differentiating both side with respect to t
$\frac{d x}{d t}=\cos t \Rightarrow d x=\cos t d t$
At $\mathrm{x}=0, \mathrm{t}=0$
At $x=1, t=\pi / 2$
$y=\int_{0}^{\frac{\pi}{2}} \sqrt{\frac{1-\sin t}{1+\sin t}} \cos t d t$
$=\int_{0}^{\frac{\pi}{2}} \sqrt{\frac{1-\sin t}{1+\sin t} \times \frac{1-\sin t}{1-\sin t}} \cos t d t$
$=\int_{0}^{\frac{\pi}{2}} \frac{1-\sin t}{\cos t} \cos t d t$
$=\int_{0}^{\frac{\pi}{2}} 1-\sin t d t$
$=(t+\cos t)_{0}^{\frac{\pi}{2}}$
$=\left(\frac{\pi}{2}+0\right)-(0+1)$
$=\frac{\pi}{2}-1$

33. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{1} \frac{(1-x)}{(1+x)} d x=?$
A. $(\log 2+1)$
B. $(\log 2-1)$
C. $(2 \log 2-1)$
D. $(2 \log 2+1)$

Answer

$\mathrm{y}=\int_{0}^{1} \frac{1-\mathrm{x}+1-1}{1+\mathrm{x}} \mathrm{dx}$
$=\int_{0}^{1} \frac{2}{1+x}-1 d x$
$=(2 \ln (1+x)-x)_{0}^{1}$
$=2 \log 2-1$

34. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{-a}^{a} \sqrt{\frac{a-x}{a+x}} d x=$?
A. $a \pi$
B. $\frac{a \pi}{2}$
C. 2 am
D. none of these

Answer

Let, $x=a \sin t$
Differentiating both side with respect to t
$\frac{d x}{d t}=a \cos t \Rightarrow d x=a \cos t d t$
At $x=-a, t=-\pi / 2$
At $x=a, t=\pi / 2$
$y=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\frac{a-a \sin t}{a+a \sin t}} a \cos t d t$
$=a \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\frac{1-\sin t}{1+\sin t} \times \frac{1-\sin t}{1-\sin t}} \cos t d t$
$=a \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1-\sin t}{\cos t} \cos t d t$
$=a \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1-\sin t d t$
$=a(t+\cos t)^{\frac{\pi}{2}}$
$=a\left[\left(\frac{\pi}{2}+0\right)-\frac{\pi}{2}+0\right)$
$=a \pi$

35. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\sqrt{2}} \sqrt{2-x^{2}} d x=$?
A. π
B. 2π
C. $\frac{\pi}{2}$
D. none of these

Answer

Use formula $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}$
$y=\int_{0}^{\sqrt{2}} \sqrt{(\sqrt{2})^{2}-x^{2}} d x$
$=\left(\frac{x}{2} \sqrt{2-x^{2}}+\frac{2}{2} \sin ^{-1} \frac{x}{\sqrt{2}}\right)_{0}^{\sqrt{2}}$
$=\left(\frac{\sqrt{2}}{2} \sqrt{2-2}+\sin ^{-1} \frac{\sqrt{2}}{\sqrt{2}}\right)-\left(0+\sin ^{-1} 0\right)$
$=\frac{\pi}{2}$

36. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{-2}^{2}|\mathrm{x}| \mathrm{dx}=$?
A. 4
B. 3.5
C. 2
D. 0

Answer

We know that
$|x|=-x$ in $[-2,0)$
$|x|=x$ in $[0,2]$
$y=\int_{-2}^{0}|x| d x+\int_{0}^{2}|x| d x$
$=\int_{-2}^{0}-x d x+\int_{0}^{2} x d x$
$=\left(-\frac{x^{2}}{2}\right)_{-2}^{0}+\left(\frac{x^{2}}{2}\right)_{0}^{2}$
$y=0-(-2)+2-0$
$=4$

37. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{1}|2 x-1| d x=$?
A. 2
B. $\frac{1}{2}$
C. 1
D. 0

Answer

We know that
$|2 x-1|=-(2 x-1)$ in $[0,1 / 2)$
$|2 x-1|=(2 x-1)$ in $[1 / 2,1]$
$y=\int_{0}^{\frac{1}{2}}|2 x-1| d x+\int_{\frac{1}{2}}^{1}|2 x-1| d x$
$=\int_{0}^{\frac{1}{2}}-(2 x-1) d x+\int_{\frac{1}{2}}^{1} 2 x-1 d x$
$=-\left(x^{2}-x\right)_{0}^{\frac{1}{2}}+\left(x^{2}-x\right)_{\frac{1}{2}}^{\frac{1}{2}}$
$=-\left[\left(\frac{1}{4}-\frac{1}{2}\right)-(0-0)\right]+\left[(1-1)-\left(\frac{1}{4}-\frac{1}{2}\right)\right]$
$\mathrm{y}=\frac{1}{2}$
38. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{-2}^{1}|2 x+1| d x=?$
A. $\frac{5}{2}$
B. $\frac{7}{2}$
C. $\frac{9}{2}$
D. 0

Answer

We know that
$|2 x+1|=-(2 x+1)$ in $[-2,-1 / 2)$
$|2 x+1|=(2 x+1)$ in $[-1 / 2,1]$
$y=\int_{-2}^{-\frac{1}{2}}|2 x+1| d x+\int_{-\frac{1}{2}}^{1}|2 x+1| d x$
$=\int_{-2}^{-\frac{1}{2}}-(2 x+1) d x+\int_{-\frac{1}{2}}^{1} 2 x+1 d x$
$=-\left(x^{2}+x\right)_{-2}^{-\frac{1}{2}}+\left(x^{2}+x\right)_{-\frac{1}{2}}^{1}$
$=-\left[\left(\frac{1}{4}-\frac{1}{2}\right)-(4-2)\right]+\left[(1+1)-\left(\frac{1}{4}-\frac{1}{2}\right)\right]$
$y=\frac{9}{2}$
39. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{-2}^{1} \frac{|x|}{x} d x=$?
A. 3
B. 2.5
C. 1.5
D. none of these

Answer

We know that
$|x|=-x$ in $[-2,0)$
$|x|=x$ in $[0,1]$
$y=\int_{-2}^{0} \frac{|x|}{x} d x+\int_{0}^{1} \frac{|x|}{x} d x$
$=\int_{-2}^{0} \frac{-x}{x} d x+\int_{0}^{1} \frac{x}{x} d x$
$=\int_{-2}^{0}-1 d x+\int_{0}^{1} 1 d x$
$=(-x)_{-2}^{0}+(x)_{0}^{1}$
$=-(0-(-2))+(1-0)$
$=-1$

40. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{-a}^{a} x|x| d x=$?
A. 0
B. 2 a
C. $\frac{2 a^{3}}{3}$
D. none of these

Answer

We know that
$|x|=-x$ in $[-a, 0)$ where $a>0$
$|x|=x$ in $[0, a]$ where $a>0$
$y=\int_{-a}^{0} x|x| d x+\int_{0}^{a} x|x| d x$
$=\int_{-a}^{0} x(-x) d x+\int_{0}^{a} x(x) d x$
$=-\int_{-a}^{0} x^{2} d x+\int_{0}^{a} x^{2} d x$
$=-\left(\frac{\mathrm{x}^{3}}{3}\right)_{-\mathrm{a}}^{0}+\left(\frac{\mathrm{x}^{3}}{3}\right)_{0}^{\mathrm{a}}$
$=-\left(0-\left(\frac{-\mathrm{a}^{3}}{3}\right)\right)+\left(\frac{\mathrm{a}^{3}}{3}-0\right)$
$=0$

41. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{\pi}|\cos x| d x=$?
A. 2
B. $\frac{3}{2}$
C. 1
D. 0

Answer

Find the equivalent expression to $|\cos x|$ at $0 \leq x \leq \pi$
$\ln 0 \leq x \leq \frac{\pi}{2}$
$=\cos x$
$\ln \frac{\pi}{2} \leq x \leq \pi$
$=-\cos x$
$\Rightarrow \int_{0}^{\frac{\pi}{2}} \cos x d x+\int_{\frac{\pi}{2}}^{\pi}-\cos x d x$
$\Rightarrow \sin \frac{\pi}{2}-\sin 0-\cos \pi+\cos \frac{\pi}{2}$
$\Rightarrow 1-0-(-1)+0=2$

42. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{2 \pi}|\sin x| d x=$?
A. 2
B. 4
C. 1
D. none of these

Answer

Find the equivalent expression to $|\sin x|$ at $0 \leq x \leq 2 \pi$
$\ln 0 \leq x \leq \pi$
$|\sin x|=\sin x$
$\ln \pi \leq x \leq 2 \pi$
$|\sin x|=-\sin x$
$\Rightarrow \int_{0}^{\pi} \sin x d x+\int_{\pi}^{2 \pi}-\sin x d x=-\cos \pi-(-\cos 0)+\cos 2 \pi-\cos \pi$
$=-(-1)+1+1-(-1)$
$=2+2$
$=4$

43. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 2} \frac{\sin x}{(\sin x+\cos x)} d x=$?
A. π
B. $\frac{\pi}{2}$
C. 0
D. $\frac{\pi}{4}$

Answer

We know that,
$\therefore \int_{0}^{a} f(x)=\int_{0}^{a} f(a-x)=I \ldots$ (let)
\therefore Here, $\mathrm{a}=\frac{\pi}{2}$
$f(x)=\frac{\sin x}{(\sin x+\cos x)}$
$\therefore f(a-x)=f\left(\frac{\pi}{2}-x\right)$
$\frac{\sin \left(\frac{\pi}{2}-x\right)}{\sin \left(\frac{\pi}{2}-x\right)+\cos \left(\frac{\pi}{2}-x\right)}=\frac{\cos x}{\cos x+\sin x}$
$\therefore 2 \mathrm{I}=\int_{0}^{a} f(x)+\int_{0}^{a} f(a-x)$
$=\int_{0}^{\frac{\pi}{2}} \frac{\sin x+\cos x}{\cos x+\sin x} d x$
$=\int_{0}^{\frac{\pi}{2}} 1 d x$
$\therefore 2 \mathrm{I}=\frac{\pi}{2}$
$\therefore \mathrm{I}=\frac{\pi}{2.2}$
$=\frac{\pi}{4}$

44. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{(\sqrt{\cos x}+\sqrt{\sin x})} d x=?$
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. π
D. 0

Answer

We know that,
$\therefore \int_{0}^{a} \mathrm{f}(\mathrm{x})=\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{a}-\mathrm{x})=\mathrm{I} \ldots$ (let)
\therefore Here,
$a=\frac{\pi}{2} ;$
$f(x)=\frac{\sqrt{\sin x}}{\sqrt{\cos x}+\sqrt{\sin x}}$
$\therefore f(a-x)=f\left(\frac{\pi}{2}-x\right)$
$\frac{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}}{\sqrt{\cos \left(\frac{\pi}{2}-x\right)}+\sqrt{\sin \left(\frac{\pi}{2}-x\right)}}=\frac{\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}}$
$\therefore 2 \mathrm{I}=\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{x})+\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{a}-\mathrm{x})$
$=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}+\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}} d x$
$=\int_{0}^{\frac{\pi}{2}} 1 d x$
$\therefore 2 \mathrm{I}=\frac{\pi}{2}$
$\therefore I=\frac{\pi}{2.2}$
$=\frac{\pi}{4}$

45. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 2} \frac{\sin ^{4} x}{\left(\sin ^{4} x+\cos ^{4} x\right)} d x=?$
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. 1
D. 0

Answer

We know that,
$\therefore \int_{0}^{a} \mathrm{f}(\mathrm{x})=\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{a}-\mathrm{x})=\mathrm{I} \ldots$ (let)
\therefore Here,
$\mathrm{a}=\frac{\pi}{2} ;$
$f(x)=\frac{\sin ^{4} x}{\sin ^{4} x+\cos ^{4} x}$
$\therefore \mathrm{f}(\mathrm{a}-\mathrm{x})=\mathrm{f}\left(\frac{\pi}{2}-\mathrm{x}\right)$
$\frac{\sin ^{4}\left(\frac{\pi}{2}-x\right)}{\sin ^{4}\left(\frac{\pi}{2}-x\right)+\cos ^{4}\left(\frac{\pi}{2}-x\right)}=\frac{\cos ^{4} x}{\sin ^{4} x+\cos ^{4} x}$
$\therefore 2 I=\int_{0}^{a} f(x)+\int_{0}^{a} f(a-x)$
$=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{4} x+\cos ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x$
$=\int_{0}^{\frac{\pi}{2}} 1 \mathrm{dx}$
$\therefore 2 \mathrm{I}=\frac{\pi}{2}$
$\therefore \mathrm{I}=\frac{\pi}{2.2}$
$=\frac{\pi}{4}$

46. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 2} \frac{\cos ^{1 / 4} x}{\left(\sin ^{1 / 4} x+\cos ^{1 / 4} x\right)} d x=$?
A. 0
B. 1
C. $\frac{\pi}{4}$
D. none of these

Answer

We know that,
$\therefore \int_{0}^{a} f(x)=\int_{0}^{a} f(a-x)=I \ldots$ (let)
\therefore Here,
$\mathrm{a}=\frac{\pi}{2} ;$
$f(x)=\frac{\cos ^{\frac{1}{4} x}}{\sin ^{\frac{1}{4}} x+\cos ^{\frac{1}{4}} x}$
$\therefore f(a-x)=f\left(\frac{\pi}{2}-x\right)$
$\frac{\cos ^{\frac{1}{4}}\left(\frac{\pi}{2}-x\right)}{\sin ^{\frac{1}{4}}}\left(\frac{\pi}{2}-x\right) \cos ^{\frac{1}{4}}\left(\frac{\pi}{2}-x\right)=\sin ^{\frac{1}{4}} x \sin ^{\frac{1}{4}} x+\cos ^{\frac{1}{4}} x$
$\therefore 2 \mathrm{I}=\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{x})+\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{a}-\mathrm{x})$
$=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{1}{4}} x+\cos ^{\frac{1}{4} x}}{\sin ^{\frac{1}{4}} x+\cos ^{\frac{1}{4} x}} d x$
$=\int_{0}^{\frac{\pi}{2}} 1 \mathrm{dx}$
$\therefore 2 \mathrm{I}=\frac{\pi}{2}$
$\therefore \mathrm{I}=\frac{\pi}{2.2}$
$=\frac{\pi}{4}$

47. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{\pi / 2} \frac{\sin ^{n} x}{\left(\sin ^{n} x+\cos ^{n} x\right)} d x=$?
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. 1
D. 0

Answer

We know that,
$\therefore \int_{0}^{a} f(x)=\int_{0}^{a} f(a-x)=I \ldots$ (let)
\therefore Here,
$a=\frac{\pi}{2} ;$
$f(x)=\frac{\sin ^{n} x}{\cos ^{n} x+\sin ^{n} x}$
$\therefore f(a-x)=f\left(\frac{\pi}{2}-x\right)$
$=\frac{\cos ^{n} x}{\cos ^{n} x+\sin ^{n} x}$
$\therefore 2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}} 1 \mathrm{dx}$
$\therefore 2 \mathrm{I}=\frac{\pi}{2}$
$\therefore \mathrm{I}=\frac{\pi}{2.2}$
$=\frac{\pi}{4}$

48. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 2} \frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}} d x=?$
A. 0
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. none of these

Answer

We know that,
$\therefore \int_{0}^{a} f(x)=\int_{0}^{a} f(a-x)=I \ldots$ (let)
\therefore Here,
$a=\frac{\pi}{2} ;$
$f(x)=\frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}$
$\therefore \mathrm{f}(\mathrm{a}-\mathrm{x})=\mathrm{f}\left(\frac{\pi}{2}-\mathrm{x}\right)$
$=\frac{\sqrt{\tan x}}{\sqrt{\cot x}+\sqrt{\tan x}}$
$\therefore 2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}} 1 \mathrm{dx}$
$\therefore 2 \mathrm{I}=\frac{\pi}{2}$
$\therefore \mathrm{I}=\frac{\pi}{2.2}$
$=\frac{\pi}{4}$

49. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{\pi / 2} \frac{\sqrt[3]{\tan x}}{(\sqrt[3]{\tan x}+\sqrt[3]{\cot x})} d x=$?
A. 0
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. π

Answer

We know that,
$\therefore \int_{0}^{a} f(x)=\int_{0}^{a} f(a-x)=I \ldots$ (let)
$=\frac{\sqrt[3]{\tan x}}{\sqrt[3]{\cot x}+\sqrt[3]{\tan x}}$
$=\frac{\sqrt[3]{\frac{\sin x}{\cos x}}}{\sqrt[3]{\frac{\sin x}{\cos x}}+\sqrt[3]{\frac{\cos x}{\sin x}}}$

$$
=\frac{\sqrt[3]{\frac{\sin x}{\cos x}} *(\sqrt[3]{\sin x} \sqrt[3]{\cos x})}{\sin ^{\frac{2}{3} x}+\cos ^{\frac{2}{3} x}}
$$

$=\frac{\sin ^{\frac{2}{3}} x}{\sin ^{\frac{2}{3}} x+\cos ^{\frac{2}{3}} x}$
\therefore Here,
$\mathrm{a}=\frac{\pi}{2} ;$
$f(x)=\frac{\sin ^{\frac{2}{3}} x}{\sin ^{\frac{2}{3}} x+\cos ^{\frac{2}{3}} x}$
$\therefore f(a-x)=f\left(\frac{\pi}{2}-x\right)$
$=\frac{\cos ^{\frac{2}{3}} x}{\sin ^{\frac{2}{3}} x+\cos ^{\frac{2}{3}} x}$
$\therefore 2 I=\int_{0}^{\frac{\pi}{2}} 1 d x$
$\therefore 2 \mathrm{I}=\frac{\pi}{2}$
$\therefore \mathrm{I}=\frac{\pi}{2.2}$
$=\frac{\pi}{4}$

50. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 2} \frac{1}{(1+\tan x)} d x=?$
A. 0
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. π

Answer

$\frac{1}{1+\tan x}=\frac{1}{1+\frac{\sin x}{\cos x}}$
$=\frac{1}{(\cos x+\sin x) \frac{1}{\cos x}}$
$=\frac{\cos x}{\cos x+\sin x}$
So our integral becomes, $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\cos x+\sin x} d x$
We know that,
$\therefore \int_{0}^{a} f(x)=\int_{0}^{a} f(a-x)=I \ldots$ (let)
\therefore Here,
$a=\frac{\pi}{2}$
$f(x)=\frac{\sin x}{(\sin x+\cos x)}$
$\therefore f(a-x)=f\left(\frac{\pi}{2}-x\right)$
$=\frac{\sin \left(\frac{\pi}{2}-x\right)}{\sin \left(\frac{\pi}{2}-x\right)+\cos \left(\frac{\pi}{2}-x\right)}$
$=\frac{\cos x}{\cos x+\sin x}$
$\therefore 2 \mathrm{I}=\int_{0}^{a} \mathrm{f}(\mathrm{x})+\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{a}-\mathrm{x})$
$=\int_{0}^{\frac{\pi}{2}} \frac{\sin x+\cos x}{\cos x+\sin x} d x$
$=\int_{0}^{\frac{\pi}{2}} 1 \mathrm{dx}$
$=\int_{0}^{\frac{\pi}{2}} 1 \mathrm{dx}$
$\therefore 2 \mathrm{I}=\frac{\pi}{2}$
$\therefore \mathrm{I}=\frac{\pi}{2.2}$
$=\frac{\pi}{4}$

51. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{\pi / 2} \frac{1}{(1+\sqrt{\cot x})} d x=$?
A. 0
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. π

Answer

So our integral becomes
$\frac{1}{\sqrt[1]{\cot x}+1}=\frac{1}{\sqrt{\frac{\cos x}{\sin x}}+1}$
$=\frac{\sqrt{\sin x}}{\sqrt{\cos x}+\sqrt{\sin x}}$
\therefore Here,
$\mathrm{a}=\frac{\pi}{2} ;$
$f(x)=\frac{\sqrt{\sin x}}{\sqrt{\cos x}+\sqrt{\sin x}}$
$\therefore f(a-x)=f\left(\frac{\pi}{2}-x\right)$
$=\frac{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}}{\sqrt{\cos \left(\frac{\pi}{2}-x\right)}+\sqrt{\sin \left(\frac{\pi}{2}-x\right)}}$
$=\frac{\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}}$
$\therefore 2 \mathrm{I}=\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{x})+\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{a}-\mathrm{x})$
$=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}+\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}} d x$
$=\int_{0}^{\frac{\pi}{2}} 1 d x$
$\therefore 2 \mathrm{I}=\frac{\pi}{2}$
$\therefore \mathrm{I}=\frac{\pi}{2.2}$
$=\frac{\pi}{4}$

52. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 2} \frac{1}{\left(1+\tan ^{3} x\right)} d x=?$
A. $\frac{\pi}{4}$
B. 0
C. $\frac{\pi}{2}$
D. none of these

Answer

$\frac{1}{1+\tan ^{3} x}=\frac{\cos ^{3} x}{\sin ^{3} x+\cos ^{3} x}$
\therefore Here,
$\mathrm{a}=\frac{\pi}{2} ;$
$f(x)=\frac{\cos ^{3} x}{\sin ^{3} x+\cos ^{3} x}$
We know that,
$\therefore \int_{0}^{a} f(x)=\int_{0}^{a} f(a-x)=I \ldots$ (let)
$f(a-x)=\frac{\sin ^{3} x}{\sin ^{3} x+\cos ^{3} x}$
$\therefore 2 I=\int_{0}^{\frac{\pi}{2}} 1 d x$
$\therefore 2 \mathrm{I}=\frac{\pi}{2}$
$\therefore \mathrm{I}=\frac{\pi}{2.2}$
$=\frac{\pi}{4}$

53. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 2} \frac{\sec ^{5} x}{\left(\sec ^{5} x+\operatorname{cosec}^{5} x\right)} d x=?$
A. $\frac{\pi}{2}$
B. 0
C. $\frac{\pi}{4}$
D. π

Answer

so our integral becomes,
$\frac{\sec ^{5} x}{\sec ^{5} x+\operatorname{cosec}^{5} x}=\frac{\frac{1}{\cos ^{5} x}}{\frac{1}{\cos ^{5} x}+\frac{1}{\sin ^{5} x}}$
$=\frac{\sin ^{5} x}{\sin ^{5} x+\cos ^{5} x}$
Here $a=\frac{\pi}{2}$ and $f(x)=\frac{\sin ^{5} x}{\sin ^{5} x+\cos ^{5} x}$
$f(a-x)=\frac{\cos ^{5} x}{\sin ^{5} x+\cos ^{5} x}$
We know that,
$\therefore \int_{0}^{a} f(x)=\int_{0}^{a} f(a-x)=I \ldots$ (let)
$\therefore 2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}} 1 \mathrm{dx}$
$\therefore 2 \mathrm{I}=\frac{\pi}{2}$
$\therefore \mathrm{I}=\frac{\pi}{2.2}$
$=\frac{\pi}{4}$

54. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 2} \frac{\sqrt{\cot x}}{(1+\sqrt{\cot x})} d x=?$
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. 0
D. 1

Answer

So our integral becomes,
$\frac{\sqrt{\cot x}}{1+\sqrt{\cot x}}=\frac{\sqrt{\frac{\cos x}{\sin x}}}{1+\sqrt{\frac{\cos x}{\sin x}}}$
$=\frac{\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}}$
We know that,
$\therefore \int_{0}^{a} f(x)=\int_{0}^{a} f(a-x)=I \ldots$ (let)
so, we know that,
\therefore Here,
$\mathrm{a}=\frac{\pi}{2} ;$
$f(a-x)=\frac{\sqrt{\sin x}}{\sqrt{\cos x}+\sqrt{\sin x}}$
$\therefore f(x)=\frac{\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}}$
$\therefore 2 \mathrm{I}=\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{x})+\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{a}-\mathrm{x})$
$=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}+\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}} d x$
$=\int_{0}^{\frac{\pi}{2}} 1 d x$
$\therefore 2 \mathrm{I}=\frac{\pi}{2}$
$\therefore \mathrm{I}=\frac{\pi}{2.2}$
$=\frac{\pi}{4}$

55. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 2} \frac{\tan x}{(1+\tan x)} d x=?$
A. 0
B. 1
C. $\frac{\pi}{4}$
D. π

Answer

So our integral becomes,
$\frac{\tan x}{1+\tan x}=\frac{\sin x}{\cos x}\left(\frac{1}{1+\frac{\sin x}{\cos x}}\right)$
$=\frac{\sin x}{\sin x+\cos x}$
We know that,
$\therefore \int_{0}^{a} \mathrm{f}(\mathrm{x})=\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{a}-\mathrm{x})=\mathrm{I} \ldots$ (let)
\therefore Here,
$a=\frac{\pi}{2}$
$f(x)=\frac{\sin x}{(\sin x+\cos x)}$
$\therefore f(a-x)=f\left(\frac{\pi}{2}-x\right)$
$=\frac{\sin \left(\frac{\pi}{2}-x\right)}{\sin \left(\frac{\pi}{2}-x\right)+\cos \left(\frac{\pi}{2}-x\right)}$
$=\frac{\cos x}{\cos x+\sin x}$
$\therefore 2 \mathrm{I}=\int_{0}^{a} \mathrm{f}(\mathrm{x})+\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{a}-\mathrm{x})$
$=\int_{0}^{\frac{\pi}{2}} \frac{\sin x+\cos x}{\cos x+\sin x} d x$
$=\int_{0}^{\frac{\pi}{2}} 1 d x$
$\therefore 2 \mathrm{I}=\frac{\pi}{2}$
$\therefore \mathrm{I}=\frac{\pi}{2.2}$
$=\frac{\pi}{4}$
56. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{-\pi}^{\pi} x^{4} \sin x d x=$?
A. 2π
B. π
C. 0
D. none of these

Answer

If f is an odd function,
$\int_{-a}^{a} f(x) d x=0$
as, $\int_{0}^{a} f(x) d x=-\int_{-a}^{0} f(x) d x$
here $f(x)=x^{4} \sin x$
we will see $f(-x)=(-x)^{4} \sin (-x)$
$=-x^{4} \sin x$
Therefore, $f(x)$ is a odd function,
$\int_{-\pi}^{\pi} x^{4} \sin x d x=0$

57. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{-\pi}^{\pi} x^{3} \cos ^{3} x d x=$?
A. π
B. $\frac{\pi}{4}$
C. 2π
D. 0

Answer

If f is an odd function,
$\int_{-a}^{a} f(x) d x=0$
as, $\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=-\int_{-\mathrm{a}}^{0} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
here $f(x)=x^{3} \cos ^{3} x$
we will see $f(-x)=(-x)^{3} \cos ^{3}(-x)$
$=-x^{3} \cos ^{3} x$
Therefore, $f(x)$ is a odd function,
$\int_{-\pi}^{\pi} x^{3} \cos ^{3} x=0$

58. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{-\pi}^{\pi} \sin ^{5} x d x=?$
A. $\frac{3 \pi}{4}$
B. 2π
C. $\frac{5 \pi}{16}$
D. 0

Answer

If f is an odd function,
$\int_{-a}^{a} f(x) d x=0$
as, $\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=-\int_{-\mathrm{a}}^{0} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
$f(x)=\sin ^{5} x$
$f(-x)=\sin ^{5}(-x)$
$=-\sin ^{5} x$
Therefore, $f(x)$ is a odd function,
$\int_{-\pi}^{\pi} \sin ^{5} x d x=0$

59. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{-1}^{-2} x^{3}\left(1-x^{2}\right) d x=?$
A. $-\frac{40}{3}$
B. $\frac{40}{3}$
C. $\frac{5}{6}$
D. 0

Answer

$\int_{-1}^{-2} x^{3}\left(1-x^{2}\right) d x=\int_{-1}^{-2}\left(x^{3}-x^{5}\right) d x$
$=\left[\frac{x^{4}}{4}-\frac{x^{6}}{6}\right]$
$=\left[\frac{2^{4}}{4}-\frac{1^{6}}{4}-\frac{2^{6}}{6}+\frac{1^{6}}{6}\right]$
$=-\frac{27}{4}$
60. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{-a}^{a} \log \left(\frac{a-x}{a+x}\right) d x=$?
A. 2 a
B. a
C. 0
D. 1

Answer

If f is an odd function,
$\int_{-a}^{a} f(x) d x=0$
as, $\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=-\int_{-\mathrm{a}}^{0} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
$f(x)=\log \left(\frac{a-x}{a+x}\right)$
$f(-x)=\log \frac{a-(-x)}{a-x}$
$=\log \frac{a+x}{a-x}$
$=-\log \frac{a-x}{a+x}$
Hence it is a odd function
$\int_{-a}^{a} \log \frac{a-x}{a+x}=0$

61. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{-\pi}^{\pi}\left(\sin ^{61} x+x^{123}\right) d x=?$
A. 2π
B. 0
C. $\frac{\pi}{2}$
D. 125π

Answer

If f is an odd function,
$\int_{-a}^{a} f(x) d x=0$
as, $\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=-\int_{-\mathrm{a}}^{0} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
$\sin ^{61} x$ and x^{123} is an odd function,
so there integral is zero.

62. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{-\pi}^{\pi} \tan x d x=$?
A. 2
B. $\frac{1}{2}$
C. -2
D. 0

Answer

$\mathrm{f}(\mathrm{x})=\tan \mathrm{x}$
$\mathrm{f}(-\mathrm{x})=\tan (-\mathrm{x})$
$=-\tan x$
hence the function is odd,
therefore, $\mathrm{I}=0$

63. Question

Mark (\checkmark) against the correct answer in the following:
$\int_{-1}^{1} \log \left(x+\sqrt{x^{2}+1}\right) d x=?$
A. $\log \frac{1}{2}$
B. $\log 2$
C. $\frac{1}{2} \log 2$
D. 0

Answer

By by parts,
$\int \log \left(x+\sqrt{x^{2}+1}\right)=x \log \left(x+\sqrt{x^{2}+1}\right)-\int \frac{x}{\left(x+\sqrt{x^{2}+1}\right)\left(1+\frac{x}{\sqrt{x^{2}+1}}\right)}$
$=x \log \left(x+\sqrt{x^{2}+1}\right)-\int \frac{x}{\sqrt{x^{2}+1}}=x \log \left(x+\sqrt{x^{2}+1}\right)-\sqrt{x^{2}+1}$

64. Question

Mark (\checkmark) against the correct answer in the following:
$\int_{-\pi / 2}^{\pi / 2} \cos x d x=$?
A. 0
B. 2
C. -1
D. none of these

Answer

$\cos x$ is an even function so,
$\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$
$\therefore \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x d x=2 \int_{0}^{\frac{\pi}{2}} \cos x d x$
$=2(1-0)$
$=2$

65. Question

Mark ($\sqrt{ }$) against the correct answer in the following:

$$
\int_{0}^{q} \frac{\sqrt{x}}{(\sqrt{x}+\sqrt{a-x})} d x=?
$$

A. $\frac{a}{2}$
B. 2 a
C. $\frac{2 \mathrm{a}}{3}$
D. $\frac{\sqrt{\mathrm{a}}}{2}$

Answer

Here,
$f(x)=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}$
$f(a-x)=\frac{\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}}$
We know that,
$\therefore \int_{0}^{a} f(x)=\int_{0}^{a} f(a-x)=I \ldots$ (let)
$2 I=\int_{0}^{a} \frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}} d x$
$=\int_{0}^{a} d x$
$I=\frac{a}{2}$

66. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{\pi / 4} \log (1+\tan x) d x=?$
A. $\frac{\pi}{4}$
B. $\frac{\pi}{4} \log 2$
C. $\frac{\pi}{8} \log 2$
D. 0

Answer

let $I=\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$
We know that,
$\therefore \int_{0}^{a} f(x)=\int_{0}^{a} f(a-x)=I$
$\therefore f(a-x)=\log \left(1+\tan \left(\frac{\pi}{4}-x\right)\right)$
$=\log \left(1+\frac{\left(\tan \frac{\pi}{4}-\tan x\right)}{1+\tan \frac{\pi}{4} \tan x}\right)=\log \left(1+1(1-\tan x) \frac{1}{1+\tan x}\right.$
$=\log \frac{2}{1+\tan x}$
$\therefore \int_{0}^{a} f(a-x)=I$
$=\int_{0}^{\frac{\pi}{4}} \log \frac{2}{1+\tan x} d x$
$=\int_{0}^{\frac{\pi}{4}} \log 2 d x-\int_{0}^{\frac{\pi}{4}}(1+\tan x) d x$
$\therefore \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \log 2 \mathrm{dx}-\mathrm{I}$
$\therefore 2 \mathrm{I}=\frac{\pi}{4} \log 2$
$\therefore \mathrm{I}=\frac{\pi}{8} \log 2$

67. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{-a}^{a} f(x) d x=?$
A. $2 \int_{0}^{a}\{\mathrm{f}(\mathrm{x})+\mathrm{f}(-\mathrm{x})\} \mathrm{dx}$
B. $2 \int_{0}^{\mathrm{a}}\{\mathrm{f}(\mathrm{x})-\mathrm{f}(-\mathrm{x})\} \mathrm{dx}$
C. $\int_{0}^{a}\{f(x)+f(-x)\} d x$
D. none of these

Answer

$\therefore \int_{-a}^{a} f(x) d x$
$\therefore \int_{-a}^{0} f(x) d x+\int_{0}^{a} f(x) d x$
$\therefore \int_{0}^{a} f(-x) d x=\int_{-a}^{0} f(x) d x$
$\therefore \int_{0}^{a} f(-x) d x+\int_{0}^{a} f(x) d x$

68. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
Let $[\mathrm{x}$] denote the greatest integer less than or equal to x .
Then, $\int_{0}^{1.5}[x] d x=$?
A. $\frac{1}{2}$
B. $\frac{3}{2}$
C. 2
D. 3

Answer
$\therefore \int_{0}^{1.5}[x] d x$
$=\int_{0}^{1}[x] d x+\int_{1}^{1.5}[x] d x$
$=\int_{0}^{1} 0 d x+\int_{1}^{1.5} 1 . d x$
$=\frac{3}{2}-1$
$=\frac{1}{2}$

69. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
Let $[x]$ denote the greatest integer less than or equal to x.
Then, $\int_{-1}^{1}[x] d x=$?
A. -1
B. 0
C. $\frac{1}{2}$
D. 2

Answer

$\int_{-1}^{1}[x] d x=\int_{-1}^{0}[x] d x+\int_{0}^{1}[x] d x$
$=\int_{-1}^{0}-1 \mathrm{dx}+\int_{0}^{1} 0 \mathrm{dx}$
$=-1-0+0$
$=-1$
70. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{1}^{2}\left|x^{2}-3 x+2\right| d x=$?
A. $\frac{-1}{6}$
B. $\frac{1}{6}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer

$\int_{1}^{2}\left|x^{2}-3 x+2\right| d x$
$\therefore x^{2}-3 x+2=0$
$(x-2)(x-1)=0$
so, 2 , and 1 itself are the limits so no breaking points for the integral,
$\therefore \int_{1}^{2}\left(-x^{2}+3 x-2\right) d x$
$=\left[\frac{-x^{3}}{3}+\frac{3 x^{2}}{2}-2 x\right]$ (1to2)
$\therefore=\frac{1}{6}$
71. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{\pi}^{2 \pi}|\sin x| d x=$?
A. 0
B. 1
C. 2
D. none of these

Answer

$\therefore \sin x=0$
$\therefore \mathrm{x}=0, \pi, 2 \pi \ldots$
So $\pi, 2 \pi$ are the limits so no breaking points for the integral,
$\therefore \int_{\pi}^{2 \pi}-\sin x d x=-\cos x(\pi$ to $2 \pi)$
$=2$

72. Question

Mark ($\sqrt{ }$) against the correct answer in the following:
$\int_{0}^{1 / \sqrt{2}} \frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{3 / 2}} d x=?$
A. $\frac{1}{2}(\pi-\log 2)$
B. $\left(\frac{\pi}{2}-2 \log 2\right)$
C. $\left(\frac{\pi}{4}-\frac{1}{2} \log 2\right)$
D. none of these

Answer

put $\sin ^{-1} x=t ;$
$\mathrm{dt}=\frac{\mathrm{dx}}{\sqrt{1-\mathrm{x}^{2}}} ;$
$x=\sin t$
$\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}$
$=\mathrm{t}$;
and $\sin ^{-1} 0=0$
$=\mathrm{t}$
Limit changes to,
$\int_{0}^{\frac{\pi}{4}} \frac{\mathrm{tdt}}{1-\sin ^{2} \mathrm{t}}=\int_{0}^{\frac{\pi}{4}} \mathrm{tsec}^{2} \mathrm{tdt}$
$=\mathrm{t} \tan \mathrm{t}-\int_{0}^{\frac{\pi}{4}} \tan \mathrm{tdt}$
$=[t \tan t+\log \cos t]\left(0\right.$ to $\left.\frac{\pi}{4}\right)$
$=\frac{\pi}{4}-\frac{1}{2} \log 2$

73. Question

Mark $(\sqrt{ })$ against the correct answer in the following:
$\int_{0}^{1} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x=?$
A. $\frac{1}{2}(\pi-\log 2)$
B. $\left(\frac{\pi}{2}-\log 2\right)$
C. $(\pi-2 \log 2)$
D. none of these

Answer

put $x=\tan y$

$$
\begin{aligned}
& d x=\sec ^{2} y d y \\
& \int_{0}^{\frac{\pi}{4}} \sin ^{-1}(\sin 2 y) \sec ^{2} y d y \\
& =2 \int_{0}^{\frac{\pi}{4}} y \sec ^{2} y d y \\
& =2\left[y \tan y-\int_{0}^{\frac{\pi}{4}} \tan y d y\right] \\
& =2[y \tan y+\log \cos y]\left(0 \text { to } \frac{\pi}{4}\right) \\
& =2\left[\frac{\pi}{4}-\frac{1}{2} \log 2\right] \\
& =\frac{\pi}{2}-\log 2
\end{aligned}
$$

