19. Differential Equations with Variable Separable

Exercise 19A

1. Question

Find the general solution of each of the following differential equations:
$\frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right)$

Answer

$\frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right)$
Rearranging the terms, we get:
$\Rightarrow \frac{d y}{1+y^{2}}=\left(1+\mathrm{x}^{2}\right) d x$
Integrating both the sides we get,
$\Rightarrow \int \frac{d y}{1+y^{2}}=\int\left(1+\mathrm{x}^{2}\right) d x+c$
$\Rightarrow \tan ^{-1} y=x+\frac{x^{3}}{3}+c \cdots\left(\int \frac{d y}{1+y^{2}}=\tan ^{-1} y, \int x^{n}=\frac{x^{n+1}}{n+1}\right)$
Ans: $\tan ^{-1} y=x+\frac{x^{3}}{3}+c$

2 Ans:. Question

Find the general solution of each of the following differential equations:
$x^{4} \frac{d y}{d x}=-y^{4}$

Answer

$x^{4} \frac{d y}{d x}=-y^{4}$
$\Rightarrow \frac{d y}{-y^{4}}=\frac{d x}{x^{4}}$
Integrating both the sides we get,
$\Rightarrow \int \frac{d y}{-y^{4}}=\int \frac{d x}{x^{4}}+c^{t}$
$\Rightarrow \frac{-y^{-4+1}}{-4+1}=\frac{x^{-4+1}}{-4+1}+c^{\prime}$
$\Rightarrow \frac{1}{3 y^{3}}=-\frac{1}{3 x^{3}}+c^{t}$
$\Rightarrow \frac{1}{y^{3}}+\frac{1}{x^{3}}=3 c^{\prime}$
$\Rightarrow \frac{1}{x^{3}}+\frac{1}{y^{3}}=c \ldots\left(3 \mathrm{c}^{\prime}=\mathrm{c}\right)$

3. Question

Find the general solution of each of the following differential equations:
$\frac{d y}{d x}=1+x+y+x y$

Answer

$\frac{d y}{d x}=1+x+y+x y=1+y+x(1+y)$
$\Rightarrow \frac{d y}{d x}=(1+y)(1+x)$
Rearranging the terms we get:
$\Rightarrow \frac{d y}{1+y}=(1+x) d x$
Integrating both the sides we get,
$\Rightarrow \int \frac{d y}{1+y}=\int(1+x) d x+c$
$\Rightarrow \log |1+y|=x+\frac{x^{2}}{2}+c \cdots\left(\int \frac{d y}{1+y}=\log |1+y|\right)$
Ans: $\log |1+y|=x+\frac{x^{2}}{2}+c$

4. Question

Find the general solution of each of the following differential equations:
$\frac{d y}{d x}=1-x+y-x y$

Answer

$\Rightarrow \frac{d y}{d x}=1-x+y-x y=1+y-x(1+y)$
$\Rightarrow \frac{d y}{d x}=(1+y)(1-x)$
Rearranging the terms we get:
$\Rightarrow \frac{d y}{1+y}=(1-x) d x$
Integrating both the sides we get,
$\Rightarrow \int \frac{d y}{1+y}=\int(1-x) d x+c$
$\Rightarrow \log |1+y|=x-\frac{x^{2}}{2}+c \cdots\left(\int \frac{d y}{1+y}=\log |1+y|\right)$
Ans: $\log |1+y|=x-\frac{x^{2}}{2}+c$

5. Question

Find the general solution of each of the following differential equations:
$(x-1) \frac{d y}{d x}=2 x^{3} y$

Answer

$(x-1) \frac{d y}{d x}=2 x^{3} y$

Separating the variables we get:
$\Rightarrow \frac{d y}{y}=2 x^{3} \frac{d x}{(x-1)}$
$\Rightarrow \frac{d y}{y}=\frac{2\left((x-1)\left(x^{2}+x+1\right)+1\right)}{(x-1)} d x$
$\Rightarrow \frac{d y}{y}=2\left(x^{2}+x+1+\frac{1}{x-1}\right) d x$
Integrating both the sides we get,
$\Rightarrow \int \frac{d y}{y}=\int 2\left(x^{2}+x+1+\frac{1}{x-1}\right) d x+c$
$\Rightarrow \log |y|=\frac{2 x^{3}}{3}+\frac{2 x^{2}}{2}+2 x+2 \log |x-1|+c$
$\Rightarrow \log |y|=\frac{2 x^{3}}{3}+x^{2}+2 x+2 \log |x-1|+c$
Ans: $\log |y|=\frac{2 x^{3}}{3}+x^{2}+2 x+2 \log |x-1|+c$

6. Question

Find the general solution of each of the following differential equations:
$\frac{d y}{d x}=e^{x+y}$

Answer

$\frac{d y}{d x}=e^{x} e^{y}$
Rearringing the terms we get:
$\Rightarrow \frac{d y}{e^{y}}=e^{x} d x$
Integrating both the sides we get,
$\Rightarrow \int \frac{d y}{e^{y}}=\int e^{x} d x+c$
$\Rightarrow \frac{e^{-y}}{-1}=e^{x}+c$
$\Rightarrow e^{x}+e^{-y}=c$
Ans: $e^{x}+e^{-y}=c$

7. Question

Find the general solution of each of the following differential equations:
$\left(e^{x}+e^{-x}\right) d y-\left(e^{x}-e^{-x}\right) d x=0$

Answer

$\left(e^{x+} e^{-x}\right) d y-\left(e^{x}-e^{-x}\right) d x=0$
$\Rightarrow d y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x$

Integrating both the sides we get,
$\Rightarrow \int d y=\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x+c$
$\Rightarrow \mathrm{y}=\log \left|\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right|+\mathrm{c} \ldots\left(\frac{d}{d x}\left(e^{x}+e^{-x}\right)=e^{x}-e^{-x}\right)$
Ans: $y=\log \left|e^{x}+e^{-x}\right|+c$

8. Question

Find the general solution of each of the following differential equations:

Answer

Given: $\frac{d y}{d x}=e^{x} e^{-y}+x^{2} e^{-y}$
$\Rightarrow \frac{d y}{d x}=e^{-y}\left(e^{x}+x^{2}\right)$
$\Rightarrow \frac{d y}{e^{-y}}=\left(e^{x}+x^{2}\right) d x$
Integrating both the sides we get:
$\Rightarrow \int \frac{d y}{e^{-y}}=\int\left(e^{x}+x^{2}\right) d x+c$
$\Rightarrow e^{y}=e^{x}+\frac{x^{3}}{3}+c$
Ans: $e^{y}=e^{x}+\frac{x^{3}}{3}+c$

9. Question

Find the general solution of each of the following differential equations:
$e^{2 x-3 y} d x+e^{2 y-3 x} d y=0$

Answer

$e^{2 x} e^{-3 y} d x+e^{2 y} e^{-3 x} d y=0$
Rearringing the terms we get:
$\Rightarrow \frac{e^{2 x} d x}{e^{-3 x}}=-\frac{e^{2 y} d y}{e^{-3 y}}$
$\Rightarrow e^{2 x+3 x} d x=-e^{2 y+3 y} d y$
$\Rightarrow e^{5 x} d x=-e^{5 y} d y$
Integrating both the sides we get:
$\Rightarrow \int e^{5 x} d x=-\int e^{5 y} d y+c^{\prime}$
$\Rightarrow \frac{e^{5 x}}{5}=-\frac{e^{5 y}}{5}+c^{\prime}$
$\Rightarrow e^{5 x}+e^{5 y}=5 c^{\prime}=c$
Ans: $e^{5 x}+e^{5 y}=c$

10. Question

Find the general solution of each of the following differential equations:
$e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$

Answer

Rearranging all the terms we get:
$\frac{e^{x} d x}{1-e^{x}}=-\frac{\sec ^{2} y d y}{\tan y}$
Integrating both the sides we get:
$\Rightarrow \int \frac{e^{x} d x}{1-e^{x}}=-\int \frac{\sec ^{2} y d y}{\tan y}+c$
$\Rightarrow \frac{\log \left|1-e^{x}\right|}{-1}=-\log |\operatorname{tany}|+\log c$
$\Rightarrow \log \left|1-\mathrm{e}^{\mathrm{x}}\right|=\log |\tan y|-\log c$
$\Rightarrow \log \left|1-\mathrm{e}^{\mathrm{x}}\right|+\log c=\log |\tan y|$
$\Rightarrow \operatorname{tany}=c\left(1-e^{x}\right)$
Ans: $\operatorname{tany}=c\left(1-\mathrm{e}^{\mathrm{x}}\right)$

11. Question

Find the general solution of each of the following differential equations:
$\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$

Answer

Rearranging the terms we get:
$\frac{\sec ^{2} x d x}{\tan x}=-\frac{\sec ^{2} y d y}{\tan y}$
Integrating both the sides we get:
$\Rightarrow \int \frac{\sec ^{2} x d x}{\tan x}=-\int \frac{\sec ^{2} y d y}{\tan y}+c$
$\Rightarrow \log |\tan x|=-\log |\tan y|+\log c$
$\Rightarrow \log |\tan x|+\log |\tan y|=\log c$
$\Rightarrow \tan x \cdot \tan y=c$
Ans: $\tan x \cdot \tan y=c$

12. Question

Find the general solution of each of the following differential equations:
$\cos x(1+\cos y) d x-\sin y(1+\sin x) d y=0$

Answer

Rearranging the terms we get:
$\frac{\cos x d x}{(1+\sin x)}=\frac{\sin y d y}{(1+\cos y)}$
Integrating both the sides we get:
$\Rightarrow \int \frac{\cos x d x}{(1+\sin x)}=\int \frac{\sin y d y}{(1+\cos y)}+c$
$\Rightarrow \log |1+\sin x|=-\log |1+\cos y|+\log c$
$\Rightarrow \log |1+\sin x|+\log |1+\cos y|=\log c$
$\Rightarrow(1+\sin x)(1+\cos y)=c$
Ans: $(1+\sin x)(1+\cos y)=c$

13. Question

For each of the following differential equations, find a particular solution satisfying the given condition :
$\cdot \cos \left(\frac{d y}{d x}\right)=a,$. where $a \in R$ and $y=2$ when $x=0$.

Answer

$\cos \left(\frac{d y}{d x}\right)=a$
$\Rightarrow \frac{d y}{d x}=\cos ^{-1} a$
$\Rightarrow d y=\cos ^{-1} a d x$
Integrating both the sides we get:
$\Rightarrow \int d y=\int \cos ^{-1} a d x+c$
$\Rightarrow y=x \cos ^{-1} a+c$
when $x=0, y=2$
$\therefore 2=0+c$
$\therefore c=2$
$\therefore y=x \cos ^{-1} a+2$
$\Rightarrow \frac{y-2}{x}=\cos ^{-1} a$
$\Rightarrow \cos \left(\frac{y-2}{x}\right)=a$
Ans: $\cos \left(\frac{y-2}{x}\right)=a$

14. Question

For each of the following differential equations, find a particular solution satisfying the given condition :
$\frac{d y}{d x}=-4 x y^{2}$, it being given that $y=1$ when $x=0$.

Answer

Rearranging the terms we get:
$\frac{d y}{y^{2}}=-4 x d x$
Integrating both the sides we get:
$\Rightarrow \int \frac{d y}{y^{2}}=-\int 4 x d x+c$
$\Rightarrow \frac{y^{-1}}{-1}=-\frac{4 x^{2}}{2}+c$
$\Rightarrow y^{-1}=2 x^{2}+c$
$y=1$ when $x=0$
$\Rightarrow(1)^{-1}=2(0)^{2}+c$
$\Rightarrow C=1$
$\Rightarrow \frac{1}{y}=2 x^{2}+1$
$\Rightarrow \frac{1}{2 x^{2}+1}=y$
Ans: $y=\frac{1}{2 x^{2}+1}$

15. Question

For each of the following differential equations, find a particular solution satisfying the given condition : $x d y=\left(2 x^{2}+1\right) d x(x \neq 0)$, given thaty $=1$ when $x=1$.

Answer

Rearranging the terms we get:
$d y=\frac{2 x^{2}+1}{x} d x$
$\Rightarrow d y=2 x d x+\frac{1}{x} d x$
Integrating both the sides we get:
$\Rightarrow \int d y=\int 2 x d x+\int \frac{1}{x} d x+c$
$\Rightarrow y=x^{2}+\log |x|+c$
$y=1$ when $x=1$
$\therefore 1=1^{2}+\log 1+c$
$\therefore 1-1=0+c \ldots(\log 1=0)$
$\Rightarrow C=0$
$\therefore y=x^{2}+\log |x|$
Ans: $y=x^{2}+\log |x|$

16. Question

For each of the following differential equations, find a particular solution satisfying the given condition : $\frac{d y}{d x}=y \tan x$, it being given that $y=1$ when $x=0$.

Answer

Rearranging the terms we get:
$\frac{d y}{y}=\tan x d x$
$\Rightarrow \int \frac{d y}{y}=\int \tan x d x+c$
$\Rightarrow \log |y|=\log |\sec x|+\log c$
$\Rightarrow \log |y|-\log |\sec x|=\log c$
$\Rightarrow \log |y|+\log |\cos x|=\log c$
$\Rightarrow \mathrm{y} \cos \mathrm{x}=\mathrm{c}$
$y=1$ when $x=0$
$\therefore 1 \times \cos 0=c$
$\therefore C=1$
$\Rightarrow y \cos x=1$
$\Rightarrow y=1 / \cos x$
$\Rightarrow y=\sec x$
Ans: $y=\sec x$

Exercise 19B

1. Question

Find the general solution of each of the following differential equations:
$\frac{d y}{d x}=\frac{x-1}{y+2}$

Answer

$(y+2) d y=(x-1) d x$
Integrating on both sides,
$\int(y+2) d y=\int(x-1) d x$
$\frac{y^{2}}{2}+2 y=\frac{x^{2}}{2}-x+C$
$y^{2}+4 y-x^{2}+2 x=C$

2. Question

Find the general solution of each of the following differential equations:
$\frac{d y}{d x}=\frac{x}{\left(x^{2}+1\right)}$

Answer

$d y=\frac{x}{x^{2}+1} d x$
Multiply and divide 2 in numerator and denominator of RHS,
$y=\frac{1}{2} \cdot\left(\frac{2 x}{x^{2}+1} d x\right)$
Integrating on both sides
$y=\frac{1}{2} \cdot \log \left(x^{2}+1\right)+C$

3. Question

Find the general solution of each of the following differential equations:
$\frac{d y}{d x}=(1+x)\left(1+y^{2}\right)$

Answer

$\frac{1}{1+y^{2}} d y=(1+x) d x$
Integrating on both sides
$\int \frac{1}{1+y^{2}} d y=\int(1+x) d x$
$\Rightarrow \tan ^{-1} y=x+\frac{x^{2}}{2}+C$

4. Question

Find the general solution of each of the following differential equations:
$\left(1+x^{2}\right) \frac{d y}{d x}=x y$

Answer

$\frac{1}{y} \cdot d y=\frac{x}{x^{2}+1} d x$
Multiply and divide 2 in numerator and denominator of RHS,
$\frac{1}{y} \cdot d y=\frac{1}{2} \cdot\left(\frac{2 x}{x^{2}+1} d x\right)$
Integrating on both sides
$\log y=\frac{1}{2} \cdot \log \left(1+x^{2}\right)+\log C$
$\log y=\log \sqrt{1+x^{2}}+\log C$
$\Rightarrow y=\sqrt{1+x^{2}} \cdot C_{1}$

5. Question

Find the general solution of each of the following differential equations:
$\frac{d y}{d x}+y=1(y \neq 1)$

Answer

$\frac{d y}{d x}=1-y$
$\frac{1}{1-y} d y=d x$
Integrating on both sides
$\int \frac{1}{1-y} d y=\int d x$
$\Rightarrow \log |1-y|=x+C$
6. Question

Find the general solution of each of the following differential equations:
$\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$

Answer

$\frac{d y}{d x}=-\sqrt{\frac{1-y^{2}}{1-x^{2}}}$
$\frac{1}{\sqrt{1-y^{2}}} d y=-\frac{1}{\sqrt{1-x^{2}}} d x$
Integrating on both sides
$\int \frac{1}{\sqrt{1-y^{2}}} d y=\int-\frac{1}{\sqrt{1-x^{2}}} d x$
$\sin ^{-1} y=\sin ^{-1} x+C$
$\Rightarrow \sin ^{-1} x+\sin ^{-1} y=C$

7. Question

Find the general solution of each of the following differential equations:
$x \frac{d y}{d x}+y=y^{2}$

Answer

$\Longrightarrow x \cdot \frac{d y}{d x}+y=y^{2}$
$x \cdot \frac{d y}{d x}=y^{2}-y$
$\frac{1}{y^{2}-y} d y=\frac{1}{x} d x$
$\frac{1}{y(y-1)} d y=\frac{1}{x} d x$
Integrating on both the sides,
$\int \frac{1}{y(y-1)} d y=\int \frac{1}{x} d x$
LHS:
Let $\frac{1}{y(y-1)} d y=\frac{A}{y}+\frac{B}{(y-1)}$
$\frac{1}{y(y-1)} d y=\frac{A(y-1)}{y}+\frac{B y}{(y-1)}$
$1=A(y-1)+B y$
$1=A y+B y-A$
Comparing coefficients in both the sides,
$A=-1, B=1$
$\frac{1}{y(y-1)} d y=-\frac{1}{y}+\frac{1}{(y-1)}$
$\int \frac{1}{y(y-1)} d y=\int\left[-\frac{1}{y}+\frac{1}{(y-1)}\right] d y$
$\int-\frac{1}{y} d y+\int \frac{1}{(y-1)} d y$
$-\log y+\log (y-1)$
$\Rightarrow \log \left(\frac{y-1}{y}\right)$
RHS:
$\int \frac{1}{x} d x$
$\int \frac{1}{x} d x=\log x+\log C$
Therefore the solution of the given differential equation is
$\log \left(\frac{y-1}{y}\right)=\log x+\log C$
$\frac{y-1}{y}=x . C$
$y-1=y x C$
$\Rightarrow y=1+x y C$

8. Question

Find the general solution of each of the following differential equations:
$x^{2}(y+1) d x+y^{2}(x-1) d y=0$

Answer

$x^{2}(y+1) d x+y^{2}(x-1) d y=0$
$x^{2}(y+1) d x=-y^{2}(x-1) d y$
$x^{2}(y+1) d x=y^{2}(1-x) d y$
$\frac{x^{2}}{(1-x)} d x=\frac{y^{2}}{y+1} d y$
Add and subtract 1 in numerators of both LHS and RHS,
$\frac{x^{2}-1+1}{(1-x)} d x=\frac{y^{2}-1+1}{y+1} d y$
$\frac{\left(x^{2}-1\right)+1}{(1-x)} d x=\frac{\left(y^{2}-1\right)+1}{y+1} d y$
By the identity, $\left(a^{2}-b^{2}\right)=(a+b) \cdot(a-b)$
$\frac{(x+1)(x-1)+1}{(1-x)} d x=\frac{(y+1)(y-1)+1}{(y+1)} d y$
Splitting the terms,
$-(x+1) d x+\frac{1}{(1-x)} d x=(y-1) d y+\frac{1}{(y+1)} d y$
Integrating,
$\int-(x+1) d x+\int \frac{1}{(x-1)} d x=\int(y-1) d y+\int \frac{1}{(y+1)} d y$
$-\left(\frac{x^{2}}{2}+x\right)+\log |x-1|=\left(\frac{y^{2}}{2}-y\right)+\log |1+y|+C$
$\Rightarrow \frac{x^{2}}{2}+\frac{y^{2}}{2}+x-y+\log |x-1|+\log |1+y|=C$

9. Question

Find the general solution of each of the following differential equations:
$y\left(1-x^{2}\right) \frac{d y}{d x}=x\left(1+y^{2}\right)$

Answer

$\frac{y}{1+y^{2}} d y=\frac{x}{1-x^{2}} d x$
Multiply 2 in both LHS and RHS,
$\frac{2 y}{1+y^{2}} d y=\frac{2 x}{1-x^{2}} d x$
Integrating on both the sides,
$\int \frac{2 y}{1+y^{2}} d y=\int \frac{2 x}{1-x^{2}} d x$
$\log \left(1+y^{2}\right)=-\log \left(1-x^{2}\right)+\log C$
$\log \left(1+y^{2}\right)+\log \left(1-x^{2}\right)=\log C$
$=\left(1+y^{2}\right) \cdot\left(1-x^{2}\right)=C$

10. Question

Find the general solution of each of the following differential equations:
$y \log y d x-x d y=0$

Answer

$y \cdot \log y d x=x d x$
$\frac{1}{x} d x=\frac{1}{y \cdot \log y} d y$
Integrating on both the sides,
$\int \frac{1}{x} d x=\int \frac{1}{y \cdot \log y} d y$
LHS:
$\int \frac{1}{x} d x=\log x$
RHS:
$\int \frac{1}{y \cdot \log y} d y$
Let $\log y=t$
So, $\frac{1}{y} d y=d t$
$\int \frac{1}{y \cdot \log y} d y=\int \frac{1}{t} d t$
$=\log t$
$=\log (\log y)$
Therefore the solution of the given differential equation is
$\log x=\log (\log y)+\log C$
$x=\log y . C$

11. Question

Find the general solution of each of the following differential equations:
$x\left(x^{2}-x^{2} y^{2}\right) d y+y\left(y^{2}+x^{2} y^{2}\right) d x=0$

Answer

$x \cdot x^{2}\left(1-y^{2}\right) d y+y \cdot y^{2}\left(1+x^{2}\right) d x=0$
$x^{3}\left(1-y^{2}\right) d y+y^{3}\left(1+x^{2}\right) d x=0$
$\frac{1+x^{2}}{x^{3}} d x+\frac{1-y^{2}}{y^{3}} d y=0$
$\frac{1}{x^{3}} d x+\frac{1}{x} d x+\frac{1}{y^{3}} d y-\frac{1}{y} d y=0$
Integrating ,
$\int \frac{1}{x^{3}} d x+\int \frac{1}{x} d x+\int \frac{1}{y^{3}} d y-\int \frac{1}{y} d y=C$
$\frac{x^{-3+1}}{-3+1}+\log x-\log y+\frac{y^{-3+1}}{-3+1}=C$
$-\frac{1}{2 x^{2}}+-\frac{1}{2 y^{2}}+\log x-\log y=C$
$-\frac{1}{2 x^{2}}+-\frac{1}{2 y^{2}}+\log \left(\frac{x}{y}\right)=C$

12. Question

Find the general solution of each of the following differential equations:
$\left(1-x^{2}\right) d y+x y(1-y) d x=0$

Answer

$\left(1-x^{2}\right) d y=-x y(1-y) d x$
$\left(1-x^{2}\right) d y=x y(y-1) d x$
$\frac{1}{y(y-1)} d y=\frac{x}{1-x^{2}} d x$

Integrating on both the sides,
$\int \frac{1}{y(y-1)} d y=\int \frac{x}{1-x^{2}} d x$
LHS:
Let $\frac{1}{y(y-1)} d y=\frac{A}{y}+\frac{B}{(y-1)}$
$\frac{1}{y(y-1)} d y=\frac{A(y-1)}{y}+\frac{B y}{(y-1)}$
$1=A(y-1)+B y$
$\Rightarrow 1=A y+B y-A$
Comparing coefficients in both the sides,
$A=-1, B=1$
$\frac{1}{y(y-1)} d y=-\frac{1}{y}+\frac{1}{(y-1)}$
$\int \frac{1}{y(y-1)} d y=\int\left[-\frac{1}{y}+\frac{1}{(y-1)}\right] d y$
$\int-\frac{1}{y} d y+\int \frac{1}{(y-1)} d y$
$-\log y+\log (y-1)$
$=\log \left(\frac{y-1}{y}\right)$
RHS:
$\int \frac{x}{1-x^{2}} d x$
Multiply and divide 2
$\frac{1}{2} \cdot \int \frac{2 x}{1-x^{2}} d x$
$-\frac{1}{2} \cdot \log \left(1-x^{2}\right)+\log C$
$-\log \sqrt{1-x^{2}}+\log C$
Therefore the solution of the given differential equation is
$\log \left(\frac{y-1}{y}\right)=-\log \sqrt{1-x^{2}}+\log C$
$-\log \left(\frac{y-1}{y}\right)=\log \sqrt{1-x^{2}}+\log C$
$\log \left(\frac{y}{y-1}\right)=\log \sqrt{1-x^{2}}+\log C$
$\frac{y}{y-1}=\sqrt{1-x^{2}} \cdot C$
$=y=(y-1) \cdot \sqrt{1-x^{2}} \cdot C$

13. Question

Find the general solution of each of the following differential equations:
$\left(1-x^{2}\right)(1-y) d x=x y(1+y) d y$

Answer

$\frac{1-x^{2}}{x} d x=\frac{y(1+y)}{(1-y)} d y$
$\left[\frac{1}{x}-x\right] d x=\left[\frac{y+y^{2}}{1-y}\right] d y$
$\left[\frac{1}{x}-x\right] d x=\left[\frac{y}{1-y}+\frac{y^{2}}{1-y}\right] d y$
Integrating on both the sides,
$\int\left[\frac{1}{x}-x\right] d x=\int\left[\frac{y}{1-y}+\frac{y^{2}}{1-y}\right] d y$
LHS:
$\int\left[\frac{1}{x}-x\right] d x=\log x-\frac{x^{2}}{2}$
RHS:
$\int \frac{y}{1-y} d y=\int \frac{y-1+1}{1-y} d y$
$\int \frac{y-{ }^{`} 1}{1-y} d y+\int \frac{1}{1-y} d y$
$\int-1 . d y+\int \frac{1}{1-y} d y$
$-y+\log |1-y|$
$\int \frac{y^{2}}{1-y} d y$
Add and subtract 1 in numerators of both LHS and RHS,
$\frac{y^{2}-1+1}{(1-y)} d y$
$\frac{\left(y^{2}-1\right)+1}{(1-y)} d y$
By the identity, $\left(a^{2}-b^{2}\right)=(a+b) \cdot(a-b)$
$\frac{(y+1)(y-1)+1}{(1-y)} d y$
Splitting the terms,
$-(y+1) d y+\frac{1}{(1-y)} d y$
Integrating,
$\int-(y+1) d y-\int \frac{1}{(y-1)} d y$
$-\left(\frac{y^{2}}{2}+y\right)+\log |y-1|$
Therefore the solution of the given differential equation is
$\log x-\frac{x^{2}}{2}=-y+\log |1-y|-\left(\frac{y^{2}}{2}+y\right)+\log |y-1|$
$=\log \left|x .(1-y)^{2}\right|=\frac{x^{2}}{2}-\frac{y^{2}}{2}-2 y+C$

14. Question

Find the general solution of each of the following differential equations:
$(y+x y) d x+\left(x-x y^{2}\right) d y=0$

Answer

$y(1+x) d x+x\left(1-y^{2}\right) d y=0$
$\frac{1+x}{x} d x+\frac{1-y^{2}}{y} d y=0$
$\frac{1}{x} d x+1 \cdot d x+\frac{1}{y} d y-y d y=0$
Integrating ,
$\int \frac{1}{x} d x+\int 1 . d x+\int \frac{1}{y} d y-\int y d y=C$
$\log |x|+x+\log |y|-\frac{y^{2}}{2}=C$
$=\log |x y|+x-\frac{y^{2}}{2}=C$

15. Question

Find the general solution of each of the following differential equations:
$\left(x^{2}-y x^{2}\right) d y+\left(y^{2}+x y^{2}\right) d x=0$

Answer

$x^{2}(1-y) d y+y^{2}(1+x) d x=0$
$\frac{1+x}{x^{2}} d x+\frac{1-y}{y^{2}} d y=0$
$\frac{1}{x^{2}} d x+\frac{1}{x} d x+\frac{1}{y^{2}} d y-\frac{1}{y} d y=0$
Integrating,
$\int \frac{1}{x^{2}} d x+\int \frac{1}{x} d x+\int \frac{1}{y^{2}} d y-\int \frac{1}{y} d y=C$
$-\frac{1}{x}+\log |x|-\frac{1}{y}-\log |y|=C$
$\log \left|\frac{x}{y}\right|=\frac{1}{x}+\frac{1}{y}+C$
16. Question

Find the general solution of each of the following differential equations:
$\left(x^{2} y-x^{2}\right) d x+\left(x y^{2}-y^{2}\right) d y=0$

Answer

$x^{2}(y-1) d x+y^{2}(x-1) d y=0$
$\frac{x^{2}}{x-1} d x+\frac{y^{2}}{y-1} d y=0$
Add and subtract 1 in numerators,
$\frac{x^{2}-1+1}{(x-1)} d x+\frac{y^{2}-1+1}{(y-1)} d y$
$\frac{\left(x^{2}-1\right)+1}{(x-1)} d x+\frac{\left(y^{2}-1\right)+1}{(y-1)} d y$
By the identity, $\left(a^{2}-b^{2}\right)=(a+b) \cdot(a-b)$
$\frac{(x+1)(x-1)+1}{(x-1)} d x+\frac{(y+1)(y-1)+1}{(y-1)} d y$
Splitting the terms,
$(x+1) d x+\frac{1}{(x-1)} d x+(y+1) d y+\frac{1}{(y-1)} d y$
Integrating,
$\int(x+1) d x+\int \frac{1}{(x-1)} d x+\int(y+1) d y+\int \frac{1}{(y-1)} d y=C$
$\frac{x^{2}}{2}+x+\log |x-1|+\frac{y^{2}}{2}+y+\log |y-1|$
$\frac{1}{2} \cdot\left(x^{2}+y^{2}\right)+(x+y)+\log |(x-1)(y-1)|$

17. Question

Find the general solution of each of the following differential equations:
$x \sqrt{1+y^{2}} d x+y \sqrt{1+x^{2}} d y=0$

Answer

$\frac{x}{\sqrt{1+x^{2}}} d x+\frac{y}{\sqrt{1+y^{2}}} d y=0$
Integrating,
$\int \frac{x}{\sqrt{1+x^{2}}} d x+\int \frac{y}{\sqrt{1+y^{2}}} d y$

$$
=\text { C formula: }\left\{\frac{d}{d x}\left(\sqrt{1+x^{2}}\right)=\frac{2 x}{2 \cdot \sqrt{1+x^{2}}}=\frac{x}{\sqrt{1+x^{2}}}\right\}
$$

$\sqrt{1+x^{2}}+\sqrt{1+y^{2}}=C$

18. Question

Find the general solution of each of the following differential equations:
$\frac{d y}{d x}=e^{x+y}+x^{2} e^{y}$

Answer

$\frac{d y}{d x}=e^{x} \cdot e^{y}+x^{2} \cdot e^{y}$
$\frac{d y}{d x}=e^{y}\left(e^{x}+x^{2}\right)$
$\frac{1}{e^{y}} d y=\left(e^{x}+x^{2}\right) d x$
Integrating on both the sides,
$\int \frac{1}{e^{y}} d y=\int\left(e^{x}+x^{2}\right) d x$
$-e^{-y}=e^{x}+\frac{x^{3}}{3}+C$
$e^{x}+e^{-y}+\frac{x^{3}}{3}=C$

19. Question

Find the general solution of each of the following differential equations:
$\frac{d y}{d x}=\frac{3 e^{2 x}+3 d^{4 x}}{e^{x}+e^{-x}}$

Answer

Considering ' d ' as exponential ' e '
$\frac{d y}{d x}=\frac{3 e^{2 x}+3 e^{4 x}}{e^{x}+e^{-x}}$
$\frac{d y}{d x}=\frac{3 e^{2 x}+3 e^{4 x}}{e^{x}+\frac{1}{e^{x}}}$
$\frac{d y}{d x}=\frac{\left(3 e^{2 x}+3 e^{4 x}\right) \cdot e^{x}}{e^{2 x}+1}$
$\frac{d y}{d x}=\frac{3 \cdot e^{2 x}\left(1+e^{2 x}\right) \cdot e^{x}}{e^{2 x}+1}$
$\frac{d y}{d x}=3 . e^{3 x}$
$d y=3 . e^{3 x} d x$
Integrating on both the sides,
$\int d y=\int 3 \cdot e^{3 x} d x$
$y=3 \cdot \frac{e^{3 x}}{3}+C$
$y=e^{3 x}+C$
31. Question

Find the general solution of each of the following differential equations:
$(\cos x) \frac{d y}{d x}+\cos 2 x=\cos 3 x$

Answer

Given: $\frac{d y}{d x}+\frac{\cos 2 x}{\cos x}=\frac{\cos 3 x}{\cos x}$
$\Rightarrow \frac{d y}{d x}=\frac{\cos (x+2 x)-\cos 2 x}{\cos x}$
$\Rightarrow \frac{d y}{d x}=\frac{(\cos x \cos 2 x-\sin x \sin 2 x)-\left(2 \cos ^{2} x-1\right)}{\cos x}$
$\Rightarrow \frac{d y}{d x}=\cos 2 x-\frac{2 \sin x \cos x \sin x}{\cos x}-2 \cos x+\sec x$
$\Rightarrow \frac{d y}{d x}=\cos 2 x-2 \sin ^{2} x-2 \cos x+\sec x$
$\Rightarrow y=\int\left(\cos 2 x-2 \sin ^{2} x-2 \cos x+\sec x\right) d x$
$\Rightarrow y=\int \cos 2 x d x-\int 2 \sin ^{2} x d x-\int 2 \cos x d x+\int \sec x d x$
$\Rightarrow y=\int \cos 2 x d x-\int(1-\cos 2 x) d x-\int 2 \cos x d x+\int \sec x d x$
$\Rightarrow y=\frac{\sin 2 x}{2}-2 \sin x-x+\log |\sec x+\tan x|+c$

20. Question

Find the general solution of each of the following differential equations:
$3 e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$

Answer

$\Rightarrow 3 \cdot e^{x} \cdot \tan y d x=\left(e^{x}-1\right) \sec ^{2} y d y$
3. $\frac{e^{x}}{e^{x}-1} d x=\frac{\sec ^{2} y}{\tan y} d y$
3. $\left[\frac{1}{\frac{e^{x}-1}{e^{x}}}\right] d x=\frac{\sec ^{2} y}{\tan y} d y$
3. $\left[\frac{1}{1-e^{-x}}\right] d x=\frac{\sec ^{2} y}{\tan y} d y$

Integrating on both the sides,
$\int 3 \cdot\left[\frac{1}{1-e^{-x}}\right] d x=\int \frac{\sec ^{2} y}{\tan y} d y$
3. $\log \left|1-e^{-x}\right|=\log |\tan y|+\log C$ formula: $\left\{\frac{d}{d y} \tan y=\frac{1}{\tan y} \cdot \sec ^{2} y\right\}$
$\log \left(1-e^{-x}\right)^{3}=\log |\tan y|+\log C$
$\tan y=\left(1-e^{-x}\right)^{3} \cdot C$

32. Question

Find the general solution of each of the following differential equations:
$\frac{d y}{d x}+\frac{(1+\cos 2 y)}{(1-\cos 2 x)}=0$

Answer

Given: $\frac{d y}{d x}+\frac{1+\cos 2 y}{1-\cos 2 x}=0$
$\Rightarrow \frac{d y}{d x}=-\frac{2 \cos ^{2} y}{2 \sin ^{2} x}$
$\Rightarrow \sec ^{2} y \frac{d y}{d x}=-\operatorname{cosec}^{2} x$
$\Rightarrow \int \sec ^{2} y d y=-\int \operatorname{cosec}^{2} x d x$
$\Rightarrow \operatorname{tany}=\cot x+c$

21. Question

Find the general solution of each of the following differential equations:
$e^{y}\left(1+x^{2}\right) d y-\frac{x}{y} d x=0$

Answer

$e^{y}\left(1+x^{2}\right) d y=\frac{x}{y} d x$
$e^{y} \cdot y d y=\frac{x}{1+x^{2}} d x$
Integrating on both the sides,
$\int e^{y} \cdot y d y=\int \frac{x}{1+x^{2}} d x$
LHS:
$\int e^{y} \cdot y d y$
By ILATE rule,
$\int e^{y} \cdot y d y=y \cdot \int e^{y} d y-\int\left[\frac{d}{d y}(y) \cdot \int e^{y} d y\right] d y$
$y \cdot e^{y}-\int e^{y} d y$
$y \cdot e^{y}-e^{y}$
$e^{y}(y-1)$
RHS:
$\int \frac{x}{1+x^{2}} d x$
Multiply and divide by 2
$\frac{1}{2} \int \frac{2 x}{1+x^{2}} d x$
$\frac{1}{2} \cdot \log \left|1+x^{2}\right|$
$\log \sqrt{1+x^{2}}$
Therefore the solution of the given differential equation is
$\Rightarrow e^{y}(y-1)=\log \sqrt{1+x^{2}}+C$

33. Question

Find the general solution of each of the following differential equations:
$\frac{d y}{d x}+\frac{\cos x \sin y}{\cos y}=0$

Answer

Given: $\frac{d y}{d x}=-\frac{\cos x \sin y}{\cos y}$
$\Rightarrow \frac{d y}{d x}=-\cos x \tan y$
$\Rightarrow \int \cot y d y=-\int \cos x d x$
$\Rightarrow \log |\sin y|=-\sin x+c$

34. Question

Find the general solution of each of the following differential equations:
$\cos x(1+\cos y) d x-\sin y(1+\sin x) d y=0$

Answer

Given: $\cos x(1+\cos y) d x-\sin y(1+\sin x) d y=0$
Dividing the whole equation by $(1+\sin x)(1+\cos y)$, we get,
$\Rightarrow \frac{\int \cos x d x}{1+\sin x}=\frac{\int \sin y d y}{1+\cos y}$
$\Rightarrow \log |1+\sin x|+\log |1+\cos y|=\log c$
$\Rightarrow(1+\sin x)(1+\cos y)=c$

22. Question

Find the general solution of each of the following differential equations:
$\frac{d y}{d x}=e^{x+y}+e^{x-y}$

Answer

$\frac{d y}{d x}=e^{x} \cdot e^{y}+e^{x} \cdot e^{-y}$
$\frac{d y}{d x}=e^{x}\left(e^{y}+e^{-y}\right)$
$\frac{1}{e^{y}+e^{-y}} d y=e^{x} d x$
$\frac{1}{e^{y}+\frac{1}{e^{y}}} d y=e^{x} d x$
$\frac{e^{y}}{\left(e^{y}\right)^{2}+1} d y=e^{x} d x$

Integrating on both the sides,
$\int \frac{e^{y}}{\left(e^{y}\right)^{2}+1} d y=\int e^{x} d x$ formula: $\left\{\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}\right\}$
$=\Rightarrow \tan ^{-1} e^{-y}=e^{x}+C$

35. Question

Find the general solution of each of the following differential equations:
$\sin ^{3} \mathrm{xdx}-\sin \mathrm{y} d \mathrm{y}=0$

Answer

Using $\sin ^{3} \mathrm{x}=\frac{3 \sin x-\sin 3 x}{4}$
We have,
$\Rightarrow \frac{3 \sin x-\sin 3 x}{4} d x-\sin y d y=0$
$\Rightarrow \frac{3}{4} \sin x d x-\frac{\sin 3 x}{4} d x-\sin y d y=0$
$\Rightarrow \int \frac{3}{4} \sin x d x-\int \frac{\sin 3 x}{4} d x-\int \sin y d y=0$
$\Rightarrow \frac{3}{4}(-\cos x)+\frac{1}{12} \cos 3 x+\cos y=k$
$\Rightarrow 12 \cos y+\cos 3 x-9 \cos x=c$

23. Question

Find the general solution of each of the following differential equations:
$\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$

Answer

$\frac{\cos x}{\sin x} d x+\frac{e^{y}}{e^{y}+1} d y=0$
$\cot x d x+\frac{e^{y}}{e^{y}+1} d y=0$
Integrating,
$\int \cot x d x+\int \frac{e^{y}}{e^{y}+1} d y=C$
$\log |\sin x|+\log \left|e^{y}+1\right|=\log C$
$\log \left|\sin x \cdot\left(e^{y}+1\right)\right|=\log C$
$\Rightarrow \sin x \cdot\left(e^{y}+1\right)=C$

36. Question

Find the general solution of each of the following differential equations:

$$
\frac{d y}{d x}+\sin (x+y)=\sin (x-y)
$$

Answer

$\frac{d y}{d x}+\sin (x+y)=\sin (x-y)$
$\Rightarrow \frac{d y}{d x}=\sin (x-y)-\sin (x+y)$
$\Rightarrow \frac{d y}{d x}=-2 \sin y \cos x(U \operatorname{sing} \sin (A+B)-\sin (A-B)=2 \sin B \cos A)$
$\Rightarrow-\operatorname{cosec} y d y=\cos x d x$
$\Rightarrow-\int \operatorname{cosec} y d y=\int \cos x d x$
$\Rightarrow-\log |\operatorname{cosec} y-\cot y|=\sin x+c$
$\Rightarrow \sin x+\log |\operatorname{cosec} y-\cot y|+c=0$

24. Question

Find the general solution of each of the following differential equations:
$\frac{d y}{d x}+\frac{x y+y}{x y+x}=0$

Answer

$\frac{d y}{d x}+\frac{y(1+x)}{x(1+y)}=0$
$\frac{1+y}{y} d y+\frac{1+x}{x} d x=0$
$\frac{1}{y} d y+1 \cdot d y+\frac{1}{x} d x+1 \cdot d x=0$
Integrating ,
$\int \frac{1}{y} d y+\int 1 \cdot d y+\int \frac{1}{x} d x+\int 1 \cdot d x=C$
$\log |y|+y+\log |x|+x=C$
$\Rightarrow \log |x y|+x+y=C$

37. Question

Find the general solution of each of the following differential equations:
$\frac{1}{x} \cos ^{2} y d y+\frac{1}{y} \cos ^{2} x d x=0$

Answer

Given: $\frac{1}{x} \cos ^{2} y d y+\frac{1}{y} \cos ^{2} x d x=0$
$\Rightarrow y \cos ^{2} y d y+x \cos ^{2} x d x=0$
$\Rightarrow \frac{y}{2}\left(1+\cos ^{2}\right) d y+\frac{x}{2}\left(1+\cos ^{2}\right) d x=0$ (Using, $\left.2 \cos ^{2} \mathrm{a}=1+\cos 2 \mathrm{a}\right)$
$\Rightarrow y d y+y \cos ^{2} y d y+x d x+x \cos ^{2} x d x=0$
$\Rightarrow \frac{y^{2}}{2}+\frac{y}{2} \sin ^{2} y-\int \frac{\sin ^{2} y}{2} d y$
$\Rightarrow \frac{y^{2}}{2}+\frac{y}{2} \sin ^{2} y+\frac{\cos ^{2}}{4}+\frac{x^{2}}{2}+\frac{x}{2} \sin ^{2} x+\frac{\sin ^{2}}{4}=c$

25. Question

Find the general solution of each of the following differential equations:
$\sqrt{1-x^{4}} d y=x d x$

Answer

$d y=\frac{x}{\sqrt{1-x^{4}}} d x$
Multiply and divide by 2 ,
$d y=\frac{1}{2} \cdot \frac{2 x}{\sqrt{1-x^{4}}} d x$
$d y=\frac{1}{2} \cdot \frac{2 x}{\sqrt{1-\left(x^{2}\right)^{2}}} d x$
Integrating on both the sides,
$\int d y=\frac{1}{2} \cdot \int d y=\frac{1}{2} \cdot \frac{2 x}{\sqrt{1-x^{4}}} d x$ formula: $\left\{\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}\right\}$
$\Rightarrow y=\frac{1}{2} \cdot \sin ^{-1} x^{2}+c$

38. Question

Find the general solution of each of the following differential equations:
$\frac{d y}{d x}=\sin ^{3} x \cos ^{2} x+x e^{x}$

Answer

Here we have, $\mathrm{y}=\int\left(\sin ^{3} \mathrm{x}^{2} \cos ^{2} \mathrm{x}+\mathrm{xe} \mathrm{e}^{\mathrm{x}}\right) d x$
$\Rightarrow \int \cos ^{2} \mathrm{x}\left(1-\cos ^{2} \mathrm{x}\right) \sin \mathrm{xdx}+\int \mathrm{xe}^{\mathrm{x}} \mathrm{dx}$
Taking cosx as twe have,
$\Rightarrow \cos x=t$,
$\Rightarrow-\sin x d x=d t$,
So we have,
$\Rightarrow y=\int \cos ^{2} x \sin x d x-\int \cos ^{4} x \sin x d x+\int x e^{x} d x$
$\Rightarrow y=-\int t^{2} d t-\int t^{4}(-d t)+\int x e^{x} d x$
$\Rightarrow y=-\frac{\cos ^{2} x}{3}+\frac{\cos ^{5} x}{5}+x e^{x}-e^{x}+c$

26. Question

Find the general solution of each of the following differential equations:
$\operatorname{cosec} x \log y \frac{d y}{d x}+x^{2} y=0$

Answer

$\frac{\log y}{y} d y+\frac{x^{2}}{\csc x} d x=0$
$\frac{\log y}{y} d y+x^{2} \cdot \sin x d x=0$
Integrating ,
$\int \frac{\log y}{y} d y+\int x^{2} \cdot \sin x d x=C$
Consider the integral $\int \frac{\log y}{y} d y$
Let $\log y=t$
So, $\frac{1}{y} d y=d t$
$\int \frac{\log y}{y} d y=\int t . d t$
$\frac{t^{2}}{2}$
$\frac{(\log y)^{2}}{2}$
Consider the integral $\int x^{2} \cdot \sin x d x$
By ILATE rule,
$\int x^{2} \cdot \sin x d x=x^{2} \int \sin x d x-\int\left[\frac{d}{d x}\left(x^{2}\right) \int \sin x d x.\right] d x$
$-x^{2} \cdot \cos x-\int\left[2 x \cdot \int \sin x d x\right] d x$
$-x^{2} \cos x+2 \int[x \cdot \cos x] d x$
Again by ILATE rule,
$-x^{2} \cos x+2\left[x \cdot \int \cos x d x-\int\left\{\frac{d}{d x} x \cdot \int \cos x d x\right\} d x\right]$
$-x^{2} \cos x+2\left[x \sin x-\int \sin x d x\right]$
$-x^{2} \cos x+2[x \sin x+\cos x]$
$-x^{2} \cos x+2 x \sin x+2 \cos x$
$\cos x\left(2-x^{2}\right)+2 x \sin x$
Therefore the solution of the given differential equation is,
$\frac{(\log y)^{2}}{2}+\cos x\left(2-x^{2}\right)+2 x \sin x=C$
27. Question

Find the general solution of each of the following differential equations:
$y d x+\left(1+x^{2}\right) \tan ^{-1} x d y=0$

Answer

$\frac{1}{\tan ^{-1} x \cdot\left(1+x^{2}\right)} d x+\frac{1}{y} d y=0$
Integrating,
$\int \frac{1}{\tan ^{-1} x \cdot\left(1+x^{2}\right)} d x+\int \frac{1}{y} d y=C$
Consider the integral $\int \frac{1}{\tan ^{-1} x \cdot\left(1+x^{2}\right)} d x$
Let $\tan ^{-1} x=t$
So, $\frac{1}{1+x^{2}} d x=d t$
$\int \frac{1}{\tan ^{-1} x \cdot\left(1+x^{2}\right)} d x=\int \frac{1}{t} d t$
$\log t$
$\log \left(\tan ^{-1} x\right)$
Consider the integral $\int \frac{1}{y} d y$
$\log y$
Therefore the solution of the differential equation is
$\log \left(\tan ^{-1} x\right)+\log y=\log C$
$\tan ^{-1} x . y=C$

39. Question

Find the particular solution of the differential equation $\frac{d y}{d x}=1+x+y+x y$, given that $y=0$ when $x=1$.

Answer

Given:
$\frac{d y}{d x}=(1+x)(1+y)$
$\Rightarrow \frac{d y}{1+y}=(1+x) d x$
$\Rightarrow \log |y+1|=\left(x+\frac{x^{2}}{2}+c\right)$
\Rightarrow now, for $y=0$ and $x=1$,
We have,
$\Rightarrow 0=1+\frac{1}{2}+c$
$\Rightarrow c=-\frac{3}{2}$
$\Rightarrow \log |y+1|=\frac{x^{2}}{2}+x-\frac{3}{2}$

28. Question

Find the general solution of each of the following differential equations:
$\frac{1}{\mathrm{x}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=\tan ^{-1} \mathrm{x}$

Answer

$d y=x \cdot \tan ^{-1} x d x$

Integrating on both the sides,
$\int d y=\int x \cdot \tan ^{-1} x d x$
$y=\tan ^{-1} x \int x d x-\int\left[\frac{d}{d x}\left(\tan ^{-1} x\right) . \int x d x\right] d x\langle b y$ ILATE rule \rangle
$y=\tan ^{-1} x \cdot \frac{x^{2}}{2}-\int\left[\frac{1}{1+x^{2}}\right] \cdot \frac{x^{2}}{2} d x$
$y=\tan ^{-1} x \cdot \frac{x^{2}}{2}-\frac{1}{2} \cdot \int \frac{x^{2}}{x^{2}+1} d x$
$y=\tan ^{-1} x \cdot \frac{x^{2}}{2}-\frac{1}{2} \int\left[\frac{x^{2}-1+1}{x^{2}+1}\right]$ (adding and subtracting 1)
$y=\tan ^{-1} x \cdot \frac{x^{2}}{2}-\frac{1}{2} \int\left[1-\frac{1}{x^{2}+1}\right] d x$
$y=\tan ^{-1} x \cdot \frac{x^{2}}{2}-\frac{1}{2}\left[x-\tan ^{-1} x\right]+C$
$y=\tan ^{-1} x \cdot \frac{x^{2}}{2}-\frac{1}{2} x+\frac{\tan ^{-1} x}{2}+C$
$y=\frac{1}{2} \cdot \tan ^{-1} x\left(x^{2}+1\right)-\frac{1}{2} x+C$

40. Question

Find the particular solution of the differential equation $x\left(1+y^{2}\right) d x-y\left(1+x^{2}\right) d y=0$, given that $y=1$ when x $=0$.

Answer

$$
\begin{aligned}
& \frac{2 x d x}{1+x^{2}}-\frac{2 y d y}{1+y^{2}}=0 \\
& \Rightarrow \frac{\log \left(1+x^{2}\right)}{1+y^{2}}=0 \\
& \Rightarrow\left(1+x^{2}\right)=c\left(1+y^{2}\right) \\
& \Rightarrow y=1, x=0 \\
& \Rightarrow 1=c(2) \\
& \Rightarrow c=\frac{1}{2} \\
& \Rightarrow 2\left(1+x^{2}\right)=1+y^{2} \\
& \Rightarrow 2+2 x^{2}-1=y^{2} \\
& \Rightarrow 2 x^{2}+1=y^{2} \\
& \Rightarrow y=\sqrt{2 x^{2}+1}
\end{aligned}
$$

29. Question

Find the general solution of each of the following differential equations:
$e^{x} \sqrt{1-y^{2}} d x+\frac{y}{x} d y=0$

Answer

$e^{x} \cdot x d x+\frac{y}{\sqrt{1-y^{2}}} d y=0$
Integrating,
$\int e^{x} \cdot x d x+\int \frac{y}{\sqrt{1-y^{2}}} d y=C$
Consider the integral $\int e^{x} \cdot x d x$
By ILATE rule,
$\int e^{x} \cdot x d x=x \cdot \int e^{x} d x-\int\left[\frac{d}{d x}(x) \cdot \int e^{x} d x\right] d x$
$x . e^{x}-\int e^{x} d x$
$x . e^{x}-e^{x}$
$e^{x}(x-1)$
Consider the integral $\int \frac{y}{\sqrt{1-y^{2}}} d y$
Its value is $-\sqrt{1-y^{2}}$ as $\frac{d}{d x}\left(\sqrt{1-y^{2}}\right)=\frac{-2 y}{2 \sqrt{1-y^{2}}}=\frac{-y}{\sqrt{1-y^{2}}}$
Therefore the solution of the given differential equation is
$e^{x}(x-1)-\sqrt{1-y^{2}}=C$

41. Question

Find the particular solution of the differential equation $\log \left(\frac{d y}{d x}\right)=3 x+4 y$, given that $y=0$ when $x=0$.

Answer

$\log \left(\frac{d y}{d x}\right)=3 x+4 y$
$\Rightarrow y=0$
$\Rightarrow x=0$
$\Rightarrow \frac{d y}{d x}=e^{3 x} e^{4 y}$
$\Rightarrow e^{-4 y} d y=e^{3 x} d x$
$\Rightarrow \frac{e^{-4 y}}{-4}=\frac{e^{3 x}}{3}+c$
\Rightarrow For $y=0, x=0$, we have
$\Rightarrow-\frac{1}{4}=\frac{1}{3}+c$
$\Rightarrow c=-\frac{7}{12}$
$\Rightarrow \frac{e^{-4 y}}{-4}=\frac{e^{3 x}}{3}-\frac{7}{12}$
Hence, the particular solution is:
$\Rightarrow 4 e^{3 x}+3 e^{-4 x}=7$

30. Question

Find the general solution of each of the following differential equations:
$\frac{d y}{d x}=\frac{1-\cos x}{1+\cos x}$

Answer

$\frac{d y}{d x}=\frac{1-\cos x}{1+\cos x}$
$d y=\frac{1-\cos x}{1+\cos x} d x$
$\cos x$ can be written as $\cos x=\frac{1-\tan ^{2}\left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}$
$d y=\frac{1-\frac{1-\tan ^{2}\left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}}{1+\frac{1-\tan ^{2}\left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}} d x$
$d y=\frac{\left[\frac{1+\tan ^{2}\left(\frac{x}{2}\right)-\left(1-\tan ^{2}\left(\frac{x}{2}\right)\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}\right]}{\frac{1+\tan ^{2}\left(\frac{x}{2}\right)+\left(1-\tan ^{2}\left(\frac{x}{2}\right)\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}} d x$
$d y=\frac{1+\tan ^{2}\left(\frac{x}{2}\right)-1+\tan ^{2}\left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)+1-\tan ^{2}\left(\frac{x}{2}\right)} d x$
$d y=\frac{2 \tan ^{2}\left(\frac{x}{2}\right)}{2} d x$
$d y=\tan ^{2}\left(\frac{x}{2}\right) d x$
Integrating on both the sides,
$\int d y=\int \tan ^{2}\left(\frac{x}{2}\right) d x$
$y=\int\left[\sec ^{2}\left(\frac{x}{2}\right)-1\right] d x$ formula: $\left\{\sec ^{2} x-\tan ^{2} x=1\right\}$
$y=2 \cdot \tan \left(\frac{x}{2}\right)-x+C$ formula: $\left\{\frac{d}{d x} \tan \left(\frac{x}{2}\right)=\sec ^{2}\left(\frac{x}{2}\right) \cdot \frac{1}{2}\right\}$

42. Question

Solve the differential equation $\left(x^{2}-y x^{2}\right) d y+\left(y^{2}+x^{2} y^{2}\right) d x=0$, given that $y=1$ when $x=1$.

Answer

$x^{2}(1-y) d y+y^{2}\left(1+x^{2}\right) d x=0$
$\Rightarrow \frac{(1-y)}{y^{2}} d y+\frac{\left(1+x^{2}\right)}{x^{2}} d x=0$
$\Rightarrow \int \frac{(1-y)}{y^{2}} d y+\int \frac{\left(1+x^{2}\right)}{x^{2}} d x=0$
$\Rightarrow-\frac{1}{y}-\log y-\frac{1}{x}+x=c$
For $y=1, x=1$, we have,
$\Rightarrow-1-0-1+1=c$
$\Rightarrow c=-1$
Hence, the required solution is:
$\Rightarrow \frac{1}{y}+\log y+\frac{1}{x}-x=1$

43. Question

Find the particular solution of the differential equation $e^{x} \sqrt{1-y^{2}} d x+\frac{y}{x} d y=0$, given that $y=1$ when $x=$ 0.

Answer

Given: $e^{x} \sqrt{1-y^{2} d x}+\frac{y}{x} d y=0$ Separating the variables we get,
$\Rightarrow x e^{x} d x+\frac{y}{\sqrt{1-y^{2}}} d y=0$
$\Rightarrow \int x e^{x} d x+\int \frac{y}{\sqrt{1-y^{2}}} d y=0$ Substituting $\sqrt{1-y^{2}}=t, 1-y^{2}=t^{2},-2 y d y=2 t d t$, we have,
$\Rightarrow x e^{x}-e^{x}-\frac{1}{2} \log \left|\sqrt{1-y^{2}}\right|=c$
For $\mathrm{y}=1$ and $\mathrm{x}=0$, we have,
$\Rightarrow 0-1-0=c$
$\Rightarrow c=-1$
\Rightarrow Hence, the particular solution will be:-
$\Rightarrow x e^{x}-e^{x}-\frac{1}{2} \log \left|\sqrt{1-y^{2}}\right|+1=0$

44. Question

Find the particular solution of the differential equation $\frac{d y}{d x}=\frac{x(2 \log x+1)}{(\sin y+y \cos y)}$, given that $y=\frac{\pi}{2}$ when $x=1$.

Answer

Given: $\frac{d y}{d x}=\frac{x(2 \log x+1)}{(\sin y+y \cos y)}$
$\Rightarrow \int \sin y d y+\int y \cos y d y=\int 2 x \log x d x+\int x d x$
Let $\int y \operatorname{cosydy}=I$ Then,
$\int y \cos y d y=\left(\int \cos y d y\right) y-\int\left(\left(\int y \cos y d y\right) \cdot \frac{d}{d x} y\right) d y$
And $\int x \log x=\left(\int x d x\right) \log x-\int\left(\left(\int x d x\right) \frac{d}{d x} \log x\right) d x$
We have,
$\Rightarrow-\cos y+y \sin y+\cos y=x^{2} \log x-\frac{x^{2}}{2}+\frac{x^{2}}{2}+c$
For $y=\frac{\pi}{2}, x=1$ we have,
$0+\frac{\pi}{2}+0=0+c$
$c=\frac{\pi}{2}$
$\Rightarrow y \sin y=x^{2} \log x+\frac{\pi}{2}$

45. Question

Solve the differential equation $\frac{d y}{d x}=y \sin 2 x$, given that $y(0)=1$.

Answer

We have,
$\frac{d y}{d x}=y \sin 2 x$
$\Rightarrow \frac{d y}{y}=\sin 2 x d x$
$\Rightarrow \log y=-\frac{\cos 2 x}{2}+c$
For $y=1, x=0$, we have,
$c=\frac{1}{2}$
$\Rightarrow \log y=\frac{1}{2}(1-\cos 2 x)$
$\Rightarrow l o g y=\sin ^{2} x$
Thus,
The particular solution is:
$y=e^{\sin ^{2} x}$

46. Question

Solve the differential equation $(x+1) \frac{d y}{d x}=2 x y$, given that $y(2)=3$.

Answer

Given: $(x+1) \frac{d y}{d x}=2 x y$
$\Rightarrow \frac{d y}{y}=2 \frac{x}{x+1} d x$
$\Rightarrow \log y=\int 2-\frac{2}{x+1} d x$
$\Rightarrow \log y=2 x-2 \log (x+1)+c$
For $x=2$ and $y=3$, we have,
$c=3 \log 3-4$
Hence, the particular solution is,
$\Rightarrow \mathrm{y}(\mathrm{x}+1)^{2}=27 e^{2 x-4}$

47. Question

Solve $\frac{d y}{d x}=x(2 \log x+1)$, given that $y=0$ when $x=2$.

Answer

we have, $\frac{d y}{d x}=2 x \log x+x$, Integrating we get,
$y=\int(2 x \log x+x) d x$,
$y=\int 2 x \log x d x+x d x$
$y=\left(\int 2 x d x\right) \log x-\int\left[\left(\int 2 x d x\right)\left(\frac{d}{d x} \log x\right)\right] d x+\frac{x^{2}}{2}+c$
given that $y=0$ when $x=2$
$\Rightarrow y=x^{2} \log x-\frac{x^{2}}{2}+\frac{x^{2}}{2}+c$
now putting $x=2$ and $y=0$,
$\Rightarrow 0=4 \log 2+c$
$\Rightarrow c=-4 \log 2$
Thus, the solution is:
$y=x^{2} \log x-4 \log 2$

48. Question

Solve $\left(x^{3}+x^{2}+x+1\right) \frac{d y}{d x}=2 x^{2}+x$, given that $y=1$ when $x=0$.

Answer

we have, $\left(x^{3}+x^{2}+x+1\right) \frac{d y}{d x}=2 x^{2}+x$,
$\{\quad\}$ Given that: $y=1$ when $x=0$,
$\Rightarrow\left(x^{2}+1\right)(x+1) \frac{d y}{d x}=2 x^{2}+x$
$\Rightarrow \frac{d y}{d x}=\frac{x^{2}+x+x^{2}}{\left(x^{2}+1\right)(x+1)} d x$
$\Rightarrow \frac{d y}{d x}=\frac{x(x+1)+x^{2}+1-1}{\left(x^{2}+1\right)(x+1)} d x$
$\Rightarrow \frac{d y}{d x}=\frac{x}{x^{2}+1} d x+\frac{x^{2}+1-1}{\left(x^{2}+1\right)(x+1)} d x$
$\Rightarrow d y=\frac{x d x}{x^{2}+1}+\frac{d x}{x+1}-\frac{d x}{\left(x^{2}+1\right)(x+1)}$
$\Rightarrow \int d y=\int \frac{x d x}{x^{2}+1}+\int \frac{d x}{x+1}-\int \frac{\frac{-1}{2} x+\frac{1}{2}}{x^{2}+1} d x+\int \frac{\frac{1}{2}}{x+1} d x$
$\Rightarrow y=\frac{1}{2} \log \left|x^{2}+1\right|+\log |x+1|+\frac{1}{4} \log \left|x^{2}+1\right|-\frac{1}{2} \tan ^{-1} x+\frac{1}{2} \log |x+1|+c$
$\Rightarrow y=\frac{3}{4} \log \left|x^{2}+1\right|+\frac{1}{2} \log |x+1|-\frac{1}{2} \tan ^{-1} x+c$
For $y=1$, when $x=0$, we have,
$1=0+0-0+c$
$\Rightarrow c=1$
$y=\frac{1}{2}\left\{\log |x+1|+\frac{3}{2} \log \left(x^{2}+1\right)-\tan ^{-1} x\right\}+1$

49. Question

Solve $\frac{d y}{d x}=y \tan x$, given that $y=1$ when $x=0$.

Answer

we have, $\frac{d y}{d x}=y \tan x$,
given that: $\mathrm{y}=1$ when $\mathrm{x}=0$
$\Rightarrow \frac{d y}{d x}=y \tan x$
$\Rightarrow \frac{d y}{y}=\tan x d x$
$\Rightarrow \log y=\operatorname{losec} x+c$
$\Rightarrow 0=0+c$
$\Rightarrow y \cos x=1$ is the particular solution...

50. Question

Solve $\frac{d y}{d x}=y^{2} \tan 2 x$, given that $\mathrm{y}=2$ when $\mathrm{x}=0$.

Answer

we have: $\frac{d y}{d x}=y^{2} \tan 2 x$,
Given that, $\mathrm{y}=2$ when $\mathrm{x}=0$
$\Rightarrow \frac{d y}{y^{2}}=\tan 2 x d x$
$\Rightarrow \int \frac{d y}{y^{2}}=\int \tan 2 x d x \ldots$ integrating both sides
$\Rightarrow-\frac{1}{y}=\frac{\log (\sec 2 x)}{2}$
$\Rightarrow-\frac{1}{2}=0+c$
$\Rightarrow c=-\frac{1}{2}$
$\Rightarrow y(1+\log \cos 2 x)=2 \ldots$ is the particular solution

51. Question

Solve $\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{y} \cot 2 \mathrm{x}$, given that $\mathrm{y}=2$ when $\mathrm{x}=\frac{\pi}{4}$.

Answer

we have $\frac{d y}{d x}=y \cot 2 x$,
Given that, $\mathrm{y}=2$ when $\mathrm{x}=\frac{\pi}{2}$
$\Rightarrow \frac{d y}{y}=y \cot 2 x$
$\Rightarrow \frac{d y}{y}=\cot 2 x d x$
$\Rightarrow \int \frac{d y}{y}=\int \cot 2 x d x$
$\Rightarrow \log y=-\frac{\log (\sin 2 x)}{2}+c$
$\Rightarrow \log 2=0+c$
\Rightarrow Thus, $c=\log 2$
The particular solution is :- $\log \frac{y}{\sqrt{\sin 2 x}}=\log 2$
$\therefore y=2 \sqrt{\sin 2 x}$

52. Question

Solve $\left(1+x^{2}\right) \sec 2 y d y+2 x \tan y d x=0$, given that $y=\frac{\pi}{4}$ when $x=1$.

Answer

we have, $\left(1+x^{2}\right) \sec 2 y d y+2 x \tan y d x=0$,
Given that, $y=\frac{\pi}{4}$ when $x=1$
$\Rightarrow\left(1+x^{2}\right) \sec 2 y d y+2 x \operatorname{tany} d x=0$
$\Rightarrow \frac{\sec ^{2} y}{\tan y} d y+\frac{2 x}{1+x^{2}} d x=0$
$\Rightarrow \int \frac{\sec ^{2} y}{\tan y} d y+\int \frac{2 x}{1+x^{2}} d x=0$
\Rightarrow logtany $+\log \left(1+x^{2}\right)=\log c$
For $y=\frac{\pi}{4}, x=1$
We have, $0+\log 2=\log c$,
$c=2$,
Hence the required particular solution is:-
$\therefore \operatorname{tany}\left(1+x^{2}\right)=2$

53. Question

Find the equation of the curve passing through the point $\left(0, \frac{\pi}{4}\right)$ whose differential equation is $\sin \mathrm{x} \cos \mathrm{y} \mathrm{dx}$ $+\cos x \sin y d y=0$.

Answer

we have, $\sin x \cos y d x+\cos x \sin y d y=0$
$\Rightarrow \sin x \cos y d x+\cos x \sin y d y=0$
$\Rightarrow \tan x d x+\operatorname{tany} d y=0$
$\Rightarrow \log \sec x+\log \sec y=\log c$
$\Rightarrow \sec x \sec y=c$

Given that, coordinates of point, $\left(0, \frac{\pi}{4}\right)$
$\Rightarrow c=\sqrt{2}$
$\Rightarrow \operatorname{secy}=\sqrt{2} \cos x$
$\therefore y=\cos ^{-1}\left(\frac{1}{\sqrt{2}} \sec x\right) \ldots$ is the required particular solution

54. Question

Find the equation of a curve which passes through the origin and whose differential equation is $\frac{d y}{d x}=e^{x} \sin x$.

Answer

Given, $\frac{d y}{d x}=e^{x} \sin x$
$d y=e^{x} \sin x d x$
$\Rightarrow \int d y=\int e^{x} \sin x d x$
$\left(\right.$ I \quad let $I=\int^{x} e^{x} \sin d x$
$\Rightarrow I=\int e^{x} d x \sin x-\int\left(\int e^{x} d x\right) \cdot\left(\frac{d}{d x} \sin x\right) d x$
$\Rightarrow I=e^{x} \sin x-\int e^{x} \cos x d x$
$\Rightarrow I=e^{x} \sin x-\int e^{x} d x \cos x-\int\left(\int e^{x} d x\right) \cdot\left(\frac{d}{d x} \cos x\right) d x$
$\Rightarrow I=e^{x} \sin x-e^{x} \cos x-\int e^{x} \sin x d x$
$\Rightarrow 2 I=e^{x} \sin x-e^{x} \cos x$
$\Rightarrow I=\frac{e^{x} \sin x-e^{x} \cos x}{2}+c$
$\therefore y=\frac{e^{x} \sin x-e^{x} \cos x}{2}+c$
For the curve passes through $(0,0)$
We have, $\mathrm{c}=\frac{1}{2}$
$\therefore 2 y-e^{x} \sin x+e^{x} \cos x=1$

55. Question

A curve passes through the point ($0,-2$) and at any point (x, y) of the curve, the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point. Find the equation of the curve.

Answer

Given that the product of slope of tangent and y coordinate equals the x-coordinate i.e., $y \frac{d y}{d x}=x$
We have, $y d y=x d x$
$\Rightarrow \int y d y=\int x d x$
$\Rightarrow \frac{y^{2}}{2}=\frac{x^{2}}{2}+c$
For the curve passes through ($0,-2$), we get $c=2$,
Thus, the required particular solution is:-
$\therefore y^{2}=x^{2}+4$

56. Question

A curve passes through the point $(-1,1)$ and at any point (x, y) of the curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point $(-4,-3)$. Find the equation of the curve.

Answer

Given : $\frac{d y}{d x}=\frac{2(y+3)}{x+4}$
$\Rightarrow \frac{d y}{y+3}=\frac{2 d x}{x+4}$
$\Rightarrow \int \frac{d y}{y+3}=2 \int \frac{d x}{x+4}$
$\Rightarrow \log (y+3)=2 \log (x+4)+c$
The curve passes through $(-2,1)$ we have,
$c=0$,
$\therefore y+3=(x+4)^{2}$

57. Question

In a bank, principal increases at the rate for $\mathrm{r} \%$ per annum. Find the value of r if ` 100 double itself in 10 years.
(Given $\log _{\mathrm{e}} 2=0.6931$)

Answer

Given: $\frac{d p}{d t}=\left(\frac{r}{100}\right) \times p$
Here, p is the principal, r is the rate of interest per annum and t is the time in years.
Solving the differential equation we get,
$\frac{d p}{p}=\left(\frac{r}{100}\right) d t$
$\Rightarrow \int \frac{d p}{p}=\int \frac{r}{100} d t$
$\Rightarrow \log p=\frac{r t}{100}+c$
$\Rightarrow p=e^{\frac{r t}{100}+c}$
As it is given that the principal doubles itself in 10 years, so
Let the initial interest be p1 (for $\mathrm{t}=0$), after 10 years p 1 becomes 2 p 1 .
Thus, $p 1=e^{c}$ for $(\mathrm{t}=0)$.
$p=2 p 1=e^{\frac{r(10)}{100}} \cdot e^{c \ldots(\mathrm{ii})}$
Substituting (i) in (ii), we get,
$\Rightarrow 2 \mathrm{p} 1=e^{\frac{r}{10}} \cdot p 1$
$\Rightarrow 2=e^{\frac{r}{10}}$
$\Rightarrow \log 2=\frac{r}{10}$
$\Rightarrow r=10 \log 2$
$\Rightarrow r=6.931$
\therefore Rate of interest $=6.931$

58. Question

In a bank, principal increases at the rate of 5% per annum. An amount of 1000 is deposited in the bank. How much will it worth after 10 years?
(Given $\mathrm{e}^{0.5}=1.648$)

Answer

Given: rate of interest $=5 \%$
$P($ initial $)=$ Rs 1000
And,
$\frac{d p}{d t}=\frac{5}{100} \times p$
$\Rightarrow \frac{\mathrm{dp}}{\mathrm{p}}=\frac{5}{100} \mathrm{dt}$
$\Rightarrow \int \frac{\mathrm{dp}}{\mathrm{p}}=\int \frac{5}{100} \mathrm{dt}$
$\Rightarrow \log \mathrm{p}=\frac{5 \mathrm{t}}{100}+\mathrm{c}$
$\Rightarrow \mathrm{p}=\mathrm{e}^{\frac{5 \mathrm{t}}{100}+\mathrm{c}}$
For $t=0$, we have $p=1000$
$1000=e^{c}$
For $\mathrm{t}=10$ years we have, $p=e^{\frac{50}{100}, 1000}$
$p=1000 e^{1 / 2}$
$p=1648$
Thus, principal is Rs1648 for $t=10$ years.

59. Question

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after t seconds.

Answer

Given:
Volume $\mathrm{V}=\frac{4 \pi r^{3}}{3}$
$\frac{d V}{d t}=\frac{4}{3} \pi 3 r^{2} \frac{d r}{d t}$
$\Rightarrow \frac{d V}{d t}=k$ (constant)
$4 \pi r^{2} \frac{d r}{d t}=k$
$\Rightarrow 4 \pi r^{2} d r=k d t$
$\Rightarrow \int 4 \pi r^{2} d r=\int k d t$
$\Rightarrow \frac{4 \pi r^{3}}{3}=k t+c$

For $t=0, r=3$ and for $t=3, r=6$, So, we have,
$\Rightarrow \frac{4 \pi(3)^{3}}{3}=0+c$
$\Rightarrow c=36 \pi$
$\frac{4 \pi(6)^{3}}{3}=k .(3)+36 \pi$
$\Rightarrow \mathrm{k}=84 \pi$
So after t seconds the radius of the balloon will be,
$\Rightarrow \frac{4 \pi r^{3}}{3}=84 \pi t+36 \pi$
$\Rightarrow 4 \pi r^{3}=252 \pi t+108 \pi$
$\Rightarrow r^{3}=\frac{252 \pi t+108 \pi}{4 \pi}$
$\Rightarrow r^{3}=63 t+27$
$\Rightarrow r=\sqrt[3]{63 t+27}$
Hence, radius of the balloon as a function of time is
$\therefore r=(63 t+27)^{1 / 3}$

60. Question

In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?

Answer

Let y be the bacteria count, then, we have,
rate of growth of bacteria is proportional to the number present
So, $\frac{d y}{d t}=c y$
Where c is a constant,
Then, solving the equation we have,
$\frac{d y}{y}=c d t$
$\int \frac{d y}{y}=\int c d t$
$\log y=c t+k$
Where k is constant of integration
$y=e^{c t+k}$
And we have for $t=0, y=10000$,
$10000=e^{k} \ldots$ (i)
For $\mathrm{t}=2 \mathrm{hrs}, \mathrm{y}$ is increased by $10 \% \mathrm{i} . \mathrm{e} . \mathrm{y}=110000$
$110000=e^{c(2)} \cdot e^{k}$
$\Rightarrow 110000=e^{2 c} \cdot(100000)$ from (i)
$\Rightarrow e^{2 c}=1.1$
$\Rightarrow e^{c}=\sqrt{1.1}$
$\Rightarrow c=\frac{1}{2} \log \left(\frac{11}{10}\right)$
When $\mathrm{y}=200000$, we have,
$200000=e^{c t} .100000$
$\Rightarrow e^{c t}=2$
$\Rightarrow\left(e^{c}\right)^{t}=2$
$\Rightarrow t c=\log 2$
$\Rightarrow t=\frac{2 \log 2}{\log _{\frac{11}{10}}^{10}}$
Hence, $\mathrm{t}=\frac{2 \log ^{21}}{\log _{10}^{11}}$

